The present invention relates to a product sample display system and method.
Many types of building materials and information such as carpet, wood flooring, laminate, vinyl, ceramic, tiles, rugs, other floor covering products, wall-paper, paneling, paint, cabinet doors, shingles and roofing products, as well as associated marketing information, pricing, etc., are displayed on loose samples or on page or board-type displays or rack and wing displays. These displays can be made of, for example, card stock, wrapped card stock, hardboard, styrene, formed or molded plastic products, wood, metal, or other materials. One or more wings holding such samples are typically attached to a display fixture or rack, including but not limited to, floor-standing or wall-mounted support devices using a short pin-long pin mounting method, rods, hinges, or other attachment means to secure the wings to the frame. The display device usually has a single array of wings, or one row of wings to a side, although in some instances, multi-tiered arrays of small wings are used.
Typically, all of the wings on the display device are approximately the same size and shape, often because the samples are supplied by a specific manufacturer that makes its wings and samples the same size. Usually, the long dimension of the wing forms the spine which is pivotally mounted to the display device.
Further, moving multiple wings in a display from one side to the other to display a selected wing can be difficult, because wings can be heavy and it may be necessary to move multiple wings. Existing displays also require a large and heavy base and structure because the wings themselves are heavy, the displays must be resistant to tipping over, and the displays must be able to withstand the force of the wings being pushed from one side of the display to the other. For this reason, existing display systems require a large of amount space, and in retail space, sufficient square footage is not economically available.
As noted, display systems are typically provided by product manufacturers, who also supply the wings or boards on which sample products are displayed. However, each display system usually holds only the wings or boards from the manufacturer that supplied the display system. This forces a retailer to display only models and styles of that manufacturer, even the low-volume styles that the retailer may not even stock. In addition, manufacturers regularly discontinue particular models or styles without replacing it when a new model or style. These samples must be removed from the display system, which results in unused capacity of the display system. While a retailer may prefer to populate the unused space with products of other manufacturers, the display system usually only accepts wings or displays of the manufacturer that supplied the display system. This results in suboptimal utilization of the display system by the retailer. It would be preferable to provide a universal display system that can accept wings or displays from any manufacturer, regardless of size of the wings or displays or how they are mounted onto the manufacturer-supplied display system. Such a system would allow a retailer to display only the wings or displays that provide the best return on investment for the retailer.
There have been multiple attempts to solve the display issues for samples. For example, U.S. Pat. No. 2,879,898 discloses a floor mounted rug display rack that includes a downwardly sloping support to allow rugs of various sizes to be displayed using one display device. Another purpose of the '898 Patent is to conserve floor space with the downwardly sloping design. However, a user would still need to lift each sample to fully view the sample underneath.
U.S. Pat. No. 4,757,906 discloses a display rack for flooring samples whereby a wire rack is used to create horizontal slots to display a sample folded into a u-shape between two of the slots. However, this requires the sample to be made from a bendable material, which is not the case for many building material samples. It also only allows the viewer to see a small portion of the whole sample.
Additionally, U.S. Patent Application No. 2003/0047528 discloses a display rack with multiple board sizes that allows dealers to use overlapping displays in which the top layer is the smallest and each subsequent layer is larger and extends past the first display. While this may seem to solve some of the issues in viewing multiple wings, the user still has to flip through each wing and will eventually have to move all of the wings back to their open position which can be heavy and cumbersome.
While the options in the prior art attempt to solve a few of the issues with current display product they have multiple limitations and none user-friendly or space-saving.
One embodiment of the invention provides a display frame comprising multiple vertical shafts and a base; each vertical shaft having a wing support bracket that may be positioned at a selected vertical location on the shaft. The wing support brackets may be at the top, at the bottom, or at the top and bottom. The wing support brackets are vertically adjusted allow any sized display wing to be fitted into the display frame. There can also be multiple wing support brackets on a single shaft. These improvements allow wings of different heights, for instance from different manufacturers, to be held on the same display frame. They further allow groupings of wings by type (e.g., type of floor), subtype (e.g., material), color, manufacturer, etc.
Another embodiment of the present invention provides a display frame with a base and parallel vertical shafts in a curved configuration with wing stops. The wing stops limit the angle, from neutral, that each wing frame can pivot. The curved configuration may be a full or partial oval or circle with the base and support rings being full or cut to allow reconfiguration as desired to full, half, or quarter barrel configurations. The ability to use partial oval or circle base and support rings allows the display frame to be positioned around and/or adjacent to a building support column to support the display structure. These improvements allow the display frame to hold more wings in a configuration that takes up less square footage. Further, the number of adjacent wings that are moved when an adjacent pair of wings is opened is limited, which allows multiple adjacent wings to be viewed by different people at different parts of the display frame at the same time. The curved configuration allows the user to use less force to move the wings since the curved arrangement limits the number of wings that must be moved simultaneously. Additionally, there is improved viewability since the adjacent wings in a non-linear display may be opened to a greater angle than in a typical linear display. In the present invention, the wings may be opened approximately 100°-150°. Finally, there is increased stability when attaching the display frame to an existing building column.
A further embodiment includes a mechanism to bias the wing frames of a display system towards a neutral position. For this embodiment, a display frame holding multiple adjacent wings includes a mechanism to bias the wing frames toward the neutral position if the wing frame is close to neutral position (e.g. ≤15°) or toward the open position if the wing frame is close to a not near neutral position (e.g. more than 15°). This feature eliminates the need for a salesperson to manually move the wing frames to a neutral position after a consumer has viewed a display. Further, no wing will abut an adjacent wing (when all wings are in the neutral position) so some part of each wing is viewable without having to move any wing. Finally, this allows for an increased aesthetic appearance.
A display system of the present invention may be manufactured with a central hole or space to be attached to a building support column with display wings on opposing sides. In this embodiment, at least two opposing sides would be equipped with wing support brackets. This allows for a smaller base with a lighter support structure that is sturdy and not likely to tip over.
Using a display system with battery-operated overhead lights can also help improve a display system. The system may be provided with multiple groups of adjacent wings having a common feature or each individual system would have a common feature. For example, the common features could include manufacturer, flooring type, flooring sub-type, color, etc. The user could have multiple sets of battery-operated lights on the same display system with each set shining a different color of light on each of the groupings. This would make it easier to locate flooring samples having a desired feature. It also allows displays to be located where a wired power source is not available or easily accessible.
Integrating a display system with QR codes for each display or wing integrated with an information provision system allows for easier shopping for the customer and eliminates a lot of unnecessary work for the seller. For example, each wing may have a barrel (display) identifier, a wing identifier, sample identifier, and a QR code. A database is provided that associates the QR code with information about the product displayed that is associated with the barrel identifier, wing identifier, and sample identifier. Some of the information that may be provided includes price, availability status, backorder status, discontinued status, and similar products. This database would be available via a hardware and software system that is operable to display the information associated with a scanned-in QR code. The hardware and software system may also be able to accept quoting and ordering information and generate pricing information for the product quoted or ordered. The hardware may be a smartphone, tablet, or any other hardware that is equipped with QR reader capabilities.
The system may also include a database having identifiers for multiple store locations. The system further includes a means for receiving geolocation information from the hardware used to input quoting or ordering information and a means for quoting pricing information based on the received geolocation information. These improvements eliminate the need to manually update pricing on displays, allow a consumer to receive information and quotes without the assistance of a salesperson, collects information about each consumer that scans a QR code, and allows deployment of the system in multiple locations.
Another aspect of the present invention is a system that biases the wings toward a neutral position. A display structure, not necessarily in a curved configuration, holding multiple pivotable wings may be made whereby each wing is positionable in a neutral position in which the wing does not abut or contact any adjacent wing. The structure would further include a means biasing each wing toward its neutral position. This permits easier viewing of a portion of each wing because adjacent wings are not abutting, which allows viewing of each wing. It also reduces the amount of force required to fully open and display a desired wing when all wings are in their neutral position because adjacent wings will not need to be moved as a user begins to move the desired wing to a displayed position.
A further option includes the use of a display frame holding a plurality of pivotable display wing frames with a stop means connected to the wing frame for each wing operable to limit the extent to which each wing may pivot. This reduces the amount of force required to fully open and display a desired wing because the adjacent wings can only be opened to a limited extent. This means the adjacent wings cannot put their full force on the desired wing making it lighter and easier to open. The stop means may include the point at which the wing frame hits the edge of the wing support bracket, thereby not allowing the frame to rotate any further.
Another embodiment of the present invention includes a non-neutral position holding mechanism such as a magnet, detent, or some other suitable means to hold the wing frames in a non-neutral position. The holding mechanism allows the wing to be kept in its displayed position without the user holding it open. This may be accomplished with a magnet affixed to the wing support bracket and the wing frame being comprised of a material attracted by the magnet. Another option is using a small detent in the wing support bracket with a small bulb on the wing frame that fits within the detent and is removable with a small amount of force. This improves the viewing of the wings because they will remain open and not be affected by gravity or inadvertent movement of the wing frame.
A further embodiment of the present invention may be manufactured using vertical shafts. Each vertical shaft may have a plurality of holes, or vertical wing adjustments, along its length at set intervals, such as a hole every ¾″ along the length. A wing support bracket may placed over the vertical shaft and can be adjustably held in place against the vertical shaft. One option for holding the wing support bracket in place is by sliding a pin through a hole in the wing support bracket and the vertical shaft. Further, the wing support bracket may rest on a pin placed through a hole in the vertical shaft. The wing support bracket may also have wing stops that limit the extent to which the wings may open and/or magnets on the sides of the wing support bracket that hold the wing frame open.
A further embodiment comprises wing support brackets that have notches to allow them to mounted on or removed from threaded shafts at any desired vertical location. Nuts and washers may be mounted on a threaded shaft and moved to the vertical location where it is desired to mount a wing support bracket. Notches in the wing support bracket may be fitted around threaded shaft, and then secured to the shaft with the nuts and washers. Separate holds or pegs in the wing support bracket allow the wings or display of different heights to be mounted on the display system.
A further embodiment comprises a clamp having two arms with block on each arm. The combination of the clamp arms and blocks securely hold a wing or display to the clamp. The use of the clamp allows the system to hold a wing or display of virtually any manufacturer. In one embodiment, the block is provided with two perpendicular slots, each of which is offset from the midlines of the block by a different amount. By selecting the orientation of the block when placing it over an arm of clamp, it is possible to select the size of the gap between the blocks. This allows the clamp to securely hold a wing or display board regardless of the thickness of the wing or display board. This is desirable because the thickness of wings and display boards vary greatly between different manufacturers, and the ability to accommodate different widths allows virtually any wing or display board to be mounted on the display system.
As shown in
Wing support brackets 40 are mounted on the shafts, and can be positioned at any vertical point along the shafts 145. This allows the system to hold display wings 35, 36, 37 of different heights, which may be from different manufacturers. This allows the display system to be much more versatile than existing systems which typically only accommodate display wings that are the same height, as shown in
The wing support brackets 40 may be at the top, at the bottom, or at the top and bottom of the wing frames. The wing support brackets are vertically positioned on threaded shafts having nuts to set the height. The top 32, bottom 31 and central 33 supports may also serve as wing support brackets. In lieu of nuts on the shafts to hold wing support brackets, clamps may be attached to the vertical shafts to set the position of the wing support brackets. Multiple wing support brackets may be positioned on a single shaft. These improvements allow wings of different heights, for instance from different manufacturers 35, 36, 37, to be held on the same display structure. They further allow groupings of wings by type (e.g., type of floor), subtype (e.g., material), color, manufacturer, etc., as exemplified in
As shown in
In the display system shown in
Display wings from some manufacturers have a peg that extends downward from the lower back of the display to fit into a hole in the display system, and/or a peg that extends upward from the upper back of the display to fit into a hole in the display system. Display systems from other manufacturers have a displays with holes at the bottom and top of the back that receive pegs extending from the display system. Both configurations allow the display to pivot along its back edge so a consumer may view both sides of a selected display. The present system permits either system to be used. As shown in
Sample display wings from manufacturers typically include a board, and a structure for mounting the board to the display system. Structures for mounting may include a channel along the back edge of the board that has receives pegs extending from a display, or pegs extending from the top and bottom of the board that fit into holes in a display. Moreover, boards from different manufacturers may be of different widths. The different types and sizes of structures used by different providers of the boards, and the different thicknesses of the boards, complicate the ability to provide a display that can hold boards of any manufacturer. Presently disclosed is a clamp system designed to hold display boards from any manufacturer, including boards of different thicknesses.
As shown in
These variations are shown, for example, in
Blocks are preferably comprised slightly compressive material such as rubber or nylon. By tightening bolt 84 after the blocks are mounted on the arms and the board is positioned between them, the display board is securely held by the clamp and may be mounted in the display system. In the clamp version shown in
Another aspect of the present invention is a system that biases the display wings toward a neutral position. A display structure, not necessarily in a curved configuration, holding multiple pivotable wings may be made whereby each wing is positionable in a neutral position in which the wing does not abut or contact any adjacent wing. The structure would further include a means biasing each wing toward its neutral position. This permits easier viewing of a portion of each wing because adjacent wings are not abutting, which allows viewing of each wing. It also reduces the amount of force required to fully open and display a desired wing when all wings are in their neutral position because adjacent wings will not need to be moved as a user begins to move the desired wing to a displayed position.
One option for a spring system used to bias each display frame towards a neutral position is shown in
The display wing support bracket or surface 141 may also be provided with left magnet 148 and right magnet 149, which also act as stops that limit the extent to which the display wing 140 may be pivoted from its neutral position. When display wing 140 is pivoted to the position shown in
Another option is using a small detent in the wing support bracket with a small bulb on the wing frame that fits within the detent and is removable with a small amount of force.
When the vertical shafts are positioned in a non-linear or curved configuration, the viewing area of the wings is greater than in the prior art. As shown in
The display boards may also bear a sticker having a QR code, barrel identifiers, wing identifiers, and sample identifiers as shown in
The QR system may also include a database having identifiers for multiple store locations. One embodiment of the system further includes a means for receiving geolocation information from the hardware used to input quoting or ordering information and a means for quoting pricing information based on the received geolocation information. Once a QR code is scanned, the seller or dealer may also receive information about the customer, such as which codes they have scanned and therefore which types of flooring they may be interested in.
Other options for allowing the wing frame to be held open at a stopping point include a small detent in the wing support bracket with a corresponding notch on the wing frame, similarly corresponding Velcro pieces, or any other suitable means that would allow for stopping and releasing the wing frame with minimal force.
While the invention has been illustrated and described in detail in the foregoing drawings and description, the same is to be considered as illustrative and not restrictive in character, it being understood that only illustrative embodiments thereof have been show and described and that all changes and modifications that are within the scope of the following claims are desired to be protected.
All references cited in this specification are incorporated herein by reference to the extent that they supplement, explain, provide a background for or teach methodology or techniques employed herein.
This application claims the benefit of US Provisional Application Nos. 63/208,802 filed Jun. 9, 2021, 63/236,793 filed Aug. 25, 2021 and 63/321,789 filed Mar. 21, 2022, the contents of each of which are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
63321789 | Mar 2022 | US | |
63236793 | Aug 2021 | US | |
63208802 | Jun 2021 | US |