The current invention relates generally to fluid product dispensers and in particular to systems and methods of relieving pressure generated within the dispenser system.
It is known in the art to dispense hand care products from a dispenser mounted to a wall or dispenser stand. Dispensers may be conveniently located in building entrances, bathrooms, or lunchrooms providing convenient access to passersby. Many dispensers have reservoirs that are open to the atmosphere. Such reservoirs are easily and inexpensively refilled from bulk soap stored in bottles or jugs. However, studies have shown that over time soap containers open to the atmosphere generate unsanitary bio-films. Soap used from these containers actually deposit germs onto the hands of the user during use. Even after cleaning the reservoir, remediation studies have determined that bio-films regenerate despite using strong oxidizers like bleach.
To overcome the detriments of open top dispensers, the reservoir in certain types of dispensers is not refilled when the system is replenished. These systems receive disposable refill units produced in a sanitary environment. When empty of product, the whole reservoir is replaced along with the accompanying nozzle and pump. Accordingly, every part wetted by soap is disposed of when the dispenser is serviced. This greatly reduces and/or eliminates the germination of bio-films.
Sanitary-sealed dispensers are designed in a variety of ways that best meet the needs of the end user. Some dispensers include an enclosed housing, which protects and obscures access to the replaceable reservoir. Dispensers of this type include structural components that close upon themselves to form the housing. The housing components may latch together and unlock to provide access to the refill unit along with other dispenser components contained therein. Such dispensers are self-contained and may be mounted to a wall or dispenser stand. In counter mounted dispensers, the reservoir of fluid product is remotely stored away from the point of distribution. In these types of systems, the nozzle is incorporated into a faucet mounted proximal to a sink or washbasin. Consequently, the remaining components of the system, including the replaceable reservoir, are stored out of sight typically underneath the counter.
Some dispensers are designed with a manually actuated pump where the user pushes or pulls a lever to dispense a quantity of fluid product into the user's hands. However, this requires direct contact by the user, which may further contribute to the transmission of germs. As an alternative, “Hands-free” dispensers activate automatically without direct contact by the user. For these types of dispensers, the user places their hand underneath the dispenser where a sensor is located. The sensor signals an onboard controller that the user's hands are properly positioned and subsequently the controller dispenses a quantity of fluid.
For any of these types of systems, dispensers often leak product from the end of the nozzle after the dispenser pump has been activated. To deliver product, pressure is generated within the dispenser conduits by the actuation of a pump, which forces the fluid out of the nozzle onto the user's hands. However, in current state-of-the-art systems, pressure in the system is typically not relieved after dispenser actuation. As such, fluid product dribbles from the end of the nozzle. This results in wasted product and moreover contributes to an unsightly washroom setting. What is needed is a dispensing system that cleanly cuts off the stream of dispensed fluid product at the end of the dispensing cycle. The embodiments of the subject invention obviate the aforementioned problems.
In one embodiment of the subject invention a system for dispensing foamed product includes: a housing for supporting one or more components of the system, a product dispensing nozzle received by or within the housing, a reservoir for storing liquid product which may be soap, sanitizer or other foamable product, a foam generating device operatively connected between the reservoir and the product dispensing nozzle, wherein the foam generating device is operatively connected to a source of pressurized air, a control system having one or more outputs, a pump operatively connected to convey liquid product from the reservoir to the foam generating device where the pump is actuated by an output of the controller, an air valve operatively connected to the foam generating device for selectively relieving air pressure in the system where the air valve is actuated by an output of the controller and a valve operatively connected to an upstream side of the product dispensing nozzle where the valve has an open state for allowing the foamed product to flow to the nozzle and a closed state for the sealing the upstream side of the nozzle with respect to the atmosphere.
In one aspect of the embodiments of the subject invention, the valve is a self-actuating valve that opens when pressurized with product, which may be foaming product, and closes when pressure from the foaming product is relieved.
In another aspect of the embodiments of the subject invention, the valve is a self-actuating valve that is at least partially constructed from elastomeric material and the valve includes first and second elastomeric portions that are biased together to form the closed state of the valve and the first and second elastomeric portions of the valve deflect when pressurized with product, which may be foaming product, to form the open state of the valve.
In yet another aspect of the embodiments of the subject invention, the valve is an electrically controlled valve, which may be solenoid valve, that is actuated by the controller.
In still another aspect of the embodiments of the subject invention, the air pump is a diaphragm pump.
In another embodiment of the subject invention, a system for dispensing an associated product includes: a housing for supporting one or more components of the system, a product dispensing nozzle received by the housing, a replaceable reservoir for storing associated liquid product, a control system having one or more outputs, a pump operatively connected to pressurize associated liquid product drawn from the replaceable reservoir for delivery through the nozzle where the pump is actuated by an output of the controller, a self-actuating valve operatively connected to an upstream side of the product dispensing nozzle, the self-actuating valve including a dome-shaped valve head constructed from elastomeric material where the valve head displaces axially to open the valve when pressurized by associated liquid product and automatically closes when pressure from the associated liquid product is relieved, and a pressure-relieving valve operatively connected between an outlet of the pump and the self-actuating valve for relieving pressure therebetween.
In still another embodiment of the subject invention, a method of dispensing foaming product includes the steps of: 1.) providing a dispensing system having a nozzle for dispensing foaming product, a mixing chamber having inlets for receiving air and liquid product, the mixing chamber also including an element for turbulently mixing the air and the liquid product to generate foaming product, an air pump for pressurizing air and a conduit operatively connected between the pump and the mixing chamber, a pressure relief device operatively connected to relieve air pressure in the dispensing system, 2.) activating the air pump to generate foaming product, 3.) deactivating the air pump and 4.) engaging the pressure relief device to relieve air pressure in the dispensing system.
In one aspect of the embodiments of the subject invention, the method includes: providing a self-actuating valve operatively connected between the mixing chamber and the nozzle where the self-actuating valve automatically opens when foaming product is generated, and engaging the pressure relief device to relieve air pressure in the dispensing system whereafter the self-actuating valve automatically closes to seal the upstream side of the nozzle with respect to the atmosphere thereby preventing residual foaming product from exiting the nozzle.
In yet another aspect of the embodiments of the subject invention, the method includes: providing a dispensing system that includes a replaceable liquid product reservoir, a liquid pump operatively connected to the replaceable liquid product reservoir and the mixing chamber and activating the air pump and the liquid pump to generate foaming product and deactivating the air pump and the liquid pump.
A product dispensing system, depicted in
In the embodiment depicted in
It is noted that the embodiments described herein relate generally to counter mounted dispensing systems. However, it is to be construed that the novel aspects of the invention described in this specification relate equally to self-contained wall-mounted dispensing systems, as well as other dispensing systems that pressurize product for distribution through a nozzle. It is noted for wall-mounted dispensing system that the housing may include first and second housing portions 20,21 that close together to encapsulate the components of the dispensing system. A latch 11 may be incorporated for holding the first and second housing portions 20,21 in fixed relationship to each other, reference
With reference back to
With reference now to
Referencing
It follows that the reservoir 60, also referred to herein as refill bag 61, incorporates an outlet connection fitting, not shown in the figures. The outlet connection fitting may be incorporated into the material comprising the refill bag 61 via any process known in the art, as long as a fluid tight seal is ensured. A hose, also not shown in the figures, may extend at a first end from the outlet connection fitting. At its distal end, the hose may connect to an inlet of the pumping mechanism 40 or alternatively may connect to a manifold that is fluidly connected to the inlet of the pumping mechanism 40. It is noted that the manner in which the reservoir 60 is fluidly communicated to the inlet of the pumping mechanism 40 is not to be construed as limiting. Any type of fluid connection may be used that does not leak or expose the fluid product to air.
With reference again to
In one exemplary configuration, the foaming device 70 incorporates a generally cylindrical mixing chamber 72. The first end of the mixing chamber 72 may be fluidly connected to first and second inlets 74, 75 respectively. The first mixing chamber inlet 74 may be communicated with conduit 27a in a fluid tight manner, which at its distal end is connected to the outlet of pumping mechanism 40. As such, fluid from the reservoir 60 is delivered to the mixing chamber 72 under pressure. Similarly, the second mixing chamber inlet 75 may be connected to a source of pressurized air 110 via the conduit 27b. Both fluid and pressurized air enter into the mixing chamber 72 through an element or elements that causes the flow of both substances to mixed turbulently. In one embodiment, the element causing turbulent mixing may comprise a screen element 77 extending across the first open end of the mixing chamber 72. A hollow region 78 is positioned immediately downstream of screen element 77. In this region 78, air and liquid continue to mix before passing through a second screen element 77′. It will be readily seen that as liquid and air continue to flow into the mixing chamber 72 through the inlets 74, 75, a continuous stream of foam will be created and expelled through the distal second end of the mixing chamber 72. It is expressly noted that the use of screen elements 77, 77′ to create foam represents just one embodiment of a foaming device. Alternative embodiments of foaming devices may be incorporated into the dispensing system 10 which include, but are not limited to, other types of mesh or interlaced structural elements that define a torturous path through which combined streams of air and liquid flow.
With reference now to
Still referencing
Pressurized air directed through conduit 27b may flow through one or more pneumatic flow directing valves 96. In one particular embodiment, pneumatic flow directing valve 96 may be constructed to selectively: convey pressurized air through conduit 27b to the mixing chamber 72 or relieve pressure in the system by venting the air to atmosphere. As such, pneumatic flow directing valve 96 may comprise a pressure relief valve 97. An electrical actuator (which may be a solenoid) incorporated into the valve 97 may allow or cause a spool or poppet to be shifted between first and second operating states. In this way, the pressure relief valve 97 can be actuated remotely, via a control system 170, to relieve back pressure in the conduit 27b or allow pressurized air to flow into the mixing chamber 72. It is expressly noted that other forms of pressure relieving devices may be employed. All such devices are to be construed as falling within the scope of the claimed invention.
With reference again to
The dispensing valve 100 may comprise a self-closing dispensing valve 101. By self-closing it is meant that the dispensing valve 101 automatically opens and closes responsive to pressure generated within the foaming device 70. More specifically, the self-closing dispensing valve 101 opens when product having a predetermined threshold of pressure impinges on the dispensing valve. In a corresponding manner, dispensing valve 101 closes when pressure on the valve is removed. It is expressly noted that in the current embodiment dispensing valve 101 is not directly actuated by control system 170. However, alternative embodiments are contemplated where dispensing valve 101 is actuated by a controller, which may incorporate the use of one or more sensors. In any instance, dispensing valve 100 (or self-closing dispensing valve 101) functions to draw in at least a portion of the residual product remaining in conduit 28 when the dispensing valve 100 closes. In this manner, any product still remaining in the conduit 28 and/or in the nozzle 16 after a dispense event is prevented from leaking or dribbling out of the nozzle 16.
With reference now to
The dispensing valve 101 may include a generally convex valve head 102 and one or more sidewalls 103. The sidewalls 103 extend from a peripheral edge of the valve head 102 and terminate at its distal end, which has a contour suitable for holding the dispensing valve 101 in a fluid tight relationship with the outlet of foaming device 70. In one particular embodiment, the distal ends of sidewalls 103 comprise a flange 104 having stepped surfaces designed to hold the dispensing valve 101 in place by a retaining member 99 shown schematically in
The sidewalls 103 may be constructed having a wall thickness and a durometer suitable for allowing the valve head 102 to displace axially (i.e. axially with respect to the outlet of the foaming device 70) in response to fluid pressure impinging a first side 105 thereof. In a manner consistent with that described above, the sidewalls 103 are so constructed such that the resiliently elastic nature of the material causes the valve head 102 to return to its original position (See
Still referring to
From the aforementioned it will be readily observed that in the un-deflected state, the slits fashioned in the valve head 102 are closed to form a barrier against the passage of product through the dispensing valve 101. In a corresponding manner, when pressurized by product emanating from the mixing chamber 72, the valve head 102, which may be dome shaped, will displace axially in an inverted fashion causing the slits to move apart and the dispensing valve 101 to open thereby allowing the passage of product therethrough. It is noteworthy to mention here that as the valve head 102 returns to its original position, as will happen after a dispense event occurs, residual fluid product remaining in conduit 28 will be drawn away from the nozzle 16. Negative pressure generated in the conduit 28 at that time will prevent residual fluid product from leaking or dribbling out of the nozzle 16.
With reference again to
An electrical power supply 163 may be provided to power the electronic circuits 171. In one embodiment, mains AC power is available on site from the facility in which the dispensing system 10 is installed. In another embodiment, power may be provided by way of an onboard power source, like for example a battery 164, or alternatively from photoelectric cells, not shown. In the embodiment depicted, the onboard power supply is comprised of one or more batteries 164, and more specifically four (4) D-cell batteries. However, the quantity, type and configuration of the batteries are not to be construed as limiting in any way.
The electronic circuitry 171 of the control system 170 may comprise digital electronic circuitry 172 designed to receive and process data relating to operation of the dispensing system 10. In particular, the digital electronic circuitry 172 functions to generate output signals that activate the pumping mechanisms and flow control valves. In one embodiment, the digital electronic circuitry 172 may comprise one or more logic processors 173, which may be programmable to execute a sequence of coded instructions. Circuitry 172 may further include electronic non-volatile data storage and/or volatile memory 177 use to store signal-commands for operating the dispensing system 10. Accordingly, the control system 170 can be programmed to activate or deactivate the components of the dispensing system 10 (e.g. pneumatic or fluidic pumping mechanisms 40, 100 and/or flow directing valves 90, 96) in a particular sequence as is suitable for operating the dispensing system 10 to be discussed in detail below. Still, persons of skill in the art will understand the use and implementation of a wide array of support circuitry that may be necessary for controlling operation of the dispensing system 10.
In one particular embodiment, sensors 191 may be incorporated into the fixture 14 (reference
With reference now to
In one embodiment, the control system 170 will begin the dispensing cycle by actuating the pneumatic and fluidic pumping mechanisms 40, 100. The pumping mechanisms 40, 100 may be actuated substantially simultaneously. However, depending on the specific type of pumping mechanisms used, one of the pneumatic or fluidic pumping mechanisms 40, 100 may be actuated before the other to ensure that the desired consistency of foam product is delivered by the system 10. The control system 170 may operate the pumping mechanisms 40, 100 for a length of time sufficient to distribute a predetermined amount of product, which in one embodiment is approximately 1 fluid ounce. Upon activation of the pumping mechanisms 40, 100 product from the reservoir 60 will be pumped into the mixing chamber 72 along with pressurized air. The combined mixture will further generate pressure at the first side 105 of the dispensing valve 100 causing the valve head 102 to shift axially to the inverted position (shown in
The control system 170 may then disengage the pumping mechanisms 40, 100 and subsequently engage the pressure relief valve 97. In one embodiment, the pressure relief valve 97 may be engaged shortly after the pumping mechanisms 40, 100 have been turned off. The term “shortly after” references an amount of time, which in one embodiment is about 10 milliseconds (10 ms). Alternate embodiments are considered where the pressure relief valve is activated between 0 milliseconds (0 ms) and 50 millisecond (50 ms). Still other embodiments are contemplated where the range of time to activate valve 97 is between 0 milliseconds (0 ms) and 500 milliseconds.
The pressure relief valve 97 may be activated for a length of time sufficient to vent pressurized air in conduit 27b to the atmosphere and then deactivated whereby the control system 170 is reset until another dispense event is initiated. It will be readily seen that upon deactivation of the pumping mechanisms 40, 100 and activation of the pressure relief valve 97, the valve head 102 will translate axially back to its original position thus closing the center portion 106, which draws fluid inwardly and prevents fluid product from leaking or dribbling out of the nozzle 16.
Having illustrated and described the principles of the dispensing system in one or more embodiments, it should be readily apparent to those skilled in the art that the invention can be modified in arrangement and detail without departing from such principles.
This patent application claims priority to patent application Ser. No. 61/993,816, titled PRODUCT DISPENSER WITH PRESSURE RELIEF, filed on May 15, 2014 which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5133500 | Simpson | Jul 1992 | A |
5842607 | Snider | Dec 1998 | A |
6092551 | Bennett | Jul 2000 | A |
6290992 | Magnuson-Hawkins | Sep 2001 | B1 |
7172096 | O'Dougherty | Feb 2007 | B2 |
8292128 | Hagleitner | Oct 2012 | B2 |
8770440 | Lin | Jul 2014 | B2 |
8783511 | Snodgrass | Jul 2014 | B2 |
8978939 | Bull | Mar 2015 | B2 |
20060011655 | Ophardt | Jan 2006 | A1 |
20100270328 | Quinlan | Oct 2010 | A1 |
20120267396 | Quinlan, Jr. | Oct 2012 | A1 |
20130032614 | Babikian | Feb 2013 | A1 |
20130200098 | Li | Aug 2013 | A1 |
20150327730 | McNulty | Nov 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20150327730 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
61993816 | May 2014 | US |