Product packaging is needed to prevent damage to products during handling and transit from the manufacturing facility to a retail store or warehouse and all stops in between. One product in particular that suffers from a high percentage of defectives during transit is mirrors due to their inherent fragility. Breakage may result from impact forces caused by dropping the packaged product or contact with adjoining packages or hard surfaces during handling. Thus, a need exists for product packaging that limits or eliminates damage of the product during handling, transit, and storage.
Embodiments of the present invention provide a product packaging system with improved impact resistance resulting in minimal or no breakage of the product during handling and transit. In one non-limiting example, the product may be framed or frameless flat mirrors.
In one aspect, a product packaging system comprises: a longitudinal axis; a stack of products arranged in abutting relationship, the stack defining a pair of opposing major side surfaces, a top surface, a bottom surface, and pair of opposing end surfaces; a plurality of protective corrugated sheets, each of the side, top, bottom, and end surfaces of the stack covered by one of the protective corrugated sheets; each protective corrugated sheet including a pair of longitudinally-extending protruding corner reinforcement structures, the corner reinforcement structures disposed along corner regions of the stack; a protective end pad covering each of the end surfaces of the stack; the stack of products, protective corrugated sheets, and protective end pads collectively defining a product package which is removably insertable inside an outer shipping carton.
In another aspect, a product packaging system comprises: a longitudinal axis; a stack of products arranged in abutting relationship, the stack defining a pair of opposing major side surfaces, a top surface, a bottom surface, and pair of opposing end surfaces; a pair of protective corrugated sheets, each of the top and bottom surfaces of the stack covered by one of the protective corrugated sheets; each protective corrugated sheet including a pair of longitudinally-extending protruding corner reinforcement structures, the corner reinforcement structures disposed along corner regions of the stack; a protective end assembly covering each of the end surfaces of the stack, the protective end assembly including a deformable protective end pads and a U-shaped corrugated sheet covering the end pad; the stack of products, protective corrugated sheets, and protective end assemblies collectively defining a product package which is removably positioned inside an outer shipping container.
The following description of the exemplary (“example”) embodiment(s) of the invention is merely illustrative in nature and is in no way intended to limit the invention, its application, or uses.
The description of illustrative embodiments according to principles of the present invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the exemplified embodiments. Accordingly, the invention expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.
The present invention relates to product packaging, and more specifically to packaging for mirrors that substantially decreases or even eliminates product damage during transit from the manufacturing facility to its final destination prior to consumer purchase. The packaging shown and described herein significantly decreases the number of units that may be damaged (i.e., the number of mirrors that are broken) during shipping by ensuring adequate protection of the mirrors during all stages of transit from factory to shelf.
The mirrors 104 may each be longitudinally elongated in a direction of a reference longitudinal axis LA of the package 102. A lateral direction is defined as being transversely oriented to longitudinal axis LA for convenience of description. Mirrors 104 each have a flat rectangular shape in one non-limiting embodiment as shown with opposing parallel sides defining a mirrored front face or side and plain back side. Mirrors 104 have a thickness (front to back) substantially less than the width or length of the mirror. Mirrors 104 may be framed or unframed.
In the exemplified embodiment, the mirrors 104 are placed in tightly abutting relationship with nothing interspersed between each mirror to collectively form a stack 106 of mirrors. The mirrors 106 may be arranged in the face-to-face and back-to-back arrangement to form a stack 106 of the mirrors in one embodiment. In other possible embodiments, the mirrors 106 may be arranged in face-to-back relationship. Preferably, each mirror in the stack has the same dimensions (e.g. length, width, and thickness). The stack 106 of mirrors collectively defines opposing first and second major side surfaces 110, a top longitudinal edge surface 111, opposing bottom longitudinal edge surface 112, and opposing first and second end surfaces 113. The major side surfaces 110 may be considered to define front and rear surfaces for convenience of reference (the front surface being the one facing forward in
In the present embodiment, the first and second major side surfaces 110, the top longitudinal edge surface 111, and the bottom longitudinal edge surface 112 of the mirror stack 106 are covered with a plurality of specially configured three-dimensional protective corrugated sheets 120 formed of a dense paper typically used for such corrugated sheets in the art. The term “three-dimensional” is used above and herein to distinguish such structures from simply flat corrugated packing sheets sometimes used package shipping. Sheets 120 therefore include a separate top corrugated sheet 120A, opposing bottom corrugated sheet 120B, and a pair of lateral side corrugated sheets 102C, D arranged in opposing relationship. Sheets 120 each comprise a flat central portion 121 and an opposing pair of longitudinal rolled ends 125 along peripheral edges of the sheet. Each corrugated sheet 120 is longitudinally elongated having a rectangular configuration with a greater longitudinal length (measured along longitudinal axis LA) than width (measured between the rolled ends 125). In the exemplified non-limiting embodiment, the protective corrugated sheets 120 may be made of a rolled 150# B-flute corrugated sheet. However, other suitable paper grades, weights, flute profiles/sizes, etc. may be used for the corrugated sheet in other embodiments. Accordingly, the foregoing is merely one exemplary type of corrugated sheet that may be used in accordance with the present invention. The protective corrugated sheets 120 may be somewhat flexible and can assume have a non-planar shape prior to being banded to the mirror stack 104 as further described herein. Each protective corrugated sheet 120 preferably is dimensioned to cover the entirety of the surface of the stack 106 on which it is positioned.
The longitudinal rolled ends 125 of each protective corrugated sheet 120 increases protection of the assembled package 102 of mirrors 104 (best seen in
Accordingly, the longitudinally-extending rolled ends 125 of each protective corrugated sheet 120 can be considered to each define a protruding impact and crush-resistant triangular corner reinforcement structure 126 extending the full longitudinal length of the package 102, which are capable of withstanding a reasonable inwardly-directed external impact force directed against shipping carton 130. The corner reinforcement structures 126 thus form bracing which protects the corner regions of the assembled mirror package 102 when positioned inside the outer shipping carton 130 as shown in
The corner reinforcement structures 126 provide multiple levels of impact and crush resistance. First, each corner region of the fully assembled package 120 and stack 106 of mirrors 104 is protected by two reinforcement structures 126 with one each located on perpendicularly oriented and adjoining surfaces 110-113 of the mirror stack 106. Reinforcement structures 126 thus straddle each corner of the mirror stack 106 and create a crush zone CZ at each corner region. If a diagonally acting external impact force F1 is directed at the corner region of the outer shipping carton 130 (see, e.g.
In addition to protecting the product package 102 against corner impacts, the protruding corner reinforcement structures 126 also create standoffs or spacers that provide a second level of protection against impact forces acting in an orthogonal plane to the protective corrugated sheet 120 and stack 106 of mirrors 104 between the short end surfaces 113 of the stack 106. This results from the protruding reinforcement structures 126 also forming a protective gap G extending circumferentially around the mirror stack 106 between the outer shipping carton 130 and the stack of mirrors 104 in areas of the stack and package between the corners regions (e.g. along the front and rear major side surfaces 110, the top longitudinal edge surface 111, and opposing bottom longitudinal edge surface 112. This includes protection against orthogonal impact forces F2 acting in a direction toward the front and rear major side surfaces 110, top longitudinal edge surface 111, and bottom longitudinal edge surface 112 (see, e.g.
Referring again to
In one non-limiting embodiment, expanded polyethylene (EPE) foam may be used for the protective end pad 140. However, other crushable/deformable materials such as Styrofoam, etc. may be used in other embodiments. The EPE pad 140 is deformable and crushable to absorb the end-acting impact force F3 on the carton. In one non-limiting representative example, the EPE pad may be 2.5 cm thick, although the invention is not to be limited to such a dimension in all embodiments and other thickness may be used. Each of the EPE protective end pads 140 may have a rectangular configuration in one embodiment and are dimensioned to cover the entirety of the first or second end surfaces 113 on which they are positioned. Thus, the entirety of the exposed outer end surfaces 113 of the stack of mirrors 104 is covered by the EPE protective end pads 140. It bears noting that all exposed surfaces of the stack 106 of mirrors 104 is covered by either a protective end pad 140 or a protective corrugated sheet 120.
As shown in
Finally, all of the foregoing components which define the product package 102 are placed into the outer shipping carton 130, such as a heavy duty paper corrugated double-wall full overlap master carton or the like as shown in
The carton 130 includes a top 134, bottom 136, opposing ends 131, major front and rear faces 133, 137. A plurality of corners 139 are defined at the intersection of the top, bottom, ends, and front and rear faces. An interior cavity 135 is circumscribed by inside surfaces 132 of carton 130 and receives the assembled product package 102 therein. The top 134 may be closed by openable/closeable flaps 134a (four total in this illustrated embodiment).
A method for packaging a product such as mirrors 104 using the product packaging system 100 may be summarized as follows. The method generally includes: arranging the mirrors 104 in abutting relationship (e.g. face-to-face and back-to-back) to form the stack 106; positioning one of the four protective corrugated sheets 120 against each surface 110, 111, and 112; threading each of the bands 150 through and engaging the protective corrugated sheets 120 such as through the corner reinforcement structures 126 formed by the rolled ends 125 of the sheets; securely wrapping the threaded bands 150 transversely around the stack 106 and tightening the bands; inserting the banded stack 106 of mirrors 104 and protective corrugated sheets 120 inside the cavity 135 of the shipping carton 130; inserting a protective end pad 140 into the carton between the end surfaces 113 of the stack 106 and ends 131 of the carton 130; and closing the flaps 134a on the carton to secure the contents. Variations in the method and sequence of steps may be used in some embodiments.
Each corrugated sheet 220 with longitudinally-extending reinforcement structures 226 includes a flat horizontal end wall 261 extending transversely and laterally between the corner reinforcement structures 226 in the assembled package 202. Horizontal end wall 261 covers the top or bottom longitudinal edge surfaces 111, 112 of the mirror stack 106. The corner reinforcement structures 226 have a complex multi-angled configuration formed on the opposing longitudinal end portions of the corrugated sheet 220, which includes (in order in adjoining contiguous relationship) a vertical inner wall 263 extending down along part of the upper and lower portions of the major side surfaces 110 of the stack 106, a horizontal lower cantilevered wall 262 projecting transversely outwards from vertical inner wall 263 and stack 106, a recurvant vertical outer wall 264 extending upwardly from wall 263 and spaced apart from and parallel to vertical inner wall 262, a horizontal upper cantilevered outer wall 265 extending inwards and perpendicularly from vertical outer wall 264, and a recurvant inner wall 266 extending diagonally downwards and obliquely to walls 264 and 265. Walls 264, 265, and 266 collectively form an internal triangle in shape and construction of the corner reinforcement structures 226 which extends diagonally completely across the longitudinal edge corners 114 of the stack 106 of mirrors 104 for optimum protection against corner impact forced F1. This contrasts to the external triangle shape and construction of corner reinforcement structures 126 of product packaging system 100 previously described herein. The diagonal inner wall 266 of corner reinforcement structure 226 extends diagonally across and protects the longitudinal corner edges 114 of the stack 106 as best seen in
Various orientations of the forgoing complex multi-angled configuration of corner reinforcement structures 226 are worth noting. Referring to
Similarly to product packaging system 100, the projection of the present corner reinforcement structures 226 outwards beyond the stack 106 of mirrors 104 form a protective gap G between the outer shipping carton 130 and the stack of mirrors in areas of the stack and package 202 between the corners regions (e.g. along the major side surfaces 110, a top longitudinal edge surface 111, opposing bottom longitudinal edge surface 112, and opposing first and second end surfaces 113 of stack 106). Accordingly, this enables the outer shipping carton 130 to deform and deflect to a degree for at least some protection against impacts directed at the assembled mirror package 202 between the corner regions. In some embodiments, additional reinforcement materials such as expanded polyethylene (EPE) foam, Styrofoam, or other materials may optionally be inserted in the gaps G of the product package 102 to increase impact resistance in these non-corner regions.
Product packaging system 200 further includes top and bottom protective pads 280, 281 which may be an expanded polyethylene (EPE) foam pad in one embodiment placed on the corrugated sheets 220 over the top/bottom surfaces 111, 112 of the stack 106. In one embodiment, pads 280, 281 may be approximately 2 cm thick as one non-limiting example; however, other thicknesses may be used. In one embodiment, the protective pads 280, 281 may be disposed in an outwardly open channel 267 formed between each corner reinforcement structure 226 of the protective corrugated sheet 220. One channel 267 is upwardly open at the top longitudinal edge surface 111 of stack 106 and the other is downwardly open at the bottom longitudinal edge surface 112 of the stack. Each of the top and bottom protective pads 280, 281 is nested in the protective corrugated sheets 220 may have a height substantially the same as the depth of the channels 267 so as to be substantially flush with the top and bottom surfaces of the corner reinforcement structures 226 (see, e.g.
To protect the end surfaces 113 of the stack 106, each end surface is covered by a protective end assembly 291 including a deformable EPE protective end pads 240 and a U-shaped corrugated sheet 290 covering the end pad. Each pad 240 is nested inside a U-shaped corrugated sheet which extends inwards onto a portion of the major side surfaces 110 (front and rear) of the stack 106 of mirrors 104. This provides protection against impact forces F3 acting on the ends 131 of the shipping carton 130 (see, e.g.
Once assembled as shown in
In some embodiments, the stack 106 of mirrors 104 in product package 202 may be banded together similarly to product package 102 by threading bands 150 through the protective corrugated sheets 220 in a manner analogous to that already described herein (i.e. band threaded through the corner reinforcement structures 226 and around the stack). In other embodiments, the banding may be omitted.
A method for packaging a product such as mirrors 104 using the product packaging system 200 may be summarized as follows. The method generally includes: arranging the mirrors 104 in abutting relationship (e.g. face-to-face and back-to-back) to form the stack 106; positioning one of the two protective corrugated sheets 220 against each of the top longitudinal edge surface 111 and bottom longitudinal edge surface 112; positioning the top and bottom protective pads 280, 281 in channels 267 of the protective corrugated sheets 220 over the top and bottom surfaces 111, 112 of the stack 106; positioning the protective end pad assemblies 291 against each of the end surfaces 113 of stack 106 (noting the end pad assemblies may optionally be temporarily attached to the stack with tape to maintain their positions when placing the package 202 into the carton); inserting product package 202 comprising the foregoing components inside the cavity 135 of the shipping carton 130; and closing the flaps 134a on the carton to secure the contents. Variations in the method and sequence of steps may be used in some embodiments. For example, the protective end pad assemblies 291 may be placed and positioned against the stack 106 before placement of the top and bottom protective pads 280, 281.
In the embodiment of
To protect the end surfaces 113 of the stack 106 of mirrors 104, each end surface is covered by a protective end assembly 391 including a deformable protective end pads 390 and medium density fiberboard (MDF) sheet 392 covering the end pad. This provides protection against impact forces F3 acting on the ends of the shipping carton 330. MDF sheets 392 may have a thickness of about 6 mm in one embodiment; however, other thicknesses may be used. In this embodiment, end pad 390 may be an expanded polystyrene (EPS) foam pad which is placed directly on the top and bottom surfaces of the stack of mirrors. The EPS foam pad may be approximately 2.5 cm thick in one non-limiting embodiment as a representative example; however, other thicknesses may be used. Then, the MDF sheet 392 is placed atop the exposed surface of the EPS foam pad. In one embodiment, as shown, the protective end pad 390 and MDF sheet 392 may have a flat and rectilinear configuration. Preferably, the pad and MDF sheet are configured to cover the entire end surface 113 of the mirror stack 106.
Next, once the protective end assemblies 391 are in place as shown and the stack of mirrors 104 is inserted into the inner container 331, the outer container 334 of the master carton 330 is slipped over the inner container to close the package. The fully assembled product package 302 with stack 106 of mirrors 104 in accordance with this embodiment is illustrated in
In this embodiment, again the mirrors 104 may be placed front-to-front and back-to-back in the stack 106 previously described herein which may include ten of the mirrors (more or less than ten of the mirrors may be used in other embodiments). In this embodiment, the protective end assemblies 391 including the EPS foam protective end pad 390 and a MDF sheet 392 are placed on the end surfaces 113 of the stack 106 of mirrors 104 as with the previous embodiment shown in
A longitudinally-extending L-shaped hard solid paper corner board 501 is placed along each of the longitudinal corner edges 114 of the stack of mirrors at the intersection of the first and second major side surfaces to the top and bottom surfaces. Corner boards 501 may be similar to corner boards 401 previously described herein. The L-shaped corner boards 501 are positioned on top of and partially cover the U-shaped top and bottom pads 520 rather than directly in contact with the stack 106 of mirrors 104, thus providing an added layer of protection to the corners/edges of the stack of mirrors in addition to that which is provided by the U-shaped foam pads.
The stack 106 of mirrors 104 may be banded together by bands 150. In some embodiments, the U-shaped protective top and bottom pads 520 and corner boards 501 be may be secured to the product package under the banding 150. The U-shaped protective end pads 540 may optionally be taped to the stack 106 to hold their positions until insertion into the shipping carton 130. In other embodiments, the pads 520 and 540 are not attached to the stack 106 as shown in the illustrated embodiment.
Finally, as shown in
A method for packaging a product such as mirrors 104 using the product packaging system 500 may be summarized as follows. The method generally includes: arranging the mirrors 104 in abutting relationship (e.g. face-to-face and back-to-back) to form the stack 106; positioning the protective top pad 520 on the top longitudinal edge surface 111 of the stack and the bottom pad 520 on the bottom surface of the stack; positioning the longitudinal corner boards 501 on the top and bottom pads 520 at the corners of the pads; positioning the protective end pads 540 on each end surface 113 of the stack; inserting the assembled product package 502 with the foregoing components inside the cavity 135 of the shipping carton 130; and closing the flaps 134a on the carton to secure the contents. Variations in the method and sequence of steps may be used in some embodiments.
In the present embodiment of
A longitudinally-extending L-shaped hard solid paper corner board 601 is placed along each of the longitudinal corner edges 114 of the stack 106 of mirrors 104 at the perpendicular intersection of the first and second major side surfaces 110 to the top and bottom surfaces 111, 112. Corner boards 601 may be similar to corner boards 401 previously described herein. The L-shaped corner boards 601 extend vertically between the protective end assemblies 620 on each end surface 113 of the stack 106.
The top and bottom longitudinal edge surfaces 111, 112 of stack 106 of mirrors 104 are each covered and protected by a protective edge assembly 603. Assembly 603 includes a deformable EPE or EPS protective end pad 640 and a U-shaped corrugated sheet 641 covering the end pad. Each pad 640 is nested inside the U-shaped corrugated sheet 641 which extends inwards onto a portion of the major side surfaces 110 (front and rear) of the stack 106 of mirrors 104. This provides protection against impact forces acting on the long top 134 or bottom 136 sides of the shipping carton 130 (see, e.g.
The stack 106 of mirrors 104 may be banded together via bands 150 which may pass beneath the protective end assemblies 620. Finally, the assembled product package 602 including the stack 106 of mirrors 104 with the protective end assemblies 620, protective edge assemblies 603, and the hard solid paper corner boards 501 may be placed in any of the full overlap master cartons disclosed herein such as for example cartons 130 or 430, which are then closed.
To protect the end surfaces 113 of the stack 106 collectively defined by mirrors 104, each end surface is covered by a specially configured three-dimensional and laterally-extending protective corrugated sheet 720 (e.g. 150# B-flute corrugated sheet in the exemplified embodiment) folded to form an end cap 722 as shown. This provides protection against impact forces F3 acting on the ends 131 of the shipping carton 130 (see, e.g.
Corrugated end cap 722 includes a pair of opposing stub walls 723 and elongated sidewalls 724 extending therebetween having a greater length than the stub walls. Sidewalls 724 are spaced apart and define an inwardly open internal cavity 725 (i.e. facing the stack 106) configured to receive the end portions of the mirror stack therein, thereby covering and protecting the end surfaces 113 of the stack from damage. Stub walls 723 and sidewalls 724 may be three-dimensional, double-walled structures each including two outer walls defining an open interior space 726 therebetween providing a crush zone. A laterally extending end wall 727 is formed at the bottom of the cavity 725 which abuttingly engages the end surfaces 113 of the stack 160 of mirrors 104 when inserted into the cavity. A plurality of protective projections 732 are formed by end cap 722 which extend outwards from the end wall 727 to engage the ends 131 of the shipping carton 130 when the product package 702 is placed inside. The projections 732 add structure rigidity to the end cap 722 and a crush zone for withstanding forces F3 imparted and directed onto the ends of the carton 130 such as from dropping the carton.
The corrugated end cap 722 may be formed from a single monolithic unitary piece of flat single-corrugated paper stock sheet 728 which is bent, folded, and assembled to create the final three dimensional structure best shown in
The stack 106 of mirrors 104 may be banded together via bands 150 which may pass beneath the corrugated protective end caps 722. Finally, the product package 702 including the protective end caps 722 and mirror stack 106 are placed inside the shipping carton.
In one embodiment, the corrugated end cap 722 may be used alone as the only packing materials for protecting the stack 106 of mirrors 104. However, in other embodiments, additional protective packing materials including any of the other protective members disclosed in other embodiments herein may be used on the remaining portions of the mirror stack 106 not protected by the corrugated end caps 722.
Although the corrugated end caps 722 are described and shown in the illustrated embodiment as being intended for use on the short side of the mirror stack end surfaces 113, in other embodiments the end caps 722 may be used on the long side of the mirror stack top and bottom longitudinal edge surfaces 111, 112. The invention is therefore not limited to either placement of the corrugated end cap 722.
It further bears noting that any of the protective packaging members disclosed herein may be used on the short transverse end surfaces 113 or long longitudinal top and bottom longitudinal edge surfaces 111, 112 and major side surfaces 110 of the stack 106 of mirrors 104 in other embodiments regardless of the preferred placements described herein, which represent one possible placement option for these packaging members. In addition, any of the protective packaging members disclosed herein can be used in combination with any of the other protective packaging members disclosed in various other embodiments. Accordingly, the protective packaging members are not limited to use only in the exemplary embodiments and illustrated combinations. This provides a great deal of flexibility for the designer for modify the impact resistance of the protective product packages to maximize protection where it is needed most depending on the number and types of products in the stack.
It will be appreciated that although EPS and EPE are used herein to describe the material of the foam pads in the various embodiments, EPS and EPE may be interchangeable. Thus, if a specific embodiment indicates that EPS is used, EPE may be used in the alternative. Alternatively, if a specific embodiment indicates that EPE is used, EPS may be used in the alternative. In addition, other foam pad materials and compositions comprising open and/or closed cells may alternatively be used in the place of either EPS or EPE.
It will further be appreciated that any of the embodiments of a product packaging system disclosed herein may used banding to hold the stack 106 of mirrors 104 together even if not specifically noted.
While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention. Thus, the spirit and scope of the invention should be construed broadly as set forth in the appended claims.
The present application claims the benefit of priority to U.S. Provisional Application No. 62/487,055 filed Apr. 19, 2017; the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62487055 | Apr 2017 | US |