This disclosure relates in general to packaging and, more particularly, to producing a foam and dispersing creamer and/or flavor through packaging.
Coffee beverages may be made by adding foamed milk to espresso. Different amounts of milk may be added to espresso to form various types of coffee beverages such as cappuccinos, café lattes, café macchiatos, or mochas. Traditional coffee machines may prepare milk foam by submerging a steam wand in milk. Traditional coffee machines, however, may not be well-suited for in-home use due to cost, size, and/or complexity.
According to one embodiment, a pressurized package dispenses a formula comprising a foaming agent into a liquid. The internal pressure of the package generates turbulence that causes some of the formula to disperse throughout the liquid and some of the formula to form a foam on a surface of the liquid.
Embodiments of the disclosure may provide numerous technical advantages. According to one embodiment, the creamer and foamer formula may cream coffee while also generating a head of foam on the surface of the beverage. The coffee may be creamed without requiring subsequent stirring. Additionally, the foam may have a strong structure that may be maintained when exposed to hot coffee. The creamer and foamer formula may reduce problems associated with known coffee additives such as weak creaming, weak foaming, off-flavor, potential to cause splashing, requirements for significant headspace above the coffee in the cup, excessive cooling, and/or unsanitary packaging. According to one embodiment, the creamer and foamer formula may be used to prepare a cappuccino-type beverage in the home. For example, the creamer and foamer formula may be portable, easy to use, safe, and/or low cost.
Some, none, or all embodiments may benefit from the below described advantages. Other technical advantages will be apparent to one of skill in the art.
A more complete understanding of embodiments of the disclosure will be apparent from the detailed description taken in conjunction with the accompanying drawings in which:
a illustrates an example of a system for generating a creamed liquid and a foam;
b illustrates an example of a creamed liquid and a foam that has been generated using the system of
a illustrates an example of a package that may dispense a formula at a pressure that causes the formula to cream and foam;
b illustrates an example of a valve system for dispensing the creamer and foamer formula from the package;
c illustrates an example of an alternative actuating system for dispensing a formula from the package;
d illustrates an example of a base for the package;
a-3c illustrate examples of tamper evidence for the package;
a-4e illustrate examples of lock-out features for the package;
a illustrates an example of a package comprising separate chambers for dispensing a creamer and a foam; and
b illustrates an example of a package comprising independent dispensers for dispensing a creamer and a foam.
Embodiments of the present invention and its advantages are best understood by referring to
a illustrates an example of a system 10 for generating a creamed liquid and a foam. A creamed liquid may be characterized as a first liquid, such as a creamer and/or a flavor, dispersed throughout a second liquid. As an example, a creamed liquid may include milk or cream dispersed throughout coffee. The creamer may be any suitable liquid, and it need not include cream. In some embodiments, the creamer may be non-dairy. A foam may be characterized as gas bubbles separated by a thin film and dispersed in a liquid or solid. For example, gas bubbles may be dispersed in milk, half & half, or non-dairy creamer. Foam may generally sit on the surface of a liquid, such as when foamed milk sits on the surface of coffee or creamed coffee.
According to some embodiments, the system 10 may comprise a formula 20 and a package 40. In some embodiments, the composition of the formula 20 and the pressure at which it is dispensed from the package 40 may be selected such that the formula 20 acts as a creamer and a foamer when applied to a liquid 22. For example, a stream of the formula 20 may create turbulence when dispensed into the liquid 22 that causes creaming and foaming. In some embodiments, the formula 20 may be a food formula, such as a dairy or non-dairy creamer and/or a flavor, and the liquid 22 may be a beverage, such as coffee.
b illustrates an example of a creamed liquid 24 and a foam 26 that has been generated using the system of
The foam 26 may comprise two-phases, such as gas bubbles and a liquid. A stable foam 26 may have a low surface tension so that bubbles may contain a suitable amount of air to prevent the bubbles from contracting. Additionally, a stable foam 26 may have a low vapor pressure which may reduce the evaporation and rupturing of the bubble film. Producing a stable foam 26 may require gelation to solidify the bubble film and/or insolubilization to prevent the bubble film from dissolving. Gelation and/or insolubilization may trap the gas within the bubble and increase the rigidity of the foam 26. In some embodiments, the foam 26 generated by the system 10 may be relatively resistant to typical sources of foam instability. For example, the foam may be relatively resistant to Ostwald Ripening (the diffusion of gas from smaller bubbles to the atmosphere or to larger bubbles), drainage of liquid from and through the foam layer due to gravity, and/or the coalescence of bubbles due to instability of the bubble film.
a illustrates an example of a package 40 that may dispense a formula at a pressure that causes the formula to cream and foam. The package 40 may comprise a container member 42 and a top member 44. The container member 42 may form a chamber for the storage and containment of the formula. The top member 44 may be coupled to the container member 42 and may include an actuator 52 operable to evacuate the package 40 when positively engaged.
According to some embodiments, the package 40 may be an aerosol bottle configured to dispense the formula by controlling the internal pressure of the package 40. The propellant may be any propellant suitable for selectively applying pressure to release the formula from the package 40. Examples of propellants include nitrous oxide, nitrogen, carbon dioxide, and combinations thereof. In some embodiments, the formula and propellant may be infused to form a formula/propellant emulsion. Infusing the propellant in the formula may aid in the formation of foam when the formula is dispensed from the package 40. For example, the gas from within the formula/propellant emulsion may expand as it is released, thereby forming the foam. In some embodiments, a portion of the foam that exits the package 40 may be generally converted to a liquid form upon exposure to a liquid, such as a beverage, to cream the liquid. In some embodiments, propellants of differing solubility may be combined, for example, the first propellant may create an emulsion with the formula and thereby expand the formula into foam when released from the package and the second propellant may function primarily to expel the formula out of the container.
The package 40 may comprise any suitable mechanical means for dispensing the formula from the package, such as a 360 degree actuated valve system, a bag-on-valve system, and/or a valve system configured with or without a dip tube. In some embodiments, the valve system, combined with an actuator, may be designed to evacuate the formula when the package 40 is oriented such that the opening from which the food formula exits the package points at an angle θ substantially horizontal to or downward toward the liquid, as shown in
a, together with
According to some embodiments, the actuator 52 and the valve 54 of the aerosol system 50 may be used to control the internal pressure of the package 40. In some embodiments, the actuator 52 may allow a user to operate the valve 54. For example, the valve 54 may be activated (opened) when the user presses the actuator 52. When the valve 54 is activated, the internal pressure of the package 40 may decrease causing the propellant to expand and push the formula from the package 40. In some embodiments, the actuator 52 may have a narrow channel running through it. The channel may run from an inlet near the bottom of the actuator to its top. In some embodiments, the valve may comprise a spring that may push the actuator 52 up so the channel inlet is blocked by a tight seal. When the actuator 52 is positively engaged (e.g., by pressing, squeezing, or applying force), the inlet may slide below the seal, opening a passage from the inside of the package 40 to the outside. When the actuator 52 is engaged to open the valve 54, the propellant gas moves from a high pressure environment inside the bottle to a lower pressure state which exists external to the bottle. This process forces the emulsified formula out of the bottle. The gas expands and subsequently forms a foam structure.
In some embodiments, the formula may travel through a stem portion of the valve 54 in order to evacuate the package. The stem may comprise a straight shape or an angled shape. The angled shape may allow a consumer to better control the direction of the formula being evacuated from the package. However, the angled shape may tend to cause residual amounts of the formula to collect and solidify in and around the stem. Solidified particles may prevent the formula from flowing smoothly out of the package 40. A cap or other mechanism may be used to keep air from reaching the residual formula so that the formula does not solidify within the stem. In some embodiments, the formula may flow through a portion of the actuator after it leaves the stem portion of the valve 54. In some embodiments, a lock-out feature to prevent dispensing may be combined with the cap or mechanism used to keep air from reaching the residual formula.
In some embodiments, the internal pressure of the package 40 may be selected to allow the formula/propellant emulsion to be released at a rate that is high enough to cause the creamer to mix with the coffee, but low enough to develop and maintain the foam structure and minimize splashing. In some embodiments, the pressure may be selected so that the creaming and foaming are generated simultaneously. That is, the cream and foam may be generated without an additional step such as stirring or heating. The amount of pressure needed to produce the creamer and foamer may vary. For example, the package 40 may be scaled to hold different amounts of food formula. In some embodiments, the package 40 may have a fill capacity of 1-40 fluid ounces of food formula, such as 10-16 fluid ounces. The internal pressure for causing the formula to cream and foam may vary depending on the fill capacity of the package. In some embodiments, the package may have an internal pressure of 30 to 160 psi, such as 50 to 140 psi, for example, 70 to 120 psi. The internal pressure may be measured at room temperature with the valve closed.
The package 40 may be made of any suitable material, including metal, such as tin plate, steel, or aluminum, or a polymer-based material, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or other plastics. Traditional aerosol systems may use propellants such as isobutane or isoproponal, which may be flammable under certain conditions. Accordingly, traditional aerosol systems may require metal packaging to prevent the product from catching fire. Embodiments of the present disclosure may be designed to reduce flammability, thereby allowing for the combination of an aerosol system and polymer-based packaging. For example, the propellant(s) may be selected from gases that are non-flammable at room temperature, such as nitrous oxide, nitrogen, or carbon dioxide. As another example, the package 40 may hold a refrigerated formula, such as a dairy or non-dairy food formula. Refrigerating may maintain the aerosol system at a temperature where the propellant is unlikely to catch fire. In some embodiments, the polymer-based package may be manufactured using injection molding and blow molding techniques, and the valve may be attached to the bottle by crimping.
In some embodiments, the package may be decorated with a “shrink sleeve,” a pressure-sensitive, heat-transfer label, or other like means that conveys a marketing/branding message, nutritional information, ingredients statement, legal & selling communication, such as formula weight and barcode/universal formula code, and instructions on how to use the product. The consumer may initiate use of the product by first reviewing the instructions on the package. The user may initially intrude the tamper evidence of the package to open for use. The tamper evidence may indicate if the package has been previously opened or tampered with.
Any suitable tamper evidence may be used, for example, a peal-off seal, shrink wrap, a tear-off ring, or other tamper evidence.
In some embodiments, tamper evidence may comprise embedded break-away tabs. For example,
After removing the tamper evidence, use of the package may be characterized by removing the closure cap (e.g., a flip cap or overcap) and pressing the actuator until a customized level of the creamer and foamer formula has been dispensed into the coffee. Once complete, the closure cap may be flipped closed or placed back into position and the product may be returned to the refrigerator. For subsequent use, the user may repeat the process above, but without having to deactivate the tamper evidence functionality.
In some embodiments, the package may include a lock-out feature. When locked, the lock-out feature may prevent the actuator from being actuated. Thus, accidental evacuation of the formula may be prevented. Additionally, the lock-out feature may prevent the propellant from seeping out of the package. Accordingly, a ratio of propellant to formula suitable to yield creaming and foaming may be maintained.
a-4e illustrate examples of lock-out features for a lever-shaped actuator. The lever includes a handle that projects from the package that may be squeezed or pressed to dispense a substantially continuous flow of a formula-propellant emulsion from an aerosol valve.
According to some embodiments, the formula may be packaged in the package according to a typical aerosol filling process. For example, the process may be sequenced as follows: 1) Depalletization of bottles, 2) Cleaning of bottles, 3) Decoration of bottles, 4) Filling of bottles, 5) Valve application via crimping, 6) Gassing/shaking operation, 7) Check-weighing, 8) Actuator/closure cap application, 9) Tray forming and filling, 10) Shrink bundling, 11) Palletization, 12) Unitization and unit load labeling. In some embodiments, the food formula is infused with the propellant during filling on a gasser/shaker system to create an emulsion within the packaging system.
c illustrates an example of an alternate actuating system 60 for a package, such as the package 40 of
The actuating system 60 may dispense any suitable formula. In some embodiments, the formula may include a known food formula, such as whipping cream (including full fat and/or low fat varieties). Known whipping cream formulas may include whipped topping formulas, such as the whipped topping formulas that may typically be packaged in metal cans. In some embodiments, the package including the actuating system 60 may provide a marketing and/or cost advantage for aerosol whipping cream applications. For example, a plastic package for dispensing whipping cream may provide marketing and/or cost advantages.
d illustrates an example of a base for the package 40. In some embodiments, the base may comprise a pushed up area 48 that generally curves inward toward a middle region of the package 40, such as a curve of a champagne style base. The base may include a standing ring 49 operable to contact a support surface upon which the package 40 may be placed (e.g., a shelf or a table). In some embodiments, the diameter of the standing ring 49 may be greater than or equal to approximately 80% of the diameter of the package 40. In some embodiments, the diameter of the standing ring 49 may be selected to increase the stability of the package 40, which may be a PET package or other suitable package.
TABLES 1 and 2 illustrate examples of the composition of the formula that may be dispensed from a package, such as the package 40 of
According to some embodiments, the formula may include one or more of: a fat, a protein, an emulsifier, a stabilizer, a salt, a sweetener, an antioxidant, a color, a bulking agent, flavor, water, milk, and cream. The fat may be dairy based, such as butterfat, or non-dairy based, such as vegetable (or nut) oil. Any suitable protein may be used, such as sodium caseinate, nonfat dry milk, whole milk powder, soy protein, whey protein, and/or wheat protein.
In some embodiments, the formula may include one or more foaming agents for creating and maintaining a head of foam. The foaming agents may include proteins, emulsifiers, stabilizers, bulking agents, or a combination. The types and amounts of the foaming agents may be varied to generate a desired set of foam properties, such as volume, stability, softness or rigidity, thickening, binding, and/or moisture retention. Additionally, certain foaming agents may be selected to generate a desired set of overall formula properties that may not be specific to the foam. As an example, some emulsifiers/stabilizers may be incorporated to maintain overall product stability. Examples of emulsifiers include Glycerin Fatty Acid Esters, Acetic Acid Esters of Mono and Diglycerides, Lactic Acid Esters of Mono and Diglycerides, Citric Acid Esters of Mono and Diglycerides, Succinic Acid Esters of Mono and Diglycerides, Diacetyl Tartaric Acid Esters of Mono and Diglycerides, Polyglycerol Esters of Fatty Acids, Polyglycerol Polyricinoleate, Sorbitan Esters of Fatty Acids, Propylene Glycol Esters of Fatty Acids, Sucrose Esters of Fatty Acids, Calcium Stearoyl Lactylate, Lecithin, Sodium Stearoyl Lactylate, Mono and Diglycerides, or a combination. Examples of stabilizers include Cellulose Gum, Agar-agar, Carrageenan, Gellan Gum, Guar Gum, Konjac, Hydroxypropyl cellulose, Methylcellulose and Hydroxypropyl cellulose, Xanthan Gum, Gum Arabic, Starch, Pectin, Gelatin, Propylene Glycol Alginate, or a combination. In some embodiments, the stabilizers may have a gel form, such as cellulose gel. Examples of bulking agents include corn syrup, corn syrup solids, maltodextrin, and dextrose.
In some embodiments, the formula may include one or more flavoring agents that may affect the taste of the formula. The flavoring agents may include salt, sweetener, flavor, and/or water. The salt may be common salt and/or buffering salt. Common salt may be used as a preservative and/or a seasoning. Buffering salt may be used to maintain a suitable pH value, such as when the formula is added to an acidic liquid like coffee. Buffering salt may improve the colloidal dispersiblity (uniform distribution) of proteins and prevent protein coagulation (curdling). In some embodiments, sweeteners may sweeten the taste of the formula. Examples of sweeteners include sugars and sugar alcohols, such as sucrose, fructose, dextrose, maltose, lactose, high fructose corn syrup, corn syrup solids, invert sugar, agave, and sorbitol, or a non-nutritive sweetener, or a combination. In some embodiments, flavor may distinguish the taste of the formula. Any suitable flavor may be used, such as vanilla, hazelnut, amaretto, Irish créme, cinnamon, butter pecan, chocolate, or any other flavor. In some embodiments, water may be used to dilute the formula, for example, to ensure the formula has a proper flavor intensity and viscosity when it is delivered from the package.
In some embodiments, the formula may include antioxidants to prevent lipid oxidation during shelf life. Examples of such antioxidants include BHA, BHT, propyl gallate, and tocopherols.
TABLE 1 illustrates example ranges for ingredients of a flavored, dairy-based formula formulation.
TABLE 2 illustrates example ranges for ingredients of an unflavored, dairy-based formula formulation.
TABLE 3 illustrates example ranges for ingredients of a flavored, non-dairy based formula formulation.
TABLE 4 illustrates example ranges for ingredients of an unflavored, non-dairy based formula formulation.
Embodiments of the disclosure may provide numerous advantages. According to some embodiments, a package system may be used to create a cappuccino-type beverage in the home. The easy, no-mess, one-step solution creams and may also flavor the coffee while creating a head of foam reminiscent of coffeehouse steamed milk. The amount of creaming and foam can be dosed to levels that provide customization for the individual. Some, none, or all embodiments may benefit from the described advantages. Other technical advantages will be apparent to one of skill in the art.
Modifications, additions, or omissions may be made to system 10 without departing from the scope of the invention. The components of system 10 may be integrated or separated. Moreover, the operations of system 10 may be performed by more, fewer, or other components. Additionally, operations of system 10 may be performed using any suitable element. For example, in some embodiments, a separate chamber package, an independent dispenser package, an adjustable flow rate package, or other package may be used to produce a cream and foam.
A separate chamber package may include a first chamber for dispensing a creaming formula and a second chamber for dispensing a foaming formula. In some embodiments, the creaming formula may be a powder, liquid, or tablet creamer or flavorant, and the foaming formula may comprise a liquid. The cream and foam may be formed through interaction with the package. For example, each chamber may include a suitable dispenser for dispensing formula in the selected form. Alternatively, the formula of one chamber may be selected to yield a creaming and/or foaming reaction when combined with the formula of another chamber, for example, upon dispensing the formulas into a liquid. That is, the creaming and foaming may be formed using chemical leavening.
An independent dispenser package may include multiple dispensers that independently dispense a formula from a single chamber. A first dispenser may dispense a portion of the formula as a creamer that may substantially disperses throughout a liquid, such as coffee. In some embodiments, the first dispenser may comprise a pourable or squeezable dispenser or a pump. A second dispenser may dispense a portion of the formula substantially in a foam form that may float substantially on the liquid's surface. In some embodiments, the second dispenser may comprise a pump. In some embodiments, the dispensers may be combined in a multi-purpose nozzle.
An adjustable flow rate package may include a dispenser that allows for controlling the flow rate at which the formula evacuates the package. For example, the dispenser may dispense the formula at a first flow that disperses the formula throughout a liquid and at a second flow rate that causes the formula to form a foam substantially on the surface of the liquid. In some embodiments, the dispenser may comprise a nozzle with multiple holes. In some embodiments, the dispenser may comprise a two-stage nozzle.
In some embodiments, the package may mix a separate gas with the formula as the formula is dispensed. For example, the package may comprise a bag-on-valve dispenser or a gas cartridge. The formula may comprise a food formula, such as a dairy or non-dairy creamer, or a food and gas emulsion. Mixing the formula with a separate gas as the formula is dispensed may expand the formula and/or generate turbulence suitable to cream and foam a liquid.
Modifications, additions, or omissions may be made to the packages and products described herein without departing from the scope of the invention. For example, the functions described may be performed by more, fewer, or other components. Modifications, additions, or omissions may be made to the methods described herein without departing from the scope of the invention. The methods may include more, fewer, or other steps. Additionally, steps may be performed in any suitable order.
Although embodiments of the disclosure have been described using specific terms, such description is for illustrative purposes only. The words used are words of description rather than of limitation. It is to be understood that changes and variations may be made by those of ordinary skill in the art without departing from the spirit or scope of the present disclosure, which is set forth in the following claims. Therefore, the spirit and scope of the appended claims should not be limited to the description of the embodiments disclosed therein.
This application claims the benefit of priority under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 61/183,369, filed Jun. 2, 2009, and entitled “PRODUCING A CREAMER AND FOAMER THROUGH PRESSURIZED PACKAGING.”
Number | Date | Country | |
---|---|---|---|
61183369 | Jun 2009 | US |