The invention relates to a method, a device, and a yarn in accordance with the preambles of the independent claims.
There are numerous methods known for the manufacture of bicomponent yarns or yarns with several components, in which situation the requirement is for several components to be spun simultaneously, or for one component to be sheathed by other components, or for them to be mixed with one another. From U.S. Pat. No. 5,244,614 a device is known with which the inner component is guided through a single hole to the spinning nozzle; accordingly, the influence exerted on the building up of a filament fibril, and in particular of its core, is very restricted.
The problem of the present invention is to provide a yarn, consisting of at least two components, and a manufacturing method as well as a device, whereby, by the selection of the material components and their forming and shaping during spinning, individual properties can be achieved both in respect of their composition as well as in respect of their physical properties.
A further problem of the present invention is to extend the range of use of existing yarn production systems. Thus, for example, it may be to the purpose, depending on the level of orders in a system, for filament yarns to be manufactured optionally from three or even only from two components. The problem further arises, with the manufacture of yarns of which the individual fibres are made up of several components, for the material flows, directly before the formation of a filament or filaments respectively, for the part components to be controlled as precisely as possible in a large number of spinning nozzles, in order for the filament cross-section to maintain the desired form as precisely as possible.
This problem is resolved by the objects of the independent claims. The dependent claims relate to advantageous further embodiments of the method, the spinning device concerned, and the product(s).
A method is proposed for the manufacture of a filament yarn or of a fibril for a filament yarn respectively by means of a spinning device, whereby at least two different liquified components or materials are conducted through several capillaries to a spinning capillary or spinning nozzle, and whereby at least two liquified components or materials from at least one first and one second source are conducted to a distribution system with passage apertures, and further to a nozzle system. From the material flows from material sources of a number n, which are conducted to a melting plate or to the distribution system respectively, at least two flows, which are conducted for preference in a first and a third zone, are brought together through the melting plate, in at least one passage aperture or a part of the passage apertures respectively, whereby these passage apertures are in communication so that at the outlet from the distribution system, or at the inlet respectively into a connected perforated plate and/or a nozzle plate, referred to in general as the nozzle system, only material flows are present in a number less than n, said flows being divided in the nozzle system over a larger number of holes or spinning nozzles respectively, whereby the number of material flows amounts to n−x, with n≧3 and 1≦x<n−1 and with whole figure values for x and n. In this situation, a first material from a first source and a second source and a further material from a third source are conducted. The distribution system exhibits essentially a main passage aperture or main passage apertures communicating with each other, and a second main passage aperture or second main passage apertures communicating with each other, for the joint accommodation on the one hand of the material flows from a first and a second source in the first passage aperture, and, on the other hand, to accommodate a further material in the second main passage aperture. Materials from a first and a second source can also be conducted into a first main passage aperture or main passage apertures communicating with one another, and further materials from a third and, for example, a fourth source can be conducted to a second main passage aperture as well as to one or more further main passage apertures, so that only the material flows from the first and second sources are combined in a first main passage aperture. For the operator of such a system it is of advantage if the material flows from the individual sources are essentially kept at the same size, which means that components of the same type are installed.
Such a concept has the advantage that different mass distributions in the end product, i.e. the filament yarns or the individual fibrils can be achieved by equally large delivery components of the material, i.e. extruders, spinning pumps, or spinning pots. If, for example, with a bi-component yarn, it is intended that double the material quantity should be present in the filament core in comparison with the material quantity in the sheath of this yarn, there is no need to make provision for delivery components of different size for the core material or the sheath material, but instead several components of the same type are used for the delivery of this material, which in comparison with another material are consumed in a greater amount during the spinning process.
In a further embodiment of the invention, a merger of at least two material flows takes place upstream of the actual distribution system into one single flow, so that instead of the original n number of flows from n sources, the result is n−x flows at the inlet of the distribution system, with n≧3 and 1≦x<n−1 and with whole numbers for x and n.
In addition to this, a method is proposed for the manufacture of a filament yarn or a fibril for a filament yarn respectively, whereby at least two liquified components or materials are conducted through several capillaries of a spinning capillary or spinning nozzle, and whereby the minimum of two liquified components are conducted in each case through several capillaries of the spinning capillary and a group of internal capillaries serves to form a connected filament core, and a further material in the outer capillaries surrounds the filament core. In this context, the material flows combine in the first capillaries in the centre thanks to their special guidance arrangement in such a way that the flows of a first material combine to form a connected core consisting of a filament core and at least one filament flyer connected to this. A further material in further capillaries in the area surrounding the first capillaries is conducted in such a way that the further material is in contact with the core and at least in part surrounds it.
The invention is described in detail hereinafter on the basis of the drawings, whereby the manufacture of a number of individual fibrils of a yarn is explained in several embodiments. It is understood that with most applications several fibrils are combined to form one yarn, even if the possibility is not to be excluded that a yarn consists of one single fibril, which for preference is formed from several components. For the sake of simplicity, the fibrils are designated hereinafter as yarn or filament yarn.
The drawings show:
FIGS. 1,2,3 Components of a spinning device, which can be combined to form a spinning unit,
a,b Diagrammatic representations of the components in overview drawings,
c A diagram of the material flows from the sources as far as the spinning capillaries at the spinning nozzles,
d A diagram of a further material delivery,
e A derivation of the embodiment shown in
f A further derivation of the embodiment,
g A derivation of the embodiment according to
h A derivation of the embodiment according to
k+1l Further derivations of the embodiments according to
a A section through a component from
b A plan view of a part of this component,
c A plan view according to another embodiment,
a A section through a component according to
b, 3c Two embodiments of spinning nozzles, and
The invention relates to a method for the manufacture of a filament yarn 10, or a fibril for a filament yarn respectively, by means of a spinning device, whereby at least two liquified components or materials 10a,b are conducted through several capillaries 25a, 25c of a spinning capillary 32, characterised in that the minimum of two liquified components or materials 10a,b are in each case conducted through several capillaries 25a, 25c of the spinning capillaries 32, whereby a group of internal capillaries 25a serve to form a connected filament core, and whereby a further material 10b surrounds the filament core 10′a, 10″a.
The material flows 10a in the first capillaries 25a in the centre of a spinning unit can be conducted in such a way that the flows of a first material 10a combine to form a connected core consisting of a filament core 10′a and at least one filament flyer 10′a connected to this, whereby a further material 10b is conducted into further capillaries 25c in the surrounding area of the first capillaries 25a in such a way that the further material 10b is in contact with the core and surrounds it at least in part.
The components can consist of at least one first material 10a and a second material 10b, whereby the materials in liquified form emerging from the capillaries 25a, 25c are conducted in parallel through a first hole 31a, in order then to be pressed jointly through the spinning capillary 32 and forming a fibril or a yarn 10 respectively.
A component 10a for the core of the filament yarn 10 is conducted through the central capillary 25a and further peripheral capillaries arranged at a uniform distance around this to core capillaries 25a, and a further component 10b is conducted through sheath capillaries 25c, which are located further away from the central capillary, between the peripheral core capillaries.
The first material 10a is conducted through central core holes 21a, b of an extruder, and the second material is conducted through peripheral sheath holes 21c of the spinning device.
The components 10a, 10b are conducted through a distribution plate or melting plate 1, whereby the first material 10a is divided in a first zone 11a and a third zone 11c, and the second material 10b is divided in a second zone 11d, into material flows, whereby the material flows enter in an ordered manner through slots on the inlet side of the melting plate 1, and pass through a second slot 12c communicating with this, on the underside of the melting plate, into the capillaries 25a and 25c.
The invention likewise relates to a device for the manufacture of one or more fibrils or filament yarns 10 respectively, whereby first capillaries 25a are arranged in the centre of a spinning unit, for guiding flows of a first material 10a, and whereby further capillaries 25c for at least one further material 10b are arranged in the area surrounding the first capillaries 25a, and whereby all the capillaries communicate with a spinning capillary 32, characterised in that the first capillaries 25a are arranged in the centre of a spinning unit in such a way that the flows of a first material 10a combine to form one connected core consisting of a filament core 10′a and at least one filament flyer 10″a connected to this, and that further capillaries 25c for a further material 10b are arranged in the area surrounding the first capillaries 25a in such a way that the further material 10b is in contact with the core and at least in part surrounds this.
In a general formulation, the invention comprises a method for the manufacture of a filament yarn 10, or a fibril for a filament yarn respectively, by means of a spinning device, whereby at least two different liquified components or materials 10a,b, which derive from at least one first and one second source 14-16/14′-16′, are conducted to a distribution system with passage apertures 12a,b c, 13, 13′, in particular to a melting plate 1, and further to a system of holes and nozzles 2, 3, in particular through several capillaries 25a, 25c, to a number of spinning capillaries 32, characterised in that, of the material flows from n sources 14-16/14′-16′, which are conducted to a distribution system 1, or to a melting plate respectively, at least two flows 10a are merged, so that at the inlet into a nozzle system 2/3 only n−x different material flows 10a, 10b are present, which are divided in the nozzle system 2/3 onto a larger number of holes 21a, 21c or nozzles 32 respectively, with n≧3 and 1≦x<n−1, and whole figure values for x and n.
Formulated in a general manner, the invention relates to a method and device for the manufacture of a filament yarn 10, or a fibril for a filament yarn respectively, by means of a spinning device, whereby at least two different liquified components or materials 10a, 10b are conducted through several capillaries of a spinning capillary 25a, 25c or spinning nozzle 32, and whereby at least two liquified components or materials 10a, 10b from at least one first and one second source 14-16, 14′-16′, are conducted to a distribution system with passage apertures, and further to a nozzle system 3, characterised in that, from the material flows 10a, 10b from n sources 14-16/14′-16′, which are conducted to a distribution system, at least two flows are combined, and are conducted to at least one passage aperture 12a, 13, or system of passage apertures, while at least one further material flow 10b from a further source 14″-16″ is conducted separately to the distribution system 1, so that n material flows 10a, 10b from n sources 14-16, 14″-16″, 14′-16′ are combined in such a way that in further processing only n−x different material flows are spun to form filaments in each case in the passage apertures 12a, 12c, which communicate with one another, of a distribution system 2 and of a nozzle system, and the filaments are composed in the final analysis only of n−x different materials or material mixtures respectively.
Two different liquified components or materials 10a, 10b, which derive from at least one first and one second source 14-16/14′-16′, are conducted to a distribution system with passage apertures 12a, b, c, 13, 13′, in particular to a melting plate 1, and further to a system of holes and nozzles 2, 3, in particular through several capillaries 25a, 25c, to a number of spinning capillaries 32, characterised in that, of the material flows from n sources 14-16/14′-16′, which are conducted to the melting plate or to the distribution plate 1, at least two flows 10a, which for preference are conducted in a first zone 11a and a third zone 11c, are combined in at least one passage aperture, or in a part of the passage apertures 12a, 12c respectively, so that at the outlet from the distribution system 1, or at the inlet into a following perforated plate 2 and/or a nozzle plate 3 respectively, referred to in general as the nozzle system 2/3, only n−x different material flows 10a, 10b are present, which in the nozzle system 2/3 are divided over a larger number of holes 21a, 21c, or nozzles 32 respectively, with n≧3 and 1≦x<n−1, and whole figure values for x and n.
A first material 10a is conducted from a first source 14-16 and a second source 14′-16′ and a further material 10b from a third source 14″-16″, and the distribution system exhibits essentially a first main passage aperture 12a, 13, or main passage apertures 12a, 13, 12b communicating with one another, and a second main passage aperture 12c, 13′, for the joint accommodation of the material flows from the first and second source in the first main passage aperture 12a, 13, and to accommodate the material 10b in the second main passage aperture 12c, 13′.
Materials 10a from a first and a second source 14-16, 14′-16′ are conducted in a first passage aperture 12a, 13, or main passage apertures 12a, 13, 12b, communicating with one another, and further materials from a third and a fourth source 14″-16″, 14′″-16′″ are conducted to a second main passage aperture 12c, 13′, as well as to a third main passage aperture 12′ c, 13″, so that only the material flows 10a from the first and second source are combined in a first main passage aperture 12a, 13.
The material flows from the individual sources 14-16, 14′-16′ are for preference essentially of the same size.
The invention also relates to a pertinent device for the manufacture of a filament yarn 10 or a fibril for a filament yarn respectively, by means of a spinning device, whereby at least two different liquified components or materials 10a, 10b can be conducted through several capillaries 25a, 25b to a spinning capillary 32, and whereby at least one first and one second source 14-16/14′-16′ are located upstream of a distribution system 1 for melting flows of the materials 10a, 10b, and passage apertures 12a, 12b, 12c, 13, 13′ are arranged in the distribution system 1, which communicate with a nozzle system 3 for spinning out filaments, characterised in that a number of n sources 14-16, 14′-16′ are connected to the distribution system 1 in such a way that at least two of the sources 14-16, 14′-16′ communicate with a first system of main passage apertures 12a, 13, 12b, so that the material flows from both the sources referred to mix in the system, and that at least one further source 14″-16″ is present, which passes into another, second system of main passage apertures 12c, 13′, not communicating with the first system.
The distribution system 1 exhibits essentially a first system of main passage apertures 12a, 13, 12b, communicating with one another, as well as a further system of main passage apertures 12c, 13′, not communicating with the first system.
Located upstream of the distribution system 1, in several embodiments, is in each case a flange or spinning pot 16, and upstream of this in turn is an extruder 14, whereby at least two extruders 14, 14′ and downstream components referred to, 15, 15′, 16, 16′, open into a common main passage aperture 13, or part passage apertures 12a, 12b, respectively, which communicate with each other.
At the distribution system 1, on the inlet side, one or more slots or passage apertures 12a, 12b are allocated to one or more spinning pots 16, 16′, said passage apertures opening into a longitudinal slot 13, and a further system of slots 12c is provided for, on the inlet side of the distribution system 1, which opens into a further longitudinal slot 13′.
A first system of passage apertures 12a, 12b, 13, which communicate with one another, which is connected to at least two sources 14-16, 14′-16′, communicates with a system of core holes 25a, which are aligned with the central areas of spinning nozzles 32, and another system of passage apertures 12c, 13′ of the distribution system 1, which communicates with a further source 14″-16″, passes into further holes or sheath holes 21c, which are aligned with the peripheral areas of spinning nozzles 32.
The spinning nozzles 32 exhibit two-armed or multi-armed capillaries 32 in
Main elements of the device for the manufacture of one or more fibrils, or filament yarns 10 respectively, are capillaries 25a in the centre of a spinning device 3, for the guidance of flows of a first material 10a, and further capillaries 25c for at least one further material 10b in the area surrounding the first capillaries 25a, characterised in that the capillaries 25a, 25b are in a perforated plate 2, which is located at a nozzle plate 3 with spinning nozzles or spinning capillaries 32 respectively, whereby in each case, aligned with a spinning capillary 32, a projection 23 is located on the side of the perforated plate 2 which is turned towards the spinning capillaries 32 or the nozzle plate 3 respectively, said projection 23 covering a hole 31a, which passes into the spinning capillary 32, whereby central capillaries 25a run in the centre of the projections 23 and more open into the middle area of the first hole 31a, while other capillaries 25c are located at the edge of a projection 23, in such a way that through these capillaries 25c a connection is established between a trough 22 in the perforated plate 2, turned towards the nozzle plate, and the space of the first hole 31a.
Located upstream of the perforated plate 2 is a distribution system 1, whereby the central capillaries 25a communicate with a first system of main passage apertures 12a, 12b, 13 of the distribution system 1, said passage apertures being fed jointly from at least two sources 14-16, 14′-16′, and whereby the other peripheral capillaries 25c are connected to a further system of main passage apertures 12c, 13′ of the distribution system 1, which are connected to a further source 14″-16″.
In a preferred embodiment, material components are processed with the method or devices 2, namely polyesters for the core of the yarn and polyamide as the sheathing for the yarn.
Usually, the material components are conducted through several extruders of the spinning device, which is composed, among other parts, of a melting plate 1, a perforated plate 2, and a nozzle plate 3. According to
a shows a principle representation of different material flows. From an extruder 14, material 10a, indicated by an arrow in a first distribution system 12A, 13, is conducted by means of a spinning pump 15 and a flange or spinning pot 16 to a first slot 12a or several slots located one behind another, as represented in
As is represented in
In
According to
After the emergence of the melt flows from the perforated plate 2, the material passes into the area of the nozzle plate 3, whereby rows of holes 31a, 31b, 31c etc. are in each case located aligned with the rows of holes of the perforated plate 2, which are formed by the core holes 21a, 21b. The extruded material, the core melts, and the sheath melts, and, if appropriate, also additional melt components, leave the nozzle plate 3 through spinning nozzles or spinning capillaries 32, of which one single one is represented in
In
In
According to
It has transpired surprisingly that the material flows from the core capillaries 25a and the sheath capillaries 25c do not mix or overlay, but flow through the first hole 31a precisely in its axial direction, even if the length of this hole 31a amounts to several times its diameter. The perforation pattern of the core capillaries 25a and the sheath capillaries 25c respectively must be matched precisely to the shape of the spinning capillaries or spinning nozzle 32, as is explained hereinafter on the basis of
In
It is of course possible, instead of four core capillaries 25a and three sheath capillaries 25c to arrange more or even fewer such capillaries, as a result of which other yarn cross-sections with more than three or less than three wings can be formed. In
The spinning method and the device according to the foregoing Description are characterised in particular in that a filament yarn is created with at least a partial sheathing, whereby the actual material core of this filament, consisting of one or more core melt materials, exhibits more or less marked taperings at the transition points between the filament wings 10″a and the filament core 10′a, as a result of which a soft grip or high flexibility of the filament yarn can be achieved, which leads to advantageous product properties during the further processing of the filament and in the corresponding end product respectively.
According to a further embodiment of the invention, it is proposed that a spinning package, consisting of a distribution system 1, a perforated plate 2, and a nozzle plate 3 are designed in such a way that several, i.e. n(n≧3), components are introduced, and these n components are divided in separate sheath flows over a plurality of holes, so that on the outlet side of the spinning package 1, 2, 3 according to
This involves a method for operating a spinning machine for the manufacture of different yarns or yarn types respectively in groups, whereby in each case an identical make-up of the yarns from different material components pertains in each case in a yarn type or a group of yarns, for preference with several extruders, from which different materials 10a, 10b can be conducted to one or more spinning packages 1, 2, 3, said spinning package or spinning packages exhibiting at least one distribution system 1, 2 with a distribution plate and spinning nozzles 32, whereby indentations 12c, or 12a respectively, are present in the spinning package in order to accommodate the materials, characterised in that at least one first material 10c for a first component of a first yarn type can be conducted into at least one indentation or indentations, which extend only over a part of the spinning package, and that for further yarn types, which can include the first yarn type, and which are spun from a plurality of spinning nozzles 32, at least one further material 10 b can be introduced into at least one indentation 12b, from where this material can be distributed over a larger or the entire extent of a distribution system 1, 2, 3, in order to pass in individual holes 21 of a distribution plate 2 to the spinning nozzles 32 concerned.
A spinning machine to carry out the foregoing method for the manufacture of different yarns in groups, whereby in each case an identical make-up of the yarns from different material components pertains in each case in a group of yarns, with several extruders, from which different materials 10a, 10b can be conducted to one or more spinning packages, said spinning package or packages exhibiting at least one distribution system with a distribution plate with indentations and spinning nozzles, is characterised in that at least one indentation or a system of indentations respectively 12c or 12a is present in the distribution system of the spinning package to accommodate at least one first material component for a component of a yarn type from a large number of spinning nozzles 32, which extend only over a limited part of a spinning package, and that, for further or all yarns which are to be manufactured, a further inlet indentation 12b is provided, from which a further material can be distributed over a larger extension of the distribution system 1 in a larger part of the system or in the entire system, in order to pass into individual holes 21 of a distribution plate 2 to a larger part of indentations in comparison with the indentations of the first material, or, in the final analysis, to pass to all the indentations or spinning nozzles 32 respectively.
A possible configuration is shown in
According to the embodiment in
A similar configuration is represented in
To illustrate the guidance of the different materials in the configurations according to
The principle applies to a concept according to
A similar representation is shown in
It is understood that, with regard to the material distribution of n materials from n sources (n>2), basically no limits are set. For example, the different materials do not necessarily have to be present in an arrangement concentric to one another in the finished yarn, which means that the core and sheath holes referred to according to the definition do not need to be positioned in such a way that in each case core holes are located in the inner area and sheath holes in the outer area. A multi-component yarn can also be designed in such a way that what are referred to as the core holes are located in the vicinity of the line of alignment of the spinning nozzles 32, next to what are referred to as laterally further removed sheath holes, so that virtually no concentric surrounding of the core components by sheath components occurs.
The different variants described can be realised by a multicolour machine (such as a tricolour machine), with which the tricolour spinning nozzles are replaced by multi-component spinning nozzles. A multicolour machine can in this way be uprated to a multi-component machine. In particular, a tricolour machine can be refitted to become a two-component machine. The refitting consists solely of the spinning package, consisting, for example, of a distribution system 1, a perforated plate system 2, and a spinning plate system 3, is composed in accordance with the foregoing Description. In this way, yarns can be manufactured in which, for example, the core consists of non-coloured polymer, or the sheath of different-coloured polymers, or whereby different types of polymers form the core.
For preference, in this situation three extruders with metering devices are equipped so as to dye the melts. It is also possible, however, for other numbers of extruders to be provided. With conventional multicolour machines it is usual for three different-coloured melt flows to be guided in melt lines to the spinning beam, where a further distribution takes place before feeding into the spinning nozzles. The different coloured melts are conducted separately, so that they pass to the spinning nozzles in spatially separated areas.
Now, as mentioned, the spinning nozzles of multicolour spinning machines according to the invention are replaced by spinning nozzles for multi-component yarns. From each capillary, as described, a multicomponent filament can emerge. Thanks to the combination of components of multicolour machines and components of machines for the manufacture of filaments from several material components, any desired combinations and therefore any desired yarn types can be manufactured in one and the same spinning packages.
In practice, the following preferred variants can be used:
1. Bicomponent Yarn on a Tricolour Spinning Machine
With the use of a tricolour spinning machine for bicomponent yarn, at least one extruder is used for the melting out of the polymer for the core of the bicoloured yarn. The remaining extruders are used for melting out the sheath polymer. Each polymer flow is conducted in a melt line to the spinning beam. In the spinning beam the melt flows are further divided and then a part flow from each polymer is conducted into the spinning nozzle. In the spinning nozzle the polymer flows are brought together to form a bicoloured yarn. On the assumption that an extruder is used for the core material, a material proportion of the core results in each filament of approx. 33% and a material proportion of the sheath of approx. 67%.
Larger material proportions of the core in each filament are attained if, on the tricolour spinning machine, two extruders are used for the core material and one extruder for the sheath material. In this case, the material proportion of the core in each filament amounts to approx. 67% and that of the sheath to approx. 33% (see
The proportions given above apply to the use of spinning pumps of the same size for all polymers and for the same revolution speeds of the spinning pumps. For the person skilled in the art it is clear that, with other spinning pump sizes and/or other spinning pump revolution speeds, the material volume flows can be controlled by each extruder, and the material ratio of core material to sheath material can be selected at will.
2. Bicomponent Bicolour Yarn on Tricolour Spinning Machine
If, on a tricolour spinning machine being used for bicomponent yarn, one extruder is used for the core material, it is possible for sheath material with different colour additives (master batch) to be processed on the two remaining extruders. In this case, bicomponent bicolour yarn is then spun. The core proportion amounts to about 33% and the sheath proportion of each colour to 33% each, i.e. a total of approx. 67%. These proportions can be varied at will, as required, and depending on the machine design.
2 a) Bicomponent Yarn with Different Sheath Polymers on Tricolour Spinning Machine
By analogy with Point 2 above, it is possible for different polymers to be used in the sheath on the two remaining extruders. This means that a part of the filaments can be given substantially different properties, such as, for example, electrical conductivity, shrinkage behaviour, chemical affinity, etc.
3 Bicomponent Yarn with Different Cores on Tricolour Spinning Machine
If one extruder is used on the tricolour spinning machine in use for bicomponent yarn, it is possible for different types of core material to be processed on the two remaining extruders. In that case, bicomponent yarns with different core materials are spun. The core material amounts to approx. 33%. With half of all the filaments, the core is made of material 1, and with the other half of the filaments the core is made of material 2. The core materials may only be distinguished in the colour. For preference, however, they also differ in their physical properties in order to generate particular added value in the use of the end products. These properties include electrically conductive additives, anti-bacterial active substances, polymers with different shrinkage behaviours, etc.
It is therefore possible, according to the invention, for multicolour machines with n extruders (or n different types of melt flows with n≧3 to be realised, which serve to manufacture bicomponent yarns. In this situation, the following bicomponent yarns can be spun:
By the use of the devices described according to the invention, it is also possible for multicomponent yarns (core/sheath) to be manufactured, in which only the sheath or the core is coloured.
Usually, the colouring is effected, for example with carpet yarns, by the addition of dye during spinning (spin dyeing) or when the yarn or carpet is completed (yarn colouring, printing, piece dyeing). The dyeing process is then concluded when the dye is completely and uniformly distributed in the yarn. The costs of the dye can come out to be the same as the costs of the polymer. If it proves possible for the dye to be manufactured with a device or system according to the invention, a substantial reduction in costs can be achieved. The possible savings can be broken down as follows:
1. Bicomponent Yarn with Dyed Sheath
The dyeing of a thin sheath layer of the filament can be sufficient on its own to provide the colour for the yarn.
If, during the spin-dyeing of core-sheath yarn, only the sheath is manufactured from a polymer, which is mixed with an additive (master batch), it is possible, with a core-sheath ratio of 50:50 for half the dye to be saved, which means a reduction in raw material costs of approx. 12 to 25%.
2. Bicomponent Yarn with Dyed Core
Because polymer is frequently transparent, it is possible for the dyeing to take place by way of the spin-dyeing of core material. If, during the spin-dyeing of core-sheath yarn, only the core is manufactured from a polymer, which is mixed with master batch, it is possible, with a core/sheath proportion of 50:50 for half of the dye to be saved, which means a reduction in raw material costs of approx. 12 to 25%.
A further problem with dyed or coloured yarn is what is referred to as colour-fastness. This is understood to mean the loss of colour (rubbing off on contact) or bleeding (washing out during wet treatment). If the spin-dyed core is now surrounded by a colourless sheath, the colour fastness will be improved. Accordingly, the possible savings lie not only in a reduction of the dye, but also the used value of the yarn will be increased, or a more economical dye can be used.
3. Bicomponent Yarn for Piece Dyeing
The use of core-sheath yarn for piece dyeing allows for the use of sheath polymer with colour affinity for one specific dye class only. This can be achieved if the dye is absorbed only in the sheath, and the required dye volume is reduced accordingly.
With the manufacture of anti-static yarns, too, the use of means according to the last (fourth) embodiment of the invention also allows for substantial costs reductions to be achieved. It is possible, for example, for anti-static material to be used in the manufacture of yarns with different sheaths only in a part of the different sheath components, so that the anti-static properties will still be provided even with material savings of the anti-static material. It is also possible to restrict the application in general only to the material in the sheath with anti-static effect. In addition, with the distribution of a spinning package over several hole systems, it is possible, as mentioned in connection with the Description of
Number | Date | Country | Kind |
---|---|---|---|
101 38 177.8 | Aug 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH02/00394 | 7/16/2002 | WO | 5/23/2005 |