This disclosure relates to systems and methods of producing solutions from concentrates.
Household cleaning and personal care products are generally purchased as finished products in disposable packaging. Many of these finished products consist primarily of water—in some cases over 90 percent—and a relatively small percentage of active ingredients. As such, this means that a consumer pays a significant cost for water, including the cost of transporting the water from a factory to a marketplace. This is not to mention the environmental cost of the greenhouse gas emissions associated with transporting the water. Additionally, consumers are also paying for disposable packaging materials, such as bottles, caps and dispensing systems like trigger sprayers and pumps, which typically either end up in a landfill, or are recycled as a best case scenario. Although some finished products are now being packaged in flexible packaging, which generally has a lower cost and smaller environmental footprint compared to rigid packaging, such finished products still consist primarily of water.
On a related note, finished products that consist primarily of water are inherently bulky and, therefore, take up a great deal of space, whether on a shelf in a retail environment, or in storage within a residential or commercial building. The concentrates necessary to produce the same volume of finished products are far less bulky, thereby resulting in meaningful transportation, merchandising and storage efficiencies.
Moreover, the existing finished product solution market generally limits a consumer to particular product options that are mass-produced by a manufacturer and offers little or no options for personalization and customization. Consumer choice is further limited by what a retailer stocks. If a consumer has acquired a personal preference for a particular fragrance, concentration, or other product parameter or ingredient, those preferences may not be available for certain products or the preferred fragrance, ingredient or other parameter may vary widely depending on the finished product manufacturer.
This disclosure describes systems and methods of locally producing a solution from a concentrate pod. As used herein, the term solution can encompass a variety of physical states, including liquids, gels, pastes and creams, as well as both homogenous and heterogeneous mixtures, such as emulsions, where one or more of the mixed substances are not fully dissolved.
Some embodiments of these systems and methods provide a localized solution production unit for producing a solution on demand from a concentrate pod. The production unit includes a mixing container including a mixing impeller rotatably coupled to the mixing container via an impeller shaft extending from a base of the mixing container. The mixing container includes an opening at a neck of the mixing container. The production unit includes a pod dock configured to removably receive the concentrate pod. The pod dock includes a dock outlet. The concentrate pod includes a sealable spout portion configured to be positioned in the dock outlet and extend therethrough. The sealable spout portion is configured to release a concentrate from the concentrate pod into the mixing container. The production unit includes a container dock coupled to the pod dock and configured to removably receive and engage the mixing container during a distribution of one or more of a base fluid flowing from a base fluid source and a concentrate released from the concentrate pod through the sealable spout portion of the concentrate pod. The container dock is configured to retain the mixing container during a mixture of the base fluid and the concentrate. The container dock includes an actuator and a rotatable coupling connected to the actuator. The rotatable coupling is configured to rotatably actuate the impeller shaft to rotate the mixing impeller of the mixing container. The production unit includes a controller communicably coupled to the actuator and the base fluid source. The controller is configured to select a mixing profile from among a plurality of mixing profiles based on a solution identification. The controller is configured to cause the actuator to rotate after the impeller is submerged by the distribution of the base fluid to generate a vortex in the mixing container prior to distribution of the concentrate and to mix the base fluid and the concentrate based on the selected mixing profile.
In some implementations, the pod dock includes one or more surfaces configured to move with respect to another surface of the pod dock to change a volume within the pod dock so as to squeeze a concentrate pod positioned in the pod dock and evacuate the concentrate from the concentrate pod.
In some implementations, the pod dock includes at least one roller configured to move in the pod dock to squeeze a concentrate pod positioned in the pod dock and evacuate the concentrate from the concentrate pod.
In some implementations, the production unit includes a plunger configured to slide in the pod dock to press the concentrate from the concentrate pod.
In some implementations, the production unit includes a user interface configured to receive an input providing the solution identification.
In some implementations, the controller is configured to vary a mixing speed based on the solution identification.
In some implementations, the production unit includes a height adjustable platform coupling the pod dock to the container dock for adjusting a distance between the pod dock and the container dock.
In some implementations, the controller is configured to adjust the height adjustable platform based on the height of the mixing container positioned in the container dock.
In some implementations, the pod dock is configured to move the sealable spout portion of the concentrate pod into the opening at the neck of the mixing container for a direct transfer of the concentrate from the concentrate pod into the mixing container.
In some implementations, the controller is configured to control at least one of a fluid temperature of the base fluid, fluid quantity of the base fluid, and mixing duration, based on the solution identification. The mixing duration can include a minimum mixing time.
In some implementations, the production unit includes a heating element configured to heat the base fluid.
In some implementations, the production unit includes a scanner in the pod dock configured to scan a code on the concentrate pod.
In some implementations, the concentrate pod includes an electronic tag providing the solution identification.
In some implementations, the production unit includes an electronic tag detection unit in the pod dock configured to detect an electronic tag on the concentrate pod.
In some implementations, the fluid source includes a fluid reservoir coupled to the pod dock.
In some implementations, the production unit includes a pump coupled to the fluid reservoir.
In some implementations, the production unit includes one or more additive chambers configured to dispense an additive positioned in the additive chamber into the mixing container.
In some implementations, the controller is configured to cause the additive chamber to release at least one additive selected from a plurality of additives positioned in the one or more additive chambers into the mixing container.
Various embodiments provide a method of locally producing a solution on demand using a concentrate pod. The method includes identifying a solution associated with a concentrate contained in a concentrate pod positioned in a pod dock of a localized solution production unit. The method includes selecting a mixing profile from among a plurality of mixing profiles based on the solution identified. The method includes distributing a base fluid from a base fluid source into a mixing container docked in a container dock coupled to the pod dock through an opening at a neck of the mixing container. The mixing container includes a mixing impeller rotatably coupled to the mixing container via an impeller shaft extending from a base of the mixing container. The method can include causing, via a controller, an actuator in the container dock to rotate after the impeller is submerged by the base fluid to cause the mixing impeller to rotate. The method can include distributing a concentrate from the concentrate pod into the mixing container after the impeller is rotating. The method includes mixing the base fluid and the concentrate via the impeller based on the selected mixing profile.
In some implementations, the method includes identifying the solution based on detecting an identification of a tag positioned on the mixing container via at least one detector, where the detector is communicably coupled to the controller.
In some implementations, the method includes identifying the solution based on receipt of a user input at a user interface communicably coupled to the controller.
In some implementations, the method includes identifying the solution based on reading a code on the concentrate pod.
In some implementations, one or more of a mixing speed, a fluid temperature of the base fluid, a fluid quantity of the base fluid, and a mixing duration are determined based on the solution identification.
In some implementations, the method includes dispensing at least one additive substance into the mixing container.
In some implementations, the method includes identifying the solution based on an identification of the concentrate pod positioned in the pod dock via at least one detector, wherein the detector is communicably coupled to the controller.
In some implementations, identifying the solution comprises receiving a user selection from an application operating on a mobile electronic device communicably coupled to the controller. The user selection is selected via a user interface generated on the mobile electronic device via the application. The user selection is selected from among a plurality of options identified by the application.
In some implementations, the plurality of options is identified based on an identity of the pod positioned in the pod dock.
In some implementations, the method includes receiving an additive selection at the controller. The additive selection is selected from a plurality of additive options from the application via the user interface generated on the mobile electronic device.
In some implementations, the method includes selecting one or more additives for adding to the mixing container via the user interface generated on the mobile electronic device. The selected one or more additives is transmitted to the controller for dispensing into the mixing container.
Some embodiments provide a localized solution production unit for producing a solution on demand from a concentrate pod. The production unit includes a mixing container including a mixing impeller rotatably coupled to the mixing container via an impeller shaft extending from a base of the mixing container. The mixing container includes an opening at a neck of the mixing container. The production unit includes a pod dock configured to removably receive the concentrate pod, the pod dock including a dock outlet. The concentrate pod includes a sealable spout portion configured to be positioned in the dock outlet and extend therethrough. The sealable spout portion is configured to release a concentrate from the concentrate pod into the mixing container. The production unit includes a container dock coupled to the pod dock and configured to removably receive and engage the mixing container during a distribution of one or more of a base fluid flowing from a base fluid source and a concentrate released from the concentrate pod through the sealable spout portion of the concentrate pod. The container dock is configured to retain the mixing container during a mixture of the base fluid and the concentrate. The container dock includes an actuator and a rotatable coupling connected to the actuator. The rotatable coupling is configured to rotatably actuate the impeller shaft to rotate the mixing impeller. The production unit includes a controller communicably coupled to the actuator and the base fluid source. The controller is configured to select a mixing profile from among a plurality of mixing profiles based on a solution identification. The controller is configured to cause the actuator to rotate the impeller to generate a vortex for mixing the base fluid and the concentrate based on the selected mixing profile.
In some implementations at least one of the pod dock and the container dock are configured to move with respect to one another so as to position the sealable spout portion into the opening at a neck of the mixing container.
Some embodiments provide a localized solution production unit for producing a solution. The production unit includes a mixing container including a mixing impeller rotatably coupled to the mixing container via an impeller shaft extending from a base of the mixing container. The mixing container includes an opening at a neck of the mixing container. The production unit includes a concentrate container. The production unit includes a concentrate spout coupled to the concentrate container. The concentrate spout is configured to release a concentrate from the concentrate container into the mixing container. The production unit includes a container dock coupled to the concentrate container and configured to removably receive and engage the mixing container during a distribution of one or more of a base fluid flowing from a base fluid source and a concentrate released from a concentrate container. The container dock is configured to retain the mixing container during a mixture of the base fluid and the concentrate. The container dock includes an actuator and a rotatable coupling connected to the actuator. The rotatable coupling is configured to rotatably actuate the impeller shaft to rotate the mixing impeller. The production unit includes a controller communicably coupled to the actuator and the base fluid source. The controller is configured to select a mixing profile from among a plurality of mixing profiles based on a solution identification. The controller is configured to cause the actuator to rotate the impeller to generate a vortex for mixing the base fluid and the concentrate based on the selected mixing profile.
Various embodiments provide a computer program product for use on a localized solution production unit. The computer program product includes a computer usable medium having computer readable program code stored on the computer usable medium. The computer readable program code includes program code for selecting a mixing profile from a plurality of mixing profiles base on a solution identification. The computer readable program code includes program code for causing the localized solution production unit to distribute the base fluid and the concentrate into a mixing container based on the selected mixing profile. The computer readable program code includes program code for causing the localized solution production unit to mix the base fluid and the concentrate based on the selected mixing profile.
The details of one or more embodiments of these systems and methods are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of these systems and methods will be apparent from the description and drawings, and from the claims.
The drawings are primarily for illustrative purposes and are not intended to limit the scope of the systems and methods described in this disclosure. The drawings are not necessarily to scale. In some instances, various aspects of the systems and methods described in this disclosure may be exaggerated or enlarged in the drawings to facilitate an understanding of different features. In the drawings, like reference characters generally refer to like features (e.g., functionally similar and/or structurally similar elements).
The features and advantages of the systems and methods disclosed herein will become more apparent from the detailed description set forth below when taken in conjunction with the drawings.
Following below are more detailed descriptions of various concepts related to, and exemplary embodiments of, inventive systems, methods, and components of localized production units for producing a solution from a concentrate pod. In some implementations, localized solution production units identify a solution associated with a concentrate contained in a concentrate pod and mix the concentrate with a base fluid (e.g., water) using a mixing profile selected based on an identified solution. These systems and methods can be used to produce household cleaning products including, but not limited to, dish soaps, all-purpose cleaners, bathroom cleaners, glass cleaners, wood cleaners, air fresheners, car wash solutions, laundry detergents, and fabric softeners. These systems and methods can also be used to produce personal care products including, but not limited to hand soaps, shampoos, hair conditioners, body washes, face washes, bubble baths, body lotions, cosmetics, creams, and serums.
The localized solution production unit 100 is implemented to mix a finished product (e.g., a household cleaning product, a personal care product, a cosmetic product or another solution) intended to be used outside of the unit from a concentrate contained in a concentrate pod. The localized solution production unit 100 includes a pod dock configured to house the concentrate pod. The localized solution production unit 100 includes a liquid holding vessel or a reservoir 105 and a pump 107 configured to pump a base fluid from the reservoir 105. The base fluid pumped from the reservoir 105 is pumped through the water spout 113 into the mixing container. In certain embodiments, the water spout 113 is a movable water spout configured to move from a filling position for filling the mixing container to a retracted position, for example being retracted during dispensing of the concentrate from a concentrate pod into a mixing container (e.g., mixing container 203 shown in
In certain embodiments, the production unit 100 is configured to detect a height and/or a volume of a mixing container via a code, a tag, or other indicia (e.g., tag 1010 shown in
In certain embodiments, the pod dock can also include one or more detectors, scanners, or readers 116 in the pod dock 103 for detecting an electronic tag or reading a code on a concentrate pod. The code can indicate, for example, one or more solutions that can be produced with the concentrate pod. The detector can include a bar code scanner. However, some systems include other identification devices such as, for example, a QR code scanner, an RFID tag detection unit, or another device configured to determine at least one solution identification based on an identifier contained on the concentrate pod.
The container dock 110 includes an actuator, impeller drive motor 109, coupled to impeller drive 112 via impeller drive belt 111. In certain embodiments, the impeller drive motor 109 can be connected to impeller drive 112 via a shaft or other rotatable coupling (which can include magnetic field couplings) and can directly drive the impeller drive 112. The drive motor 109 of the container dock 110 is controlled by the one or more controllers 115 of the production unit. The controller 115 includes one or more processors coupled to the drive motor 109 and the pump 107. The controller 115 is configured to select a mixing profile from among a plurality of mixing profiles stored in a memory device. The controller 115 selects the mixing profile based on a solution identification. The solution can be identified by a user via a user interface, such as a graphical user interface of the production unit 100. The localized solution production unit 100 includes a machine housing (such as outer shell 1900a and 1900b shown in
The solution can also be identified via the detection device 116 or a reader in the pod dock 103 reading a tag or code (e.g. tag 410, 910) on the concentrate pod communicably coupled to the controller. The solution can be identified by a remote user through a user interface generated on an electronic device (such as a mobile phone, tablet, P.C., or other remote computing device wireless connectable to unit 100) running a computer application. The user interface on the remote electronic device generates commands for sending to the controller 115 via a communication component and wireless protocol of the remote electronic device wirelessly and communicably coupled to the controller 115.
The selected mixing profile includes mixing instructions to produce a particular solution identified by the concentrate pod or user selection. The mixing profile includes, for example, one or more of a dilution percentage and active mixing or agitation characteristics, such as a minimum mixing duration, mixing speed, or frequency for agitation (e.g., RPM). For example, the mixing profile can identify a water temperature of between 80-100 Degrees F., a water volume of 472 ml, and a mixing speed of between 800-1000 RPM, for a mixing period of 90-120 seconds to produce a particular solution. The mixing instructions can include, for example, an identification of one or more base fluids, an amount of the base fluid(s) to be dispensed from the reservoir 105, whether or not such fluid(s) will be heated, cooled, or at room temperature, a flow rate of such fluid(s), a mixing cycle/speed or frequency of a mixing shaft or a mixing duration. Fluid properties such as fluid temperature and fluid flow rate may be controlled, at least in part, by one or more of a temperature or flow rate regulator upstream of the water spout 113. The fluid flow rate may also be controlled by a physical characteristic of a fluid pathway through the concentrate pod, which can include a cross sectional area of the fluid pathway. The mixing profile, may also indicate a particular time period, during which to dispense the concentrate into the agitated base and or a particular flow rate of introducing the concentrate.
The controller 115 is configured to cause the drive motor 109 to rotate to drive an impeller of a mixing container according to the selected mixing profile. As discussed herein, in certain embodiments, the controller 115 can be configured to actuate the drive motor to rotate the impeller of the mixer container after the impeller is submerged by the distribution of the base fluid. Submerging of the impeller can be determined by one or more sensors (such as one or more optical sensors configured to determine a height of the impeller and/or the level of fluid in the mixing container) or based on a calculation or determination of an amount of fluid required to substantially submerge the impeller of a particular mixing container. For example, after a certain percentage (or range such as 25-50%) of the total base fluid being dispensed has been dispensed into the mixing container. The mixing container can be identified through detection (e.g., via indicia or an electronic tag on the mixing container or on the base of the mixing container) or manually, for example via the user interface by the user.
In certain embodiments, submerging of the impeller can be determined by a circuit being closed between electrical contacts positioned on the impeller and electrical contacts in a base of the mixing container through the base fluid acting as a conductor between the contacts, whereby a signal is generated and transmitted to the controller 115. A low voltage battery cell may be positioned in the base of the mixing container to transmit the signal from one contact in the base to a contact on the impeller (as shown for example in
In certain embodiments, submerging of the impeller by the base fluid can be determined by the base fluid causing some other detectable change in the impeller such as a detectable change in a color of the impeller, limiting or changing transmission of a signal transmitted through the impeller such as a light signal (in the visible or invisible spectrum), bent, blocked, or distorted by the base fluid upon the fluid reaching the impeller.
In certain embodiments, submerging of the impeller by the base fluid can cause a floating lock to be released when the fluid is above a certain level to permit actuation of the impeller.
In some embodiments, the controller 115 can be configured to actuate the drive motor 109 to rotate the impeller of the mixing container after a pre-specified volume of base fluid has been dispensed. The controller 115 continues to actuate the impeller of the mixing container to mix the base fluid and the concentrate for a minimum duration based on the selected mixing profile. The mixing profile identifies one or more of the mixing speed, a fluid temperature (for example controlled by a heating element in the reservoir 105 or in the water spout that is controlled by or controlled by the heater controller 108) of the base fluid, a fluid quantity of the base fluid, and a mixing duration. As discussed further herein, the controller 115 can also be used to control the dispensing of one or more additives to the solution. The controller 115 can control which additives are included and the controller 115 can control when any such additive is dispensed based on the mixing profile selected to produce the specified solution. The additives can control the appearance, consistency/viscosity, fragrance or other solution properties or functions to permit personalization of the solution.
The base fluid typically is or includes water. The reservoir 105 is a removable water reservoir including an opening for filling the reservoir in place or when removed. In certain embodiments, the reservoir 105 can be coupled directly to a water source via a water pipe supplying water directly to the reservoir 105. In such instances, the reservoir 105 can include a valve operable to open and close in order to receive additional water when the water level in the reservoir 105 is below a particular level. Some systems use base fluids other than water or in addition to water. These systems may include multiple reservoirs. In certain embodiments the water reservoir may include or be coupled to a water treatment system or include one or more water filters for removing contaminants from the base fluid.
Localized solution production unit 700 is substantially similar to localized solution production unit 100, but includes a distinct pod dock 703. The pod dock 703 is configured to press a pod, such as pod 500 via roller 702. The pod dock 703 includes a pod hook 704. As shown in
As shown in
In certain embodiments, the localized solution production unit 1800 can be configured for use in commercial or institutional facilities to mix larger batches of solution in correspondingly larger mixing containers. In these embodiments, the necessary concentrate volume will be higher and the higher amount may be regulated by concentrate dispenser pump 1802.
Implementations of the subject matter and the operations described in this specification can be implemented by digital electronic circuitry, or via computer software, firmware, or hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Implementations of the subject matter described in this specification can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on computer storage medium for execution by, or to control the operation of, data processing apparatus.
A computer storage medium can be, or be included in, a computer-readable storage device, a computer-readable storage substrate, a random or serial access memory array or device, or a combination of one or more of them. Moreover, while a computer storage medium is not a propagated signal, a computer storage medium can be a source or destination of computer program instructions encoded in an artificially generated propagated signal. The computer storage medium can also be, or be included in, one or more separate physical components or media (e.g., multiple CDs, disks, or other storage devices).
The operations described in this specification can be implemented as operations performed by a data processing apparatus on data stored on one or more computer-readable storage devices or received from other sources.
The term “data processing apparatus” encompasses all kinds of apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, a system on a chip, or multiple ones, or combinations, of the foregoing. The apparatus can include special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit). The apparatus can also include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, a cross-platform runtime environment, a virtual machine, or a combination of one or more of them. The apparatus and execution environment can realize various different computing model infrastructures, such as web services, distributed computing and grid computing infrastructures.
A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, declarative or procedural languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, object, or other unit suitable for use in a computing environment. A computer program may, but need not, correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
The processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform actions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., a FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random access memory or both. The essential elements of a computer are a processor for performing actions in accordance with instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Moreover, a computer can be embedded in another device, e.g., a mobile telephone, a personal digital assistant (PDA), a mobile audio or video player, a game console, a Global Positioning System (GPS) receiver, or a portable storage device (e.g., a universal serial bus (USB) flash drive), to name just a few. Devices suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
To provide for interaction with a user, implementations of the subject matter described in this specification can be implemented on a computer having a display device, e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying information to the user and a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, or tactile input. In addition, a computer can interact with a user by sending documents to and receiving documents from a device that is used by the user; for example, by sending web pages to a web browser on a user's user device in response to requests received from the web browser.
Implementations of the subject matter described in this specification can be implemented in a computing system that includes a back end component, e.g., as a data server, or that includes a middleware component, e.g., an application server, or that includes a front end component, e.g., a user computer having a graphical display or a Web browser through which a user can interact with an implementation of the subject matter described in this specification, or any combination of one or more such back end, middleware, or front end components. The components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include a local area network (“LAN”) and a wide area network (“WAN”), an inter-network (e.g., the Internet), and peer-to-peer networks (e.g., ad hoc peer-to-peer networks).
The computing system can include users and servers. A user and server are generally remote from each other and typically interact through a communication network. The relationship of user and server arises by virtue of computer programs running on the respective computers and having a user-server relationship to each other. In some implementations, a server transmits data (e.g., an HTML page) to a user device (e.g., for purposes of displaying data to and receiving user input from a user interacting with the user device). Data generated at the user device (e.g., a result of the user interaction) can be received from the user device at the server.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any inventions or of what may be claimed, but rather as descriptions of features specific to particular implementations of particular inventions. Certain features that are described in this specification in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable sub combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub combination or variation of a sub combination.
For the purpose of this disclosure, the term “coupled” means the joining of two members directly or indirectly to one another. Such joining may be stationary or movable in nature. Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another. Such joining may be permanent in nature or may be removable or releasable in nature.
It should be noted that the orientation of various elements may differ in other exemplary implementations, and that such variations are intended to be encompassed by the present disclosure. It is recognized that features of the disclosed implementations can be incorporated into other disclosed implementations.
While various inventive implementations have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive implementations described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive implementations described herein. It is, therefore, to be understood that the foregoing implementations are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive implementations may be practiced otherwise than as specifically described and claimed. Inventive implementations of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.
Also, the technology described herein may be embodied as a method, of which at least one example has been provided. The acts performed as part of the method may be ordered in any suitable way. Accordingly, implementations may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative implementations.
The claims should not be read as limited to the described order or elements unless stated to that effect. It should be understood that various changes in form and detail may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims. All implementations that come within the spirit and scope of the following claims and equivalents thereto are claimed.
The present application claims priority to U.S. Provisional Patent Application No. 62/277,642, filed Jan. 12, 2016, entitled “PRODUCING SOLUTIONS FROM CONCENTRATES,” which application is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5797313 | Rothley | Aug 1998 | A |
5941055 | Coates | Aug 1999 | A |
5960701 | Reese | Oct 1999 | A |
7077290 | Bethuy et al. | Jul 2006 | B2 |
7231142 | Leung | Jun 2007 | B1 |
8091735 | Girard et al. | Jan 2012 | B2 |
8210396 | Girard et al. | Jul 2012 | B2 |
8480967 | Zlatic et al. | Jul 2013 | B2 |
8960999 | Ochoa | Feb 2015 | B1 |
9022642 | Broome | May 2015 | B2 |
20030116177 | Appel et al. | Jun 2003 | A1 |
20050061156 | Hart | Mar 2005 | A1 |
20050217213 | Lozinski | Oct 2005 | A1 |
20060000778 | Martin et al. | Jan 2006 | A1 |
20100133222 | Mathieu | Jun 2010 | A1 |
20110036452 | Schnyder | Feb 2011 | A1 |
20130319034 | Kounlavong et al. | Dec 2013 | A1 |
20140291426 | Herbert | Oct 2014 | A1 |
20140373722 | Talon | Dec 2014 | A1 |
20150201791 | Tinkler | Jul 2015 | A1 |
20150265107 | Buckalter | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
10 2011 081 010 | Oct 2014 | DE |
WO 2016133768 | Aug 2016 | WO |
Entry |
---|
Nestlé, “Nestlé launches BabyNes, the first comprehensive nutrition system for babies, in Switzerland”, http://www.nestle.com/media/newsandfeatures/nestle-launches-babynes-first-comprehensi . . . , downloaded Mar. 14, 2017. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration issued in International Application No. PCT/US2017/013182 dated Apr. 3, 2017, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20170197188 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
62277642 | Jan 2016 | US |