To meet the demand for natural resources, companies often invest significant amounts of time and money in searching for and extracting oil, natural gas, and other subterranean resources from the earth. Particularly, once a desired resource is discovered below the surface of the earth, drilling and production systems are often employed to access and extract the resource. These systems may be located onshore or offshore depending on the location of a desired resource. Further, such systems generally include a completion system that includes a high pressure wellhead assembly through which the resource is extracted. These completion systems may include a wide variety of components, such as various casings, hangers, valves, fluid conduits, and the like, that control drilling and/or extraction operations.
One type of completion assembly includes a high pressure wellhead housing (“wellhead”) with one or more strings of casing supported by casing hangers in the wellhead. Attached to the wellhead may be a tubing spool with a tubing hanger secured to a string of tubing that lands in the tubing spool above the wellhead. The tubing spool may have a plurality of vertical passages that surround a vertical bore. The vertical fluid passages provide access through the tubing spool for hydraulic fluid or electrical lines to operate and control equipment located downhole, such a safety valves or chemical injection units. Electrical and/or hydraulic control lines may extend alongside the outside of the tubing to control downhole valves, temperature sensors, and the like. A production tree is then installed on top of the tubing spool. The production tree has a vertical bore that receives upward flow of fluid from the tubing string and wellhead.
A production tree usually contains at least two valves enabling or preventing flow from the well into a flow line. It is known to have two gate valves in series on a horizontal branch of the tree for this purpose: the first may be called the production master valve (PMV), and the second may be called the production wing valve. Further, there might be a choke valve controlling the flow from the tree into the flow line.
It might be desirable to measure the production out of the production tree. For this purpose one man might place a multiphase or wet gas flow meter in the process flow line somewhere between the wellhead and a commingling point.
For a detailed description of the preferred embodiments of the invention, reference will now be made to the accompanying drawings in which:
The following discussion is directed to various embodiments of the invention. The drawing figures are not necessarily to scale. Certain features of the embodiments may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in the interest of clarity and conciseness. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. It is to be fully recognized that the different teachings of the embodiments discussed below may be employed separately or in any suitable combination to produce desired results. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment.
Certain terms are used throughout the following description and claims to refer to particular features or components. As one skilled in the art will appreciate, different persons may refer to the same feature or component by different names. This document does not intend to distinguish between components or features that differ in name but are the same structure or function. The drawing figures are not necessarily to scale. Certain features and components herein may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in interest of clarity and conciseness.
In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. In addition, the terms “axial” and “axially” generally mean along or parallel to a central axis (e.g., central axis of a body or a port), while the terms “radial” and “radially” generally mean perpendicular to the central axis. For instance, an axial distance refers to a distance measured along or parallel to the central axis, and a radial distance means a distance measured perpendicular to the central axis. The use of “top,” “bottom,” “above,” “below,” and variations of these terms is made for convenience, but does not require any particular orientation of the components. The use of “flow meter” is meant to identify any multiphase or wet gas flow meters, or single phase flow meters, or multiphase meters.
Disclosed herein is a production assembly for a well that may include and/or be used with a production tree. The production tree may be subsea, and may include conventional (e.g., vertical), horizontal, dual bore, mono bore, and hybrid trees. The production tree may be installable on other components of the subsea completion system, such as installable on a tubing spool.
Referring now to
Further, the production tree 110 may include one or more valves in fluid communication therewith, such as a production swab valve 118 and/or a production master valve (PMV) 120 in fluid communication with the main production bore 112 to control the flow of fluid through the main production bore 112. For example, the production swab valve 118 may be included within the main production bore 112 above the intersection of the main production bore 112 and the wing bore 114, and the production master valve 120 may be included within the main production bore 112 below the intersection of the main production bore 112 and the wing bore 114. Although there is a production master valve 120 in the main production bore 112, either the POV 115 or the wing valve 116 in the branch of the tree 110 may also function as a PMV, for example, when equipment is passing through the PMV 120.
The production tree 110 may include one or more auxiliary passages, such as an annulus flow path, that is formed within the production tree 110 and outside of the main production bore 112 (e.g., out of fluid communication with the main production bore 112). For example, as shown, the production tree 110 may include an upper auxiliary passage 122 with an upper valve 124 in fluid communication with the main production bore 112 above the intersection with the wing bore 114 and/or may include a lower auxiliary passage 126 with a lower valve 128 in fluid communication with the main production bore 112 below the intersection with the wing bore 114. As shown, the upper auxiliary passage 122 may be in fluid communication with the lower auxiliary passage 126.
Further, in addition to the auxiliary passage, the production tree 110 may include one or more valve control passages, such as a valve control passage 132 formed therethrough and outside of the main production bore 112 and the auxiliary passage within the production tree 110. For example, the valve control passage 132 may be used to control one or more valves within the completion system 100.
According to embodiments of the disclosure, it is proposed an assembly wherein the wing bore 114 forms a branch of the production tree 110 that will enable measurement of the flow produced from the production tree 110. In an embodiment presented schematically on
The wing valve 116 may be of various types. For example, the wing valve might be a gate valve, a ball valve, or any kind of valve suitable for the purpose. Similarly, various types of chokes 150 may be used. Further, the flow meter 140 may be a single, multiphase, or wet gas flow meter. In embodiments, the flow meter may combine a differential pressure measurement with one or several means to measure the fractions or hold ups of the various phases that may be present in the flow.
In embodiments of the disclosure, the flow meter comprises a differential pressure measurement, e.g. a venturi tube, and at least one way of measuring fractions, e.g. a multi-energy gamma fraction densitometer, unless it is a single-phase meter. The differential pressure measurement may have a first and a second pressure port. The flow meter may further have one or several electronics units for the purposes of gathering sensor data, performing calculations, and communicating with other systems such as a process control system or a subsea control system, not represented.
In embodiments of the disclosure, the flow meter comprises a venturi tube as the differential pressure measurement. Any kind of differential pressure measurement may be used, such as a V-Cone meter, an orifice plate, or any other type of differential pressure flow meter. In embodiments wherein the flow meter is a multiphase flow meter, the fraction measurement system might comprise a multi-energy gamma system. Any kind of fraction measurement may be used, including but not limited to gamma densitometry, capacitive methods, inductive methods, microwave methods, ultrasonic measurements, optical attenuation measurements, optical fraction measurements, tracer methods, among others.
In an embodiment of the disclosure shown on
In embodiments presented on
In embodiments presented in
In embodiments presented in
In embodiments presented on
In embodiments presented on
Any of the embodiments may also include a fraction measurement device 280 as shown in
Although the present invention has been described with respect to specific details, it is not intended that such details should be regarded as limitations on the scope of the invention, except to the extent that they are included in the accompanying claims.
Number | Date | Country | |
---|---|---|---|
62287254 | Jan 2016 | US |