This application claims the benefit, under 35 U.S.C. §119, of German Patent Application DE 10 2016 215 988.7, filed Aug. 25, 2016; the prior application is herewith incorporated by reference in its entirety.
The invention relates to a processing unit for the rotational processing of a web-shaped or a sheet-shaped substrate, including at least two processing cylinders and a machine frame, in which a first processing cylinder is mounted so as to be movable in the machine frame, a second processing cylinder is mounted so as to be stationary in the machine frame, and each processing cylinder is assigned a pair of support members. The invention also relates to a label printing machine having the processing unit.
Printing units and punching units are used for label printing machines such as those described in European Patent EP 2 103 429 B1, corresponding to U.S. Pat. No. 8,499,691, for example. The printing units include at least three cylinders, specifically the inking roller, the printing roller and the impression roller. The rotational processing carried out therein causes ink to be applied to a substrate. The punching units include at least two cylinders, specifically the punching cylinder and the mating die cylinder. The rotational processing occurring therein causes the incorporation of punch and/or groove lines. In order for a gap, that is to say the spacing between the cylinders, to be adapted to the substrate to be processed and in order for the punching depth to be set, the gap has to be adjustable.
To that end, support members which can be configured as raceways, annular supports, and as so-called bearer rings, are used. Examples of adjustment installations are to be found in German Publication DE 10 2005 015 046 A1 and in International Publication WO 2012/016758 A1.
On one hand, the complicated and complex construction of adjustment installations of that type is disadvantageous. On the other hand, the precision of adjustment leaves much to be desired. That also results in poor precision in repeatability. That is to say that if the very same gap dimension as in the last order has to be chosen for a repeat order, an exact adjustment of that type will be difficult to carry out.
It is accordingly an object of the invention to provide a processing unit and a label printing machine having the processing unit, which overcome the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type and in which a gap dimension between processing cylinders of the processing unit is adjustable in a simple, exact manner with precise repeatability.
With the foregoing and other objects in view there is provided, in accordance with the invention, a processing unit, for example a printing unit or a punching unit, for the rotational processing of a web-shaped or sheet-shaped substrate, comprising at least two processing cylinders and a machine frame. A first processing cylinder thereof is mounted so as to be movable in the machine frame, a second processing cylinder is mounted so as to be stationary in the machine frame and each processing cylinder is assigned one pair of support members. According to the invention, a respective support member of the second processing cylinder has a solid joint or all-solid joint, an annular segment attached to the latter, and a manipulator, wherein each annular segment contacts a respective one of the support members of the first processing cylinder. A respective solid joint is displaceable in a linear manner by using a respective manipulator, and a respective annular segment is also displaceable therewith in a linear manner. In order for such a displacing movement to be caused, a respective manipulator acts on the solid joint. The use of a solid joint of this type has the advantage that the latter is simple, cost-effective, adjustable in a highly precise manner, and is not sensitive to contamination.
It is particularly advantageous for a respective solid joint to have only one degree of freedom which is aligned along a linear axis. The solid joint herein can preferably be configured in such a manner that the solid joint has elements and/or tapers in the material which enable an elastic deformation of the solid joint and thus a movement in the direction of the linear axis.
In one advantageous refinement, a respective solid joint has at least one leaf spring as such an element, wherein the at least one leaf spring connects the body of the solid joint to the machine frame.
In one particularly advantageous and thus preferred refinement of the processing unit according to the invention, the manipulator is configured as a rotatable eccentric roller or helical roller that is fixedly attached to the frame and is rotatable in particular by motive power. It is advantageous for the manipulator to be in permanent contact with the solid joint in such a way that a rotating movement of the manipulator can be converted to a linear movement of the solid joint.
In one advantageous refinement of the processing unit, the body of the solid joint can be mounted on the machine frame, for example by using guide jaws that are mounted on the latter.
In one particularly advantageous and thus preferred refinement of the processing unit according to the invention, the support members of the first processing cylinder are embodied as raceways that are disposed axially to the cylinder and are mounted so as to be rotatable on the rotation axis of the cylinder. These raceways contact the annular segments of the support members of the second processing cylinder. Due to this construction, the gap dimension between the two processing cylinders can be established in a highly exact manner.
In one advantageous variant embodiment, the first processing cylinder has a tensioning mechanism, for example a pneumatic cylinder, for setting the relative position and the mutual compression of the processing cylinders. A bias between the processing cylinders can thus be generated.
In one potential embodiment, the annular segment of a respective support member is disposed on the body of the solid joint so as to be pivotable counter to a restoring force, for example a spring force, to which end a spring pack can be integrated in the solid joint.
With the objects of the invention in view, there is concomitantly provided a label printing machine, comprising at least one processing unit as described above, wherein in particular the first processing cylinder is embodied as a printing cylinder, the second processing cylinder is embodied as an impression cylinder, and a further stationary processing cylinder is embodied as an inking roller, in particular an anilox roller. The inking roller in this instance likewise has support members as described in detail above.
By contrast, however, if the processing unit has only two processing cylinders, the processing unit can be embodied as a punching unit, wherein the first processing cylinder is embodied as a punching cylinder and the second processing cylinder is embodied as a mating die cylinder. The same construction is also suitable for an embossing unit having an embossing cylinder and a mating embossing cylinder.
The invention described herein and the advantageous refinements of the invention described herein also represent advantageous refinements of the invention in combination with one another, to the extent that such combinations are expedient.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a processing unit and a label printing machine having the processing unit, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawings in detail and first, particularly, to
The construction of a respective support member 20 is shown in detail in the illustration of
The configuration of the support members 20 and of the support members 30, in each case on either side of the cylinders 11, 12, 13 (drive side and operator side), can be derived from the three-dimensional illustration of
The activation of the manipulators herein can be performed manually by the machine operator, or else by motive power. This second variant is illustrated in
In the case of an order changeover, for example when switching takes place from a first cylinder 11 to a first cylinder 11′ having a smaller diameter, the pneumatic cylinder 14 is deactivated, and the bias force F between the cylinders 11, 12, 13 is canceled. The spring packs 28, which are integrated in the bodies 22 of the solid joints 21, by way of the spring force of the former, cause the annular segments 23 to be pivoted away from the respective body 22 of the solid joint 21 in such a way that the support members 30 of the first cylinder 11 are also raised. As a result, the first cylinder 11 is set apart from the two other cylinders 12, 13.
As an alternative to the embodiment of the manipulator 24 as a helical roller, the manipulator 24 could also be embodied as an eccentric roller or as a piezo actuator.
A processing unit 10 having a first cylinder 11 and having a second cylinder 12, both being mounted in the machine frame 9, is illustrated in
An illustration of a preferred embodiment of a printing machine 100, more specifically a narrow-web label printing machine with a sequential construction, having printing units 110 that follow in the horizontal direction, is shown in
In the illustration of the individual printing units 110, which are presently shown as flexographic printing units, chamber doctor blades are also shown apart from the printing cylinders, the impression cylinders, and the inking rollers. The printing units 110 in the printing machine 100 furthermore have various drying installations. UV drying installations are assigned downstream of the impression cylinders on respective printing gap of the printing unit 110 in such a way that the printed substrate 1000 can be dried directly on the impression cylinder. The printing units 110 also have web guide rollers 160 for guiding the web-shaped substrate 1000. The fifth printing unit 110 in the embodiment shown has a hot air drying installation 162. Alternatively, a UV or an IR drying installation could also be employed in this case. A punching unit 150, which has a punching cylinder and a mating die cylinder as rotating tools, is disposed subsequent to the drying installation. An embossing unit, for example a hot-film embossing unit, can also be used additionally or alternatively, respectively, to the punching unit.
As an alternative to the illustrated flexographic printing units, gravure printing, offset printing, and rotary screen printing units can also be employed. At least one of the printing units 110 and/or the punching unit 150 shown herein have the construction of the processing units 10 described above.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 215 988.7 | Aug 2016 | DE | national |