The present disclosure relates to a cosmetic composition for setting hair and/or for the temporary reshaping of keratinous fibres, particularly human hair, wherein the composition contains a combination of a polyurethane/polyacrylate hybrid polymer with an anionic acrylate polymer.
The temporary design of hairstyles to last for prolonged periods of up to several days typically requires the application of setting agents. Therefore, hair treatment products which are used to create temporary hairstyles are very important. Corresponding agents for temporary reshaping typically contain synthetic polymers and/or waxes as the setting agent. Products to support the temporary reshaping of keratinous fibres may be packaged in the form of hairspray, hair wax, hair gel, hair mousse for example.
The most important property of an agent for temporary shaping of hair, also referred to hereinafter as styling agents, is that it confers the strongest possible hold on the treated fibres in the newly modelled form—i.e. a shape imposed on the hair. This is also called a strong hairstyle hold or a high degree of hold of the styling agent. Styling hold is essentially determined by the type and amount of active setting ingredients used, although the other components of the styling agent may also have some effect.
Besides a high degree of hold, styling agents must also fulfil a number of other requirements. These can be classified roughly according to the properties of the respective formulation, for example properties of the foam, gel or sprayed aerosol, and properties relating to the handling of the styling agent, wherein the properties on the hair acquire particular importance. These include particularly moisture resistance, low stickiness (tack) and a balanced conditioning effect. Moreover, a styling agent should be usable for the broadest possible range of hair types and gentle on the hair and skin.
In order to satisfy these various requirements, many synthetic polymers for use in styling products have already been developed as setting agents. The polymers can be subdivided into cationic, anionic, nonionic and amphoteric setting polymers. Ideally, when applied to the hair these polymers create a polymer film which on the one hand lends a firm hold to the hairstyle but at the same time is also flexible enough not to break under stress. If the polymer film is too brittle, leading to the formation of so-called film scales, that is to say residues that are shed with movement of the hair and evoke the impression that the user of the respective styling agent has dandruff. Similar problems are encountered when waxes are used as the setting agent in styling agents. If the styling agent is a gel or paste, the polymers should also possess thickening properties.
Known polymers which have also been used as ingredients in cosmetic compositions, e.g. as styling agents, are hybrid polymers of polyurethane and polyacrylate. Examples of such copolymers, which are also known as interpenetrating polymer networks, are hybrid polymers of polyurethane and polyacrylate. For cosmetic applications, such polymers are available commercially under the brand name Hybridur® from Air Products and Chemicals, Inc, USA. Hybridur® 875 Polymer Dispersion is an aqueous polyurethane-polyacrylate dispersion with INCI name Polyurethane-2 and Polymethyl Methacrylate. Polyurethane-2 is a copolymer produced from the monomers hexylene glycol, neopentyl glycol, adipic acid, methylenediphenyldiisocyanate and dimethylpropionic acid. Hybridur® 875 Polymer Dispersion is described by its manufacturer as ideal for endowing hair care products with good moisture resistance.
The European patent applications EP 2286908 A2, EP 2455147 A1 describe Hybridur® 875 as a component of hair gels. WO2014012918 A2 describes aqueous dispersions of polyurethane-polyacrylate hybrid polymers as a component of styling agents.
Hydrophobically modified acrylate copolymers (INCI: Acrylates Copolymer (and) Water) that act essentially as thickeners are also available commercially. The datasheet Aquastyle® SH-100 polymer (Ashland Inc.) describes such an acrylate copolymer and its use in combination with carbomers. Its suitability for use in crystal clear hair gels, good initial stiffness, moisture resistance and long-term effectiveness are described.
One of the objects as contemplated herein was to provide further suitable polymer combinations which are exemplified by good film-forming and/or setting properties, have a very high degree of hold without sacrificing flexibility and good moisture resistance—particularly to sweat and water—and are also suitable for producing consistently viscous and consistently transparent cosmetic compositions. In particular, the styling agents currently available are still capable of improvement in the sense that a good combination of stiffness and long-term maintenance (high humidity curl retention) is not always adequately assured. It is therefore an object as contemplated herein to provide styling agents of such kind which in addition to the aforementioned properties, in particular deliver both good stiffness and good long-term stability.
A cosmetic composition for the temporary reshaping of keratinous fibres is provided herein. The composition includes at least one polyurethane-polyacrylate hybrid polymer (a) and at least one anionic acrylate copolymer (b). The at least one anionic acrylate copolymer (b) includes at least the following monomer units: (b1) at least one (meth)acrylic acid unit, (b2) at least one (meth)acrylic acid ethyl ester unit, and (b3) at least one (meth)acrylic acid ester unit. The at least one (meth)acrylic acid ester unit (b3) is different from (meth)acrylic acid ethyl ester unit (b2) and includes a hydrophobic group as the ester group.
The following detailed description is merely exemplary in nature and is not intended to limit the disclosure or the application and uses of the subject matter as described herein. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.
This was achieved as contemplated herein with a combination of two specific, distinct anionic acrylate polymers.
The present disclosure provides the following:
from about 0.4 to about 4.0 wt % of the polyurethane-polyacrylate hybrid polymer (a), and
from about 0.1 to about 15 wt % of the anionic acrylate copolymer (b)
relative to the total weight of the cosmetic composition.
from about 1.2 to about 3.2 wt % of the polyurethane-polyacrylate hybrid polymer (a), and
from about 5.0 to about 10 wt % of the anionic acrylate copolymer (b)
relative to the total weight of the cosmetic composition.
relative to the total weight thereof.
Surprisingly, it was found in the context as contemplated herein that improved moisture resistance of styling products can be obtained by combining two ingredients that are known per se and are already used in styling products. Other commonly requested properties of styling products such as long-term hold, stiffness and low tack remained unchanged. Such a good combination of properties was not expected even with knowledge of the individual components and was surprising. It was found experimentally that combining the two components produced a strong super-additive, i.e. synergistic effect with respect to moisture resistance, which manifested itself in the high humidity curl retention (HHRC) test.
For the purposes as contemplated herein, the term keratinous fibres comprises furs, wool and feathers, but particularly human hair. The essential components of the cosmetic composition as contemplated herein are the polyurethane-polyacrylate hybrid polymer (a) and the anionic acrylate copolymer (b) which is different from the acrylate copolymer (a).
The inventively used component (a) is a hybrid polymer of polyurethane and polyacrylate. Examples of such copolymers, which are also known as interpenetrating polymer networks, are hybrid polymers of polyurethane and polymethyl methacrylate (see for example S. C. Kim et al., Macromolecules, 1976, 9(2), pp. 258-263). The polyurethane-polyacrylate hybrid polymer (b) is preferably used in an aqueous dispersion.
It is further preferred that the polyurethane of the polyurethane-polyacrylate hybrid polymer (a) is a copolymer of the monomers hexylene glycol, neopentyl glycol, adipic acid, methylenediphenyldiisocyanate and dimethylpropionic acid (INCI name: Polyurethane-2). It is further preferred that the polyacrylate of the polyurethane-polyacrylate hybrid polymer (a) is a polymethyl methacrylate.
In summary, it is preferred if
the polyurethane of the polyurethane-polyacrylate hybrid polymer (a) is a copolymer of the monomers hexylene glycol, neopentyl glycol, adipic acid, methylenediphenyldiisocyanate and dimethylpropionic acid, and
the polyacrylate of the polyurethane-polyacrylate hybrid polymer (a) is a polymethyl methacrylate.
The polyurethane-polyacrylate hybrid polymer (a) is most preferably a polymer with INCI name Polyurethane-2 and Polymethyl Methacrylate. This is available commercially under the brand name Hybridur® 875 Polymer Dispersion (Air Products and Chemicals, Inc., USA) in an approximately 40 wt % dispersion (standard properties: anionic, pH about 7.5 to 9.0, Brookfield viscosity cPs about 50-100, particle size about 75-80 nm).
The cosmetic compositions as contemplated herein contain an anionic acrylate copolymer (b) as the second essential ingredient.
The anionic acrylate copolymer (b) is constructed from at least the following monomer units: at least one (meth)acrylic acid unit (b1), at least one (meth)acrylic acid ethyl ester unit (b2) and at least one (meth)acrylic acid ester unit (b3) which is different from (meth)acrylic acid ethyl ester unit (b2) and contains a hydrophobic group as the ester group.
As contemplated herein, copolymer (b) may be constructed from other monomer units. However, according to a preferred embodiment as contemplated herein, copolymer (b) consists only of said units (b1), (b2) and (b3), i.e. it consists entirely of monomer units derived from these units.
The at least one (meth)acrylic acid unit (b1) may be a methacrylic acid unit or an acrylic acid unit, wherein a methacrylic acid unit is preferred.
The at least one (meth)acrylic acid ethyl ester unit (b2) may be a methacrylic acid ethyl ester unit or an acrylic acid ethyl ester unit, wherein an acrylic acid ethyl ester unit is preferred.
As contemplated herein the at least one (meth)acrylic acid ester unit (b3) may be a (meth)acrylic acid alkyl ester unit. The alkyl group in the (meth)acrylic acid alkyl ester unit serves to control the hydrophobicity of the copolymer. The alkyl group is preferably a linear or branched alkyl group having 2 to 30 carbon atoms, more preferably 3 to 12 carbon atoms. As contemplated herein the hydrophobic group may also be another hydrophobic group which is not an alkyl group, e.g. an aromatic hydrocarbon ester group. An example of such may be a substituted or unsubstituted phenyl ester group or a substituted or unsubstituted alkylene phenyl ester group, for example a benzyl ester group.
The viscosity of the anionic acrylate copolymer (b) used in the cosmetic composition with a solid content of 2 wt % and neutralised solution at 25° C. is preferably not more than about 60,000 to about 120,000 cPs.
Suitable anionic acrylate copolymers (b) are available commercially with the INCI name Acrylates Copolymer (and) Water. Most preferable is the anionic acrylic copolymer (b) Aquastyle® SH-100 polymer from Ashland, Inc. In the commercially available form, this has a solid content of from about 28 to about 32 wt % and a pH from about 2.1 to about 4.0.
The cosmetic composition as contemplated herein contains the hybrid polymer (a) and acrylate copolymer (b) in quantities customary and suitable for styling agents, which may be adjusted for particular applications and packaging formats.
The composition as contemplated herein may contain the hybrid polymer (a) for example in a quantity from about 0.4 to about 4.0 wt % relative to the total weight of the composition as contemplated herein. Preferred are percentages of hybrid polymer (a) from about 0.8 to about 3.5 wt %, particularly from about 1.2 to about 3.2 wt %, expressing in each case the solid content of active substance in the cosmetic composition.
The cosmetic composition contains the acrylate copolymer (b) e.g. in a quantity from about 0.1 to about 5.0 wt %, preferably from about 1.0 to about 4.0 wt %, more preferably from about 1.5 to about 3.0 wt % relative to the total weight of the cosmetic composition, expressing in each case the solid content of active substance in the cosmetic composition.
In addition to the advantages outlined in the preceding text, the cosmetic compositions as contemplated herein are also differentiated from alternative cosmetic products particularly by the improved long-term hold they provide. A weight ratio between polymers a) and b) in the cosmetic from about 5:1 to about 1:5, preferably from about 3:1 to about 1:3 and particularly from about 2:1 to about 1:2 has proven to be particularly advantageous for the cosmetic properties of the products as contemplated herein.
In a particularly preferred embodiment as contemplated herein, the cosmetic composition contains the copolymer which is available commercially under the name Hybridur® 875 Polymer Dispersion as the hybrid polymer (a) and the copolymer which is available commercially under the name Aquastyle® SH-100 as the anionic acrylate copolymer (b). In this combination, particularly good results were obtained with respect to a combination of stiffness and long-term hold. This polymer combination is particularly advantageously supplied in gel form in styling products.
Other generally required properties of styling products, such as moisture resistance and low stickiness are also achieved particularly with this combination, particularly when in a packaging format as hair gel.
Polymers (a) and (b) are preferably used in the cosmetic composition in partially neutralized or neutralized form. Preferably at least one alkanolamine is used as the neutralizer. The alkanolamines usable as alkalizing agents as contemplated herein are preferably selected from primary amines with a C2-C6 alkyl base body which supports at least one hydroxyl group. Particularly preferred alkanolamines are selected from the group formed from 2-amino-1-ethanol (monoethanolamine), tris (2-hydroxyethyl) amine (triethanolamine), 3-amino-1-propanol, 4-amino-1-butanol, 5-amino-1-pentanol, 1-amino-2-propanol, 1-amino-2-butanol, 1-amino-2-pentanol, 1-amino-3-pentanol, 1-amino-4-pentanol, 3-amino-2-methylpropane-1-ol, 1-amino-2-methylpropane-2-ol, 3-amino-1,2-diol, 2-amino-2-methyl propan-1,3-diol. Very particularly preferred alkanolamines as contemplated herein are selected from the group 2-amino-1-ethanol, 2-amino-2-methyl propanol and 2-amino-2-methyl-propane-1,3-diol. Of these, 2-amino-2-methylpropanol has been found to be a particularly suitable neutralizing agent. Therefore, preferred cosmetic products as contemplated herein contain 2-amino-2-methylpropanol. 2-amino-2-methylpropanol is preferably used in the inventive products in an amount not exceeding the amount necessary to neutralize the acrylate copolymers (a) and (b). The quantities of 2-amino-2-methylpropanol used are preferably equivalent to about 80 to 100%, particularly preferably about 90 to 100%, and particularly about 95 to 100% of the quantity required for complete neutralization of the acrylate copolymers (a) and (b). In a preferred embodiment, the proportion by weight of 2-amino-2-methylpropanol of the total weight of the cosmetic agent is from about 0.05 to about 7.0 wt %, preferably from about 0.1 to about 5.0 wt % and particularly from about 0.1 to about 3.0 wt %.
In summary, a preferred cosmetic composition for the temporary reshaping of keratinous fibres contains relative to the total weight thereof:
The cosmetic composition as contemplated herein preferably contains one or more further component(s) to function as thickening or gelling agents, which is/are different from the acrylate copolymer (a) and (b) and also support film formation. Examples of such are cationic, anionic, nonionic or amphoteric polymers. The proportion by weight of this additional component in the total weight of the cosmetic composition may be relatively low due to the presence of components (a) and (b) and is for example from about 0.02 to about 3 wt %, preferably from about 0.05 to about 1.5 wt %, more preferably from about 0.2 to about 0.8 wt %.
Examples are acrylamide/ammonium acrylate copolymer, acrylamides/DMAPA acrylates/methoxy PEG methacrylate copolymer, acrylamidopropyltrimonium chloride/acrylamide copolymer, acrylamidopropyltrimonium chloride/acrylates copolymer, acrylates/acetoacetoxyethyl methacrylate copolymer, acrylates/acrylamide copolymer, acrylates/ammonium methacrylate copolymer, acrylates/t-butylacrylamide copolymer, acrylates/C1-2 succinates/hydroxyacrylates copolymer, acrylates/lauryl acrylate/stearyl acrylate/ethylamine oxide methacrylate copolymer, acrylates/octylacrylamide copolymer, acrylates/octylacrylamide/diphenyl amodimethicone copolymer, acrylates/stearyl acrylate/ethylamine oxide methacrylate copolymer, acrylates/VA copolymer, Acrylates/VP copolymer, Adipic Acid/Diethylenetriamine copolymer, Adipic Acid/dimethylamino-hydroxypropyl Diethylenetriamine copolymer, Adipic Acid/epoxypropyl Diethylenetriamine copolymer, Adipic Acid/Isophthalic Acid/neopentyl glycol/Trimethylolpropane copolymer, allyl stearate/VA copolymer, Aminoethylacrylate phosphates/acrylates copolymer, Aminoethylpropanediol-Acrylates/Acrylamide copolymer, Aminoethylpropanediol-AMPD-Acrylates/Diacetoneacrylamide copolymer, ammonium VA/acrylates copolymer, AMPD-Acrylates/Diacetoneacrylamide copolymer, AMP-Acrylates/allyl Methacrylate copolymer, AMP acrylates/C1-18 alkyl Acrylates/C1-8 alkyl acrylamide copolymer, AMP acrylates/diacetoneacrylamide copolymer, AMP-acrylates/dimethylaminoethyl copolymer, Bacillus/Rice Bran Extract/Soybean Extract ferment filtrates, bis-Butyloxyamodimethicone/PEG-60 copolymer, butyl acrylate/ethylhexyl methacrylate copolymer, butyl acrylate/hydroxypropyl dimethicone acrylates copolymer, Butylated PVP, butyl ester of Ethylene/MA copolymer, butyl ester of PVM/MA copolymer, calcium/sodium PVM/MA copolymer, Corn Starch/Acrylamide/Sodium acrylate copolymer, Diethylene Glycolamine/Epichlorohydrine/Piperazine Copolymer, Dimethicone Crosspolymer, Diphenyl amodimethicone, ethyl ester of PVM/MA copolymer, Hydrolyzed Wheat Protein/PVP Crosspolymer, isobutylene/ethylmaleimide/Hydroxyethylmaleimide copolymer, isobutylene/MA copolymer, Isobutylmethacrylate/bis-hydroxypropyl dimethicone acrylate copolymer, isopropyl ester of PVM/MA copolymer, Lauryl acrylate Crosspolymer, Lauryl Methacrylate/Glycol dimethacrylate Crosspolymer, MEA sulfites, Methacrylic Acid/Sodium acrylamidomethyl Propane sulfonates copolymer, methacryloyl ethyl betaine/acrylates copolymer, Octylacrylamide/Acrylates/Butylaminoethyl Methacrylate Copolymer, PEG/PPG-25/25 Dimethicone/Acrylates Copolymer, PEG-8/SMDI copolymer, polyacrylamide, polyacrylate-6, Polybeta-Alanine/Glutaric Acid Crosspolymer, Polybutylene Terephthalate, polyester-1, Polyethylacrylate, Polyethylene terephthalate, Polymethacryloyl ethyl betaine, Polypentaerythrityl terephthalate, Polyperfluoroperhydrophenanthrene, Polyquaternium-1, Polyquaternium-2, Polyquaternium-4, Polyquaternium-5, Polyquaternium-6, Polyquaternium-7, Polyquaternium-8, Polyquaternium-9, Polyquaternium-10, Polyquaternium 1 1, Polyquaternium-12, Polyquaternium-13, Polyquaternium-14, Polyquaternium-15, Polyquaternium-16, Polyquaternium-17, Polyquaternium-18, Polyquaternium-19, Polyquaternium-20, Polyquaternium-22, Polyquaternium-24, Polyquaternium-27, Polyquaternium-28, Polyquaternium-29, Polyquaternium-30, Polyquaternium-31, Polyquaternium-32, Polyquaternium-33, Polyquaternium-34, Polyquaternium-35, Polyquaternium-36, Polyquaternium-37, Polyquaternium-39, Polyquaternium-45, Polyquaternium -46, Polyquaternium-47, Polyquaternium-48, Polyquaternium-49, Polyquaternium-50, Polyquaternium-55, Polyquaternium-56, Polysilicone-9, Polyurethane-1, Polyurethane-6, polyurethane-10, polyvinyl acetate, polyvinyl butyral, polyvinylcaprolactam, polyvinylformamide, polyvinyl imidazolinium acetate, polyvinyl methyl ether, Potassium butyl ester of PVM/MA copolymer, Potassium ethyl ester of PVM/MA copolymer, PPG-70 polyglyceryl-10 ether, PPG-12/SMDI copolymer, PPG-51/SMDI copolymer, PPG-10 sorbitol, PVM/MA copolymer, PVP, PVP/VA/Itaconic Acid copolymer, PVP/VA/vinyl Propionate copolymer, Rhizobian Gum, Rosin acrylate, Shellac, Sodium butyl ester of PVM/MA copolymer, Sodium ethyl ester of PVM/MA copolymer, Sodium Polyacrylate, Sterculia urens gum, Terephthalic Acid/Isophthalic Acid/Sodium Isophthalic Acid sulfonate/glycol copolymer, Trimethylolpropane triacrylate trimethylsiloxysilylcarbamoyl pullulan, VA/Crotonates copolymer, VA/Crotonates/Methacryloxybenzophenone-1 copolymer, VA/Crotonates/Vinyl Neodecanoate copolymer, VA/Crotonates/Vinyl Propionate Copolymer, VA/DBM copolymer, VA/Vinyl Butyl Benzoate/Crotonates Copolymer, vinyl amine/vinyl alcohol copolymer, vinyl caprolactam/VP/dimethylaminoethyl methacrylate copolymer, VP/acrylates/lauryl Methacrylate copolymer, VP/dimethylaminoethyl copolymer, VP/DMAPA Acrylates copolymer, VP/Hexadecene copolymer, VP/VA copolymer, VP/vinylcaprolactam/DMAPA acrylates copolymer, Yeast Palmitate and Styrene/VP copolymer.
Examples of nonionic polymers are:
Vinylpyrrolidone/vinyl ester copolymers such as those sold under the trademark Luviskol (BASF). Luviskol VA 64 and Luviskol VA 73, each vinylpyrrolidone/vinyl acetate copolymers, are preferred nonionic polymers.
Cellulose ethers such as hydroxypropyl cellulose, hydroxyethyl cellulose and methylhydroxypropyl cellulose, as sold for example under the trademarks Culminal and Benecel (AQUALON).
Shellac.
Polyvinylpyrrolidones (BASF) such as those marketed under the name Luviskol (BASF).
Siloxanes. These siloxanes may be either water-soluble or water-insoluble. Both volatile and non-volatile siloxanes are suitable, wherein non-volatile siloxanes are understood to be compounds whose boiling point at atmospheric pressure is above 200° C. Preferred siloxanes are polydialkyl siloxanes, such as polydimethylsiloxane, polyalkylaryl siloxanes such as polyphenylmethyl siloxane, ethoxylated polydialkyl siloxanes, and polydialkyl siloxanes which contain amine and/or hydroxyl groups.
Glycoside-substituted silicones.
The further component with gelling function, homopolyacrylic acid (INCI: Carbomer), available commercially in various versions under the trade name Carbopol® is preferred. The carbomer is preferably present in a proportion of from about 0.02 to about 3 wt %, preferably from about 0.05 to about 1.5 wt % and more preferably from about 0.2 to about 0.8 wt % relative to the total weight of the cosmetic composition.
The polyvinylpyrrolidones (INCI name: PVP) and vinylpyrrolidone/vinyl acetate copolymers (INCI name VP/VA copolymer) are particularly preferred for use as film-forming polymers as contemplated herein because of their cosmetic effect in combination with the copolymers a) and b), wherein the proportion by weight of these polymers is preferably restricted to quantities between about 1.0 and about 10 wt %. Particularly preferred cosmetic compositions are therefore exemplified in that they further contain from about 1.0 to about 10 wt % polyvinylpyrrolidone and/or vinylpyrrolidone/vinyl acetate copolymer relative to their total weight, most preferably polyvinylpyrrolidone. Particularly preferred cosmetic products have a content by weight of polyvinylpyrrolidone and/or vinylpyrrolidone/vinyl acetate copolymer c) from about 2.0 to about 8.5 wt %, preferably from about 3.0 to about 7.0 wt % of the total weight of the cosmetic agent.
The cosmetic composition may comprise other conventional materials of styling products. In particular, additional care products may be considered suitable as further excipients and additives.
The product may contain for example, at least one protein hydrolysate and/or one of its derivatives as a care substance. Protein hydrolysates are product mixtures obtained by acid-, basic- or enzyme-catalyzed decomposition of proteins (albumins). The term protein hydrolysates is understood as contemplated herein to include total hydrolysates as well as individual amino acids and their derivatives and mixtures of various amino acids. The molecular weight of the protein hydrolysates that are usable as contemplated herein is between about 75, the molecular weight of glycine, and about 200,000, the molecular weight preferably has a value from about 75 to about 50,000 and very particularly preferably from about 75 to about 20,000 Daltons.
The composition as contemplated herein may further comprise for example at least one vitamin, one provitamin, one vitamin precursor and/or one of their derivatives as a care substance. In this context, those vitamins, provitamins and vitamin precursors are preferred as contemplated herein that are commonly assigned to the groups A, B, C, E, F and H.
Like the addition of glycerol and/or propylene glycol, the addition of panthenol increases the flexibility of the polymer film which is formed when the product as contemplated herein is used.
The products as contemplated herein may further comprise at least one plant extract, and also mono- or oligosaccharides and/or lipids as a care substance.
Also suitable as a care substance are conditioner oils. The natural and synthetic cosmetic conditioner oils include, for example, vegetable oils, liquid paraffin oils, isoparaffin oils and synthetic hydrocarbons and di-n-alkyl ethers containing a total of 12 to 36 carbon atoms, particularly 12 to 24 carbon atoms. Preferred cosmetic products as contemplated herein contain at least one oil component, preferably at least one oil component selected from the group of silicone oils. The group of silicone oils includes in particular dimethicones, with which the cyclomethicones are also classified, the amino-functional silicones and dimethiconols. The dimethicones may be either linear or branched, cyclic or cyclic and branched. Suitable silicone oils or silicone gums are particularly dialkyl and alkylaryl siloxanes such as dimethyl polysiloxane and methylphenyl polysiloxane as well as alkoxylated, quaternised or anionic derivatives thereof. Preferred are cyclic and linear polydialkyl siloxanes, alkoxylated and/or aminated derivatives thereof, dihydroxypolydimethyl siloxanes and polyphenylalkyl siloxanes.
Ester oils, i.e. esters of 6-C30-fatty acids with C2-C30 fatty alcohols, preferably monoesters of fatty acids with alcohols having 2 to 24 carbon atoms such as isopropyl myristate (Rilanit® IPM), isononanoic acid C16-18 alkyl ester (Cetiol® SN), 2-ethylhexyl palmitate (Cegesoft® 24), stearic acid-2-ethylhexyl ester (Cetiol® 868), cetyl oleate, glycerol tricaprylate, coconut oil alcohol caprinate/caprylate (Cetiol® LC), n-butyl stearate, oleyl erucate (Cetiol® J 600), isopropyl palmitate (Rilanit® IPP), oleyl oleate (Cetiol®), lauric acid hexyl ester (Cetiol® A), di-n-butyl adipate (Cetiol® B), myristyl myristate (Cetiol® MM), cetearyl isononanoate (Cetiol® SN) oleic acid decyl ester (Cetiol® V) are further preferred care oils.
Dicarboxylic acid esters, symmetrical, asymmetrical or cyclic esters of carbonic acid with fatty alcohols, trifatty acid esters of saturated and/or unsaturated linear and/or branched fatty acids with glycerol or fatty acid partial glycerides including monoglycerides, diglycerides and technical mixtures thereof are also to be considered suitable care substances.
Emulsifiers or surfactants are preferably also contained in the composition as contemplated herein. PEG derivatives of hydrogenated castor oil which are available for example under the name PEG hydrogenated castor oil, such as PEG-30 Hydrogenated Castor Oil, PEG-33 Hydrogenated Castor Oil, PEG-35 Hydrogenated Castor Oil, PEG-36 Hydrogenated Castor Oil or PEG-40 Hydrogenated Castor Oil for example are preferred. The use of PEG-40 Hydrogenated Castor Oil is preferred as contemplated herein. These are preferably present in a quantity from about 0.05 to about 1.5 wt % more preferably from about 0.1 to about 1.0 wt %, also preferably from about 0.2 to about 0.8 wt % or from about 0.3 to about 0.6 wt %.
The cosmetic compositions contain the ingredients and active agents in a cosmetically acceptable carrier.
Preferred cosmetically acceptable carriers are aqueous, alcoholic or aqueous-alcoholic media preferably containing at least about 10 wt % water, calculated on the total weight of the composition.
The cosmetic carrier particularly preferably contains water, particularly in such a quantity that the cosmetic agent contains at least about 10 wt %, particularly at least about 20.0 wt %, most preferably at least about 40 wt % water calculated on the total weight of the composition. Very particularly preferred cosmetic compositions have a water content between about 50 and about 95 wt %, preferably between about 60 and about 90 wt % and particularly between about 65 and about 85 wt % relative to the total weight thereof.
The lower alcohols usually used for cosmetic purposes containing 1 to 4 carbon atoms such as ethanol and isopropanol may be included in particular as alcohols.
Examples of water-soluble solvents as cosolvent are glycerol and/or ethylene glycol and/or 1,2-propylene glycol in a quantity from 0 to about 30 wt % relative to the total product.
The composition of some preferred cosmetic products is represented in the following tables (values in wt % relative to the total weight of the cosmetic composition unless otherwise indicated).
The heading “Misc” as contemplated herein refers to a cosmetic carrier, particularly (if not listed separately) water and optionally other typical ingredients of styling products.
The cosmetic composition as contemplated herein may be formulated in the manner customary for the temporary reshaping of hair, for example as hair gel, hair spray hair mousse or hair wax. Preferably, the product is formulated as a hair gel.
Both hair mousses and hairsprays require the presence of propellants. As contemplated herein, however, it is preferable to use only small quantities of hydrocarbons, or none at all. Propane, propane/butane mixtures and dimethyl ether are particularly suitable propellants as contemplated herein.
The present disclosure also relates to the use of cosmetic compositions as contemplated herein for the temporary reshaping of keratinous fibres, in particular human hair, and a method for the temporary shaping of keratinous fibres, particularly human hair, in which the cosmetic composition is applied to keratinous fibres.
A further object of this patent application is the use of a cosmetic composition as contemplated herein to improve the moisture resistance of temporarily reshaped keratinous fibres.
The following hair gels were prepared:
140 wt % of active substance in water
230 wt % of active substance in water
The quantities indicated in the table are in wt % of the respective raw material relative to the total composition. The polymer content in each of the compositions V1, V2 and E1 was 5.0 wt %.
The moisture resistance of the styling agents obtained thereby was tested on purified Kerling-strands in an HHCR test (High Humidity Curl Retention Test: 6 h) (average determined on each of 5 hair strands):
Accordingly, the polymer combination E1 as contemplated herein exhibited a significantly super-additive, synergistic effect in terms of moisture resistance.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the various embodiments in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment as contemplated herein. It being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the various embodiments as set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 204 147.6 | Mar 2015 | DE | national |
This application is a U.S. National-Stage entry under 35 U.S.C. § 371 based on International Application No. PCT/EP2015/076329, filed Nov. 11, 2015 which was published under PCT Article 21(2) and which claims priority to German Application No. 10 2015 204 147.6, filed Mar. 9, 2015, which are all hereby incorporated in their entirety by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/076329 | 11/11/2015 | WO | 00 |