The present invention relates to product identification, as for example in point of sale terminals using Electroencephalography (EEG).
Generally speaking, barcode scanning, in particular two dimensional barcode scanning, requires a great deal of image processing, the image to be in perfect focus and adequate lighting conditions. Accurate scanning can be hindered when these conditions are not met or when there is excessive motion. In addition, the barcode should ideally be properly positioned within the field of view of an imager, which may be unintuitive to aim. If any of these preconditions are not met, the barcode often cannot be deciphered. Also, sometimes the barcode itself is printed poorly and can be damaged during the life of the product. This can lead to hard or impossible to read codes. Some items, such as produce, often do not even have barcodes and have to be keyed in manually by a cashier. This can be time consuming and can be impeded by human error. It is also quite simple for a thief to swap the barcode of an expensive item with the barcode of a much cheaper product. These issues can cause major problems and be very expensive for businesses.
Therefore, a need exists for a system that enhances bar code reading or replaces the bar code reading with another system.
Accordingly, in one aspect, the present invention embraces use of EEG data to aid in identification of items in order to process a Point-Of-Sale transaction.
In an example embodiment, an EEG POS system has an EEG device that detects electrical signals representing brain waves. A database of brain wave profiles represents a plurality of items to be identified. A live signal analyzer compares electrical signals from the EEG device with stored brain wave profiles in the database to identify entries in the database representing items that match the electrical signals from the EEG device, where items whose stored brain wave profiles match the electrical signals are considered identified items. A POS terminal is coupled to the live signal analyzer in order to log and tally items for a transaction.
In another example embodiment, an electroencephalograph (EEG) point of sale system having an EEG device that is configured to detect a plurality of electrical signals representing brain waves. A database of brain wave profiles represent a plurality of items to be identified. A live signal analyzer compares electrical signals from the EEG device with stored brain wave profiles in the database to identify entries in the database representing items that match the electrical signals from the EEG device, where items whose stored brain wave profiles match the electrical signals are considered identified items.
In certain example implementations, the system also has a point of sale terminal coupled to the live signal analyzer that logs and tallies items for a transaction, where the live signal analyzer provides item identification and price data to the point of sale terminal for identified items. In certain example implementations, the live signal analyzer comprises a programmed processor coupled to the EEG device, the point of sale terminal, and the database. In certain example implementations, the EEG device is configured as headgear that is to be worn by a user. In certain example implementations, a brain response profiler generates a brain response profile for an item from the EEG device and generates a database entry for the item.
In certain example implementations, the brain response profiler is implemented using a programmed processor coupled to the EEG device and the database. In certain example implementations, the live signal analyzer identifies entries in the database representing items that match the electrical signals from the EEG device by cross correlating the plurality of electrical signals from the EEG device with stored database entries representing a plurality of items. In certain example implementations, the electrical signals from the EEG device are converted to frequency domain signals and where the brain response profile is a frequency domain profile.
In yet another example embodiment, 9. A method, involves receiving electroencephalograph (EEG) data generated when a user is exposed to an item that is to be identified; at a programmed processor, comparing the EEG data to a plurality of brain wave profiles stored in a database, the stored brain wave profiles corresponding to identifiable items; ascertaining that a match exists between the EEG data and a stored brain wave profile for a particular identifiable item; retrieving information from the database associated with the particular identifiable item; and passing the information retrieved from the database to a point of sale terminal.
In certain example implementations, the information retrieved from the database comprises item identification and price data. In certain example implementations, the comparing comprises calculating a cross correlation between the EEG data and a plurality of the stored brain wave profiles. In certain example implementations, the method further involves processing the EEG data using a fast Fourier transform. In certain example implementations, the EEG data and the brain wave profiles are represented in the frequency domain.
In another aspect, the present invention involves a training method, including receiving EEG training data from an EEG device that is generated when a user is exposed to a training item; generating an item brain wave profile for the training item that characterizes the EEG training data along with data identifying the training item; and storing the item brain wave profile in a database.
In certain example implementations, the method further involves receiving electroencephalograph (EEG) data generated when a user is exposed to an item that is to be identified; at a programmed processor, comparing the EEG data to a plurality of item brain wave profiles stored in the database; ascertaining that a match exists between the EEG data and a stored item brain wave profile for a particular identifiable item; retrieving information from the database associated with the particular identifiable item; and passing the information retrieved from the database to a point of sale terminal.
In certain example implementations, the information retrieved from the database includes item identification and price data. In certain example implementations, the comparing involves calculating a cross correlation between the EEG data and a plurality of the stored brain wave profiles. In certain example implementations, processing the EEG data involves using a fast Fourier transform. In certain example implementations, the EEG data and the brain wave profiles are represented in the frequency domain.
The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
The present invention embraces methods and apparatus using electroencephalograph data to scan items to be checked out at a point of sale terminal, for example, at a retail establishment.
As previously noted barcode scanning, in particular two dimensional barcode scanning, requires a great deal of image processing, minimal motion, perfect focus, proper placement in a scanner's field, clear bar code printing and adequate lighting conditions. Accurate scanning can be hindered when these conditions are not met. If any of these preconditions are not met, the barcode often cannot be deciphered.
As the form factor of our products continue to evolve, so too will the way in which we interact with them. Today there are several ways of interfacing with smart devices other than traditional hardware buttons. Touch screen gesturing, voice recognition, inertial sensors motion detection, 3D sensor gesture recognition and other methods have become commonplace for interfacing with a computer. More recently, many advances have been made in improvements in the brain-computer interface (BCI). All BCI devices on the market today use electroencephalography (EEG) as their core technology. This involves the placement of an array of electrodes on the head, which measure voltage fluctuations resulting from ionic current flows within the neurons of the brain. These electromagnetic signals are recorded, processed and the source of the activity is isolated.
Embodiments consistent with the present invention can address the above problems by removing most of the preconditions necessary to successfully identify a product. It removes the need for any image processing, any mechanical autofocus routine, can operate in extremely low light conditions, and is motion tolerant. It also removes the need for a barcode altogether, thus eliminating all the issues regarding print quality, code damage, and theft. It also facilitates the identification of items like produce, which typically do not contain barcodes. This is done by replacing or supplementing the current method of product identification using a barcode scanner with the human brain in cooperation with EEG technology.
Recent advances in Electroencephalography (EEG) have taken the ability to read electronic signals produced by the brain out of the lab and into to more mainstream applications. Relatively inexpensive EEG devices have been brought to market that do not require shaving of the subject's head or gels of any kind. Such devices can be easily worn by the user and are quite unobtrusive and even stylish.
In accord with the present discussion, an EEG device is used to identify a product that is being viewed without the use of barcode technology and unreliable image processing (or as a supplement thereto). Certain embodiments utilize the extremely efficient object recognition algorithms ingrained within the human brain to determine what object is currently being looked at. Such embodiments also capitalize on the focusing and light sensitivity powers of the human eye to make sure the object is always in focus and perfectly exposed. Real-time readings from the EEG may be compared to known readings that have been previously cataloged for the current user. In other words, certain embodiments of this invention aim to heavily leverage what hundreds of thousands of years of evolution have given humans.
In accord with certain embodiments, an Electroencephalography (EEG) device, e.g. such as devices similar to the Emotiv EPOC product (Commercially available from Emotiv, Inc., 490 Post St. Suite 824, San Francisco, Calif. 94102 USA) is used to characterize brain waves for purposes of identifying products at checkout. In one example, a training process is conducted in which a retail store clerk is shown all or a portion of the products available for sale in a store while wearing the EEG device. The employee's brain response to the sight of each object can be recorded and cataloged for that particular employee. After training is complete there will exist a catalog of unique brain responses (for each employee) paired with an identifier for each product within the system.
In the example of a grocery store, when products are placed on a checkout conveyor belt, the store clerk wearing the EEG device simply needs to look at each item individually while bagging them. The EEG device produces an EEG representation of the clerk's brain responses. This EEG representation is then compared to the pre-cataloged list of responses acquired during employee training to identify the products that are currently being looked at. When matches are obtained between the current EEG signal and the pre-cataloged list of responses are found, visual and/or audible feedback can be produced for the clerk in order to confirm to the clerk that the product has been identified. The system can record the associated item and its price for checkout.
This technology can be used standalone or combined with existing bar code reader technology, or can be paired with eye direction detection, so that one barcode in a field can be selected and trigger the scan of the desired code.
An exemplary embodiment is depicted from a logical block diagram perspective as system 10 of
The brain wave signals represented by voltages picked up at each of the electrodes is processed by the brain response profiler to generate a profile for the user's brain waves when the user is presented with a visual (and possibly tactile) exposure to an item that is to be profiled. Such a profile is generated for each of a plurality of items representing inventory in a retail establishment. The profile of the brain waves is associated with an identifier of the item and a price to be charged for that item to complete a profile record for each of the items to be processed. The profile can then be stored to a database to produce stored brain response profiles 22.
When the brain response profiles 22 are completed for each item, the training process is complete. The brain wave signals during normal operation of a user (e.g., a retail clerk) from EEG device 14 are then passed to a live signal analyzer 26. The live signal analyzer 26 receives the EEG signals as the user views items that are to be checked out one at a time. The live signal analyzer 26 generates a profile in a manner similar to the brain response profiler 18 and conducts a comparison of the live brain response profile with the stored brain response profiles stored at 22 in order to identify a close match. This can be accomplished using any number of techniques including cross-correlation of the profiles to seek the highest correlation. When a match is achieved, the item is identified by the live signal analyzer and the identity of the item and price is transferred to a point of sale (POS) application for tallying and logging for use in completing the retail transaction.
Referring now to
Referring now to
The host system's live signal analyzer compares the live EEG signals with stored brain response profiles for the user at 122 in order to identify a matching item in the brain response/product profiles. If no match is achieved at 126, a failure routine is entered at 130 to allow for other data entry techniques. Moreover, excessive failures to identify an item may be indicative of an improperly installed EEG device or a need for further training to better characterize the items that are to be identified.
When a match is achieved at 126, the item is considered “scanned” and identified at 134 and it can be logged to the current transaction along with an identifier of the item and a price to be charged. Feedback can be generated at 138 upon completion of a scan to let the user know that the item has been successfully scanned and the next item (if any) can be viewed. If the item is not the last item at 142, the next item is retrieved at 146 and control passes to 110 to repeat the process. When the last item is reached at 142, the transaction can enter a final stage in which payment is processed at 150 and the transaction can be deemed completed.
Turning now to
The host processor 208 may be locally or remotely situated or cloud based without limitation. Moreover, processor 208 can be made up of one processor or a plurality of processors. The processor 208 is coupled to memory 216 that includes routines or modules that correspond to the functions of brain response profiler, live signal analyzer, and Point-Of-Sale applications. Processor is further communicatively coupled to EEG database 220 that contains entries corresponding to brain wave profiles and other data for a plurality of identifiable items. Processor 208 is further communicatively coupled to a Point-Of-Sale terminal 224 that is used to carry out a financial transaction with a customer.
During the training process discussed above, the EEG device 14 measures brain wave signals from the user as the user views and/or is otherwise exposed to an item that could be purchased. The brain response profiler operation is carried out by processor 208 to create a profile of each item and the profile is then stored in the database 220.
During live operation, the user 204 is exposed to items that are being purchased and the associated live EEG data is produced by EEG device 14. This live EEG data is analyzed by the processor 208 using the live signal analyzer process to conduct a comparison between the live EEG data and the EEG database entries to identify the item. Once the item is identified, information such as an item name or description can be retrieved from the database along with price for the item. This information is then transferred to the POS application for use at the POS terminal to complete a transaction by adding the item to a list of items being purchased and adding the price to a transaction tally.
An example of the operation of system while carrying out a live transaction is depicted in one example by the flow chart 250 of
EEG technology is used to measure brain activity which is generally classified by frequency bands: Delta (δ, below 4 Hz), Theta (θ, 4-7 Hz), Alpha (α, 8-12 Hz), Beta (β, 13-30 Hz) and Gamma (γ, above 30 Hz). The output of an EEG device is a collection of signals picked up by sensors placed about a user's head, which picks up brain activity, in the form of measured voltage fluctuations resulting from ionic current within the neurons of the brain, in the above frequency bands. These signals can represent intensity and frequency of brain waves as received by each of the sensors. In accord with the present teachings, a collection of such signals received by a plurality of sensors can be used as a “signature” that identifies a user's brain activity when visually stimulated by viewing a particular object.
An evoked potential is the electrical response of the brain to a stimulus. In the present case, the EEG device measures electrical potentials at the electrodes that are evoked in response to visual stimulation of the brain when the user is exposed to an item that is to be identified. In general, N sensors (e.g., N=16) in an EEG device will produce N output signals which may, in certain implementations, be represented as a sequence of K samples of the electrical potential present at each of the electrodes. So, for N electrodes, one form of EEG output can be represented as a matrix as shown:
In one embodiment consistent with the present teachings, this matrix of sample values (or a normalized version thereof) can be used directly as a brain wave profile for storage in the database along with other information such as the following simple record for an example item:
It will be appreciated that when items are sold by weight, after recognizing the item, the actual cost that is tallied for checkout will factor in the weight of the product. It is further noted that the above example profile is somewhat minimalist since the database can also store other data such as inventory related data, manufacturer or supplier, rebate information and other data.
During operation, the live EEG data as read by the EEG device can be arranged in a matrix in the same manner as that used in the profile and then compared to the profile matrices stored in the database using any suitable comparison technique to identify an item in the database that can be considered a match for the item represented by the Live EEG data.
Many variations are possible. For example, the profile data for a particular item (as well as the live EEG data representation) can be processed to either simplify calculations or enhance accuracy. In one example, data averaging techniques can be used. In other examples, the time domain sample data can be processed by a fast Fourier transform (FFT) to convert the data to a sequence of samples representing the brain waves in the frequency domain. In yet other examples, the frequency domain data can be added together and possibly normalized in order to construct a composite set of data for the set of N electrodes. This may reduce the volume of data and allow for classification of the data to facilitate enhancement of speed of carrying out the comparison operations.
Those skilled in the art will appreciate that other techniques for manipulation and interpretation of EEG signals can be utilized including those which involve averaging the EEG activity time-locked to the presentation of a stimulus and other techniques known in the field of signal processing and EEG interpretation for cognitive science, cognitive psychology, and psychophysiology. Algorithms to determine what is considered a match and what type of tolerance is acceptable can be determined experimentally.
To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:
In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
6832725 | Gardiner et al. | Dec 2004 | B2 |
7128266 | Zhu et al. | Oct 2006 | B2 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Liu et al. | Dec 2012 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Van Horn et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Horn et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van Horn et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8740082 | Wilz | Jun 2014 | B2 |
8740085 | Furlong et al. | Jun 2014 | B2 |
8746563 | Hennick et al. | Jun 2014 | B2 |
8750445 | Peake et al. | Jun 2014 | B2 |
8752766 | Xian et al. | Jun 2014 | B2 |
8756059 | Braho et al. | Jun 2014 | B2 |
8757495 | Qu et al. | Jun 2014 | B2 |
8760563 | Koziol et al. | Jun 2014 | B2 |
8763909 | Reed et al. | Jul 2014 | B2 |
8777108 | Coyle | Jul 2014 | B2 |
8777109 | Oberpriller et al. | Jul 2014 | B2 |
8779898 | Havens et al. | Jul 2014 | B2 |
8781520 | Payne et al. | Jul 2014 | B2 |
8783573 | Havens et al. | Jul 2014 | B2 |
8789757 | Barten | Jul 2014 | B2 |
8789758 | Hawley et al. | Jul 2014 | B2 |
8789759 | Xian et al. | Jul 2014 | B2 |
8794520 | Wang et al. | Aug 2014 | B2 |
8794522 | Ehrhart | Aug 2014 | B2 |
8794525 | Amundsen et al. | Aug 2014 | B2 |
8794526 | Wang et al. | Aug 2014 | B2 |
8798367 | Ellis | Aug 2014 | B2 |
8807431 | Wang et al. | Aug 2014 | B2 |
8807432 | Van Horn et al. | Aug 2014 | B2 |
8820630 | Qu et al. | Sep 2014 | B2 |
8822848 | Meagher | Sep 2014 | B2 |
8824692 | Sheerin et al. | Sep 2014 | B2 |
8824696 | Braho | Sep 2014 | B2 |
8842849 | Wahl et al. | Sep 2014 | B2 |
8844822 | Kotlarsky et al. | Sep 2014 | B2 |
8844823 | Fritz et al. | Sep 2014 | B2 |
8849019 | Li et al. | Sep 2014 | B2 |
D716285 | Chaney et al. | Oct 2014 | S |
8851383 | Yeakley et al. | Oct 2014 | B2 |
8854633 | Laffargue | Oct 2014 | B2 |
8866963 | Grunow et al. | Oct 2014 | B2 |
8868421 | Braho et al. | Oct 2014 | B2 |
8868519 | Maloy et al. | Oct 2014 | B2 |
8868802 | Barten | Oct 2014 | B2 |
8868803 | Caballero | Oct 2014 | B2 |
8870074 | Gannon | Oct 2014 | B1 |
8879639 | Sauerwein | Nov 2014 | B2 |
8880426 | Smith | Nov 2014 | B2 |
8881983 | Havens et al. | Nov 2014 | B2 |
8881987 | Wang | Nov 2014 | B2 |
8903172 | Smith | Dec 2014 | B2 |
8908995 | Benos et al. | Dec 2014 | B2 |
8910870 | Li et al. | Dec 2014 | B2 |
8910875 | Ren et al. | Dec 2014 | B2 |
8914290 | Hendrickson et al. | Dec 2014 | B2 |
8914788 | Pettinelli et al. | Dec 2014 | B2 |
8915439 | Feng et al. | Dec 2014 | B2 |
8915444 | Havens et al. | Dec 2014 | B2 |
8916789 | Woodburn | Dec 2014 | B2 |
8918250 | Hollifield | Dec 2014 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
8925818 | Kosecki et al. | Jan 2015 | B2 |
8939374 | Jovanovski et al. | Jan 2015 | B2 |
8942480 | Ellis | Jan 2015 | B2 |
8944313 | Williams et al. | Feb 2015 | B2 |
8944327 | Meier et al. | Feb 2015 | B2 |
8944332 | Harding et al. | Feb 2015 | B2 |
8950678 | Germaine et al. | Feb 2015 | B2 |
D723560 | Zhou et al. | Mar 2015 | S |
8967468 | Gomez et al. | Mar 2015 | B2 |
8971346 | Sevier | Mar 2015 | B2 |
8976030 | Cunningham et al. | Mar 2015 | B2 |
8976368 | Akel et al. | Mar 2015 | B2 |
8978981 | Guan | Mar 2015 | B2 |
8978983 | Bremer et al. | Mar 2015 | B2 |
8978984 | Hennick et al. | Mar 2015 | B2 |
8985456 | Zhu et al. | Mar 2015 | B2 |
8985457 | Soule et al. | Mar 2015 | B2 |
8985459 | Kearney et al. | Mar 2015 | B2 |
8985461 | Gelay et al. | Mar 2015 | B2 |
8988578 | Showering | Mar 2015 | B2 |
8988590 | Gillet et al. | Mar 2015 | B2 |
8991704 | Hopper et al. | Mar 2015 | B2 |
8996194 | Davis et al. | Mar 2015 | B2 |
8996384 | Funyak et al. | Mar 2015 | B2 |
8998091 | Edmonds et al. | Apr 2015 | B2 |
9002641 | Showering | Apr 2015 | B2 |
9007368 | Laffargue et al. | Apr 2015 | B2 |
9010641 | Qu et al. | Apr 2015 | B2 |
9015513 | Murawski et al. | Apr 2015 | B2 |
9016576 | Brady et al. | Apr 2015 | B2 |
D730357 | Fitch et al. | May 2015 | S |
9022288 | Nahill et al. | May 2015 | B2 |
9030964 | Essinger et al. | May 2015 | B2 |
9033240 | Smith et al. | May 2015 | B2 |
9033242 | Gillet et al. | May 2015 | B2 |
9036054 | Koziol et al. | May 2015 | B2 |
9037344 | Chamberlin | May 2015 | B2 |
9038911 | Xian et al. | May 2015 | B2 |
9038915 | Smith | May 2015 | B2 |
D730901 | Oberpriller et al. | Jun 2015 | S |
D730902 | Fitch et al. | Jun 2015 | S |
D733112 | Chaney et al. | Jun 2015 | S |
9047098 | Barten | Jun 2015 | B2 |
9047359 | Caballero et al. | Jun 2015 | B2 |
9047420 | Caballero | Jun 2015 | B2 |
9047525 | Barber | Jun 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9049640 | Wang et al. | Jun 2015 | B2 |
9053055 | Caballero | Jun 2015 | B2 |
9053378 | Hou et al. | Jun 2015 | B1 |
9053380 | Xian et al. | Jun 2015 | B2 |
9057641 | Amundsen et al. | Jun 2015 | B2 |
9058526 | Powilleit | Jun 2015 | B2 |
9064165 | Havens et al. | Jun 2015 | B2 |
9064167 | Xian et al. | Jun 2015 | B2 |
9064168 | Todeschini et al. | Jun 2015 | B2 |
9064254 | Todeschini et al. | Jun 2015 | B2 |
9066032 | Wang | Jun 2015 | B2 |
9070032 | Corcoran | Jun 2015 | B2 |
D734339 | Zhou et al. | Jul 2015 | S |
D734751 | Oberpriller et al. | Jul 2015 | S |
9082023 | Feng et al. | Jul 2015 | B2 |
9224022 | Ackley et al. | Dec 2015 | B2 |
9224027 | Van Horn et al. | Dec 2015 | B2 |
D747321 | London et al. | Jan 2016 | S |
9230140 | Ackley | Jan 2016 | B1 |
9443123 | Hejl | Jan 2016 | B2 |
9250712 | Todeschini | Feb 2016 | B1 |
9258033 | Showering | Feb 2016 | B2 |
9262633 | Todeschini et al. | Feb 2016 | B1 |
9310609 | Rueblinger et al. | Apr 2016 | B2 |
D757009 | Oberpriller et al. | May 2016 | S |
9342724 | McCloskey | May 2016 | B2 |
9375945 | Bowles | Jun 2016 | B1 |
D760719 | Zhou et al. | Jul 2016 | S |
9390596 | Todeschini | Jul 2016 | B1 |
D762604 | Fitch et al. | Aug 2016 | S |
D762647 | Fitch et al. | Aug 2016 | S |
9412242 | Van Horn et al. | Aug 2016 | B2 |
D766244 | Zhou et al. | Sep 2016 | S |
9443222 | Singel et al. | Sep 2016 | B2 |
9478113 | Xie et al. | Oct 2016 | B2 |
9507974 | Todeschini | Nov 2016 | B1 |
20060258408 | Tuomela et al. | Nov 2006 | A1 |
20070010756 | Viertio-Oja | Jan 2007 | A1 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20070123350 | Soderlund | May 2007 | A1 |
20070124027 | Betziza et al. | May 2007 | A1 |
20070168461 | Moore | Jul 2007 | A1 |
20080228365 | White et al. | Sep 2008 | A1 |
20090040054 | Wang et al. | Feb 2009 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20090227965 | Wijesiriwardana | Sep 2009 | A1 |
20100094502 | Ito | Apr 2010 | A1 |
20100145218 | Adachi et al. | Jun 2010 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20100324936 | Vishnubhatla | Dec 2010 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110187640 | Jacobsen et al. | Aug 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20110213511 | Visconti et al. | Sep 2011 | A1 |
20110247027 | Davis | Oct 2011 | A1 |
20120046531 | Hua | Feb 2012 | A1 |
20120108995 | Pradeep et al. | May 2012 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120172744 | Kato | Jul 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130130799 | Van Hulle et al. | May 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130204153 | Buzhardt | Aug 2013 | A1 |
20130226408 | Fung et al. | Aug 2013 | A1 |
20130239187 | Leddy | Sep 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130287258 | Kearney | Oct 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130296731 | Kidmose et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306731 | Pedraro | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130313325 | Wilz et al. | Nov 2013 | A1 |
20130342717 | Havens et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140008439 | Wang | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140100813 | Showering | Jan 2014 | A1 |
20140034734 | Sauerwein | Feb 2014 | A1 |
20140036848 | Pease et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140042814 | Kather et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078341 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140078345 | Showering | Mar 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140104451 | Todeschini et al. | Apr 2014 | A1 |
20140106594 | Skvoretz | Apr 2014 | A1 |
20140106725 | Sauerwein | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140124577 | Wang et al. | May 2014 | A1 |
20140124579 | Ding | May 2014 | A1 |
20140125842 | Winegar | May 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131438 | Kearney | May 2014 | A1 |
20140131441 | Nahill et al. | May 2014 | A1 |
20140131443 | Smith | May 2014 | A1 |
20140131444 | Wang | May 2014 | A1 |
20140131445 | Ding et al. | May 2014 | A1 |
20140131448 | Xian et al. | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140136208 | Maltseff et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140151453 | Meier et al. | Jun 2014 | A1 |
20140152882 | Samek et al. | Jun 2014 | A1 |
20140158770 | Sevier et al. | Jun 2014 | A1 |
20140159869 | Zumsteg et al. | Jun 2014 | A1 |
20140166755 | Liu et al. | Jun 2014 | A1 |
20140166757 | Smith | Jun 2014 | A1 |
20140166759 | Liu et al. | Jun 2014 | A1 |
20140168787 | Wang et al. | Jun 2014 | A1 |
20140175165 | Havens et al. | Jun 2014 | A1 |
20140175172 | Jovanovski et al. | Jun 2014 | A1 |
20140191644 | Chaney | Jul 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140197238 | Lui et al. | Jul 2014 | A1 |
20140197239 | Havens et al. | Jul 2014 | A1 |
20140197304 | Feng et al. | Jul 2014 | A1 |
20140203087 | Smith et al. | Jul 2014 | A1 |
20140204268 | Grunow et al. | Jul 2014 | A1 |
20140206323 | Scorcioni | Jul 2014 | A1 |
20140214631 | Hansen | Jul 2014 | A1 |
20140217166 | Berthiaume et al. | Aug 2014 | A1 |
20140217180 | Liu | Aug 2014 | A1 |
20140231500 | Ehrhart et al. | Aug 2014 | A1 |
20140232930 | Anderson | Aug 2014 | A1 |
20140247315 | Marty et al. | Sep 2014 | A1 |
20140263493 | Amurgis et al. | Sep 2014 | A1 |
20140263645 | Smith et al. | Sep 2014 | A1 |
20140270196 | Braho et al. | Sep 2014 | A1 |
20140270229 | Braho | Sep 2014 | A1 |
20140278387 | DiGregorio | Sep 2014 | A1 |
20140282210 | Bianconi | Sep 2014 | A1 |
20140284384 | Lu et al. | Sep 2014 | A1 |
20140285404 | Takano et al. | Sep 2014 | A1 |
20140288933 | Braho et al. | Sep 2014 | A1 |
20140297058 | Barker et al. | Oct 2014 | A1 |
20140299665 | Barber et al. | Oct 2014 | A1 |
20140312121 | Lu et al. | Oct 2014 | A1 |
20140319220 | Coyle | Oct 2014 | A1 |
20140319221 | Oberpriller et al. | Oct 2014 | A1 |
20140326787 | Barten | Nov 2014 | A1 |
20140332590 | Wang et al. | Nov 2014 | A1 |
20140334083 | Bailey | Nov 2014 | A1 |
20140344943 | Todeschini et al. | Nov 2014 | A1 |
20140346233 | Liu et al. | Nov 2014 | A1 |
20140351317 | Smith et al. | Nov 2014 | A1 |
20140353373 | Van Horn et al. | Dec 2014 | A1 |
20140361073 | Qu et al. | Dec 2014 | A1 |
20140361082 | Xian et al. | Dec 2014 | A1 |
20140362184 | Jovanovski et al. | Dec 2014 | A1 |
20140363015 | Braho | Dec 2014 | A1 |
20140369511 | Sheerin et al. | Dec 2014 | A1 |
20140374483 | Lu | Dec 2014 | A1 |
20140374485 | Xian et al. | Dec 2014 | A1 |
20150001301 | Ouyang | Jan 2015 | A1 |
20150001304 | Todeschini | Jan 2015 | A1 |
20150003673 | Fletcher | Jan 2015 | A1 |
20150009338 | Laffargue et al. | Jan 2015 | A1 |
20150009610 | London et al. | Jan 2015 | A1 |
20150012426 | Purves | Jan 2015 | A1 |
20150014416 | Kotlarsky et al. | Jan 2015 | A1 |
20150021397 | Rueblinger et al. | Jan 2015 | A1 |
20150028102 | Ren et al. | Jan 2015 | A1 |
20150028103 | Jiang | Jan 2015 | A1 |
20150028104 | Ma et al. | Jan 2015 | A1 |
20150029002 | Yeakley et al. | Jan 2015 | A1 |
20150032709 | Maloy et al. | Jan 2015 | A1 |
20150039309 | Braho et al. | Feb 2015 | A1 |
20150040378 | Saber et al. | Feb 2015 | A1 |
20150048168 | Fritz et al. | Feb 2015 | A1 |
20150049347 | Laffargue et al. | Feb 2015 | A1 |
20150051992 | Smith | Feb 2015 | A1 |
20150053766 | Havens et al. | Feb 2015 | A1 |
20150053768 | Wang et al. | Feb 2015 | A1 |
20150053769 | Thuries et al. | Feb 2015 | A1 |
20150062366 | Liu et al. | Mar 2015 | A1 |
20150063215 | Wang | Mar 2015 | A1 |
20150063676 | Lloyd et al. | Mar 2015 | A1 |
20150069130 | Gannon | Mar 2015 | A1 |
20150071819 | Todeschini | Mar 2015 | A1 |
20150073907 | Purves | Mar 2015 | A1 |
20150083800 | Li et al. | Mar 2015 | A1 |
20150086114 | Todeschini | Mar 2015 | A1 |
20150088522 | Hendrickson et al. | Mar 2015 | A1 |
20150096872 | Woodburn | Apr 2015 | A1 |
20150099557 | Pettinelli et al. | Apr 2015 | A1 |
20150100196 | Hollifield | Apr 2015 | A1 |
20150102109 | Huck | Apr 2015 | A1 |
20150115035 | Meier et al. | Apr 2015 | A1 |
20150127791 | Kosecki et al. | May 2015 | A1 |
20150128116 | Chen et al. | May 2015 | A1 |
20150129659 | Feng et al. | May 2015 | A1 |
20150133047 | Smith et al. | May 2015 | A1 |
20150134470 | Hejl et al. | May 2015 | A1 |
20150136851 | Harding et al. | May 2015 | A1 |
20150136854 | Lu et al. | May 2015 | A1 |
20150141529 | Hargrove | May 2015 | A1 |
20150142492 | Kumar | May 2015 | A1 |
20150144692 | Hejl | May 2015 | A1 |
20150144698 | Teng et al. | May 2015 | A1 |
20150144701 | Xian et al. | May 2015 | A1 |
20150149946 | Benos et al. | May 2015 | A1 |
20150161429 | Xian | Jun 2015 | A1 |
20150169925 | Chang et al. | Jun 2015 | A1 |
20150169929 | Williams et al. | Jun 2015 | A1 |
20150186703 | Chen et al. | Jul 2015 | A1 |
20150193644 | Kearney et al. | Jul 2015 | A1 |
20150193645 | Colavito et al. | Jul 2015 | A1 |
20150199957 | Funyak et al. | Jul 2015 | A1 |
20150204671 | Showering | Jul 2015 | A1 |
20150210199 | Payne | Jul 2015 | A1 |
20150220753 | Zhu et al. | Aug 2015 | A1 |
20150248651 | Akutagawa | Sep 2015 | A1 |
20150254485 | Feng et al. | Sep 2015 | A1 |
20150257673 | Lawrence et al. | Sep 2015 | A1 |
20150272465 | Ishii | Oct 2015 | A1 |
20150282760 | Badower et al. | Oct 2015 | A1 |
20150313496 | Connor | Nov 2015 | A1 |
20150313497 | Chang et al. | Nov 2015 | A1 |
20150313539 | Connor | Nov 2015 | A1 |
20150327012 | Bian et al. | Nov 2015 | A1 |
20150374255 | Vasapollo | Dec 2015 | A1 |
20160004820 | Moore | Jan 2016 | A1 |
20160014251 | Hejl | Jan 2016 | A1 |
20160040982 | Li et al. | Feb 2016 | A1 |
20160042241 | Todeschini | Feb 2016 | A1 |
20160057230 | Todeschini et al. | Feb 2016 | A1 |
20160103487 | Crawford et al. | Apr 2016 | A1 |
20160109219 | Ackley et al. | Apr 2016 | A1 |
20160109220 | Laffargue | Apr 2016 | A1 |
20160109224 | Thuries et al. | Apr 2016 | A1 |
20160112631 | Ackley et al. | Apr 2016 | A1 |
20160112643 | Laffargue et al. | Apr 2016 | A1 |
20160124516 | Schoon et al. | May 2016 | A1 |
20160125217 | Todeschini | May 2016 | A1 |
20160125342 | Miller et al. | May 2016 | A1 |
20160132707 | Lindbo et al. | May 2016 | A1 |
20160133253 | Braho et al. | May 2016 | A1 |
20160171720 | Todeschini | Jun 2016 | A1 |
20160178479 | Goldsmith | Jun 2016 | A1 |
20160180678 | Ackley et al. | Jun 2016 | A1 |
20160188944 | Wilz et al. | Jun 2016 | A1 |
20160189087 | Morton et al. | Jun 2016 | A1 |
20160125873 | Braho et al. | Jul 2016 | A1 |
20160227912 | Oberpriller et al. | Aug 2016 | A1 |
20160232891 | Pecorari | Aug 2016 | A1 |
20160292477 | Bidwell | Oct 2016 | A1 |
20160294779 | Yeakley et al. | Oct 2016 | A1 |
20160306769 | Kohtz et al. | Oct 2016 | A1 |
20160314276 | Sewell et al. | Oct 2016 | A1 |
20160314294 | Kubler et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
2013163789 | Nov 2013 | WO |
2013173985 | Nov 2013 | WO |
2014019130 | Feb 2014 | WO |
2014110495 | Jul 2014 | WO |
Entry |
---|
Combined Search and Examination Report in counterpart GB Application No. 1615457.7 dated Feb. 21, 2017, pp. 1-7. |
Kapoor et al., “Combining brain computer interfaces with vision for object categorization”, Computer Vision and Pattern Recognition, IEEE Conference on 2008, accessible online at http://ieeexplore.ieee.org/document/4587618/, pp. 1-8 [Cited in GB Search Report]. |
Behroozi et al., “EEG phase patterns reflect the representation of semantic categories of objects”, B. Med. Biol. Eng. Comput. (2016) 54:205, Sep. 23, 2015, accessible online at http://rd.springer.com/article/10.1007%2Fs11517-015-1391-7, pp. 1-28 [Cited in GB Search Report]. |
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned. |
U.S. Appl. No. 14/277,337 for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned. |
U.S. Appl. No. 14/446,391 for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.); 37 pages; now abandoned. |
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages. |
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); 17 pages. |
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2, 2015 (Fitch et al.); 61 pages. |
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages. |
U.S. Appl. No. 14/715,916 for Evaluating Image Values filed May 19, 2015 (Ackley); 60 pages. |
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages. |
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages. |
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al); 16 pages. |
U.S. Appl. No. 14/707,123 for Application Independent DEX/UCS Interface filed May 8, 2015 (Pape); 47 pages. |
U.S. Appl. No. No. 14/283,282 for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.); 31 pages; now abandoned. |
U.S. Appl. No. 14/705,407 for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.); 42 pages. |
U.S. Appl. No. 14/704,050 for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages. |
U.S. Appl. No. 14/705,012 for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Fitch et al.); 44 pages. |
U.S. Appl. No. 14/715,672 for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.); 35 pages. |
U.S. Appl. No. 14/735,717 for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini); 39 pages. |
U.S. Appl. No. 14/702,110 for System and Method for Regulating Barcode Data Injection Into a Running Application on a Smart Device filed May 1, 2015 (Todeschini et al.); 38 pages. |
U.S. Appl. No. 14/747,197 for Optical Pattern Projector filed Jun. 23, 2015 (Thuries et al.); 33 pages. |
U.S. Appl. No. 14/702,979 for Tracking Battery Conditions filed May 4, 2015 (Young et al.); 70 pages. |
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages. |
U.S. Appl. No. 14/747,490 for Dual-Projector Three-Dimensional Scanner filed Jun. 23, 2015 (Jovanovski et al.); 40 pages. |
U.S. Appl. No. 14/740,320 for Tactile Switch for a Mobile Electronic Device filed Jun. 16, 2015 (Barndringa); 38 pages. |
U.S. Appl. No. 14/740,373 for Calibrating a Volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages. |
Wikipedia, “Evoked potential” downloaded from: https://en.wikipedia.org/wiki/Evoked_potential, Sep. 17, 2015, pp. 1-9. |
Combined Search and Examination Report in related GB Application No. 1721791.0, dated Feb. 19, 2018, pp. 1-9 [All references previously cited.]. |
Number | Date | Country | |
---|---|---|---|
20170091741 A1 | Mar 2017 | US |