The disclosure relates to producing a thin film of nanoscale thickness by depositing a mixture of a precursor and a supercritical fluid and removing molecules of the supercritical fluid.
Various methods may be used to produce films of nanometer thickness. Such methods include, for example, chemical vapor deposition (CVD), atomic layer deposition (ALD), molecular layer deposition (MLD). Deposition methods such as CVD, ALD and MLD are typically performed in vacuum environment that involve the use of a large equipment to enclose the processing assembly therein as well as removal of air from the processing assembly. Also, those deposition methods require a purge step and a hold step, which cause high cost and low time efficiency. Moreover, due to the dehydration, decomposition, physical shrinkage, substrates and/or precursor used in such deposition methods may be restricted.
Current deposition methods performed in atmospheric environment cannot produce films of nanometer thickness. Films produced by current deposition methods performed in atmospheric environment have thickness of several tenths to hundreds of micrometers.
Embodiments relate to a process of producing a thin film of a nanoscale thickness in atmospheric environment by depositing a mixture of a precursor and a supercritical fluid onto a substrate and removing molecules of the supercritical fluid from the substrate. The process does not require a purge step and has a shorter hold step or omits a hold step.
In some embodiments, the mixture is sprayed onto a surface of the substrate by a spraying module placed under atmosphere pressure. A layer of the precursor is formed on the surface. The layer of the precursor may be a monolayer. Molecules of the supercritical fluid is removed from the surface, for example, by injecting an entraining gas or pulses of the supercritical fluid through an opening of the spraying module. After the molecules of the supercritical fluid is removed, the substrate is exposed to plasma radicals. The plasma radicals solidify the layer of the precursor and transfers it to the thin film. The solid thin film has a thickness in a range from 1 nm to 100 nm.
In some embodiments, the supercritical fluid includes a polar material. In the sprayed mixture, molecules of the non-polar material chemically bond with molecules of the precursor. The molecules of the supercritical fluid are decoupled from the molecules of the precursor before the layer of the precursor is formed on the substrate. In one embodiment, molecules of the supercritical fluid are decoupled from the molecules of the precursor by exposing the sprayed mixture to charged particles. The decoupled molecules of the supercritical fluid and/or their by-products are removed from the surface of the substrate.
Embodiments are described herein with reference to the accompanying drawings. Principles disclosed herein may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. In the description, details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the features of the embodiments.
In the drawings, like reference numerals in the drawings denote like elements. The shape, size and regions, and the like, of the drawing may be exaggerated for clarity.
Embodiments relate to producing a thin film of nanoscale thickness by depositing a mixture of a precursor and a supercritical fluid and removing molecules of the supercritical fluid. A spraying module sprays the mixture onto a surface of a substrate. The molecules of the supercritical fluid are removed and a layer of the precursor is formed on the surface of the substrate. The surface of the substrate is exposed to plasma radicals to transform the layer of the precursor to a solid film, which is the thin film of nanoscale thickness.
Supercritical fluid is used as a carry gas for carrying precursor that coats a film on a substrate. The supercritical carrier fluid does not exhibit surface tension, as there is no liquid/gas phase boundary. Therefore, the carrier fluid and the precursor form an even surface on the substrate when the supercritical fluid is used to spray the precursor onto the substrate, as its phase has changed from B″ to C in
Various materials can be used as the supercritical carrier fluid. One example material is carbon dioxide. CO2 is relatively inexpensive, nonflammable, non-reactive (i.e., chemically inert) at the surface of the substrate in an atmospheric pressure which is lower than the critical pressure PCr of CO2 (i.e., 73.8 bar). This means that CO2 will not be involved in the reaction for the film formation at the substrate temperature lower than the boiling point of the precursor. The use of CO2 also does not create a problem with respect to the greenhouse effect as CO2 is conserved during the spraying process. For industrial applications, low PCr solvents having liquid or solid phase in ambient condition, such as propane, ethylene, propylene, ethanol and aceton, may be used instead of CO2.
A precursor is material that is mixed with the supercritical carrier fluid for injection onto the surface of the substrate. The precursor reacts on the surface of the substrate to deposit a material on the substrate. The precursor may have a higher boiling point than the temperature of the substrate or the temperature at which the spraying or injection is performed. The precursor may exist as liquid or solid in the ambient atmospheric pressure. The precursor may include organic material such as diol which is a chemical compound containing two hydroxyl groups (—OH groups) as homobifunctional ligand, thiol which is a sulfur-containing analog of an alcohol as heterobifunctional ligand, and inorganic material such as silver sulfate.
Although the spraying module 260 and the plasma reactors 270A, 270B are illustrated in
The spread and/or pressure of the mixture ejected from the nozzle 318 may be modified or controlled by, among others, (i) positioning of the spray nozzle 318, (ii) the size and shape of the spray chamber 352, (iii) the flow rate of the supercritical carrier fluid, and (iv) the flow rate of the pressurized gas 374. If an electrohydrodynamic (EHD) atomizer is used as the nozzle 318, the electric field or voltage applied to the EHD atomizer may also determine the spread and/or pressure of the mixture ejected from the nozzle 318.
The nozzle 318 receives the mixture from a regulator 390. The regulator 390 regulates the pressure and/or temperature of the carrier fluid or the mixture of carrier fluid and the precursor provided to the nozzle 318 so that the carrier fluid (e.g., CO2, or propane) maintains a liquid-like supercritical fluid state or behaviors as a liquid at the tip of nozzle 318, and the mixture of carrier fluid and the precursor travels as gas-like supercritical fluid state or as gases from the nozzle 318 to the opening of the body 320 and reaches at the surface of the substrate 200. In doing so, the phase of the fluid or gas from the nozzle 318 transitions from supercritical state (e.g., state B″ in
The plasma reactors 270A, 270B are placed at each side of the spraying module 260. The plasma reactors 270A, 270B may include electrodes 372 and 378 that are connected to form a common outer electrode, electrodes 373 and 376 that are connected to form an inner electrode. The outer electrode and the inner electrode may form a single plasma reactor, as illustrated in
The plasma reactor 270A includes outer walls 363, 365 that enclose gas for generating radicals. Electrodes 372, 373 extend down into the plasma reactor 270A between the walls 363, 365 with insulation bodies on the electrodes 372, 373 to form a dielectric breakdown discharge (DBD) plasma reactor. By applying voltage difference between the two electrodes 372, 373, radicals are filled in region 311 below the electrodes 372, 373. Gas 362 for generating the radicals is provided via a gap 316 (i.e., passage) between the plasma reactor 270A and the spraying module 260. That is, part of spread gas 324 injected into the gap 316 enters the bottom portion of the plasma reactor 270A as the gas 362 while the remaining gas 360 enters the bottom portion of the spraying module 260. The gas 362 is converted to radicals below electrodes 372, 373 and injected onto the portion of the substrate 200 below the plasma reactor 270A. The remaining portions of the gas 362 or generated radicals are discharged as discharge gas 354 via exhausts 312A, 312B formed in the plasma reactor 270A.
Another approach for generating more radicals is a primary DBD plasma generation between two electrodes 372, 373 and a secondary plasma generation by using a portion 362 of the spread gas injected through the gap 316. The plasma reactor 270A includes outer walls 363, 365 that enclose gas for generating radicals. Electrodes 372, 373 extend down into the plasma reactor 270A between the walls 363, 365 with insulation bodies on the electrodes 372, 373 to form a dielectric breakdown discharge (DBD) plasma reactor. By applying voltage difference between the two electrodes 372, 373 and using the plasma gas such as O2 or H2O or N2O or O3 as O* radicals, H2 or NH3 for H* radicals, NH3 as N* radicals, DBD plasma 368 generate downstream of radicals and active species such as electrons and/or ions that fill the space/region 311. Gas 362 for generating secondary plasma for radicals and active species at the space/region 311 is provided via a gap 316 between the plasma reactor 270A and the spraying module 260. The gas 362 is converted to radicals with active species generated from the secondary plasma below electrodes 372, 373 and fill the space/region 311. As a result of combining the radicals generated from primary plasma and the secondary plasma, more radicals and/or active species can be injected onto the portion of the substrate 200 below the plasma reactor 270A.
The plasma reactor 270B has the same structure as the plasma reactor 270A. The plasma reactor 270B has walls 361, 375 that enclose the gas for generating the radicals within the plasma reactor 270B. Electrodes 376, 378 extend down into the plasma reactor 270B between the walls 361, 375. Insulation bodies are placed on the electrodes 376, 378, for example, of thickness 0.5 mm to 5 mm. The insulation body may be dielectric material such as Al2O3 or SiO2. As in the plasma reactor 270A, gas 362 for generating the secondary plasma is provided via a gap 316 between the plasma reactor 270B and the spraying module 260. The gas 362 is converted to the radicals with active species below electrodes 376, 378 and in region 313, and injected onto the portion of the substrate 200 below the plasma reactor 270B. The remaining portions of the gas 362 or generated radicals are discharged as discharge gas 354 via exhausts 312A, 312B formed in the plasma reactor 270B.
Providing exhausts 312A, 312B in the plasma reactor 270A, 270B separately from exhausts 354A, 354B in the spraying module 260 is advantageous, among other reasons, because undesirable reaction between precursor ejected from the spray nozzle 318 and the plasma species from the plasma reactors 270A, 270B may be reduced or avoided. For non-oxide films of inorganic and/or organic material, ethane, propane, ethylene, or propylene may be used as a supercritical fluid because these gases do not involve any oxygen atoms. For inorganic and/or organic oxide films, CO2 or ethanol or acetone may be used as a supercritical fluid, but ethane, propane, ethylene, or propylene may also be used.
A differential spread mechanism is provided in the form of gaps (i.e., passages) between the spraying module 260 and the plasma reactors 270A, 270B, a height difference between the spraying module 260 and the plasma reactors 270A, 270B, and actuators 342, 344 that raise or lower the spraying module 260 or the plasma reactors 270A, 270B. The differential spread mechanism functions to divide spread gas 324 to a portion of gas 362 that flows into the plasma reactors 270A, 270B and a portion of gas 360 that enters the spraying module 260 to confine the spraying module 260 and segregate the spray from the plasma reactors 270A, 270B. The spread gas may be gas such as N2, Ar, N2O, H2, O2, CO2, O3, NH3 or any combination thereof. Because the spread gas is used as gas for generating radicals at the space/region 311, 313, the spread gas may be selected so that appropriate radical species are generated by the plasma reactors 270A, 270B. Another function of the spread gas is to confine the precursor deposited on the substrate 200 from the plasma reactor 270A, 270B by providing the portion 360 of the spread gas apart from the portion 362 of the spread gas. In general, fluid density and wettability of the sprayed stream that contains the source precursor and the carrier fluid are higher than those of the plasma gas, and the diffusion velocities of the plasma gas and/or radicals is higher than that of the sprayed stream. Therefore, the amount of the spread gas 362 may be increased relative to the spread gas 360 to block the diffusion of the plasma species into the spray assembly and avoid the mixing of the source precursor with radicals at the bottoms of the gap 316. The portions of the spread gases, 360, 362 can be modified by changing the heights H1, H2 and the widths W1, W2.
In one embodiment, the spread ratio may be controlled by raising or lowering the spraying module 260 and the plasma reactors 270A, 270B using actuators 342, 344 connected to the spraying module 260 and the plasma reactors 270A, 270B via connectors 343, 345. As the height H1 is increased relative to the height H2, the portion 360 is increased relative to the portion 362. Conversely, as the height H1 is decreased relative to the height H2, the portion 360 is decreased relative to the portion 362. By increasing the width W2, the portion 360 of the spread gas is increased relative to the portion 362 of the spread gas because of pressure buildup at the bottom of the wall 361 due to increased flow restriction or decreased fluid conductance. Conversely, as the width of W2 is decreased, the portion 360 of the spread gas is decreased because of reduced fluid resistance at the bottom of the wall 361.
Although the embodiment of
By discharging the carrier fluid and/or remaining precursors through the exhausts 554A, 554B, 555A, 555B, the range or spread upon which the precursors deposited on the substrate 500 can be confined and controlled to areas below the spray chambers. As described above with reference to
By selecting an organic precursor as the source precursor in the spraying module 560A and its curing agent as the reactant precursor in the spraying module 560B, organic polymer film having a nanometer thickness can be obtained by exposing the radicals and active species generated in the plasma reactor 570B. Epoxy resin and curing agent can be used for depositing epoxy films having nanometer thickness with N2O or O2 plasma. Pyromellitic dianhydride is an organic compound with the formula C6H2(C2O3)2 that is used in the preparation of polymer polymers such as Kapton. Solid precursor (e.g., solid dianhydride powder) can be dissolved into a supercritical fluid and the supercritical fluid by utilizing a solid-to-liquid exchanger, as described below in detail with reference to
In the embodiments of
Although
The substrate is exposed 810 to first radicals (i.e., pre-spraying radicals) for treatment of the substrate by the first plasma reactor. By exposing the substrate to the first radicals (e.g., by the plasma reactor 270A), the surface of the substrate is activated for subsequent processes. Referring to the embodiments of
The substrate or the spray assembly is moved to cause 820 a first relative movement between the spray assembly and the substrate, as described above in detail with reference to
Then a mixture of precursor and supercritical carrier fluid is sprayed 830 onto the substrate exposed to the first radicals (e.g., by the spraying module 260). The supercritical carrier fluid may be, for example, CO2. The precursor may have a higher boiling temperature than the temperature of the substrate or the temperature at which the spraying is performed. The precursor may, for example, be ethylene glycol, 4-Aminothiophenol, 1, 4-Cyclohexanediol and silver sulfate, as described below in detail with reference to
The substrate or the spray assembly is again moved to cause 840 a second relative movement between the spray assembly and the substrate.
The portion of the substrate sprayed with the precursor is the exposed 850 to second radicals. The exposure to the second radicals may break the chains in the materials on the subsurface of the substrate or anneal the surface.
Various modifications may be made to the processes described above with reference to
In order to fill in the pinholes, the substrate is sprayed with a mixture of ethylene glycol and supercritical CO2 fluid. As a result, the pinholes may be filled with organic pre-polymers by an impregnation process. To form a water/moisture encapsulation layer, impregnation of an organic precursor to fill the micro-defects and to penetrate throughout the overall structure may be performed if pinholes or cracks or micro-porosities, or grain boundaries exist in the substrate. The number of the exposed molecules of the precursor sprayed/injected from the spray nozzle and the concentration of the precursor on the surface of the substrate are extremely larger than that of vacuum processes, for example, spraying relative to ALD/CVD or when vapor infiltration by spraying is 1 ATM relative to when the pressure is less than 0.5 Torr. Hence, the time for a diffusion of the precursor into the micro-defects for hermetic process can be shortened. Subsequently, the substrate may be exposed to O* radicals in atmospheric pressure to convert (OH) ligands to O ligands and cross-link O—O bonds.
Hence, the process of the embodiment may improve encapsulation/barrier properties by having precursor molecules coordinate with reactive sites in the micro-defects having broken bonds and high surface energy, and having infused precursors react within the micro-defects by exposing the substrate with the sprayed/injected precursor and successive exposure of the active plasma species. Other precursors, such as tetramethylbenzene, one of alkyl benzenes for the precursor to pyromellitic dianhydride which is used for coating, or dissolving organic precursor for the organic resins such as phenol into a supercritical fluid can be spayed in lieu of EG and successive exposure of NH3 plasma. As shown in the example of
The substrate is then sprayed with 4-Aminothiophnol using CO2 supercritical fluid as a carrier gas. The spraying may be performed under atmospheric pressure. As a result, a covalent layer-by-layer assembly is formed on the substrate, as shown in
The substrate deposited with the polymeric nano-layer is then sprayed with a mixture of silver sulfate and supercritical carrier fluid (e.g., CO2) to form a photochromic layer of Ag2SO4 on the polymeric nano-layer. As shown in
A spraying module sprays 1310 a mixture of a precursor for the material and a supercritical fluid onto a surface of the substrate. In some embodiments, the supercritical fluid includes a non-polar material, and the precursor is also non-polar. Molecules of the non-polar material do not chemically bond with molecules of the non-polar precursor. The non-polar material can include one or more of carbon dioxide, methane, ethane, propane, and ethylene. The precursor can be selected from a group consisting of: DiMethylAluminum Isopropoxide (DMAI), 3-((Dimethylanimo)Propyl)Aluminumum) (DMPA), DMAON (C11H26AlON: Al(CH3)2NC(CH3)3CH2C(CH3)2OCH3), Dopamine-hydrochride, Methylene Diphenyl Diisocyanate (MDI), 4-Aminoethanol, Zinc Acetate Dihydrate, Terephthalic Acid, Triphenylene, 4-Aminothiolphenol, 4-Mercaptonphenol, Dimethylzinc (DMZ), and Trimethyl aluminum (TMA). Molecules of the supercritical fluid may not chemically bond with molecules of the precursor.
In some embodiments, the spraying module is placed under atmosphere pressure. An embodiment of the spraying module is the spraying module 260 described in conjunction with
A layer of the precursor is formed 1320 on the surface. At least a portion of the surface is coated with the layer of the precursor. In some embodiments, the layer of the precursor is a monolayer.
Molecules of the supercritical fluid is removed 1330 from the surface. The molecules of the supercritical fluid can hinder formation of the thin film on the surface of the substrate, deteriorate performances of the think film, or cause defects in the thin film. In some embodiments, an entraining gas is injected through an opening of the spraying module. The injected entraining gas has a momentum and can shape the stream of the sprayed mixture by changing its flow rate and drive the molecules of the supercritical fluid to move away from the surface. The entraining gas can be Nitrogen, Argon, other types of inert gas, or some combination thereof. In some embodiments, pulses of the supercritical fluid are injected onto the surface. The pulses of the supercritical fluid drive the molecules of the supercritical fluid to move away from the surface.
The surface of the substrate is exposed 1340 to plasma radicals to transform the layer of the precursor to a solid film of the material. In some embodiments, the plasma radicals are generated by a plasma reactor associated with the spraying module, such as the plasma reactor 270B described above in conjunction with
The thin film can be an inorganic film, an organic film, an inorganic-organic hybrid film, or a composite film having metal organic framework. The thin film can have a thickness in a range from 1 nm to 100 nm. In some embodiments, the solid film transformed from the layer of the precursor has a thickness smaller than a required thickness, and the process 1300 is repeated to achieve the required thickness.
In some embodiments, after the solid film is formed, a second mixture of a second precursor and a second supercritical fluid is sprayed onto the surface of the substrate. A layer of the second precursor is formed on top of the solid film. Molecules of the second supercritical fluid is removed from the solid film. The layer of the second precursor is exposed to plasma radicals to be transformed to a second solid film on top of the solid film, so that a composite film that includes the solid film and the second solid film are formed on the surface of the substrate.
A spraying module sprays 1410 a mixture of a precursor for the material and a supercritical fluid onto a surface of the substrate. In some embodiments, the supercritical fluid includes a polar material. The supercritical fluid can dissolve the precursor or react with the precursor. Molecules of the supercritical fluid can chemically bond with molecules of the precursor. The polar material can be selected from a group consisting of: oxidane, methanol, ethanol, and acetone. The precursor can be one or more of DiMethylAluminum Isopropoxide (DMAI), 3-((Dimethylanimo)Propyl)Aluminumum) (DMPA), Dopamine-hydrochride, Methylene Diphenyl Diisocyanate (MDI), 4-Aminoethanol, Zinc Acetate Dihydrate, Terephthalic Acid, Triphenylene, 4-Aminothiolphenol, 4-Mercaptonphenol, Dimethylzinc (DMZ), and Trimethyl aluminum (TMA).
In some embodiments, the spraying module is placed under atmosphere pressure. An embodiment of the spraying module is the spraying module 260. In some embodiments, the surface of the substrate is treated by plasma radicals to be activated before the spraying. For instance, a plasma reactor (such as the plasma reactor 270A) generates and injects radicals to perform pre-spraying surface treatment before the spraying.
The molecules of the supercritical fluid are decoupled 1420 from the molecules of the precursor. In some embodiments, the mixture is exposed to charged particles. The charged particles break chemical bonds between the molecules of the supercritical fluid from the molecules of the precursor. The charged particles can be electrons, ions, plasma radicals, or some combination thereof. In some other embodiments, the mixture is exposed to radiation, such as ultraviolet or microwave. The radiation breaks chemical bonds between the molecules of the supercritical fluid from the molecules of the precursor.
A layer of the precursor is formed 1430 on the surface. At least a portion of the surface coated with the layer of the precursor. In some embodiments, the layer of the precursor is a monolayer.
In some embodiments, the decoupled molecules of the supercritical fluid and/or byproducts of the decoupled molecules of the supercritical fluid are removed from the surface after the decoupling. For the removing, an entraining gas can be injected through an opening of the spraying module. The injected entraining gas has a momentum and can shape the stream of the sprayed mixture by changing its flow rate and drive the molecules of the supercritical fluid to move away from the surface. The entraining gas can be Nitrogen, Argon, other types of inert gas, or some combination thereof. In some embodiments, pulses of the supercritical fluid are injected onto the surface to remove the molecules of the supercritical fluid from the surface. The pulses of the supercritical fluid drive the molecules of the supercritical fluid to move away from the surface.
The surface of the substrate is exposed 1440 to plasma radicals to transform the layer of the precursor to a solid film of the material. In some embodiments, the plasma radicals are generated by a plasma reactor associated with the spraying module, such as the plasma reactor 270B. The plasma radicals can be post-spraying radicals described above.
The thin film can be an inorganic film, an organic film, an inorganic-organic hybrid film, or a composite film having metal organic framework. The thin film can have a thickness in a range from 1 nm to 100 nm. In some embodiments, the solid film transformed from the layer of the precursor has a thickness smaller than a required thickness, and the steps 1310-1340 are repeated to achieve the required thickness.
In some embodiments, after the solid film is formed, a second mixture of a second precursor and a second supercritical fluid is sprayed onto the surface of the substrate. A layer of the second precursor is formed on top of the solid film. Molecules of the second supercritical fluid is removed from the solid film. The layer of the second precursor is exposed to plasma radicals to be transformed to a second solid film on top of the solid film so that a composite film that includes the solid film and the second solid film are formed on the surface of the substrate.
The language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the disclosure be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments is intended to be illustrative, but not limiting, of the scope of the disclosure, which is set forth in the following claims.
This application claims priority to U.S. Provisional Application No. 62/747,054, filed on Oct. 17, 2018. This application is a continuation-in-part of co-pending U.S. application Ser. No. 15/942,205, filed on Mar. 30, 2018, which claims priority to U.S. Provisional Application No. 62/482,128 filed on Apr. 5, 2017, all of which are incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62747054 | Oct 2018 | US | |
62482128 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15942205 | Mar 2018 | US |
Child | 16590741 | US |