PRODUCTION OF ALCOHOLS AND THEIR PRECURSORS BY GENETICALLY MODIFIED ETHANOLOGENIC BACTERIA

Abstract
A genetically modified ethanologenic organism which comprises: a. an exoglucanase (cex-like) polynucleotide sequence with at least 70% sequence coverage to SEQ 1 or SEQ 68, and at least 70% sequence identity to SEQ 1 or SEQ 68; andb. a β-glucosidase 1 (bg11) polynucleotide sequence with at least 70% sequence coverage to SEQ 3 or SEQ 14, and at least 70% sequence identity to SEQ 3 or SEQ 14.
Description
REFERENCE TO AN ELECTRONIC SEQUENCE LISTING

The contents of the electronic sequence listing (20241106_SequenceListing_ST26_23156197US1.xml; Size: 128,189 bytes; and Date of Creation: Nov. 6, 2024) is herein incorporated by reference in its entirety.


FIELD OF THE INVENTION

The present invention relates to a method to produce alcohols and alcohol precursors through genetically manipulated ethanologenic bacteria that degrades cellulose and ferments the remaining sugar source.


BACKGROUND OF THE INVENTION

Biofuel is increasingly becoming a necessity in order to wean off the human consumption of fossil fuels in aspects of everyday life, transport and home heating being the largest two industries of focus. As an alternative energy source to oil and coal, the main feedstock for the production of bioethanol and other bioalcohols is starch which can yield its sugar much more readily than cellulose. This is due to the difference in structure as starch contains glucose molecules connected through α-1,4 linkages and cellulose comprises of glucose molecules attached through β-1,4 linkages. The β-1,4 linkages allow for crystallization of the cellulose, leading to a more rigid structure, which is more difficult to break down using physical, chemical, and biological processes.


The limitation that comes from solely concentrating the production of bioethanol on extracting the sugars from starches is that it prevents the utilization of the larger portion of biomass which comes in the form of lignocellulosic biomass (contains lignin, cellulose, and hemicellulose) present in almost every plant on earth. A delignification reaction allows the recovery of cellulose from those lignocellulosic plants. Further degradation of the cellulose generates cellobiose and/or glucose which can be utilized for the production of ethanol using various biology-based processes.


Seen as a sustainable alternative to gasoline and with the goal of alleviating many countries' dependence on foreign oil, the bioethanol industry is still hampered by its dependence on corn or sugar cane as main sources of fuel, as they are both rich in starch. It is estimated that about 45% of all corn production in the U.S. is directed to ethanol fuel production. This is a situation which has disastrous consequences when the prices of gasoline decline significantly low making corn-based bioethanol unsustainable on a price viewpoint.


Across the world, many other large ethanol-producing countries, including China and Brazil, have shown some struggles in ethanol production from biomass as many companies are carrying large debts from the implementation of such processes in conjunction with large processing plants having to be shut down or decrease production.


In Asia, palm oil prices have recently increased to their highest levels in years, which, in turn, will hamper the ability of Indonesia and Malaysia to produce local biofuel. Oil palm trunk is a valuable and plentiful resource in those countries to generate biofuels and biochemicals. Oil palm trunk contains a large amount of starch which is more readily solubilized in water, compared to cellulose. The starch can then be heated and hydrolyzed to glucose by amylolytic enzymes without pre-treatment. However, the conventional Oil palm trunk treatment requires high capital and operational costs and is therefore prohibitive to market entry. Moreover, the treatment carries a high probability of microbial contamination during starch processing which significantly reduces purity and poses additional complications in refining procedures.


In Europe, the biofuel industry (including biodiesel and bioethanol production) depends heavily on food-based feedstocks like vegetable oils (i.e., rapeseed, palm oil, soy) for biodiesel and corn, wheat, and sugar beet for bioethanol. Simultaneously, concerns have been raised that making fuel out of crops displaces other crops and can inflate food prices. These concerns are leading to policy changes that incentivize a shift away from food-based biofuels.


The pivot from starches to cellulose for the production of glucose is preferable as it will cease to use a food source to generate glucose. However, the costs to do so are currently prohibitive. Cellulosic ethanol as it is called relies on the non-food component of a plant to be used to generate ethanol. This would allow the replacement of the current more widespread approach of making bioethanol by using corn or sugarcane. The diversity and abundance of these types of cellulose-rich plants would allow for food resources to remain largely intact and capitalize on the waste generated from these food resources (such as cornstalk and stover) to generate ethanol. Other cellulose sources such as straws, algae and even trees fall under cellulose-rich biomass sources which can be used in generating ethanol if a commercially viable process is developed.


The reason why starches are preferred to cellulose-rich sources to generate ethanol is that the extraction of glucose from cellulose is substantially more difficult and resource intensive. To better understand the conditions associated with this increased difficulty, it is worthwhile describing the structural similarities and differences between starch and cellulose.


Cellulose and starch are polymers which have the same repeat units of glucose. However, the differences between starch and cellulose can be seen in the way the repeating glucose monomers are connected to one another. In starch, the glucose monomers are oriented in the same direction. In cellulose, each successive glucose monomer is rotated 180 degrees in respect to the previous glucose monomer. This, in turn, ensures that the bonds between each monomeric glucose differs between starch and cellulose. In starch, the bonds (otherwise known as links between the monomers) are referred to as α-1,4 linkages, in cellulose these bonds are referred to as β-1,4 linkages (see FIG. 1).


The difference between these bonds impacts the chemical characteristics of starch and cellulose. Starch can dissolve in warm water while cellulose does not. Starch can be digested by humans, cellulose cannot. In general, starch is structurally weaker than cellulose partly due to its geometrical make-up which is less crystalline than cellulose. Starch is, at its core, a method for plants to store energy due to the reversibility of the α-1,4 linkage, therefore extracting sugars from starch is much easier than to do so from cellulose as the latter's core function is to provide structural support.


As the main component of lignocellulosic biomass, cellulose is a biopolymer consisting of many glucose units connected through β-1,4-glycosidic bonds (see FIG. 1). Glucose has two isomers: α-glucose (present in starches as branched polymers) and β-glucose (present in cellulose connected via a β-1,4-glycosidic bond with one β-glucose monomer rotated by 180 degrees relative to its neighbour). A cellulose molecule can comprise between hundreds to thousands of glucose units. Since the cellulose molecules are linear, due in part to intermolecular hydrogen bonding, neighboring cellulose molecules can be very closely packed, and, in turn, provide the structural strength necessary to support plants.


Hydrolysis of Cellulose

The hydrolysis of cellulose is the rate limiting step in the conversion of cellulose into biofuel. The processes currently using cellulose as a starting material for bioethanol production require the conversion of cellulose into cellobiose, further processing to generate glucose, and the final generation of ethanol. The fermentation of glucose using ethanologenic organisms is what leads to the production of ethanol. While that last step in biofuel production has been mastered for some time, the rate limiting step of cellulose hydrolysis is the most crucial one which hinders a wider acceptance of biofuels. The difficulty in overcoming this conversion of cellulose into glucose lies with the fact that cellulose has a crystalline structure which renders its conversion to glucose quite difficult because of the close packing of multiple cellulose polymers. This close packing imparts cellulose its inherent stability under a variety of chemical conditions. For example, cellulose polymers are generally insoluble in water, as well as a number of organic solvents. Furthermore, cellulose is also generally insoluble when exposed to weak acids or bases.


In general, there are three main approaches to hydrolyze cellulose: mechanical or physical, chemical and enzymatic. The chemical method resorts to the use of concentrated strong acids to hydrolyze cellulose under conditions of high temperature and pressure. Many different types of acids, such as HCl and H2SO4, have been used in the past to achieve this. The use of one of these acids usually results in at least one of the following drawbacks: corrosion of the reaction vessel, difficulty of disposing of the discharged reactants, and others. The biofuel industry is generally reticent to use chemically hydrolyzed cellulose because of the presence of toxic by-products in the resulting glucose. These by-products, if introduced in the fermentation step, will negatively affect the delicate balance of the fermenting yeast.


Cost of Enzymatic Hydrolysis

It is known that the costs to extract biofuel from cellulose are higher than when doing so from starch. It is estimated that, on average, depending on location and availability of biomass, the cost for cellulose conversion is about 50% more that starch conversion to glucose. This means that there currently is a clear barrier to producers for using cellulose rather than corn or other starch resources to generate glucose from biomass.


It is generally understood that roughly half of the total cost of producing biofuel from cellulose stems from the price of the enzymes (cellulases and hemicellulases). The generation of enzymes for enzymatic hydrolysis of cellulose is a time-consuming process and large volumes of enzyme are required to render the process commercially viable. One possible approach is to improve the rate of the hydrolysis reaction which, in turn, would result in a decrease in the overall cost of the process.


The enzymatic approach to hydrolyzing cellulose uses enzymes to carry out the hydrolysis reaction. Enzymes, such as cellulases (comprising endoglucanases; exoglucanases; and β-glucosidases) are used for the conversion of cellulose into glucose, however each requires extensive controls in place to maximize the reaction rates the enzymatic approach is expected to provide. Conditions such as temperature, pH, salinity, concentration of substrate and product are all factors that may affect enzyme activity with even small deviations of these parameters from the enzyme's optimal conditions resulting in loss of function. Overall, with many controls needing to be taken into consideration with the enzymatic hydrolysis of cellulose along with strict enzyme-specific functional conditions, such a method can render the process cost prohibitive in some cases and/or limit their implementation.


The enzymatic hydrolysis of cellulose is, as seen from the above, limited by the structure of cellulose itself but also by the approaches taken to degrade it into a biofuel. The production of a robust, low-cost process from cellulose has not yet been achieved. In this sense, genetically modified organisms have been employed for part of the entirety of the cellulose to ethanol pathway.


U.S. Pat. No. 4,496,656A describes a process for production of cellulase according to the present invention thus comprises culturing a cellulase-producing microorganism belonging to Cellulomonas uda CB4 in a cellulose-containing medium and recovering the cellulase produced from the culture broth. According to the present invention, because the bacteria belonging to Cellulomonas uda CB4 is capable of producing a cellulase having a high activity, not found in the reports of the prior art, in a culture medium, it is possible to produce a cellulase having a high crystalline cellulose decomposing activity comparable to those produced from a mold within a short cultivation period of two days.


In the paper titled “Expression of a cellulase gene in Zymomonas mobilis” by Misawa et al. (J. Biotechnology, 1988, 7 (3), 167-177), it was reported that a cellulase (CMCase) gene of Cellulomonas uda CB4 was introduced into Zymomonas mobilis NRRL B-14023 on pZA22, a cloning vector for Zymomonas, by conjugal transfer. Z. mobilis carrying this gene synthesized cellulase immunologically identical with that of C. uda CB4, by transcriptional read-through from the promotor of the chloramphenicol resistance (chloramphenicol acetyltransferase) gene within pZA22. A strong promotor containing a translation initiation signal was obtained from Z. mobilis NRRL B-14023 chromosomal DNA. By gene fusion between this Zymomonas promotor fragment and the truncated cellulase gene, the activity of cellulase synthesized in Z. mobilis reached 0.78 units per ml culture, six-fold higher than that by transcriptional read-through from the promotor of the chloramphenicol resistance gene.


In the paper titled “Expression of an endoglucanase gene of Pseudomonas fluorescens var. cellulosa in Zymomonas mobilis” by Lejeune et al. (FEMS Microbiology Letters, 1988, 49 (3), 363-366), the authors reported that by using a broad host-range, mobilizable plasmid vector, the endoglucanase gene eglX from Pseudomonas fluorescens var. cellulosa was cloned and expressed in the bacterial ethanologen Zymomonas mobilis. The enzyme was intracellular in this new host. It was produced throughout the growth phase and was not repressed by glucose. We postulate that transcription of the eglXgene was initiated from a promoter of the vector in Z. mobilis.


In the paper titled “Heterologous Expression and Extracellular Secretion of Cellulolytic Enzymes by Zymomonas mobilis” by Linger et al. (Appl Environ Microbiol. 2010 October; 76(19): 6360-6369), the authors reported that by using a technique known as consolidated bioprocessing (CBP), the initial steps toward achieving a single organism to convert pretreated lignocellulosic biomass to ethanol in the fermentation host Zymomonas mobilis were investigated. This was achieved by expressing heterologous cellulases and subsequently examining the potential to secrete these cellulases extracellularly. Numerous strains of Z. mobilis were found to possess endogenous extracellular activities against carboxymethyl cellulose, suggesting that this microorganism may harbor a favorable environment for the production of additional cellulolytic enzymes. The heterologous expression of two cellulolytic enzymes, E1 and GH12 from Acidothermus cellulolyticus, was examined. Both proteins were successfully expressed as soluble, active enzymes in Z. mobilis although to different levels. While the E1 enzyme was less abundantly expressed, the GH12 enzyme comprised as much as 4.6% of the total cell protein. Additionally, fusing predicted secretion signals native to Z. mobilis to the N termini of E1 and GH12 was found to direct the extracellular secretion of significant levels of active E1 and GH12 enzymes. The subcellular localization of the intracellular pools of cellulases revealed that a significant portion of both the E1 and GH12 secretion constructs resided in the periplasmic space. The results obtained strongly suggest that Z. mobilis can support the expression and secretion of high levels of cellulases relevant to biofuel production, thereby serving as a foundation for developing Z. mobilis into a CBP platform organism.


In the paper titled “Evaluation of Cellulase Production by Zymomonas mobilis” by Todhanakasem and Jittjang (Bioresources, 2017, 12(1), 1165-1178), the authors report the use of Z. mobilis as a potential microbe for consolidated bioprocessing to convert lignocellulosic biomass to fermentable sugars while at the same time producing ethanol. To achieve this goal, Z. mobilis must be evaluated for the production of cellulolytic enzyme. This work reports on the potential of intracellular and extracellular crude extracts from Z. mobilis ZM4 and TISTR 551 to hydrolyze various cellulosic materials including carboxymethylcellulose (CMC), delignified rice bran, microcrystalline cellulose, and filter paper. Crude intracellular extracts from ZM4 and TISTR 551 showed high endoglucanase activity with CMC substrates at an optimal pH of 6 to 7 and temperature range of 30 to 40° C. The endoglucanase activity from the crude extracts was significantly higher than the exoglucanase activity. Of the high crystalline celluloses substrates tested, the best results were obtained for the hydrolysis of delignified rice bran by crude intracellular enzyme extracts of Z. mobilis TISTR 551.


In the paper by Vasan et al. titled “Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae” (Bioresource Technol. 2011, 102(3), 2585), the authors report the use of a 2.25-kb fragment conferring cellulase activity from Enterobacter cloacae (isolated from the gut of the wood feeding termite, Heterotermes indicola), cloned in Escherichia coli. The cloned fragment contained a 1083-bp ORF which could encode a protein belonging to glycosyl hydrolase family 8. The cellulase gene was introduced into Zymomonas mobilis strain Microbial Type Culture Collection centre (MTCC) on a plasmid and 0.134 filter paper activity unit (FPU)/ml units of cellulase activity was observed with the recombinant bacterium. Using carboxymethyl cellulose and 4% NaOH pretreated bagasse as substrates, the recombinant strain produced 5.5% and 4% (v/v) ethanol respectively, which was threefold higher than the amount obtained with the original E. cloacae isolate. The recombinant Z. mobilis strain could be improved further by simultaneous expression of cellulase cocktails before utilizing it for industrial level ethanol production.


In light of the above, it is clear that there is an unmet need for a process to generate alcohol and alcohol precursors from a lignocellulosic biomass material that is not reliant on enzymatic cocktails due to their cost. In that respect, the use of a single organism that contains cellulolytic as well as fermentation capabilities is much more highly attractive as it will potentially lower the costs of bioethanol production.


SUMMARY OF THE INVENTION

The embodiments of the present invention are related to novel organisms for the production of alcohols and alcohol precursors using cellulose-based materials. More particularly, the invention encompasses methods for the genetic modifications of an ethanologenic organism which allows the organism to produce alcohols and alcohol precursors in association with cellulose degradation through the introduction of genes isolated from prokaryotic and/or eukaryotic organisms. These genes associated with cellulose degradation are then integrated or introduced into another prokaryotic organism. Through the inclusion of cellulose degrading genes into an organism that natively does not contain them, this invention extends metabolic pathways beyond those present natively in the prokaryotic organism itself for the purpose of producing ethanol.


According to a first aspect of the present invention, there is provided polynucleotide sequences and their corresponding polypeptide sequences from microorganisms that allow for the expression of cellulose hydrolytic proteins in bacteria for the purpose of producing an alcohol or alcohol precursor. Gene and promoter sequences were introduced into the prokaryotic cell using techniques such as two-step allelic exchange or using expression vectors. Natural promoters and ribosomal binding sites (RBS) from the bacterial expression strain were attached upstream of the gene's start codon to induce gene expression within the bacterium. Methods to transfer these genes from cloning vectors into the organisms of interest are also briefly outlined and are modelled after the protocol seen for the knock in or knock out of genes in a different bacterium, Pseudomonas aeruginosa, using the aforementioned two-step allelic exchange, however these defined methods are not meant to limit the scope of the invention and thus CRISPR and other undefined cloning methods can also be used.


According to a preferred embodiment of the present invention, there is provided a genetically modified ethanologenic organism which comprises a β-glucosidase 1 (bgl1) polynucleotide sequence, wherein said bgl1 polynucleotide sequence has at least 70% sequence coverage to SEQ 3 or SEQ 14, and at least 70% sequence identity to SEQ 3 or SEQ 14.


According to a preferred embodiment of the present invention, there is provided a genetically modified ethanologenic organism which comprises a β-glucosidase 1 (bgl1) polynucleotide sequence, wherein said bgl1 polynucleotide sequence is selected from the group consisting of: SEQ 3; SEQ 14; SEQ 15; SEQ 16; SEQ 17; SEQ 18; SEQ 19; SEQ 20; and SEQ 21.


According to a preferred embodiment of the present invention, SEQ 3 or SEQ 14, upon transcription and translation, provides a β-glucosidase 1 (BGL1) polypeptide sequence SEQ 4. According to a preferred embodiment of the present invention, there is provided a genetically modified ethanologenic organism which comprises a BGL1 polypeptide sequence which has at least 70% sequence coverage to SEQ 4, and at least 35% sequence identity to SEQ 4.


According to a preferred embodiment of the present invention, there is provided a genetically modified ethanologenic organism which comprises a β-glucosidase 1 (BGL1) polypeptide sequence wherein said BGL1 polypeptide sequence is selected from the group consisting of: SEQ 4; SEQ 22; SEQ 23; SEQ 24; SEQ 25; SEQ 26; SEQ 27; SEQ 28; SEQ 29; SEQ 30; SEQ 31; SEQ 32; SEQ 33; SEQ 34; SEQ 35; SEQ 36; SEQ 37; SEQ 38; SEQ 39; and SEQ 40.


According to a preferred embodiment of the present invention, there is provided a genetically modified ethanologenic organism which comprises an exoglucanase (cex-like) polynucleotide sequence, wherein said cex-like polynucleotide sequence has at least 70% sequence coverage to SEQ 1 or SEQ 68, and at least 70% sequence identity to SEQ 1 or SEQ 68.


According to a preferred embodiment of the present invention, there is provided a genetically modified ethanologenic organism which comprises an exoglucanase (cex-like) polynucleotide sequence, wherein said cex-like polynucleotide sequence is selected from the group consisting of: SEQ 1, SEQ 41, SEQ 42, SEQ 43, SEQ 44, SEQ 45, SEQ 46, SEQ 47, SEQ 48, and SEQ 68.


According to a preferred embodiment of the present invention, SEQ 1 or SEQ 68, upon transcription and translation, provides an exoglucanase (CEX-like) polypeptide sequence. According to a preferred embodiment of the present invention, there is provided a genetically modified ethanologenic organism which comprises a CEX-like polypeptide sequence which has at least 70% sequence coverage to SEQ 2, and at least 35% sequence identity to SEQ 2.


According to a preferred embodiment of the present invention, there is provided a genetically modified ethanologenic organism which comprises an exoglucanase (CEX-like) polypeptide sequence, wherein said CEX-like polypeptide sequence is selected from the group consisting of: SEQ 2; SEQ 49; SEQ 50; SEQ 51; SEQ 52; SEQ 53; SEQ 54; SEQ 55; SEQ 56; SEQ 57; SEQ 58; SEQ 59; SEQ 60; SEQ 61; SEQ 62; SEQ 63; SEQ 64; SEQ 65; SEQ 66; and SEQ 67.


According to a preferred embodiment of the present invention, there is provided a genetically modified ethanologenic organism which comprises:

    • an exoglucanase (cex-like) polynucleotide sequence, wherein said cex-like polynucleotide sequence has at least 70% sequence coverage to SEQ 1 or SEQ 68, and at least 70% sequence identity to SEQ 1 or SEQ 68; and
    • a β-glucosidase 1 (bgl1) polynucleotide sequence, wherein said bgl1 polynucleotide sequence has at least 70% sequence coverage to SEQ 3 or SEQ 14 and at least 70% sequence identity to SEQ 3 or SEQ 14.


Preferably, said organism comprises:

    • an exoglucanase (cex-like) polynucleotide sequence selected from the group consisting of: SEQ 1; SEQ 41; SEQ 42; SEQ 43; SEQ 44; SEQ 45; SEQ 46; SEQ 47; SEQ 48; and SEQ 68; and
    • a β-glucosidase 1 (bgl1) polynucleotide sequence selected from the group consisting of: SEQ 3; SEQ 14; SEQ 15; SEQ 16; SEQ 17; SEQ 18; SEQ 19; SEQ 20; and SEQ 21.


According to a preferred embodiment of the present invention, there is provided a genetically modified ethanologenic organism which upon transcription and translation under the control of the native of a native or synthetic promoter and Ribosomal binding site (RBS), comprises:

    • an exoglucanase (CEX-like) polypeptide sequence, wherein said CEX-like polypeptide sequence has at least 70% sequence coverage to SEQ 2, and at least 35% sequence identity to SEQ 2; and
    • a β-glucosidase 1 (BGL1) polypeptide sequence, wherein said BGL1 polypeptide sequence has at least 70% sequence coverage to SEQ 4, and at least 35% sequence identity to SEQ 4.


Preferably, said organism comprises:

    • said exoglucanase (CEX-like) polypeptide sequence is selected from the group consisting of: SEQ 2; SEQ 49; SEQ 50; SEQ 51; SEQ 52; SEQ 53; SEQ 54; SEQ 55; SEQ 56; SEQ 57; SEQ 58; SEQ 59; SEQ 60; SEQ 61; SEQ 62; SEQ 63; SEQ 64; SEQ 65; SEQ 66; and SEQ 67; and
    • said β-glucosidase 1 (BGL1) polypeptide sequence is selected from the group consisting of: SEQ 4; SEQ 22; SEQ 23; SEQ 24; SEQ 25; SEQ 26; SEQ 27; SEQ 28; SEQ 29; SEQ 30; SEQ 31; SEQ 32; SEQ 33; SEQ 34; SEQ 35; SEQ 36; SEQ 37; SEQ 38; SEQ 39; and SEQ 40.


Preferably, said organism further comprises a promoter and RBS sequence which drives gene expression, wherein the genetic material for the promoter/RBS sequences comprises at least one or another of the following: SEQ 5; SEQ 6; SEQ 7; SEQ 8; SEQ 9; SEQ 10; SEQ 11; SEQ 12; and SEQ 13. Preferably, the organism is a bacterium. More preferably, the organism is selected from the group consisting of the genera Aspergillus, Mucor, Zymomonas, Escherichia, Clostridia, Bacillus, and Pseudomonas. According to a preferred embodiment of the present invention, the organism is a prokaryotic organism. Preferably, the organism belongs to the bacterial genus Zymomonas.


According to a preferred method of the present invention, the ethanologenic organism is selected from the genus of Aspergillus, Mucor, Zymomonas, Escherichia, Clostridia, Bacillus, and Pseudomonas, however this list by no means is meant to limit the scope of the invention. Preferably, the ethanologenic organism is the bacteria Zymomonas mobilis.


According to another aspect of the present invention, ethanologenic bacterial cells were genetically modified by inserting a bacterial promoter sequence into the bacterial genome, immediately followed by a cellulose hydrolytic gene(s)-related to the degradation of cellulose. In some embodiments, the native promoter and polynucleotide sequence could also include the promoter and ribosomal binding site (RBS) including various combinations from the following genes: Glyceraldehyde-3-phosphate dehydrogenase, type I (gap) (Pgap), Thiamine pyrophosphate protein TPP binding domain-containing protein (pdc) (Ppdc), the EF-Tu transcription factor (Ptuf), Phosphopyruvate hydratase (eno) (Peno), 2-Dehydro-3-deoxyphosphogluconate aldolase/4-hydroxy-2-oxoglutarate aldolase (eda) (Peda), glucose-6-phosphate dehydrogenase (zwf) (Pzwf), ROK family protein (frk) (Pfrk), Carboxymethylenebutenolidase (clcD1) (PclcD1), as well as Glucosamine-fructose-6-phosphate aminotransferase (glmS) (PglmS), however this list of possible promoters is in no way meant to limit the scope of the invention. In preferred embodiments, the promoter and RBS polynucleotide sequence to regulate cellulose degradation for the production of an alcohol or alcohol precursor is the native promoter for the Glyceraldehyde-3-phosphate, dehydrogenase, type 1 (gap) gene (Pgap), obtained from Z. mobilis.


According to a preferred embodiment of the present invention, cex-like genes can be acquired from, but by no means is limited to, the following prokaryotic species: Cellulomonas uda, Cellulomonas palmilytica, Cellulomonas cellasea, Saccharothrix syringae, Promicromonospora iranensis, Glycomyces paridis, Micromonospora fulviviridis, Couchioplanes caeruleus, Streptomonospora alba, Phytoactinopolyspora halotolerans, Cellulomonas wangsupingiae, Xylanimonas cellulosilytica, Actinoplanes lutulentus, or Micromonospora saelicesensis. These listed organisms are exemplary only and are in no way meant to limit what organisms these genes can be acquired from, nor to limit the scope of the invention.


According to a preferred embodiment of the present invention, bgl1 genes can be acquired from, but by no means is limited to, the following eukaryotic species: Aspergillus niger, Aspergillus luchuensis, Penicillium vulpinum, Sanghuangporus baumii, Penicillium rolfsii, Trichoderma gamsii, Halenospora varia, Daldinia childiae, Fusarium solani, Glaciozyma antarctica, Monascus purpureus, and Trichophyton interdigitale. These listed organisms are exemplary only and are in no way meant to limit what organisms these genes can be acquired from, nor to limit the scope of the invention.


According to a preferred embodiment of the present invention, the cex-like and bgl1 genes are obtained from the organism Cellulomonas uda (cex-like) and Aspergillus niger (bgl1), respectively. In other embodiments, a native promoter sequence can be used to bolster the production of proteins and/or molecules utilized in the production of an alcohol or alcohol precursor through the hydrolysis of cellulose.


According to another embodiment of the present invention, the ethanologenic bacterial cells have been genetically modified to have improved degradation of cellulose through the addition of both prokaryotic and eukaryotic gene(s) which when transcribed and translated generate cellulose hydrolytic enzymes. In some embodiments, the transcription of these genes is driven by a promoter sequence, and can include, but is not limited to, any combination of Pgap-cex-like or Pgap-bg11 gene cassettes which have been integrated into a bacterial cell.





BRIEF DESCRIPTION OF THE ACCOMPANYING FIGURE

The invention may be more completely understood in consideration of the following description of various embodiments of the invention in connection with the accompanying FIGURE, in which:



FIG. 1 is a schematic representation of the structure of cellulose.





DETAILED DESCRIPTION OF THE INVENTION

It is known to the person skilled in the art that some species of ethanologenic bacteria contain and express endogenous endoglucanase and endogenous exoglucanase enzymes with functional cellulase activities. According to an aspect of the present invention, there is provided genetic modifications to ethanologenic bacterial strains to enhance such innate capabilities and thereby increase the efficiency of cellulose degradation by said bacteria.


According to a preferred embodiment of the present invention, there are provided genetic modifications to ethanologenic bacterial strains which allow for the degradation of cellulose with the purpose of producing an alcohol or alcohol precursor from an inexpensive cellulosic feedstock using a bacterial species modified with a cex-like polynucleotide sequence (such as SEQ 1 or SEQ 68) or, upon transcription and translation of said cex-like polynucleotide, a CEX-like polypeptide (such as SEQ 2).


According to a preferred embodiment of the present invention, there are provided genetic modifications to ethanologenic bacterial strains which allow for the degradation of cellulose with the purpose of producing an alcohol or alcohol precursor from an inexpensive cellulosic feedstock using bacterial species modified with a bgl1 polynucleotide sequence (such as SEQ 3 or SEQ 14) or, upon transcription and translation of said bgl1 polynucleotide, a BGL1 polypeptide (such as SEQ 4).


According to an aspect of the present invention, there is provided genetic modifications to ethanologenic bacterial strains which includes a combination of cex-like and bgl1 polynucleotide sequences allowing for increased degradation of cellulose with the intent to produce an alcohol or alcohol precursor from inexpensive feedstock as a source of cellulose.


Definitions

Within the context of this invention all terms and technical parameters described fall within their commonly known meanings as known by individuals within the field of science that the proposed invention is associated with unless otherwise stated. Furthermore, unless otherwise indicated, all techniques utilized within the context of this invention are commonly conducted within the fields of molecular biology, cell biology, biochemistry, and microbiology.


An alcohol or alcohol precursor is any molecule that is obtained as an intermediate, by-product, or co-product of the conversion of a cellulosic material to an alcohol. It is known to the person skilled in the art that said alcohol precursor can be an oligosaccharide, di-saccharide, monosaccharide, organic acid and their corresponding salts, aldehyde, ketone, etc.


Biofuels within the context of this invention is defined as any fuel for which is produced using biological material.


Bioethanol within the context of this invention is defined as ethanol that is produced from lignocellulosic biomass.


Cellulosic ethanol is defined within the context of this invention as ethanol that is produced through the degradation of cellulose.


Cellobiose is defined within the context of this invention as the dimer of glucose formed from the degradation of cellulose.


Cellulose hydrolysis within the context of this invention is defined as the degradation of cellulose via hydrolytic processes.


Hydrolysis within the context of this invention is defined as a chemical or microbiological reaction which facilities the breaking of chemical bonds between molecules.


A monomer is defined within this invention as a single molecule that can, under specific conditions, be combined with other molecules, including itself, to generate more complex structures called polymers.


A polymer is defined within the context of this invention as a material comprised of repeating subunits of the same or different molecule.


A biopolymer is defined within the context of this invention as a polymer that is typically produced by the cells of living organisms. By way of example, cellulose is considered a biopolymer.


A polynucleotide within the context of this invention is defined as the collection of individual nucleotides in any organization or size.


A polypeptide within the context of this invention is defined as the combination of multiple peptides of any organization or size that relates to the amino acid sequence. The term polypeptide and protein within the context of this invention can be used interchangeably.


A vector within the context of this invention refers to the composition of a polynucleotide within the intended purpose of introducing nucleic acids into one or more organism types. Vectors are further defined based on their functional purpose and can be designated as expression vectors, cloning vectors, plasmids, or shuttle vectors.


The term expression within the context of this invention refers to the generation of a polypeptide sequence which is produced based on its polynucleotide sequence or gene.


The term promoter in the context of this invention is used to describe the nucleic acid sequence for the regulation and binding of polymerases for the purpose of the transcribing of a gene. This promoter can be native to an organism, or a non-endogenous promoter can be introduced into an organism to alter the regulation of gene expression.


The term gene refers to a sequence of DNA that encodes for a specific polypeptide sequence. A gene can include both sequences between coding regions (introns) and the encoding sequence itself (exon).


The term recombinant in the context of this invention refers to the modification or alteration of a sequence associated with either a polypeptide or polynucleotide sequence. Recombination can be utilized for altering expression and coding segments of a gene of interest that would produce a non-native or non-naturally occurring product.


The term homology or homologous refers to the level of similarity between two or more polypeptide or polynucleotide sequences.


The terms transfection, transformation, or introduced refer to the addition of polynucleotide sequence(s) that would normally be considered exogenous to organism. This may include the addition of a polynucleotide directly to the genome of an organism or the transfer of a plasmid and/or vector.


Within the context of this patent the terms native or natural refers to polypeptide and/or polynucleotides present within the organism prior to any modification. These native or naturally occurring polypeptides and/or polynucleotides would be present or produced by the organism without any external alterations.


The term metabolic pathway refers to the subsequential biochemical reactions involved in the formation of a biologically relevant product within an organism.


Within this invention the terms knock-in and knock-out refer to the addition or removal of DNA sequences within an organism and can also be interchangeable with the terms insertion and deletion, respectively.


The term promoter within the context of this invention refers to a sequence of DNA that is responsible for the initiation of DNA transcription and thus polypeptide formation.


A coding sequence within the context of this invention refers to a sequence of polynucleotides or DNA that facilitates the generation of a protein through transcription and translational processes.


Genetic modification or related statements herein refer to the alteration of the genetic code of an organism which includes the insertion or deletion of DNA sequences within an organism. Within the context of this invention, genetic modification could include insertion and maintenance of an expression vector into the organism, or the direct modification of the organism's genome by directly adding or deleting genes through a process like two-step allelic exchange or CRISPR.


The term ribosomal binding site (RBS) refers to the region within a polynucleotide sequence that allows for the appropriate binding of the ribosome to facilitate the translation of a polynucleotide sequence to produce the corresponding polypeptide sequence, which includes the terms protein, enzyme, and plasmid.


The term cloning vector herein refers to a polynucleotide sequence or plasmid that can be replicated within a host organism for storage or amplification purposes. A cloning vector may contain all the necessary regulatory sequences needed to facilitate the transcription and translation of a protein.


The term unmodified promoter is defined as a promoter sequence which has been unaltered or exists within the host organism itself.


The term two-step allelic exchange is referred to the process by which a gene of interest is either interested or deleted from an organism through specific selective conditions. The insertion or deletion of a specific gene of interest is done so through the utilization of distinct polynucleotide sequences which allow for the exchange of genetic material between two sources.


The term CRISPR cloning is defined as a process by which the gene of interest is inserted or removed from an organism's genome using the CRISPR-CAS9 cloning system.


The terms upstream and downstream refer to regions of polynucleotides which are found prior to or after a specific gene of interest within a plasmid and/or genome of an organism.


The term enzyme within this invention defines a polypeptide sequence, specifically in the form of a protein, that can modify a biological molecule or take part within its generation through direct or indirect interactions. The process by which an enzyme influences the modification and/or production of a biological molecule and/or product is termed enzymatic activity.


The term open reading frame (ORF) refers to the collection of nucleotides which are found in between the start and stop codons of a polypeptide encoding DNA sequence.


The term codon(s) refers to 3 adjacent nucleotides in a polynucleotide sequence that are used by the cell to “decode” the polynucleotide sequence when the polynucleotide sequence is translated to make the polypeptide sequence and are responsible defining the order of protein residues in a polypeptide sequence based on this code. Based on a 3-letter code, and 4 different nucleotide bases, these codons include 64 different combinations that are able to be used by the cell, which with some redundancy codes for 22 possible protein residues, as well as 1 start and 3 stop codons.


A start and stop codon refer to a nucleotide codon sequence comprised of three specific nucleotides in succession of each other which allows for the identification of the initiation (start) and termination (stop) for the transcription of a polypeptide sequence.


The term encoded refers to the polypeptide sequence that is obtained from a polynucleotide sequence after the polynucleotide sequence had been transcribed and translated.


The combined term transcribed and translated (or the combined process of transcription and translation) refers to the process by which a polynucleotide sequence is used to produce a polypeptide sequence.


Metabolic engineering herein refers to the alteration of an organism's metabolic pathway potential. This can include both the deactivation and/or altering of pre-existing metabolic pathways of an organism or the inclusion of additional metabolic processes.


Sequence alignment herein refers to a bioinformatic technique by which two polynucleotide sequences or two polypeptide sequences are arranged or aligned in such a way as to identify regions of similarity between a reference sequence (the sequence that is known) and the quarry sequence (the sequence to be compared to the reference sequence). Those skilled in the art know that alignment algorithms such as, but by no means limited to, the BLAST, ALIGN, or CLUSTAL algorithms can be used to obtain this information for polynucleotide or polypeptide sequences, respectively.


Percentage sequence identity or percentage identity herein refers to the similarity between 2 sequences that have been processed through a sequence alignment, to provide insight into how similar aligned sequences are at either the nucleotide or peptide level for polynucleotide or polypeptide sequences, respectively. The percentage identity is used to determine the similarity of a query sequence to a reference sequence.


Percentage sequence coverage or percentage coverage refers to the number of aligned nucleotides or peptides in a query sequence relative to the length of the reference sequence. The percentage coverage provides an indication of how much of the reference polynucleotide or polypeptide sequence is covered by the query sequence, allowing for instance the lengths of the found genes or proteins to be compared. The BLASTN algorithm was used herein as one method to determine the percentage identity and percentage coverage between one or even multiple different polynucleotide sequences with respect to an inputted reference sequence, allowing for the determination of the percentage identity and percentage coverage of one or many query sequences to said reference sequence. One of ordinary skill in the art will recognize that search results from a BLASTN search will be influenced by the search parameters used in the search. Therefore, for all BLASTN searches done with respect to this invention to identify other sequences which have been catalogued in the NCBI polynucleotide databases relative to a reference include the following parameters:

    • Search set parameters are comprising of “standard databases (nr ect)”, with the specific database used being the “Nucleotide collection (nr/nt)”, and no exclusions or limitations were placed on the search (all default parameters)
    • Program selection algorithm parameters includes the highly similar sequences (known as the megablast algorithm) (the default parameter)
    • Algorithm parameters altered include the Max target sequences, which was set at 5000, otherwise all default parameters are used for relevant searches (other parameters in “General parameters”, and all parameters in “Scoring parameters” and “Filters and masking” are default)


The BLASTP algorithm was used herein as one method to determine the percentage identity and percentage coverage between one or even multiple different polypeptide sequences with respect to an inputted reference sequence, allowing for the determination of the percentage identity and percentage coverage of one or many query sequences to said reference sequence. One of ordinary skill in the art will recognize that search results from a BLASTP search will be influenced by the search parameters used in the search. Therefore, for all BLASTP searches done with respect to this invention to identify other sequences which have been catalogued in the NCBI polypeptide databases relative to a reference include the following parameters:

    • Search set parameters are comprising of “standard databases (nr ect)”, with the specific database used being the “Non-redundant protein sequences (nr)”, and no exclusions or limitations were placed on the search (all default parameters)
    • Program selection algorithm parameters includes the BLASTP (known as the protein-protein BLAST algorithm) (the default parameter)
    • Algorithm parameters altered include the Max target sequences, which was set at 5000, otherwise all default parameters are used for relevant searches (other parameters in “General parameters”, and all parameters in “Scoring parameters” and “Filters and masking” are default). Notable default parameters include an “Expect Threshold and word size of 0.05 and 5, respectively in the general parameters, the usage of the BLOSUM62 matrix with gap costs of Existence:11 and Extension: 1 for the Scoring parameters, and no filter or masking components selected.


The phrases substantially similar or substantially identical in the context of at least 2 nucleic acid sequences or at least 2 polypeptide sequences typically means that a polynucleotide, polypeptide, or region or domain of a polypeptide has a percentage coverage of at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 99%, or even 99.5%, and at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or even 99.5% percentage identity to the reference sequence. Some polynucleotide or polypeptide sequences that fall in this category are sequences that share genetic or protein homology to the reference sequence.


The terms genetic and protein homology, or homologous sequences refer to polynucleotide sequences or translated polypeptide sequences that have a similar or identical function in the cell. For example, 2 different proteins share a similar or identical function even though they were isolated from 2 different organisms. Polynucleotide sequences with homology are generally understood to have similar or identical biochemical functionality.


The term endoglucanase refers to a protein with a certain enzymatic activity to degrade cellulose by attacking random internal 1,4-β-linkages between the glucose units in cellulose.


The term exoglucanase refers to a protein with a certain enzymatic activity to degrade cellulose by releasing cellobiose or glucose from the nonreducing end of the cellulose polymer.


The term glucosidase refers to a protein with enzymatic activity to degrade cellobiose to glucose.


The term ethanologenic organism refers within this invention to an organism that can produce ethanol as part of its native metabolic processes.


Enzymes and Promoters for Cellulosic Ethanol Production

Example polypeptide sequences for enzymes involved in cellulose degradation that can be integrated into prokaryotic organisms are provided in the sequence listing. The expression and production of these sequences within the cell are partially driven by the genetic polynucleotide promoter and ribosomal binding site sequences as provided in the sequence listings: SEQ 5 (Pgap), SEQ 6 (Ppdc), SEQ 7 (Ptuf), SEQ 8 (Penc), SEQ 9 (Peda), SEQ 10 (Pzwf), SEQ 11 (Pfrk), SEQ 12 (PclcD1), and SEQ 13 (Pglms). The invention is not limited to the use of these polynucleotide sequences and their respective polypeptide sequences. Those of ordinary skill in the art know that organisms of a wide variety of species commonly express and utilize homologous proteins, which contain insertions, substitutions and deletions in the polypeptide sequences of the polynucleotide sequences listed above, and effectively provide a similar function. For example, the protein sequences for CEX-like from Cellulomonas uda or Couchioplanes caeruleus or Promicromonospora iranensis; or BGL1 from Aspergillus niger or Penicillium vulpinum or Halenospora varia may differ to different degrees from the polypeptide sequences seen between these organisms yet maintain similar or identical functions of the protein within the organism with respect to enzymatic function. Protein sequences comprising such variations are included within the scope of the present invention and are considered substantially or sufficiently similar to the referenced polynucleotide sequences above and upon transcription and translation their respective polypeptide sequences. Although it is not intended that the present invention is limited by any theory by which it achieves its advantageous result, it is believed and supported by biochemical knowledge that the identity between polypeptide sequences that is necessary to maintain proper functionality is related to maintaining the tertiary structure (3D) of the polypeptide. This maintenance of the tertiary structure is associated with the specific interactive/catalytic portions of the protein sequence and will therefore have the desired activity, and it is contemplated that a protein including these interactive sequences in the proper special context will have this activity.


The person of ordinary skill in the art knows that many different amino acids contain properties between each other and can serve similar functions in the final polypeptide sequence. Thus, when one amino acid is changed with another amino acid from this group, such as a non-polar amino acid, an uncharged polar amino acid, a charged polar acidic amino acid, or a charged polar basic amino acid, some polypeptide functionality is generally maintained. For example, it is known that the uncharged polar amino acid serine may be substituted for the uncharged polar amino acid threonine in a polypeptide without substantially altering the protein structure and functionality. Whether a given substitution will affect the functionality of the enzyme may be determined without undue experimentation using synthetic techniques and screening assays known to one of ordinary skill in the art.


The person of ordinary skill in the art will recognize that changes in the protein sequence, resulting from individual single or multi-nucleotide substitutions, deletions, or additions to a polynucleotide will lead to changes in the resulting translated polypeptide sequence. Small mutations, such as the change of an amino acid from one to another, or the addition or elimination of single amino acids, or a small to moderate percentage of amino acids from the encoded polypeptide sequence can be considered “sufficiently similar” when the alteration results in the substitutions of an amino acid with a chemically similar amino acid. Thus, any number of amino acid residues in a polypeptide chain, selected from a group of integers from 1-50, can be so altered. Thus, for example, 1, 2, 3, 5, 10, 12, 20, 32, 41, or even 50 alterations can be made. Conservatively modified variants typically provide similar biological activity to the unmodified variants and typically provide similar biological activity as the unmodified polypeptide sequence from which they are derived. For example, modification of CEX-like and BGL1 to yield functional proteins generally have a sequence identity of at least 40%, 50%, 60%, 70%, 80%, or 90%, preferably a sequence identity of greater than 50%, of the native protein to allow processing of its native substrate. Tables of conserved substitution provide lists of functionally similar amino acids. Amino acids in polypeptide chains that are similar to one another include the following groups: (1) Serine (S), Threonine (T); (2) Aspartic acid (D), Glutamic acid (E); (3) Asparagine (N), Glutamine (Q); (4) Alanine (A), Leucine (L), and Isoleucine (I).


Suitable Polynucleotide and Polypeptide Sequences for CEX-Like and BGL1

The person of ordinary skill in the art will recognize that many different organisms will have functionally similar polynucleotide and polypeptide sequences (or homology between the sequences), however there may be differences between these sequences when compared to a reference sequence. As examples, suitable polynucleotides and their corresponding polypeptide sequences for cellulose degradation can be seen below. Note that the following sequences by no means are meant to limit the scope of the invention. In fact, any substantially similar polynucleotide sequences or substantially similar produced polypeptide sequences for the CEX-like and BGL1 genes/proteins with similar function or similarity to these genes/proteins in the cellulose degradation pathway can also be used for producing alcohol and alcohol precursors including cellulosic ethanol production.


According to a preferred embodiment of the present invention, the β3-glucosidase 1 (bgl1) polynucleotide sequence SEQ 3 or SEQ 14 is one β-glucosidase utilized for producing alcohol and alcohol precursors including cellulosic ethanol production. In this embodiment, bgl1 is under the transcriptional control of a native promoter and a ribosomal binding site. However, in other embodiments of the invention, bgl1 polynucleotide sequences that are homologous and/or substantially similar to SEQ 3 or SEQ 14 may also be used in the present invention to produce cellulosic ethanol. The bgl1 polynucleotide sequences for β-glucosidase 1 in these embodiments will have at least 70% sequence coverage, or more preferably greater than 75%, 85%, 90%, 95%, 97% or most preferentially greater than 99% sequence coverage to SEQ 3 or SEQ 14, and sequence identities of at least 70%, or more preferentially greater than 75%, 80%, 90%, or 95% sequence identity, and most preferentially greater than 99% sequence identity to SEQ 3 or SEQ 14. The bgl1 polynucleotide sequences may include, but by no means are limited to, the following sequences: SEQ 3; SEQ 14; SEQ 15; SEQ 16; SEQ 17; SEQ 18; SEQ 19; SEQ 20; and SEQ 21.


According to a preferred embodiment of the present invention, the β3-glucosidase 1 (BGL1) polypeptide SEQ 4 is utilized to produce producing alcohol and alcohol precursors including cellulosic ethanol by the cell, whereby SEQ 4 is produced from the transcription and translation of the β3-glucosidase 1 (bgl1) polynucleotide SEQ 3 or SEQ 14. However, in other embodiments of the invention, BGL1 polypeptide sequences that are homologous and substantially similar to SEQ 4 may also be used in the present invention to produce cellulosic ethanol. BGL1 polypeptide sequences in these embodiments will have at least 70% sequence coverage to SEQ 4, or more preferentially greater than 75%, 80%, 85%, 90%, 95%, 97%, 98%, or most preferentially greater than 99% sequence coverage to SEQ 4, and a sequence identity of at least 35% to SEQ 4, or more preferably greater than 40%, 45%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 97% sequence identity, or most preferentially greater than 99% sequence identity to SEQ 4. These polypeptide sequences may include, but are by no means limited to, the following sequences: SEQ 4; SEQ 22; SEQ 23; SEQ 24; SEQ 25; SEQ 26; SEQ 27; SEQ 28; SEQ 29; SEQ 30; SEQ 31; SEQ 32; SEQ 33; SEQ 34; SEQ 35; SEQ 36; SEQ 37; SEQ 38; SEQ 39; and SEQ 40.


According to a preferred embodiment of the present invention, the 1,4-beta-cellobiohdryolase (cex-like) polynucleotide sequence SEQ 1 or SEQ 68 is one exoglucanase utilized for producing alcohols and alcohol precursors including cellulosic ethanol production. In this embodiment, cex-like is under the transcriptional control of a native promoter and a ribosomal binding site. However, in other embodiments of the invention, cex-like polynucleotide sequences that are homologous and/or substantially similar to SEQ 1 or SEQ 68 may also be used in the present invention to produce cellulosic ethanol. The cex-like polynucleotide sequences for 1,4-beta-cellobiohydrolase in these embodiments will have at least 70% sequence coverage, or more preferably greater than 75%, 80%, 85%, 90%, 95%, 98% or most preferentially greater than 99% sequence coverage to SEQ 1 or SEQ 68, and sequence identities of at least 70%, or more preferentially greater than 75%, 80%, 90%, or 95% sequence identity, and most preferentially greater than 99% sequence identity to SEQ 1 or SEQ 68. These cex-like polynucleotide sequences may include, but by no means are limited to, the following sequences: SEQ 1; SEQ 41; SEQ 42; SEQ 43; SEQ 44; SEQ 45; SEQ 46; SEQ 47; SEQ 48; and SEQ 68.


According to a preferred embodiment of the present invention, the exoglucanase (CEX-like) polypeptide SEQ 2 is utilized to produce producing alcohols and/or alcohol precursors including cellulosic ethanol by the cell, whereby SEQ 2 is produced from the transcription and translation of the exoglucanase (cex-like) polynucleotide SEQ 1 or SEQ 68. However, in other embodiments of the invention, CEX-like polypeptide sequences that are homologous and substantially similar to SEQ 2 may also be used in the present invention to produce cellulosic ethanol. The CEX-like polypeptide sequences for exoglucanase in these embodiments will have at least 70% sequence coverage to SEQ 2, or more preferentially greater than 75%, 80%, 85%, 90%, 95%, 97%, 98%, or most preferentially greater than 99% sequence coverage to SEQ 2, and a sequence identity of at least 35% to SEQ 2, or more preferably greater than 40%, 45%, 50%, 60%, 70%, 75%, 80%, 90%, or 95% sequence identity, or most preferentially greater than 99% sequence identity to SEQ 2. These CEX-like polypeptide sequences may include, but are by no means limited to, the following sequences: SEQ 2; SEQ 49; SEQ 50; SEQ 51; SEQ 52; SEQ 53; SEQ 54; SEQ 55; SEQ 56; SEQ 57; SEQ 58; SEQ 59; SEQ 60; SEQ 61; SEQ 62; SEQ 63; SEQ 64; SEQ 65; SEQ 66; and SEQ 67.


Embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.


Sequences:








SEQ 1:


Polynucleotide sequence of exoglucanase


(cex-like) (Cellulomonasuda)


ATGACCCCCTCATCCATGTCCAGACGCGCGCGCGTCGCGTCCGCG





CTCGCGATCGTCACGCTCGGCGCGACCATCGCGACGACGATCCCC





GCCCAGGCCGCCGGCAGCACGCTGCAGGCCGCGGCCTCCGAGAGC





GGCCGGTACTTCGGTACCGCCATCGCGGCGTTCAAGCTCAACGAC





AGCACGTACTCGTCCATCGCGAACCGTGAGTTCAACATGATCACG





GCCGAGAACGAGATGAAGATGGACGCGACGGAGCCGTCGCAGAAC





AACTTCAGCTACTCCAGCGGCGACCAGATCCTCAACTGGGCGCGC





AGCAACGGCAAGCGGGTTCGTGGGCACGCGCTCGCGTGGCACTCG





CAGCAGCCGGGCTGGATGCAGAACATGTCCGGCACCCAGCTGCGC





AACGCGATGCTCAACCACGTCACTCAGGTCGCGACGCACTACAAG





GGCAAGATCTACGCCTGGGACGTCGTGAACGAGGCGTACGCGGAC





AGCGGCGGCGGCCGTCGCGACTCGAACCTGCAGCGCACCGGCGAC





GACTGGATCGAGGCGGCGTTCCGCGCGGCCCGCGCCGCGGACCCG





GGCGCCAAGCTCTGCTACAACGACTACAACACGGACAACTGGACC





TGGGCCAAGACGCAGGGCGTCTACAACATGGTCAAGGACTTCAAG





GCCCGTGGGGTGCCGATCGACTGCGTCGGTTTCCAGTCACACTTC





AACTCGGGCAGCCCGTACCCGAGCAACTACCGGACCACGCTGCAG





AACTTCGCCGCGCTCGGCGTCGAGGTGCAGATCACCGAGCTCGAC





ATCGAGGGCTCGGGCCAGCAGCAGGCCCAGACGTACGCCAACGTG





GTCGCCGACTGCCTCGCCGTGAAGGCCTGCACCGGCATCACGGTG





TGGGGCGTGCGCGACTCCGACTCGTGGCGCTCCTCGGGTACCCCG





CTGCTGTTCGACGGCTCGGGCAACAAGAAGGCCGCGTACACCTCC





ACGCTCGACGCGCTGAACCGCGGCGGCGTCCCGACGGACCCGACG





ACGCCGCCCACGGACCCGACCACGCCGCCCACGGACCCGACGACC





CCGCCCACGGACCCGACCACCCCGCCGACCGACCCCACCACGCCT





CCGACCGACCCGACGGGCCGGTGCACGGCGAGCCTGGCGATCGCG





AACGCGTGGCCCGGCGGGTACCAGGCGACCGTGACCGTCAAGGCG





GGCTCGTCGTCGATCAACGGCTGGCGCGTCACGCTGCCCAGCGGT





GTCAGCACGAGCAACCTCTGGAACGGCGTGCTCGCCAACGGTGTG





GTGACCAACGCGCCGTACAACGGCTCGGTCGGCGCCGGCCAGTCG





ACGACCTTCGGGTTCGTCGGCAACGGCAGCGCTCCGAGCGCAGGC





TCCGTGACCTGCGCCTGA





SEQ 2:


Polypeptide sequence of exoglucanase (CEX-like)


(Cellulomonasuda)


MTPSSMSRRARVASALAIVTLGATIATTIPAQAAGSTLQAAASES





GRYFGTAIAAFKLNDSTYSSIANREFNMITAENEMKMDATEPSQN





NFSYSSGDQILNWARSNGKRVRGHALAWHSQQPGWMQNMSGTQLR





NAMLNHVTQVATHYKGKIYAWDVVNEAYADSGGGRRDSNLQRTGD





DWIEAAFRAARAADPGAKLCYNDYNTDNWTWAKTQGVYNMVKDFK





ARGVPIDCVGFQSHFNSGSPYPSNYRTTLQNFAALGVEVQITELD





IEGSGQQQAQTYANVVADCLAVKACTGITVWGVRDSDSWRSSGTP





LLFDGSGNKKAAYTSTLDALNRGGVPTDPTTPPTDPTTPPTDPTT





PPTDPTTPPTDPTTPPTDPTGRCTASLAIANAWPGGYQATVTVKA





GSSSINGWRVTLPSGVSTSNLWNGVLANGVVTNAPYNGSVGAGQS





TTFGFVGNGSAPSAGSVTCA*





SEQ 3:


Polynucleotide sequence of β-glucosidase 1 (bgl1)


(Aspergillus niger)


ATGAGGTTCACTTTGATCGAGGCGGTGGCTCTGACTGCCGTCTCG





CTGGCCAGCGCTGATGAATTGGCCTACTCCCCTCCGTATTACCCC





TCCCCTTGGGCCAATGGCCAGGGTGACTGGGCGGAAGCATACCAG





CGCGCTGTTGATATCGTCTCGCAGATGACATTGGCTGAGAAGGTC





AATTTGACTACGGGAACTGGATGGGAATTGGAATTATGTGTTGGT





CAGACTGGAGGTGTTCCCCGATTGGGAATTCCGGGAATGTGTGCA





CAGGATAGCCCTCTGGGTGTTCGTGACTCCGACTACAACTCTGCG





TTCCCCGCCGGTGTCAACGTGGCCGCAACCTGGGACAAGAATCTG





GCTTACCTGCGTGGCCAGGCTATGGGTCAGGAGTTTAGTGACAAG





GGTGCTGATATCCAATTGGGTCCAGCTGCCGGCCCTCTCGGTAGA





AGTCCCGACGGCGGTCGTAACTGGGAGGGCTTCTCCCCCGACCCG





GCCCTCAGTGGTGTGCTCTTTGCAGAGACAATCAAGGGTATTCAG





GATGCTGGTGTGGTTGCAACGGCTAAGCACTACATCGCCTACGAG





CAGGAGCATTTCCGTCAGGCGCCTGAAGCTCAAGGCTACGGATTC





AATATTACCGAGAGTGGAAGCGCGAACCTCGACGATAAGACTATG





CATGAGCTGTACCTCTGGCCCTTCGCGGATGCCATCCGTGCAGGT





GCCGGTGCTGTGATGTGCTCGTACAACCAGATCAACAACAGCTAT





GGCTGCCAGAACAGCTACACTCTGAACAAGCTGCTCAAGGCTGAG





CTGGGTTTCCAGGGCTTTGTCATGAGTGATTGGGCGGCTCACCAT





GCCGGTGTGAGTGGTGCTTTGGCGGGATTGGACATGTCTATGCCG





GGAGACGTCGATTACGACAGTGGCACGTCTTACTGGGGTACCAAC





TTGACCATCAGTGTGCTCAACGGGACGGTGCCCCAATGGCGTGTT





GATGACATGGCTGTCCGCATCATGGCCGCCTACTACAAGGTCGGC





CGTGACCGTCTGTGGACTCCTCCCAACTTCAGCTCATGGACCAGA





GATGAATACGGCTTCAAGTACTACTATGTCTCGGAGGGACCGTAT





GAGAAGGTCAACCAGTTCGTGAATGTGCAACGCAACCATAGCGAG





TTGATCCGCCGTATTGGAGCAGACAGCACGGTGCTCCTCAAGAAC





GATGGCGCTCTTCCCTTGACTGGAAAGGAGCGCTTGGTCGCCCTT





ATCGGAGAAGATGCGGGTTCCAATCCTTATGGTGCCAACGGCTGC





AGTGACCGTGGGTGCGACAATGGAACATTGGCGATGGGCTGGGGA





AGTGGCACTGCCAACTTTCCCTACTTGGTGACCCCCGAGCAGGCC





ATCTCGAACGAGGTGCTCAAGAACAAGAATGGCGTATTCACTGCG





ACCGATAACTGGGCTATTGATCAGATTGAGGCGCTTGCTAAGACC





GCCAGTGTCTCTCTTGTCTTTGTCAACGCCGACTCTGGTGAGGGT





TATATCAATGTCGACGGAAACCTGGGTGACCGCAGGAACCTGACC





CTGTGGAGGAACGGCGACAATGTGATCAAGGCTGCTGCTAGCAAC





TGCAACAACACGATCGTTATTATTCACTCTGTCGGCCCAGTCTTG





GTTAACGAGTGGTACGACAACCCCAATGTTACCGCTATTCTCTGG





GGTGGTCTTCCCGGTCAGGAGTCTGGCAACTCCCTCGCCGACGTG





CTCTACGGCCGTGTCAACCCCGGTGCCAAGTCGCCCTTCACCTGG





GGCAAGACTCGTGAGGCCTACCAAGATTACTTGTACACCGAGCCC





AACAACGGCAACGGAGCGCCCCAGGAAGACTTCGTCGAGGGCGTC





TTCATTGACTACCGCGGATTTGACAAGCGCAACGAGACTCCTATC





TATGAGTTCGGCTATGGTCTGAGCTACACCACCTTCAACTACTCG





AACCTTCAGGTGGAGGTTCTGAGCGCCCCTGCGTACGAGCCTGCT





TCGGGCGAGACTGAGGCAGCGCCGACTTTCGGAGAGGTCGGAAAT





GCGTCGGATTACCTCTACCCCGATGGACTGCAGAGAATCACCAAG





TTCATCTACCCCTGGCTCAACAGTACCGATCTTGAGGCGTCTTCT





GGGGATGCTAGCTATGGGCAGGATGCCTCAGACTATCTTCCCGAG





GGAGCCACCGATGGCTCTGCGCAACCGATCCTGCCTGCCGGTGGT





GGTGCTGGCGGCAACCCTCGCCTGTACGACGAGCTCATCCGCGTG





ACGGTGACTATCAAGAACACCGGCAAGGTTGCGGGTGATGAAGTT





CCTCAACTGGTAAGTAGACAGCAAATTCGAACCAAGTCGGACCAA





GCTAATGAATCGCAGTATGTTTCTCTTGGCGGCCCTAACGAACCC





AAGATCGTGCTGCGTCAATTCGAGCGTATCACGCTGCAGCCGTCG





GAAGAGACGCAGTGGAGCACGACTCTGACGCGCCGTGACCTTGCG





AACTGGAATGTTGAGACGCAGGACTGGGAGATTACGTCGTATCCC





AAGATGGTGTTTGTCGGAAGCTCCTCGCGGAAGCTGCCGCTCCGG





GCGTCTCTGCCTACTGTTCACTAAGAATTCGCC





SEQ 4:


Polypeptide sequence of β-glucosidase 1 (BGL1)


(Aspergillus niger)


MRFTLIEAVALTAVSLASADELAYSPPYYPSPWANGQGDWAEAYQ





RAVDIVSQMTLAEKVNLTTGTGWELELCVGQTGGVPRLGIPGMCA





QDSPLGVRDSDYNSAFPAGVNVAATWDKNLAYLRGQAMGQEFSDK





GADIQLGPAAGPLGRSPDGGRNWEGFSPDPALSGVLFAETIKGIQ





DAGVVATAKHYIAYEQEHFRQAPEAQGYGFNITESGSANLDDKTM





HELYLWPFADAIRAGAGAVMCSYNQINNSYGCQNSYTLNKLLKAE





LGFQGFVMSDWAAHHAGVSGALAGLDMSMPGDVDYDSGTSYWGTN





LTISVLNGTVPQWRVDDMAVRIMAAYYKVGRDRLWTPPNFSSWTR





DEYGFKYYYVSEGPYEKVNQFVNVQRNHSELIRRIGADSTVLLKN





DGALPLTGKERLVALIGEDAGSNPYGANGCSDRGCDNGTLAMGWG





SGTANFPYLVTPEQAISNEVLKNKNGVFTATDNWAIDQIEALAKT





ASVSLVFVNADSGEGYINVDGNLGDRRNLTLWRNGDNVIKAAASN





CNNTIVIIHSVGPVLVNEWYDNPNVTAILWGGLPGQESGNSLADV





LYGRVNPGAKSPFTWGKTREAYQDYLYTEPNNGNGAPQEDFVEGV





FIDYRGFDKRNETPIYEFGYGLSYTTFNYSNLQVEVLSAPAYEPA





SGETEAAPTFGEVGNASDYLYPDGLQRITKFIYPWLNSTDLEASS





GDASYGQDASDYLPEGATDGSAQPILPAGGGAGGNPRLYDELIRV





TVTIKNTGKVAGDEVPQLVSRQQIRTKSDQANESQYVSLGGPNEP





KIVLRQFERITLQPSEETQWSTTLTRRDLANWNVETQDWEITSYP





KMVFVGSSSRKLPLRASLPTVH*





SEQ 5:


Polynucleotide sequence of the Pgap promoter +


gap ribosomal binding site (Zymomonas mobilis)


TCGACAATTTTACGCGTTTCGATCGAAGCAGGGACGACAATTGGC





TGGGAACGGTATACTGGAATAAATGGTCTTCGTTATGGTATTGAT





GTTTTTGGTGCATCGGCCCCGGCGAATGATCTATATGCTCATTTC





GGCTTGACCGCAGTCGGCATCACGAACAAGGTGTTGGCCGCGATC





GCCGGTAAGTCGGCACGTTAAAAAATAGCTATGGAATATAGTAGC





TACTTAATAAGTTAGGAGAATAAAC





SEQ 6:


Polynucleotide sequence of the Ppdc promoter +


pdc ribosomal binding site (Zymomonas



mobilis)



ATAATCACTTAATCCAGAAACGGGCGTTTAGCTTTGTCCATCATG





GTTGTTTATCGCTCATGATCGCGGCATGTTCTGATATTTTTCCTC





TAAAAAAGATAAAAAGTCTTTTCGCTTCGGCAGAAGAGGTTCATC





ATGAACAAAAATTCGGCATTTTTAAAAATGCCTATAGCTAAATCC





GGAACGACACTTTAGAGGTTTCTGGGTCATCCTGATTCAGACATA





GTGTTTTGAATATATGGAGTAAGCA





SEQ 7:


Polynucleotide sequence of the Ptuf promoter +


tuf ribosomal binding site Zymomonas



mobilis)



GCGATGGTGCCGCTGGCTAACATGTTCGGCTATGTGAACCAGCTC





CGTTCCTTCACCCAGGGACGCGCCCAGTATTCGATGCAATTTTCG





CATTATGACGAAGTCCCGGCTAACGTCGCGGATGAGTTAAAATCG





AAGATGGCTTAATTAAATACTGGCATAAACCGAAAAATGTCGTTA





TGAGCGCGCCGGAGAAGCGCGGCGCGCTCAATACAATAGTGATAA





AAGCGGTAACAAAAAGAGGTAACTA





SEQ 8:


Polynucleotide sequence of the Peno promoter +


eno ribosomal binding site (Zymomonas



mobilis)



AATCATTGGCAGCTGATGCTACATTCGCCACAGTTTTGTTTTCGG





CCATTGTCTATACTCCAGTTACTCAATACGTAACAATAATCAGTT





TATCCTAACTATAGAATCGCATGAGAAGCGATAACGTTTCACCAT





AAGCAATATATTCATTGCAACAGTGGAATTGCCTTATGCGTCAAG





GAAGGATAGATCATTGACGGACTGAGTTCAAAAAGAGACTCGTCT





AAAAGATTTTAAGAAAGGTTTCGAT





SEQ 9:


Polynucleotide sequence of the Peda promoter +


eda ribosomal binding site (Zymomonas



mobilis)



ACTATAGAATATAAGTTATGTTCCATTCGCAGAATAGATATAGAT





CAGCCTCTATGGATATGCTATATATCGCCCATTCCATTTAAGAAT





AATAATAAACCATCATGCTGTTTATTTAATATTTTTATTACAGTG





AATTGAAGAAATATTTTCTTGATAAAAATTATTAAAAATCTATCA





CCGACGATCCGTCTCTATTTCAAGATAGATAATAATTTGTTTAAC





CTGTTGATTATGCGAGATAATTTTA





SEQ 10:


Polynucleotide sequence of the Pzwf promoter +


zwf ribosomal binding site (Zymomonas



mobilis)



GCAGCATTAAGTATCTTAGGTGGCTTGATTGTTGCTCGCTTCGTG





CCGGAAACCAAAGGTCGGAGCCTGGATGAAATCGAGGAGATGTGG





CGCTCCCAGAAGTAGTTAAACTTGCTTTGGCTGAATCCTTTTGTC





TTTTTTAGATAAGTCTTAACCAATTATACTTTTTGTTTACAACGA





TGGTATAAAGCGGGCGGACAGGCTAAAAACAGGCTAAAAGGATTC





GGCCTCTGTTTTAAGGACGAGAATA





SEQ 11:


Polynucleotide sequence of the Pfrk promoter +


frk ribosomal binding site (Zymomonas



mobilis)



TTAAAAAATAACTTCATTTTACTTTAAATTTTCCAAGAAAATATT





TCGAAAATATTTTTGATATCTTTCTTAATTAAGAAAGAAAACTTA





GTTATAATCCTACCAGTTGGACGAATCGCAGACGGTCGATTTCGA





TTTATTCAAAAGGCCTTTTGGCACAGAAGAAAAATCGAGGTCATC





GTCATAATTTAAAGCGAATGGACAGCATATACCTCCGTATTACGG





GGGGATTTTGTGAGTGGTGAGAATA





SEQ 12:


Polynucleotide sequence of the PclcD1 promoter +


clcD1 ribosomal binding (Zymomonas



mobilis)



AGGCACCAACGCATCAAGAACATCAGCCGCCAATCGGCCTGCTTT





CCGCATTCCGGCAAAAGCGTTTTCATCGTAAAGTTTGATGGCATG





CGTACGAATAGCCGCATCACCTTCTTTGACATGGATATATTCGGT





CATAACTTCTGCTATAACCAATAAGCTTTCCCTTTGCGAGCCGCA





TTAACATATTCCGTTTTTGGATTCGGAATATCTGCCGCATCAGAG





GAAAGAGGAAAAGGACGGACTGAAA





SEQ 13:


Polynucleotide sequence of the Pglms promoter +


glms ribosomal binding (Zymomonas



mobilis)



GAACGGGATCAATATCGCTCCGATCCGATCCAGAAAATCAAACCC





TTCCATCAGAATACCTCGGATAAAGTTACCCAATTGGAAAAACTA





GCCGCCCTTAAAAATCAAGGCATCCTGACAGAAGAAGAATTTGAA





AAAGAAAAAAGACGTATTTTGGCCTTATAAAAGACGAAAATATTT





CTTACATTGCCCCCATCTCAAAGACAGTCCGCCTTTCAAAATAGA





TATCACAAAATCGGGAAACAGAATT





SEQ 14:



Zymomonas mobilis codon optimized polynucleotide



sequence of β-glucosidase 1 (bgl1)


ATGAGATTCACTTTAATCGAAGCGGTTGCTCTTACTGCCGTCTCT





TTAGCCAGCGCTGATGAATTGGCCTATTCCCCGCCGTATTATCCC





TCACCTTGGGCCAATGGCCAGGGTGACTGGGCAGAAGCATATCAG





CGCGCTGTTGATATAGTCTCTCAGATGACATTGGCTGAAAAGGTG





AATTTGACAACGGGGACTGGATGGGAATTGGAATTATGTGTTGGT





CAGACAGGGGGTGTTCCCCGATTGGGGATTCCGGGAATGTGTGCA





CAGGATAGCCCTTTGGGTGTTCGTGATTCCGATTATAATTCTGCG





TTTCCAGCCGGTGTCAATGTGGCCGCAACCTGGGACAAAAATCTG





GCTTATCTGCGCGGGCAAGCAATGGGTCAGGAGTTTAGTGATAAA





GGTGCTGATATCCAATTGGGTCCAGCTGCCGGCCCTCTGGGTCGG





AGTCCCGATGGCGGTCGTAATTGGGAAGGCTTTTCCCCGGATCCG





GCCTTATCCGGTGTGCTGTTTGCAGAAACAATTAAGGGTATTCAA





GATGCTGGTGTTGTTGCAACGGCTAAACATTATATTGCCTATGAG





CAGGAACATTTTCGTCAGGCGCCTGAAGCTCAAGGCTATGGATTC





AATATTACCGAGAGTGGAAGCGCGAACTTAGACGATAAAACGATG





CATGAGTTATATTTGTGGCCATTCGCGGATGCCATTCGTGCAGGT





GCCGGTGCTGTGATGTGCTCGTATAATCAGATTAATAACTCATAT





GGCTGTCAGAATAGCTACACACTGAATAAGCTGCTTAAGGCAGAA





TTAGGTTTCCAGGGCTTTGTCATGAGTGATTGGGCGGCTCATCAT





GCCGGTGTGTCAGGTGCTTTGGCAGGGTTGGACATGTCTATGCCG





GGGGACGTCGATTATGACTCAGGCACGTCTTATTGGGGTACCAAT





TTGACCATCTCAGTTCTGAACGGGACGGTTCCGCAATGGCGAGTT





GATGATATGGCTGTACGAATCATGGCCGCCTATTACAAAGTCGGC





CGTGACCGGCTGTGGACACCGCCAAACTTTAGCTCATGGACCAGA





GATGAATATGGCTTCAAATATTATTATGTCTCGGAAGGACCGTAT





GAAAAGGTCAATCAGTTTGTTAATGTGCAACGCAATCATAGCGAA





TTGATCCGCCGTATTGGAGCAGACAGCACGGTTCTGTTGAAAAAC





GATGGGGCTCTTCCGTTGACTGGAAAAGAACGCTTGGTCGCCCTT





ATCGGGGAAGATGCGGGTTCCAATCCTTATGGTGCCAACGGCTGC





AGTGATCGTGGGTGTGATAATGGAACATTGGCGATGGGCTGGGGA





AGTGGCACAGCCAATTTTCCCTACTTGGTGACCCCCGAACAGGCC





ATCTCCAATGAAGTTCTTAAGAATAAAAATGGCGTATTCACCGCA





ACCGATAATTGGGCTATTGATCAAATTGAGGCGTTAGCTAAAACC





GCCAGTGTATCTCTTGTCTTTGTCAATGCCGACTCTGGTGAAGGT





TATATTAATGTTGATGGGAACCTGGGTGATCGCCGTAACCTGACC





TTATGGAGAAATGGCGATAATGTCATCAAGGCTGCTGCTAGCAAC





TGCAACAATACGATCGTTATTATTCACTCTGTCGGCCCAGTCTTA





GTTAATGAATGGTATGACAATCCTAATGTTACCGCTATTTTATGG





GGTGGTTTACCTGGTCAGGAATCTGGCAATTCCCTTGCCGACGTG





TTATATGGCCGTGTCAACCCAGGTGCCAAATCGCCCTTCACCTGG





GGCAAAACTCGTGAAGCCTACCAAGATTATTTGTATACCGAGCCC





AATAACGGCAACGGAGCGCCACAGGAAGATTTTGTCGAAGGCGTC





TTTATTGATTATCGCGGATTTGATAAACGGAATGAAACACCTATC





TATGAATTTGGCTATGGTCTGAGCTATACCACCTTCAATTATTCG





AACCTTCAGGTGGAAGTTTTAAGCGCCCCTGCGTACGAACCTGCT





TCTGGCGAAACTGAGGCAGCGCCGACTTTTGGAGAAGTCGGAAAT





GCGTCGGATTATCTTTACCCCGATGGTCTGCAAAGAATCACCAAA





TTCATATATCCCTGGTTGAACTCAACCGATCTTGAGGCATCTTCT





GGGGATGCTAGCTATGGGCAGGATGCCTCAGACTATCTTCCAGAG





GGGGCCACCGATGGCTCTGCGCAACCGATTCTGCCTGCCGGTGGT





GGTGCTGGCGGCAATCCTCGCCTGTATGACGAACTTATCCGCGTT





ACGGTTACTATTAAAAATACCGGCAAAGTTGCAGGTGATGAAGTT





CCTCAACTGGTATCCAGACAACAAATTCGAACCAAATCGGATCAA





GCTAATGAATCGCAGTATGTTTCTCTTGGCGGCCCTAATGAACCC





AAAATCGTGCTGCGTCAATTCGAGCGGATCACGCTGCAACCGTCG





GAAGAAACGCAATGGAGCACGACTCTGACGCGCCGGGATCTTGCG





AATTGGAATGTTGAAACGCAGGATTGGGAAATTACGTCCTATCCG





AAGATGGTGTTTGTCGGAAGCTCCTCGCGGAAATTACCGCTTCGG





GCGTCTCTGCCTACAGTTCATTAA





SEQ 15:


Polynucleotide sequence of β-glucosidase 1 


(bgl1) homologue (Aspergillus welwitschiae)


ATGAGGTTCACTTTGATCGAGGCGGTGGCTCTGACTGCCGTCTCG





CTGGCCAGCGCTGATGAATTGGCCTACTCCCCTCCGTATTACCCC





TCCCCTTGGGCCAATGGCCAGGGTGACTGGGCGGAAGCATACCAG





CGCGCTGTTGATATCGTCTCGCAGATGACATTGGCTGAGAAGGTC





AATTTGACTACGGGAACTGGATGGGAATTGGAATTATGTGTTGGT





CAGACTGGAGGTGTTCCCCGATTGGGAATTCCGGGAATGTGTGCA





CAGGATAGCCCTCTGGGTGTTCGTGACTCCGACTACAACTCTGCG





TTCCCCGCCGGTGTCAACGTGGCCGCAACCTGGGACAAGAATCTG





GCTTACCTTCGTGGCCAGGCTATGGGTCAGGAGTTTAGTGACAAG





GGTGCTGATATCCAATTGGGTCCAGCTGCCGGCCCTCTCGGTAGA





AGTCCCGACGGCGGTCGTAACTGGGAGGGCTTCTCCCCCGACCCG





GCCCTCAGTGGTGTGCTCTTTGCAGAGACAATCAAGGGTATTCAG





GATGCTGGTGTGGTTGCAACGGCTAAGCACTACATCGCCTACGAG





CAGGAGCATTTCCGTCAGGCGCCTGAAGCTCAAGGCTACGGATTC





AATATTACCGAGAGTGGAAGCGCGAACCTCGACGATAAGACTATG





CATGAGCTGTACCTCTGGCCCTTCGCGGATGCCATCCGTGCAGGT





GCCGGTGCTGTGATGTGCTCGTACAACCAGATCAACAACAGCTAT





GGCTGCCAGAACAGCTACACTCTGAACAAGCTGCTCAAGGCTGAG





CTGGGTTTCCAGGGCTTTGTCATGAGTGATTGGGCGGCTCACCAT





GCCGGTGTGAGTGGTGCTTTGGCGGGATTGGACATGTCTATGCCG





GGAGACGTCGATTACGACAGTGGCACGTCTTACTGGGGTACCAAC





TTGACCATCAGTGTGCTCAACGGGACGGTGCCCCAATGGCGTGTT





GATGACATGGCTGTCCGCATCATGGCCGCCTACTACAAGGTCGGC





CGTGACCGTCTGTGGACTCCTCCCAACTTCAGCTCATGGACCAGA





GATGAATACGGCTTCAAGTACTACTATGTCTCGGAGGGACCGTAT





GAGAAGGTCAACCAGTTCGTGAATGTGCAACGCAACCATAGCGAG





TTGATCCGCCGTATTGGAGCAGACAGCACGGTGCTCCTCAAGAAC





GATGGCGCTCTTCCCTTGACTGGAAAGGAGCGCTTGGTCGCCCTT





ATCGGAGAAGATGCGGGTTCCAATCCTTATGGTGCCAACGGCTGC





AGTGACCGTGGGTGCGACAATGGAACATTGGCGATGGGCTGGGGA





AGTGGCACTGCCAACTTTCCCTACTTGGTGACCCCCGAGCAGGCC





ATCTCGAACGAGGTGCTCAAGAACAAGAATGGCGTATTCACTGCG





ACCGATAACTGGGCTATTGATCAGATTGAGGCGCTTGCTAAGACC





GCCAGTGTCTCTCTTGTCTTTGTCAACGCCGACTCTGGTGAGGGT





TATATCAATGTCGACGGAAACCTGGGTGACCGCAGGAACCTGACC





CTGTGGAGGAACGGCGACAATGTGATCAAGGCTGCTGCTAGCAAC





TGCAACAACACGATCGTTATTATTCACTCTGTCGGCCCAGTCTTG





GTTAACGAGTGGTACGACAACCCCAATGTTACCGCTATTCTCTGG





GGTGGTCTTCCCGGTCAGGAGTCTGGCAACTCCCTCGCCGACGTG





CTCTACGGCCGTGTCAACCCCGGTGCCAAGTCGCCCTTCACCTGG





GGCAAGACTCGTGAGGCCTACCAAGATTACTTGTACACCGAGCCC





AACAACGGCAACGGAGCGCCCCAGGAAGACTTCGTCGAGGGCGTC





TTCATTGACTACCGCGGATTTGACAAGCGCAACGAGACTCCTATC





TATGAGTTCGGCTATGGTCTGAGCTACACCACCTTCAACTACTCG





AACCTTCAGGTGGAGGTTCTGAGCGCCCCTGCGTACGAGCCTGCT





TCGGGCGAGACTGAGGCAGCGCCGACTTTCGGAGAGGTCGGAAAT





GCGTCGGATTACCTCTACCCCGATGGACTGCAGAGAATCACCAAG





TTCATCTACCCCTGGCTCAACAGTACCGATCTTGAGGCGTCTTCT





GGGGATGCTAGCTATGGGCAGGATGCCTCAGACTATCTTCCCGAG





GGAGCCACCGATGGCTCTGCGCAACCGATCCTGCCTGCCGGTGGT





GGTGCTGGCGGCAACCCTCGCCTGTACGACGAGCTCATCCGCGTG





TCGGTGACTATCAAGAACACCGGCAAGGTTGCGGGTGATGAAGTT





CCTCAACTGTATGTTTCTCTTGGCGGCCCTAACGAACCCAAGATC





GTGCTGCGTCAATTCGAGCGTATCACGCTGCAGCCGTCGGAAGAG





ACGCAGTGGAGCACGACTCTGACGCGCCGTGACCTTGCGAACTGG





AATGTTGAGACGCAGGACTGGGAGATTACGTCTTATCCCAAGATG





GTGTTTGTCGGAAGCTCCTCGCGGAAGCTGCCGCTCCGGGCGTCT





CTGCCTACTGTTCAC





SEQ 16:


Polynucleotide sequence of β-glucosidase 1


(bgl1) homologue (Aspergillus luchuensis)


ATGAGGTTCACTTTGATTGAGGCGGTGGCTCTCACTGCTGTCTCG





CTGGCCAGCGCTGATGAATTGGCTTACTCCCCACCGTATTACCCA





TCCCCTTGGGCCAATGGCCAGGGCGACTGGGCGCAGGCATACCAG





CGCGCTGTTGATATTGTCTCGCAGATGACATTGGCTGAGAAGGTC





AATCTGACCACAGGAACTGGATGGGAATTGGAGCTATGTGTTGGT





CAGACTGGCGGGGTTCCCCGATTGGGAGTTCCGGGAATGTGTTTA





CAGGATAGCCCTCTGGGCGTTCGCGACTCCGACTACAACTCTGCT





TTCCCTTCCGGTATGAACGTGGCTGCAACCTGGGACAAGAATCTG





GCATACCTCCGCGGCAAGGCTATGGGTCAGGAATTTAGTGACAAG





GGTGCCGATATCCAATTGGGTCCAGCTGCCGGCCCTCTCGGTAGA





AGTCCCGACGGTGGTCGTAACTGGGAGGGCTTCTCCCCCGACCCG





GCCCTAAGTGGTGTGCTCTTTGCAGAGACCATCAAGGGTATCCAA





GATGCTGGTGTGGTCGCGACGGCTAAGCACTACATTGCCTACGAG





CAAGAGCATTTCCGTCAGGCGCCTGAAGCCCAAGGTTATGGATTT





AACATTTCCGAGAGTGGAAGCGCGAACCTCGACGATAAGACTATG





CACGAGCTGTACCTCTGGCCCTTCGCGGATGCCATCCGTGCGGGT





GCTGGCGCTGTGATGTGCTCCTACAACCAGATCAACAACAGCTAT





GGCTGCCAGAACAGCTACACTCTGAACAAGCTGCTCAAGGCCGAG





CTGGGTTTCCAGGGCTTTGTCATGAGTGATTGGGCGGCTCACCAT





GCTGGTGTGAGTGGTGCTTTGGCAGGATTGGATATGTCTATGCCA





GGAGACGTCGACTACGACAGTGGTACGTCTTACTGGGGTACAAAC





CTGACCGTTAGCGTGCTCAACGGAACGGTGCCCCAATGGCGTGTT





GATGACATGGCTGTCCGCATCATGGCCGCCTACTACAAGGTCGGC





CGTGACCGTCTGTGGACTCCTCCCAACTTCAGCTCATGGACCAGA





GATGAATACGGCTACAAGTACTACTATGTGTCGGAGGGACCGTAC





GAGAAGGTCAACCACTACGTGAACGTGCAACGCAACCACAGCGAA





CTGATCCGCCGCATTGGAGCGGACAGCACGGTGCTCCTCAAGAAC





GACGGCGCTCTGCCTTTGACTGGTAAGGAGCGCCTGGTCGCGCTT





ATCGGAGAAGATGCGGGCTCCAACCCTTATGGTGCCAACGGCTGC





AGTGACCGTGGATGCGACAATGGAACATTGGCGATGGGCTGGGGA





AGTGGTACTGCCAACTTCCCATACCTGGTGACCCCCGAGCAGGCC





ATCTCAAACGAGGTGCTCAAGAACAAGAATGGTGTATTCACCGCC





ACCGATAACTGGGCTATCGATCAGATTGAGGCGCTTGCTAAGACC





GCCAGTGTCTCTCTTGTCTTTGTCAACGCCGACTCTGGCGAGGGT





TACATCAATGTCGACGGAAACCTGGGTGACCGCAGGAACCTGACC





CTGTGGAGGAACGGCGATAATGTGATCAAGGCTGCTGCTAGCAAC





TGCAACAACACCATTGTTATCATTCACTCTGTCGGCCCAGTCTTG





GTTAACGAATGGTACGACAACCCCAATGTTACCGCTATTCTCTGG





GGTGGTCTGCCCGGTCAGGAGTCTGGCAACTCTCTTGCCGACGTC





CTCTATGGCCGTGTCAACCCCGGTGCCAAGTCGCCCTTTACCTGG





GGCAAGACTCGTGAGGCCTACCAAGATTACTTGGTCACCGAGCCC





AACAACGGCAATGGAGCCCCCCAGGAAGACTTCGTCGAGGGCGTC





TTCATTGACTACCGCGGATTCGACAAGCGCAACGAGACCCCGATC





TACGAGTTCGGCTATGGTCTGAGCTACACCACTTTCAACTACTCG





AACCTTGAGGTGCAGGTTCTGAGCGCCCCCGCGTACGAGCCTGCT





TCGGGTGAGACTGAGGCAGCGCCAACTTTTGGAGAGGTTGGAAAT





GCGTCGAATTACCTCTACCCCGACGGACTGCAGAAAATCACCAAG





TTCATCTACCCCTGGCTCAACAGTACCGATCTCGAGGCATCTTCT





GGGGATGCTAGCTACGGACAGGACTCCTCGGACTATCTTCCCGAG





GGAGCCACCGATGGCTCTGCGCAACCGATCCTGCCTGCTGGTGGC





GGTCCTGGCGGCAACCCTCGCCTGTACGACGAGCTCATCCGCGTG





TCGGTGACCATCAAGAACACCGGCAAGGTTGCTGGTGATGAAGTT





CCCCAACTGTATGTTTCCCTTGGCGGCCCCAACGAGCCCAAGATC





GTGCTGCGTCAATTCGAGCGCATCACGCTGCAGCCGTCAGAGGAG





ACGAAGTGGAGCACGACTCTGACGCGCCGTGACCTTGCAAACTGG





AATGTTGAGAAGCAGGACTGGGAGATTACGTCGTATCCCAAGATG





GTGTTTGTCGGAAGCTCCTCGCGGAAGCTGCCGCTCCGGGCGTCT





CTGCCTACTGTTCACTAA





SEQ 17:


Polynucleotide sequence of β-glucosidase 1


(bgl1) homologue (Aspergillus sclerotioniger)


ATGAGGTTCAGTTGGATCGAGGTGGCGGCTCTGACAGCCGCCTCG





GTGGTCAGCGCTGATGAATTGGCGTACTCTCCCCCTTTCTACCCT





TCTCCCTGGGCCAATGGCAAGGGTGACTGGACAGACGCGTACAAG





CGTGCGGTCGACATTGTTTCGCAGATGACACTGGCCGAAAAGGTC





AATCTGACAACGGGAACTGGATGGGAATTGGAAAAGTGTGTCGGT





CAGACCGGCGGTGTTCCTCGATTGGGAATACCGGGCATGTGTGGT





CAGGATAGTCCTCTGGGTGTTCGTGACTCTGACTACAACTCGGCT





TTCCCTGCTGGCATCAACATTGCCGCTTCCTGGGACAAGGACCTC





GCGTACCTCCGTGGCAAGGCCATGGGCCAGGAGTTCAGTGACAAG





GGTGCTGATATTCAATTGGGCCCCGTTGCTGGTCCCCTCGGTAGA





AGTCCCGACGGCGGTCGTAACTGGGAGGGGTTTGCTCCAGACCCG





GCCCTGACTGGTGTGCTCTTTGCAGAGACCATCAAGGGTATCCAG





GATGCTGGCGTGGTTGCGACGGCTAAGCACTTCATCGGCTATGAG





CAAGAGCATTTCCGCCAGGCACCTGAGGCTCAAGGATATGGGTAC





AACATCACCGAGAGTGGCAGCGCGAACATCGACGATAAGACCATG





CACGAGCTGTACCTCTGGCCCTTTGCGGATGCTATCCGCGCAGGT





GTTGGCGCGGTCATGTGCTCCTACAACCAGATCAACAACAGCTAC





GGTTGCCAGAACAGCTATGCTCTGAACAAGCTCCTTAAGTCTGAA





CTGGAATTCCAGGGCTTCGTGATGAGCGACTGGGAGGCCCACCAC





AGTGGAGTCGGTGCTGCTTTGGCCGGTCTGGACATGTCTATGCCC





GGAGATGTCACCTACGACAGTGGCACGTCTTACTGGGGTGCCAAC





CTGACCATCAGTGTCCTGAACGGCACGGTTCCCCAGTGGCGTGTT





GATGATATGGCTGTCCGTATCATGGCCGCCTACTACAAGGTCGGT





CGGGATCGTCTGTGGACGCCTCCCAACTTCAGTTCATGGACCCGC





GATGAATACGGCTACAAGTACTACTATTCCTCCGAGGGACCGTAT





GAGAAGGTCAACCAGTTTGTCAACGTGCAGCGCAACCATAGCGGG





TTGATCCGCCGTATTGGAGCTGACAGCACGGTTCTTTTGAAGAAC





GAGAACGTTCTGCCCCTGACTGGCAAGGAGCGCCTGGTCGGTCTT





ATCGGAGAAGACGCGGGCTCCAACGCTTACGGCGCCAACGGCTGC





AGTGACCGTGGATGCGACAACGGTACTCTGGCTATGGGCTGGGGC





AGTGGTACCTCGAACTACCCTTACTTGATCACTCCCGAGCAGGCG





ATCCAGGCTGAGGTGATCAAGAACAAGGGCAATGTATTTGCCGTG





ACCGACAACTGGGCCATTGACCAGATTGAGGCACTCGCCAAGCAA





TCCAGTGTCTCTCTTGTCTTTGTCAACGCCGACTCTGGTGAAGGT





TACATCGATGTCGATGGCAACATGGGTGACCGCAACAACATTACG





CTCTGGAGGAACGGTGACAACGTGGTCAAGGCCGCTGCCAACAAC





TGCAACAACACCATTGTCATCATCCACTCCGTCGGCCCGGTCCTC





GTCACCGAGTGGTACGACCACCCCAATGTCACCGGCATACTGTGG





GCTGGCTTGCCCGGCCAGGAGTCTGGCAACTCGCTCGCCGATGTG





CTCTACGGCCGTGTCAACCCGGGTGCCAAGTCGCCCTTCACCTGG





GGTAAGACCAGGGAGTCCTACCGCGACTACCTGATCACCGAGCCC





AACAATGGCGATGGAGCCCCACAGGAAGACTTCACCGAGGGCATC





TTCATCGACTACCGCGGGTTCGACAAGCGCAATGAGACCCCAATC





TACGAGTTCGGCTATGGCCTGAGCTACACCACCTTCAACTACTCG





AATTTGAACGTGCAGGTCCTGAATGCCTCGTCGTACACTCCTTCT





TCTGGCGAGACTGAGGCTGCCCCGACTTTTGGAGAGATCGGCAAC





GCGTCGGACTACCTCTACCCTAGCGGACTGAAGAAGATTACCGAC





TTCATCTACCCCTGGCTTAACAGCACGGACCTCCTGGAAGCTTCC





GGCGACGCCAGCTACGGTCTGAACGCGTCGGAGTATATCCCCGAG





GGAGGCACCGATGGCTCTGCCCAGCCGATCCTGGCTGCTGGTGGT





GGCCCTGGCGGTAACCCCGGTCTGTATGACGAGCTGATTCGCGTT





TCGGCGACCATCAAGAACACCGGCAAGCTTGCGGGTGACGAGGTT





CCTCAACTGTACGTTTCGCTTGGAGGTCCCGATGACGCCAAAATT





GTGTTGCGCAAGTTCGACCGCATCTCTCTCAAGCCATCGCAGGAG





GTTGAGTGGAGCACGACTCTGACACGACGCGACCTGGCAAACTGG





GATGTTGCGGCGCAGGACTGGACCATCACGTCTTATCCCAAGACG





GTGTATGTCGGTAGCTCTTCGCGGAAGCTGCCGCTCCGCGCGTCA





CTGCCTACTGTCCAATAG





SEQ 18:


Polynucleotide sequence of β-glucosidase 1


(bgl1) homologue (Aspergillus tanneri)


ATGAGGTTTGGTTGGTTTGAGGCGGCGGTCGTGACCGCTGCCTCA





GTGGTCAGTGCCCAGGATGATCTTGCTTTCTCTCCTCCGTACTAT





CCTTCCCCGTGGGCCAATGGCCAGGGAGAATGGGCCGACGCGTAT





GAACGTGCCGTCGACATCGTCTCCCAGATGACGTTGGCGGAGAAG





GTTAACCTCACTACTGGAACAGGGTGGATGTTGGATAAATGTGTG





GGTCAGACAGGAAGTGTTCCCAGACTCGGACTATTAAGTCTCTGC





TTGCAAGACAGTCCCTTGGGTATTCGGTTTTCGGATTACAATTCG





GCATTCCCCGCAGGTGTTAATGTCGCCGCAACATGGGACAAGCAA





CTGGCGTACCTCCGCGGTAGGGCAATGGGTGAGGAATTCAGCGAC





AAGGGAATCGACGTTCAATTAGGCCCTGCTGCTGGGCCTCTCGGC





AGACACCCCGATGGTGGTCGGAACTGGGAAGGTTTCTCCCCTGAC





CCTGCCCTTACCGGTGTACTTTTCGCAGAAACCATAAAAGGCATC





CAGGATGCTGGTGTGATCGCGACGGCCAAGCATTACATTTTGAAT





GAACAGGAGCATTTCCGTCAAGTTCCCGAAGCCCTTGCGGCTGGA





TTCAATATTTCGGACTCCCTGAGCTCCAATCTAGACGACAAAACC





ATGCATGAGCTGTACCTCTGGCCCTTCGCAGATGCAGTGCGCGCG





GGTGTGGGTGCTGTGATGTGCTCCTACACTCAGATCAATAACAGT





TACGGCTGCCAGAATAGCGAAACTCTGAATAAACTTCTCAAGGCG





GAGCTTGGCTTCCAGGGTTTTGTCATGTCGGACTGGAGTGCGCAC





CACAGCGGTGTCGGCTCTGCCTTGGCGGGGCTGGATATGTCAATG





CCCGGGGATATCGCCTTCAATGACGGCAATTCGTACTTCGGGGCA





AACTTGACGATTGGCGTCCTCAACGGAACCATCCCTCAGTGGAGA





GTGGACGACATGGCTGTCCGCATCATGGCTGCTTACTATAAGGTT





GGCCGGGATCGCCACCACGCGCCTCCCAACTTCAGCTCATGGACC





AGGGACGAATACGGCTACGAGCACGCTGCAGTTTCGGAGGGCGCG





TATGAAAGGGTGAACCAATTTGTCGACGTGCAGCGGGACCATGCG





GAAATCATCCGTCGTGTGGGTGCCGAGAGCATTGTTCTCTTGAAG





AACGAGAACGCTCTGCCGTTGAGTGGGAAGGAGAAGAAGGTCGTT





ATCCTCGGAGAAGATGCGGGATCCAACCCTTGGGGTGCCAATGGC





TGCGAAAACCGTGGATGTGACAATGGGACCCTTGCCATGGCTTGG





GGCAGTGGCACTACAGAGTTCCCCTACCTCGTCACTCCCGAACAG





GCGATCCAGAACGAGGTCCTCCGAGGTCGTGGTAATGTATTTAGT





GTCACCGACAACGGGGCTCTGAGTCAGATGGCGGCGCTTGCCTCT





CAATCTAGTGTCGCTCTTGTCTTTGTCAATGCCGACTCGGGTGAG





GGATTCATCACCGTGGATGGAAACGAGGGAGATCGCAAGAACCTC





ACTCTCTGGAAGAACGGAGAGAACGTGATCAAAACCGCTGCCCAA





AACTGCAACAACACCGTCGTGATCATCCACTCCGTCGGAGCCGTT





CTGGTTGACGAATGGTATGACCACCCCAATATTACCGGCATTCTT





TGGGCGGGTCTGCCTGGTCAGGAGTCCGGGAACTCCCTCGCCGAC





GTGCTGTACGGCCGTGTCAACCCTGGCGGTAAGACCCCCTTCACC





TGGGGTCGAACCCGCGAATCGTATGGGGCACCCCTGGTCACCGAT





GCGAACAACGGCCACGGTGCGCCCCAGTCGGACTTCGAAGAAGGG





GTGTTTATTGACTACCGTCATTTCGACAAGTTCAACGAGACTCCC





ATCTACGAGTTTGGCTACGGCCTTAGTTACACCACTTTCGGCTAC





TCGGGACTGCAAATTGAGCCCCTGAACGCGCCCAAGTACGTCCCC





AACTCCGGGAAGACCGAAGCGGCGCCAACTTTCGGCGATGTTGCA





GAGGTCTCAGACTATGTGTATCCAAAGGGACTGCGGAGAATCCGT





GAGTTCATCTACCCCTGGCTGAATTCCACCAATCTGAAGAAGTCC





TCCGGCGATGCCACTTATGGAGGGGAGGACTCGACGTACATCCCC





GATGACGCCACCGATGGTTCTCCTCAGGACCTTCTGCCTGCCAGC





GGTGGTCCCGGAGGCAATCCAGGTCTCTACCAGGATCTGGTGCGG





GTGTCGGTTACGATCACGAACACGGGCAACGTGGCCGGCTACGAC





GTGCCTCAGCTTTATGTTTCCCTTGGTGGCCCCAACGAGCCGAAG





GTGGTACTCCGCAAATTCGATCGATTTAAGCTGGATCCGTCGCAG





CAGGTGGTGTGGTCGACCACGCTGAATCGTCGCGACCTGTCCAAC





TGGGACGTGACGGGGCAGGACTGGGTCATCACCGAGTATCCCAAG





AAGGTCTTCGTTGGTAGCTCGTCCCGGAAATTGCCGCTACATGCT





TCCTTGCCGGAGATGGAGTAA





SEQ 19:


Polynucleotide sequence of β-glucosidase 1


(bgl1) homologue (Aspergillus glaucus)


ATGAAGCTCGGCTGGTTGGAGTTTGTTGCCGTCACGGCCTCGGTG





GCCCAGGCTAAGGACCTCGCGTACTCTCCCCCCTACTATCCCTCG





CCATGGGCCGATGGTCAACCCGCCGAATGGTCCAACGCGTACAAA





CGCGCCGTCGACATCGTCTCCAACATGACTTTGGCGGAAAAGGTC





AACTTGACCACTGGTACTGGCTGGCAATTGGAAGAATGTGTTGGT





CAGACTGGTAGTGTTCCACGACTTGGTATCTGGGGTATCTGTTTG





CAGGACTCGCCTCTTGGTATCCGTTATGGCGATCACAGCTCTGGC





TTCCCCGCTGGTCTCAACGTCGCCGCGACCTGGGACCGCAAGCTC





GCCTACCTCCGTGGTGAGGCTATGGGTCAGGAATTCAGCGACAAA





GGAATTGACGTCCAATTGGGTCCCGTTGCTGGCCCTATCGGCAGA





TCTCCCGACGGTGGTCGCAACTGGGAGGGTTTCGCCCCCGACCCG





GTTCTGACCGGTGTGCTCATGGCCGAGACTATCAAGGGTATTCAG





GATGCCGGTGTCATCGCTACTGCTAAGCACTACATCGGCAACGAG





CAGGAGCATTTCCGTCAGGTTTCCGAGGCTCTCGACTATGGTTAC





AACATCACTGAGACTGCCAGCTCCAACATCGACGACAAGACCATG





CACGAGCTCTACTTGTGGCCTTTCGCCGATGCTGTTCGTGCTGGT





GTCGGTTCCGTCATGTGCTCGTACAACCAGATCAACAACAGCTAT





GGTTGCCAGAACAGTCATTTGCTGAACAAGCTGCTCAAGCACGAG





CTGGGCTTCCAGGGCTTCGTTATGACCGACTGGGGTGCTCACCAT





AGCGGTGTCGCCTCCACCCTTGCTGGTACTGACATGTCGATGCCC





GGTGATATCTCGTTTGACGATGGTATGTCGTACTTCGGTCCCAAC





CTGACTGTTGCTGTTCTCAACGGTACTGTTCCCGAGTGGCGTGTC





GACGACATGGCCGTTCGTATCATGTCTGCTTTCTACAAGGTTGGC





CGTGACCGCCAGCGCACGCCTCCCAACTTCAGCTCCTGGACCAAC





GACGAGTACAGCTACGCCCACTCCGCCGTCCAGGAAGGCTGGAAG





CAGGTCAACCAGCACATCAATGTCCAGCGCAACCACTCCGAGATC





ATCCGTGAGGTTGGCGAAGCCAGCACTGTTCTCTTGAAGAACAAG





GGTGCTCTTCCTCTGACTGGCGACGAGGGCTCCGTTGGTATTCTA





GGCGAAGATGCCGGGTCCAACGCGTATGGTGCCAACGGCTGCGAG





GACCGTGGATGCGACAATGGTACCCTTGCGATGGCCTGGGGTAGC





GGTTCCGCCGAATTCCCTTACCTGGTTACTCCCGAGCAGGCTATC





CAGAACGAGATTCTCAACCGGGACGTCAAGCACCCCGTCTTCGCC





GTCACTGACAACTGGGCTTTGGATCAGATGGCCTCCATTGCCTCT





CAATCTGATGTTTCTCTTGTCTTCGTCAACGCCGATGCTGGTGAG





GGTTTCCTCGTCGTGGATGGTAATGAGGGTGACCGCAATAACATC





ACCCTCTGGAAGAACGGTGAGAATGTCATCAAGACTGTCAGCGAG





AACTGCAACAACACCATTGTGATCATGCACACCGTCGGACCCGTC





CTCATCGACCAGTGGTACGACAACCCCAACATCACCGCCATTGTC





TGGGCTGGTCTGCCTGGCCAGGAATCCGGAAACGCCATTGCCAAC





GTTCTCTACGGCCGTGTCAACCCTGGTGGCAAGAGCCCCTTCACC





TGGGGTAAGAGCCGCGAGGCATACGGTGCCCCGCTCCTCACCGAG





ACAAACAACGGCATCGGCGCTCCTCAGGTCGACTTTACTGAGGGT





CAGTTCATCGACTACCGGCGCTTCGACAAGTACAACGAGACCCCT





ATCTACGAGTTTGGCTACGGTCTGAGTTATACCACCTTCAAGTAC





TCCAACCTCCACGTCCAGGCCCTGAACGCCTCCAAGTACGTTCCC





ACCACTGGCAAGACCAGTGCCGCGCCCAAGCTTGGTGAGGTTGGC





AAGGCTTCGAACTACGTCTTCCCCAATGGATTCGAGCGCACCACC





AAGTTCATCTACCCCTGGTTGAACTCGACCGATCTGAAGAAGTCC





GCCAACGACCCCGAGTACGGCCTCGAGATCTCAAAGTACATCCCC





GAGAACGCTCAGGACGAATCCTCCCAGGCCCGTTTGCCAGCCAGC





GGCGGCCAAGGAGGCAACACCGGTCTCTACGACGAACTCTTCCGC





GTCTCCGCCACGATCAAGAACACCGGCAAGGTCGCAGGTGACGAA





GTTCCCCAGCTGTACGTCTCTCTCGGCGGCCCCAACGAGCCCAAG





GTTGTCCTGCGCAACTTTGACCGCATCGCCCTCCAGCCTGGTCAG





GAGGTCGTGTGGTCGAAGACTCTTACCCGTCGTGACCTTTCCAAC





TGGGACGTTGCCGCTCAGGACTGGGCTATCACGCAGCATACCAAG





AAGGTGTTTGTTGGGAGCTCGTCGCGCAAGCTGCCTTTGCGGGCT





TCGTTACCTCGCGTGCAGTAG





SEQ 20:


Polynucleotide sequence of β-glucosidase 1


(bgl1) homologue (Penicillium argentinense)


ATGAAGCTCGGGTTGCTCGAAGCCGCCGTCTTGACGGCCGCCTCG





GCCGCCACTGCGTCGGACCTGGCATACTCGCCCCCGTACTATCCG





TCCCCGTGGATGACCGGCGAGGGCGACTGGGCCGAGGCCTACCGC





CGCGCCGTCGACTTCGTCTCCAACCTCACACTGGCTGAAAAGGTC





AACTTGACCACTGGTGCGGGCTGGGAGCAAGAACGCTGCGTCGGG





GAGACGGGTGGTATTCCCCGACTGGGAATGTGGGGCATGTGCTTG





CAAGACTCGCCCCTGGGCATCCGCGACAGTGACTACAACTCCGGT





TTCGCCGCGGGCGTCAATGTTGCCGCCACATGGGACAAGAGACTC





GCCTACCAGCGTGGTCTGGCGATGGGCGAGGAGCACCGCGACAAG





GGTGTCGATGTGCAGCTCGGTCCTGTGGCCGGCCCACTGGGACGA





AGCCCCGATGGCGGCCGTGGCTGGGAAGGGTTCTCGCCTGATCCT





GTCCTCACCGGTGTTATGATGGCGGAGACTATCAAGGGTATTCAG





GATGCTGGTGTCATTGCTTGCGCCAAGCACTATATCGGAAACGAG





CAGGAACACTTCCGCCAGTCGGGCGAGGCTCAGGGCTATGGGTAC





AACATCACTGAGAGTGTGAGCTCCAACATCGACGACAAGACTATG





CACGAACTGTACCTCTGGCCCTTTGTCGACTCTATCCGCGCCGGT





GTCGGCTCTGTCATGTGCTCGTACAATCAGATCAACAACAGCTAT





GGATGCCAGAACAGCGAGACCTTGAACAGGTTGCTCAAGGCTGAG





CTGGGTTTCCAGGGCTTCGTCATGTCGGATTGGGGTGCGCACCAT





AGCGGTGTCAGCGCTACCCTTGCTGGTCTGGATATGTCCATGCCC





GGTGATGTCATCCTCGGTAGCCCGTACTCCTTCTGGGGCACGAAC





CTGACCATCTCCGTGCTGAACGGTACCGTCCCCGAATGGCGTATC





GACGATATGGCCGTCCGCATCATGTCGGCCTACTACAAGGTCGGC





CGTGACCGTGTCCGTGTCCCTCCCAACTTCAGCTCCTGGACTCGT





GATGAGTATGGCTTTGAGCACTTCATGGTCAGCGAGAACTACATC





AAGCTCAACGAGCGCGTCAATGTCCAGCGCGACCACGCCGCGGGT





ATCCGCAAGCTTGGCTCTGACAGCACCGTTCTGCTGAAGAACAAG





GGTGCTCTGCCCTTGACTCACAATGAGAAGTTCGTTGGTATTCTG





GGTGAGGATGCTGGTTCCAACCCTGCTGGCGCTAATGGCTGTGCG





GACCGTGGTTGCGATGACGGCACCCTTGCTATGGGCTGGGGTAGT





GGTACTGCTAACTTCCCTTACCTGATTACCCCCGAGCAAGCCATT





CAGAACGAGGTTCTGAACTATGGCAATGGCCAGACAAATGTGTTT





GCCGTGACCAACAACACCAACACGGAGCAGATTGCTGCCATTGCT





GCGCAGTCGAGCGTCGCTCTCGTCTTCGTAAACGCCGACTCCGGC





GAAGGCTTCATCAATGTCGACGGCAACGAGGGTGACCGCAAGAAC





CTAACCCTCTGGAAGAACGGCGAACACCTCATCAAAACAGCTGCG





GCAAACTGCAACAACACCGTCGTCATCATGCACACCCCCGGCGCC





GTCCTAATCAGCGACTGGTACGAGCACGACAACATCACCGCCATC





CTCTGGGCCGGTCTACCGGGCCAAGAAAGCGGCCGCAGTATCACA





GACATTCTCTACGGGCGCGTGAACCCAGGCGGCAAAACACCCTTC





ACCTGGGGAAAGACTCGCAAAGACTACGGCGCACCGCTCCTCACA





CAACCCAACAACGGCCATGGTGCGCCGCAGCAAGACTTCACAGAG





GGAGTCTTCATCGACTACCGCCGCTTCGACAAGGAGCAGGAAGAG





CCTGTCTACGAATTCGGGTACGGACTCAGCTACACGAATTTCGAA





TTCAGCGATCTGCACATCAAGTCCCTTAACGCAGACAAGTATGTC





CCGACAACGGGGACAACCAAGCCTGCCCCCGTCTTCGGCAAAATC





GGCCAGGCATCCGACTATCTCTTCCCGAAGGGCATCCACCGTGTC





ACCCAATACCTCTACCCCTACCTGAACAGCACAAACCTCAAGTCC





TCCTCCGGCGACCCCTACTACGGCGCTAAGACAGAGGAGTACATC





CCCGCCGGCGCAACCAACGGCTCCGCGCAAACCCGCCTCCCATCC





AGCGGTGCCAACGGCGGTAATGCGGGTCTCTTCGAGGATCTGTAC





CAGGTTACCGTGACAATTACCAACACCGGCTCTGTGCAGGGCGAC





GAAGTTCCCCAGTTGTACGTTAGTCTGGGCGGGGAGAATAACCCC





GTTAAGGTCCTGCGTGCGTTTGACAGGATCACCATTGCGCCTGGC





CAGAAGGCACAGTGGACTACTACTCTTACCCGCCGCGATTTGTCG





AGTTGGGATGTTGCAAAACAGAATTGGGTAGTTACTCCTGCGCAG





AAGAAGGTGTATGTTGGAAATTCGTCGCGGAGACTTCCGCTTGAG





TCGGAGTTGCCCGCTTCGAAATGA





SEQ 21:


Polynucleotide sequence of β-glucosidase 1


(bgl1) homologue (Aspergillus wentii)


ATGAGGTTCGGTTGGTTGGAGGTAGCCGCTCTTACGGCTGCCTCC





GTGGTCAGTGCCAAGGATGACCTGGCATTCTCCCCTCCCTTCTAC





CCCTCTCCGTGGGCAAACGGTGAGGGTGAATGGGCAGACTCGTAC





AAGCGCGCTGTCGAGTTTGTTTCGAACTTGACCTTGGCTGAGAAG





GTCAACCTTACAACTGGTTCTGGCTGGCAGCAAGAGAGATGTGTT





GGTGAGACGGGCGAAGTTTCTAGACTTGGATTCTGGGGTATTTGT





TTGCAGGATTCTCCCCTGGGTATTCGTTTTGGCGACCACTCCTCC





GGCTTCCCCTCCGGCCTCAACGTTGCTGCAACCTGGGACAAAAAG





CTTGCCTACCTCCGTGGTAAGGCAATGGGCGAGGAATTCCGTGAC





AAGGGCATTGATGTTCAACTGGGACCTGTCGCTGGTCCCCTTGGC





GCTTTCCCTGATGGTGGTCGAAACTGGGAGGGTTTCGCTCCCGAC





CCTGTGCTGACTGGTTTCCTGATGTCGGAGACTATCAAGGGTATC





CAAGATGCTGGTGTTATTGCTACTGCTAAGCATTACATCGGTAAT





GAGCAGGAGCATTTCCGCCAAAGCGGCGAGGCTAAGGGTTATGGT





TACAACATTACTGAAAGTTCGAGCTCAAACATTGATGACAAGACA





ATGCACGAGTTGTATCTCTGGCCTTTTGCTGATGCCGTTCGTGCT





GGTGTCGGCGCGTTCATGTGCTCATACAACCAGATCAACAACAGC





TATGGCTGCTCCAACAGCTACCTGATGAACAAACTCCTCAAGTCT





GAACTAGGCTTCCAAGGATTTGTCATGAGTGATTGGGGTGCACAC





CACAGCGGTGTTGGCGCTGCTTTGGCTGGTTTGGATATGTCCATG





CCTGGTGACACTGTCATGGGCGACCCCTACACCTTCTGGGGAACC





AACCTGACCATCTCGGTTCTCAACGGCACCGTCCCCGAGTGGCGT





GTGGATGACATGGCCGTCCGTATCATGGCTGCTTACTACAAGGTG





GGCCGCGATGAGGTTCGCACCCCTCCCAACTTCAGCTCGTGGACC





ACCGAAGAATTCGGATACGCGCATTATGCTGCTCAGGAAGGATAC





GAGAAGACCAACTGGAATGTCAATGTCCGCCGCAACCACGCCAAG





GTCATCCGCGAAATCGGTTCGGCCAGCACGGTTCTTCTGAAGAAC





AATGGCGTGCTCCCCCTGACCGGTGATGAGGACTATGTCGGAATT





CTGGGCGAGGACGCCGGAGCTAACCCCTATGGTGCCAACGGCTGT





GAAGACCGTGGCTGCGACAATGGTACTCTCGCTATGGCTTGGGGC





AGTGGTAGTGCGGAATTCCCTTACCTTGTGACTCCCGAGCAGGCC





ATCCAGAACGAGGTTCTCAAGGGCGAGGGCTCTGTGTTCGCTGTG





ACCGATAACTGGGCTCTCGAGCAGATGGCTTCTATTGCTTCGCAG





TCCTCTATCTCTCTCGTCTTTGTCAATGCCGACTCCGGAGAAGGT





TTCCTCAATGTGGACGGAAACATGGGTGACCGCAAGAACTTCACC





CTCTGGAAAAATGGCGAGAATGTGATCAAGACTGTCACTGAGAAC





TGCAACAACACCGTTGTGGTCATGCACACTGTTGGCCCGGTCCTG





ATCAAGGACTGGTATGACAACCCTAACATCACTGCCATTGTCTGG





GCTGGTTTGCCTGGCCAGGAAAGCGGAAACTCTCTCGCTGATGTG





CTTTACGGCCGTGTCAACCCTAGTGGCAAGAGCCCATTCACCTGG





GGCAAGACTCGCGAGGCTTATGGTCCTTCTCTGCTCACCACCCAG





AACAACGGCAATGACGCTCCCCAGCAAGATTTCACCCAGGGTGTC





TTCATTGACTACCGCCGATTTGACAAGTTCAACGAGACTCCCATC





TACGAGTTCGGATACGGTCTGAGTTACACCACCTTCAACTACTCC





AACCTCGAAGTTCGATCCCTGAATGCATCGCGGTACACCCCAACC





ACTGGCAAGACTGATGCCGCGCCTTCTCTGGGCGAGGCTGGCAAG





GCCTCGGACTTTTTGTTCCCCAAGGGACTGAACCGCATCATCGGC





TACATTTATCCGTGGTTGAACTCGACCGACCTGAAGTCGGCGTCC





GGAGAGAAGAACTATGGCATGAAGGCTTCTGAGTACATTCCCGAG





GGAGCCACCGATGGATCCGCCCAGGAGCTCCTGCCGGCCGGCGGT





GGCCCTGGTGGTAACCCTGGTCTGTATGAAGACCTCATCGAGGTT





TCTGCTACTATTACCAACACTGGCAAGGTTGCTGGTGACGAAGTC





CCACAGCTGTATGTCTCCCTTGGTGGTGCCGACGACCCCGTTCTT





GTCCTCCGTCAGTTCGACCGTCTCCACATCGAGGCTGGAAAGCAG





GCAGTGTGGAAGACGACTCTTACCCGCCGTGACCTCGCCAACTGG





GACGTTGCGGCGCAAGACTGGACCATCACGAAGAGCGCGAAGAAG





GTGTACGTGGGCAGCTCTTCGCGGAACCTGCCCCTCAAGGCCAAG





CTTCCCACCGTTCAGTAG





SEQ 22:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Penicillium vulpinum)


MSTIIAPVSKELFEYLRTHAFPEICDSFLPHAFFYQQRFLCCLCE





ILSSIFTAMKFEWLTVAGLTAAANANPLAYSPPYYPSPWMTGAGE





WSDAYTRAVDFVSNLTLAEKVNLTTGAGWEQERCVGETGGIPRLG





MWGMCMQDSPLGVRLSDYTSGFPSGINVAATWDKRLAYQRGMAMG





EEHRDKGVDVQLGPVAGPLGKYPEGGRNWEGFSPDPVLTGVMMAE





TIKGMQDAGVIACAKHFIGNEQEHFRQSGEAQGYGYNISESVSSN





IDDKTMHELYLWPFVDSIRAGVGSIMCSYNQINNSYGCANSYALN





KLLKGELGFQGFVMSDWGAHHSGVSSTLAGLDMSMPGDTYLGSPS





SFWGANLTISVLNGTVPEWRIDDMAVRIMAAYYKVGRDRFRTPPN





FSSWTRDEYSFEHAAVSEGWAKVNERVNVQRDHAQIIRKIGSDST





VLLKNKGGALPLTHGEKFISILGEDAGSNAYGANGCGDRGCDNGT





LAMGWGSGTANFPYLITPEQAIQNEVLEYSVGKTSVFAVTDNWAL





TEMAALASQADVALVFVNADSGEGYINVDGNEGDRKNLTLWKNGE





EIIKTASQHCNNTIVVIHSTAAVLISDWYDNDNITAIVWAGLPGQ





ESGRSLVDVLYGRINPGGKTPFTWGKTRKDYGPPLLTVPNNGADA





PQDNFEDGVFIDYRRFDKDNTEPIYEFGYGLSYTNFSFSDLKVTP





LASSEYNEYKATTGKTKKAPVLGKAGKVSDNLFPEGIKPVRQYLY





PWLNSTDLRASSGDPAYGMDSKDYLPEGATDGSPQDLLPSSGASG





GNPDLFKNLYQVTATITNTGSVTGDEVPQLYVSLGGDDEPSKVLR





QFDRVTIAPGQTLQWTTTLTRRDVSNWDVASQNWVISDAPKKVYV





GNSSRKLPLSADLPPI





SEQ 23:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Aspergillus terreus)


MKLSILEAAALTAASVVSAQVTFTLPVNLVLDGALTVRKQDDLAY





SPPYYPSPWADGHGEWSNAYKRAVDIVSQMTLTEKVNLTTGTGWE





LERCVGQTGSVPRLGIPSLCLQDSPLGIRMSDYNSAFPAGINVAA





TWDKTLAYQRGKAMGEEFSDKGIDVQLGPAAGPLGRSPDGGRNWE





GFSPDPALTGVLFAETIKGIQDAGVIATAKHYILNEQEHFRQVGE





AQGYGFNITETVSSNVDDKTMHELYLWPFADAVRAGVGAVMCSYN





QINNSYGCQNSLTLNKLLKAELGFQGFVMSDWSAHHSGVGAALAG





LDMSMPGDISFDSGTSFYGTNLTVGVLNGTIPQWRVDDMAVRIMA





AYYKVGRDRLWTPPNFSSWTRDEYGFAHFFPSEGAYERVNEFVNV





QRDHAQVIRRIGADSVVLLKNDGALPLTGQEKTVGILGEDAGSNP





KGANGCSDRGCDKGTLAMAWGSGTANFPYLVTPEQAIQNEVLKGR





GNVFAVTDNYDTQQIAAVASQSTVSLVFVNADAGEGFLNVDGNMG





DRKNLTLWQNGEEVIKTVTEHCNNTVVVIHSVGPVLIDEWYAHPN





VTGILWAGLPGQESGNAIADVLYGRVNPGGKTPFTWGKTRASYGD





YLLTEPNNGNGAPQDNFNEGVFIDYRRFDKYNETPIYEFGHGLSY





TTFELSGLQVQLINGSSYVPTTGQTSAAQTFGKVEDASSYLYPEG





LKRISKFIYPWLNSTDLKASTGDPDYGEPNFEYIPEGATDGSPQP





RLPASGGPGGNPGLYEDLFQVSVTVTNTGKVAGDEVPQLYVSLGG





PNEPKRVLRKFERLHIAPGQQKVWTTTLNRRDLANWDVVAQDWKI





TPYAKTIFVGTSSRKLPLAGRLPRVHLVSNQKMKHDVIFFQTPRL





LPRQRLNYSQSLRDTAHSHGTTLPSVRPSPETKKTNHQPHGTRRK





TEKKNMATTARASSPPGTRPFQPPTAALLVYPATLIIGSLFSVLS





PTAQGARASASDDAATAAAPVNYFARKNNIFNVYFVKIGWVWTTL





AFAAILLTQPAYTAPSAQRPRRLAQAAARYALATLVWWLTTQWFF





GPAIIDRGFVLTGGKCEARAEGTHAASSLPVSPLGMVSAAACKAA





GGAWTGGHDVSGHVFMLVLATAMLGFEMGGVFGVEGGKGVGVWSR





RFVGAVLGLSWWMLLMTAIWFHTWFEKLTGLLIALGTVYTVYILP





RRVVPWRNVVGIPGV





SEQ 24:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Stachybotrysmicrospore)


MALASTFLSLYIFLFAYIFTGFACADPDSLYQRQDDGLLTSPPDY





PSPWADPEANGWEQAYAQARDFVSQLTLLEKVNLTTGVGWMSERC





VGNTGSIPRLGLRGLCLQDGPLGMRFTDYNSAFPAGVVAGATWSR





HLWHDRGRMMGEEQYGKGSDVLLGPASGPIGRAPTGGRNWEGFSV





DPYHSGVAMAQVVRGIQGAGVIATAKHFVANEQEHFRQAPEAVGY





GFNITESLSSNLDDKTLHELYAWPFQDAVRAGVGSIMCSYNQINN





SYGCQNSKLLNGILKDEYGFQGFVMSDWQAQHAGAASAAAGLDMS





MPGDTVFNTGYSFWGGNLTLGVINGTVPEWRIDDMALRIMAAFFK





VGRTVGGQPDINFSSWTRETLGYIHPMAQENLERVNFQVDVRGNH





ANHIRESAAKGSVILKNNGVLPLSSPKFVVVIGEDAGGNPAGPNG





CPDRNCDNGTLAMAWGSGTAQFPYLVTPDQALQRQALEDGTRYES





ILANNQWTAVQNILREPNTTTIVFADADSGEGFIDVDGNRGDRRN





LTLWKDGDALIKNVSSLTSNVIVVLHTVGPVLLTEWYDNPNITAI





VWAGVPGQESGNSLTDILYGRRSPGRSPFTWGRTRESYGADLLYE





PNNGEGAPQQDFSEGVFIDYRHFDRETAADPENTPIYEFGYGLSW





STFEYSNLQVAKRNVRPYQPTTGNTISAPVFGAPVDPDLSQYTFP





PGIRYIYRFIYPYLNTSSSGEDASGDPEYGQEADQFLPPGAIDGS





PQPRHPAGGQPGGNPQLWDVLYTVTATITNTGDRMTDEVPQLYIS





HGGDGEPVRVLRGFDRIERIAPGESVQFRADLTRHDLSNWDVVSQ





NWVITDDEKTVWVGSSSRNLPLAAPLR





SEQ 25:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Rasamsoniaemersonii)


MRNGLLKVAALAAASAVNGENLAYSPPFYPSPWANGQGDWAEAYQ





KAVQFVSQLTLAEKVNLTTGTGWEQDRCVGQVGSIPRLGFPGLCM





QDSPLGVRDTDYNSAFPAGVNVAATWDRNLAYRRGVAMGEEHRGK





GVDVQLGPVAGPLGRSPDAGRNWEGFAPDPVLTGNMMASTIQGIQ





DAGVIACAKHFILYEQEHFRQGAQDGYDISDSISANADDKTMHEL





YLWPFADAVRAGVGSVMCSYNQVNNSYACSNSYTMNKLLKSELGF





QGFVMTDWGGHHSGVGSALAGLDMSMPGDIAFDSGTSFWGTNLTV





AVLNGSIPEWRVDDMAVRIMSAYYKVGRDRYSVPINFDSWTLDTY





GPEHYAVGQGQTKINEHVDVRGNHAEIIHEIGAASAVLLKNKGGL





PLTGTERFVGVFGKDAGSNPWGVNGCSDRGCDNGTLAMGWGSGTA





NFPYLVTPEQAIQREVLSRNGTFTGITDNGALAEMAAAASQADTC





LVFANADSGEGYITVDGNEGDRKNLTLWQGADQVIHNVSANCNNT





VVVLHTVGPVLIDDWYDHPNVTAILWAGLPGQESGNSLVDVLYGR





VNPGKTPFTWGRARDDYGAPLIVKPNNGKGAPQQDFTEGIFIDYR





RFDKYNITPIYEFGFGLSYTTFEFSQLNVQPINAPPYTPASGFTK





AAQSFGQPSNASDNLYPSDIERVPLYIYPWLNSTDLKASANDPDY





GLPTEKYVPPNATNGDPQPIDPAGGAPGGNPSLYEPVARVTTIIT





NTGKVTGDEVPQLYVSLGGPDDAPKVLRGFDRITLAPGQQYLWTT





TLTRRDISNWDPVTQNWVVTNYTKTIYVGNSSRNLPLQAPLKPYP





GI





SEQ 26:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Penicillium waksmanii)


MKLGWLEAATLAAASVASASDLAYSPPHYPSPWSTGDGEWAEAYR





RAVEFVSNLTLPEKVNLTTGAGWEQEKCVGETGGIPRLGMWGMCM





QDSPLGIRDSDYNSGFAAGVNVAATWDKRLAYQRGLAMGEEHRDK





GVDVQLGPVAGPLGRSPDGGRVWEGFSPDPVLTGVMMAQTIKGIQ





DAGVIACAKHFIGNEQEHFRQAGEAQGYGYNISESVSSNIDDKTM





HELYLWPFVDSVRAGVGSVMCSYNQINNSYGCSNSYTLNKLLKGE





LGFQGFVMSDWGAHHSGVGDALAGLDMSMPGDVILGSPYSFWGTN





LTISALNGTIPEWRLDDMAVRIMAAYYKVGRDRVRVPPNFSSWTR





DEYGYEHFIVSENQIKLNERVNVQRDHASGIRKLGSDSTVLLKNK





GALPLTHNERFVAILGEDAGSNPAGANGCSDRGCDDGTLAMGWGS





GTANFPYLITPEQAIQNEYLNYGNGQTNVFAVTNNSNTEQIAAMA





SQATVSLVFVNADSGEGYINVDGNEGDRKNLTLWKNGEQLIKTAA





ENCNNTIVIMHTPSAVLVGDWYDNENITAILWAGLPVSPIFSMVA





STPARRPPFTWGKTRDAYGAPLLTKPNNGQGAPQQDFSEGVFIDY





RQFDKADEEPIFEFGFGLSYTKFEFSDVHVTPLKADKYTKTTGRT





KPAPVLGKIGEASDYLFPSGIKRVTQYLYPWLNSTNLKESSGDPY





YGEKAEKYIPAHARDGSAQQLLPASGPSGGNAGLFEDLFQVTATV





TNTGSVVGDEVAQLYVSLGGEGDPVKVLRAFDRITIAPGQNAQWT





TTLTRRDLSNWDVASQNWVISDAPKKVYIGNSSRHLPVSIELPST





K





SEQ 27:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Aspergillus udagawae)


MTLAEKVNLTTGTGIFMGPCAGQTGSALRFGIPNLCLHDSPLGVR





NSDHNTAFPAGITVGATFDKDLMYDRGAEMGEEFRGKGINVLLGP





SVGPIGRKPRGGRNWEGFGADPSLQAIGGAQTIKGIQSKGVIATI





KHYIGNEQEMYRMSNIGQRGYSSNIDDRTLHELYLWPFAEGVRAG





VGAVMAAYNDVNSSACSQNSKLLNEILKDELGFQGFVMTDWLGQY





GGVSSALAGLDMAMPGDGAVPLLGDAYWGSELSRSILNGSVPVSR





LNDMVTRIVATWYKMGQDGDYPLPNFSSNTQDATGPLYPGALFSP





SGVVNQYVNVQADHNITARAIARDAITLLKNDDNILPLRKNDSLK





IFGADAGPNPDGLNSCADQGCNKGVLTMGWGSGTSRLPYLVTPQQ





AIANISSNATFYITDSFPSNLAVGSGDIALVFINADSGENYITVE





GNPGDRTSAGLNAWHNGDKLVKDAAAKFSKVVVVIHTVGPILMEE





WIDLPSVKAVLVAHLPGQEAGWSLTDILFGDSSPSGHLPYTIPRS





ESDYPSSVGLLSQPLVQIQDTYTEGLYIDYRHFLKANITPRYPFG





HGLSYTTFSFSQPTLSVRTAVGSAYPPTRAPKGPTPSYPTTIPNP





SEVAWPKNFDRIWRYLYPYLDDPAGAAKNSSKTYPYPTGYTTVPK





PAPRAGGAEGGNPALFDVAFAVSVTVTNTGKRPGRAVAQLYVELP





NTLGVETPSRQLRQFAKTKVLAPGARETLTMEITRKDISVWDVVV





QDWKAPVQGQGVKFWLGESVLDMRAVCEVGGACTII





SEQ 28:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Aspergillus transmontanensis)


MLLTVDAQRTIIRLSLRGQAMGEEFSDKGIDVQLGPAAGPLGAHP





DGGRNWEGFSPDPALTGVLFAETIKGIQDAGVIATAKHYIMNEQE





HFRQQPEAAGYGFNVSDSLSSNVDDKTIHELYLWPFADAVRAGVG





AVMCSYNQINNSYGCENSETLNKLLKAELGFQGFVMSDWTAHHSG





VGAALAGMDMSMPGDVTFDSGTSFWGANLTVGVLNGTIPQWRVDD





MAVRIMAAYYKVGRDTKYTPPNFSSWTRDEYGFAHNHVSEGAYER





VNEFVDVQRDHADLIRRIGAQSTVLLKNKGALPLSRKEKLVALLG





EDAGSNSWGANGCDDRGCDNGTLAMAWGSGTANFPYLVTPEQAIQ





NEVLQGRGNVFAVTDSWALDKIAAAARQASVSLVFVNSDSGEGYL





SVDGNEGDRNNITLWKNGDNVVKTAANNCNNTVVIIHSVGPVLIN





EWYDHPNVTGILWAGLPGQESGNSIADVLYGRVNPGAKSPFTWGK





TRESYGSPLVKDANNGNGAPQSDFTQGVFIDYRHFDKFNETPIYE





FGYGLSYTTFELSDLHVQPLNASQYTPTSGMTEAAKNFGEIGDAS





EYVYPEGLERIHEFIYPWINSTDLKASSDDSNYGWEDSEYIPEGA





TDGSAQPRLPASGGAGGNPGLYEDLFRVSVKVKNTGNVAGDEVPQ





LYVSLGGPNEPKVVLRKFERIHLAPSQEVVWTTTLTRRDLANWDV





SAQDWAVTPYPKTIYVGNSSRKLPLQVSLPKAQ





SEQ 29:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Penicillium oxalicum)


MKLEWLEATVLAAATVASAKDLAYSPPFYPSPWATGEGEWAEAYK





KAVDFVSGLTLAEKVNITTGAGWEQERCVGSVMCSYNQINNSYGC





SNSYTLNKLLKGELGFQGFVMSDWGAHHSGVGDALAGLDMSMPGD





VILGSPYSFWGTNLTVSVLNSTIPEWRLDDMAVRIMAAYYKVGRD





RHRTPPNFSSWTRDEYGYEHFIVQENYVKLNERVNVQRDHANVIR





KIGSDSIVMLKNNGGLPLTHQERLVAILGEDAGSNAYGANGCSDR





GCDNGTLAMGWGSGTANFPYLITPEQAIQNEVLNYGNGDTNVFAV





TDNGALSQMAALASTASVALVFVNADSGEGYISVDGNEGDRKNMT





LWKNGEELIKTATANCNNTIVIMHTPNAVLVDSWYDNENITAILW





AGMPGQESGRSLVDVLYGRTNPGGKTPFTWGKERKDWGSPLLTKP





NNGHGAPQDDFTDVLIDYRRFDKDNVEPIFEFGFGLSYTKFEFSD





IQVKALNHGEYNATVGKTKPAPSLGKPGNASDHLFPSNINRVRQY





LYPYLNSTDLKASANDPDYGMNASAYIPPHATDSDPQDLLPASGP





SGGNPGLFEDLIEVTATVTNTGSVTGDEVPQLYVSLGGADDPVKV





LRAFDRVTIAPGQKLRWTATLNRRDLSNWDVPSQNWIISDAPKKV





WVGNSSRKLPLSADLPKVQ





SEQ 30:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Histoplasmamississippiense)


MLLPIAFASLAVATEHLTESPPYYPSPWASGQGGWEDAVERARDF





VSQLTLVEKVNLTTGVGWMQENCVGQVGSIPRMGLHSLCMQDGPL





GIRFADYVSAFPAGVNVGATFSKELAYLRGKAMGEEHRDKGVDVV





LGPVVGPLGRSPDGGRNWEGFSPDPVNSGLLVAETIKGIQSASVI





ACVKHFIGNEQERFRQGPEAQGYGFDISESSSSNIDDVTMHELYL





WPFADAVRAGVGSVMCSYNQINNSYGCGNSYTQNKLLKAELGFQG





FIMSDWQAHHSGVGSALAGLDMSMPGDTVFGTGRSYWGPNLTIAV





ANGTIPEWRVDDMAVRIMAAYFKVGREAAKVPVNFNSWTRDEYDY





THALVKEGYGKVNERINVRAKHASIIRQVGAASVVLLKHTGSLPL





TGLEKNAAVIGEDAGPNLWGPNGCPDRRCDNGTLAMGWGSGTADF





PYLVTPAEAIQNEILSKGEGSVFPIFDNWASDQIKSAASQATVSL





VFVNADSGEGFISVDGNEGDRKNLTLWKGGDELIQTVASYCNNTV





VVIHSTGPVLVGEWNEHPNITAILWAGLPGQESGNSIADVLYGKV





NPGGRSPFTWGRTAEDYGASILKEPNEGNGAPQVDFTEGIFTDYR





AFDKADIKPIYEFGFGLSYTSFSYSDLNVEVPPWTLITDYRTKIT





SLLAQPMALHKNFFLLVGDPVEILVFMKYYIV





SEQ 31:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Exophialadermatitidis)


MHELYLWPFSDAVRAGTGSVMCSYNQINNSYGCANSYTMNHLLKN





ELDFQGFIMSDWQAQHSGVGTALAGLDMTMPGDTLFNTGRSYWGT





NLTIAVINGTVPEWRVDDMATRIMAAYYYVGRDTHYTPTNFYAWS





RNTYDKIHQVDPQSPIGLVNEHINVQDRHRDIVRQVGQASNVLLK





NTGGLPLTGKERQVGIFGYDAGSNPWGANGCSNRGCDNGTLAMGY





GSGTAEFPYLVTPEQAITQHVLTQTDGEVFAILDNYADAQIKSLA





STADVALVFANAQSGEGFITIDGNTGDRNNLSLWLGADRLIHNVT





KYNKNVIVVMHTVGPVNVSAWYDNENVTGIIWAGLPGQESGNAIV





DALYGLINPGGKLPFTIGRNREDYGTDILYEPNNGQFNAPQSLFS





EGVFIDYRHFDQYNIEPIYEFGFGLSYTTFEYSNLVITPGNPAPY





TPTSGQTEPAPVLGNASTDPSQYVFPNGTITYRPYLYIYPYLNST





DLRASSDDTDYGLPTDQYVPPGATDGSPQPLLPAGGAPGGNAGLY





EVVATVSATITNTGSVEGDEVAQLYVSLGEGEPPKVLRGFDRLTI





APGASTTFTANLTRRDVSVWDTVSQNWVQVSNPTIYVGTSSRKLP





LSGVLSSSGGGSGAQSSSSASGGSGGGSSSGWGYGQSSTASGSAP





APVSQLSDGQPQVPTGRPVTQVSDGQPQAPTGNPVSQISDGQPQA





PAHTGGAPVSQISDGQPQVPTGTGPAVTQISDGQPQNPTGGPAVS





QLSDGQPRATTA





SEQ 32:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Aspergillus welwitschiae)


MRFTLIEAVALTAVSLASADELAYSPPYYPSPWANGQGDWAEAYQ





RAVDIVSQMTLAEKVNLTTGTGWELELCVGQTGGVPRLGIPGMCA





QDSPLGVRDSDYNSAFPAGVNVAATWDKNLAYLRGQAMGQEFSDK





GADIQLGPAAGPLGRSPDGGRNWEGFSPDPALSGVLFAETIKGIQ





DAGVVATAKHYIAYEQEHFRQAPEAQGYGFNITESGSANLDDKTM





HELYLWPFADAIRAGAGAVMCSYNQINNSYGCQNSYTLNKLLKAE





LGFQGFVMSDWAAHHAGVSGALAGLDMSMPGDVDYDSGTSYWGTN





LTISVLNGTVPQWRVDDMAVRIMAAYYKVGRDRLWTPPNFSSWTR





DEYGFKYYYVSEGPYEKVNQFVNVQRNHSELIRRIGADSTVLLKN





DGALPLTGKERLVALIGEDAGSNPYGANGCSDRGCDNGTLAMGWG





SGTANFPYLVTPEQAISNEVLKNKNGVFTATDNWAIDQIEALAKT





ASVSLVFVNADSGEGYINVDGNLGDRRNLTLWRNGDNVIKAAASN





CNNTIVIIHSVGPVLVNEWYDNPNVTAILWGGLPGQESGNSLADV





LYGRVNPGAKSPFTWGKTREAYQDYLYTEPNNGNGAPQEDFVEGV





FIDYRGFDKRNETPIYEFGYGLSYTTFNYSNLQVEVLSAPAYEPA





SGETEAAPTFGEVGNASDYLYPDGLQRITKFIYPWLNSTDLEASS





GDASYGQDASDYLPEGATDGSAQPILPAGGGAGGNPRLYDELIRV





SVTIKNTGKVAGDEVPQLYVSLGGPNEPKIVLRQFERITLQPSEE





TQWSTTLTRRDLANWNVETQDWEITSYPKMVFVGSSSRKLPLRAS





LPTVH





SEQ 33:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Aspergillus eucalypticola)


MRFTLIEAVALTAVSLASADELAYSPPYYPSPWANGQGDWAQAYQ





RAVDIVSQMTLAEKVNLTTGTGWELELCVGQTGGVPRLGVPGMCL





QDSPLGVRDSDYNSAFPAGMNVAATWDKNLAYLRGKAMGQEFSDK





GADIQLGPAAGPLGRSPDGGRNWEGFSPDPALSGVLFAETIKGIQ





DAGVVATAKHYIAYEQEHFRQAPEAQGYGFNISESGSANLDDKTM





HELYLWPFADAIRAGAGAVMCSYNQINNSYGCQNSYTLNKLLKAE





LGFQGFVMSDWAAHHAGVSGALAGLDMSMPGDVDYDSGTSYWGTN





LTVSVLNGTVPQWRVDDMAVRIMAAYYKVGRDRLWTPPNFSSWTR





DEYGYKYYYVSEGPYEKVNQYVNVQRNHSELIRRIGADSTVLLKN





DGALPLTGKERLVALIGEDAGSNPYGANGCSDRGCDNGTLAMGWG





SGTANFPYLVTPEQAISNEVLKNKNGVFTATDNWAIDQIEALAKT





ASVSLVFVNADSGEGYINVDGNLGDRRNLTLWRNGDNVIKAAASN





CNNTIVVIHSVGPVLVNEWYDNPNVTAILWGGLPGQESGNSLADV





LYGRVNPGAKSPFTWGKTREAYQDYLVTEPNNGNGAPQEDFVEGV





FIDYRGFDKRNETPIYEFGYGLSYTTFNYSNLEVQVLSAPAYEPA





SGETEAAQTFGEVGNASDYLYPDGLQRITKFIYPWLNSTDLEASA





GDSSYGQDSSDYLPEGATDGSAQPILPAGGGPGGNPRLYDELIRV





SVTIKNTGKVAGDEVPQLYVSLGGPNEPKIVLRQFERITLQPSEE





TTWNTTLTRRDLANWNVEKQDWEITSYPKMVFVGSSSRKLPLRAS





LPTVH





SEQ 34:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Aspergillus luchuensis)


MRFTLIEAVALTAVSLASADELAYSPPYYPSPWANGQGDWAQAYQ





RAVDIVSQMTLAEKVNLTTGTGYVLVRLAGFPADYNSAFPSGMNV





AATWDKNLAYLRGKAMGQEFSDKGADIQLGPAAGPLGRSPDGGRN





WEGFSPDPALSGVLFAETIKGIQDAGVVATAKHYIAYEQEHFRQA





PEAQGYGFNISESGSANLDDKTMHELYLWPFADAIRAGAGAVMCS





YNQINNSYGCQNSYTLNKLLKAELGFQGFVMSDWAAHHAGVSGAL





AGLDMSMPGDVDYDSGTSYWGTNLTVSVLNGTVPQWRVDDMAVRI





MAAYYKVGRDRLWTPPNFSSWTRDEYGYKYYYVSEGPYEKVNHYV





NVQRNHSELIRRIGADSTVLLKNDGALPLTGKERLVALIGEDAGS





NPYGANGCSDRGCDNGTLAMGWGSGTANFPYLVTPEQAISNEVLK





NKNGVFTATDNWAIDQIEALAKTASVSLVFVNADSGEGYINVDGN





LGDRRNLTLWRNGDNVIKAAASNCNNTIVIIHSVGPVLVNEWYDN





PNVTAILWGGLPGQESGNSLADVLYGRVNPGAKSPFTWGKTREAY





QDYLVTEPNNGNGAPQEDFVEGVFIDYRGFDKRNETPIYEFGYGL





SYTTFNYSNLEVQVLSAPAYEPASGETEAAPTFGEVGNASNYLYP





DGLQKITKFIYPWLNSTDLEASSGDASYGQDSSDYLPEGATDGSA





QPILPAGGGPGGNPRLYDELIRVSVTIKNTGKVAGDEVPQLYVSL





GGPNEPKIVLRQFERITLQPSEETKWSTTLTRRDLANWNVEKQDW





EITSYPKMVFVGSSSRKLPLRASLPTVH





SEQ 35:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Aspergillus heteromorphus)


MRFGWIEAAALTAASVVSADELAYSPPFYPSPWANGQGDWASAYE





RAVAIVSQMTLAEKVNLTTGTGWELEKCVGQTGGVPRLGIPGMCG





QDSPLGVRDSDYNSAFPAGINIGATWDKNLAYLRGQAMGQEFSDK





GADFQLGPVAGPLGRAPDGGRNWEGFSPDPALTGVLFAETIKGIQ





DAGVVATAKHFIGYEQEHFREAPEAQGYGYNITESGSANIDDKTM





HELYLWPFADAVRAGVGAIMCSYNQINNSYACQNSYALNKLLKGE





LGFQGFVMSDWEAHHSGASAAMAGLDMSMPGDVVFDSGTSYWGTN





LTIGVLNGTVPQWRVDDMAVRIMAAYYKVGRDRLWTPPNFSSWTR





DEYGFKYYYSSEGPYEVVNHFVDVRRNHSDLIRRIGADSTVLLKN





DGCALPLTGTERKVALIGEDAGSNPYGADGCSDRGCDNGTLAMGW





GSGTTEYPYLVTPEQAIQAEVIQNGGTVFAVTDNWAISQMETLAA





EATVSLVFVNADSGEGYIDVDGNMGDRNNLTLWGNGDNVIKAAAS





NCNNTIVIIHSVGPVLVNEWYDHPNVTAILWAGLPGQESGNSLAD





VLYGRVNPGAKSPFTWGKTRESYQDYLITEPNNGDGAPQEDFTEG





VFIDYRGFDKRNETPIYEFGYGLSYTTFNYSQLQVQALNASAYTP





ASGETEAAPTLGEAGNASDYLYPSGLQRITAFIYPWLNSTDLEAS





SGDSSYGQSSDFLPEGATDGSAQPILPAGGGPGGNPALYDDLIQV





SVTIKNTGDIAGDEIPQLYVSLGGPDEPRIVLRKFDRITLQPSEE





YEWTTTLTRRDLSNWDVAAQDWIVTSYPKKVYVGSSSRKLPLRAS





LPTVQ





SEQ 36:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Aspergillus aculeatus)


MKLSWLEAAALTAASVVSADELAFSPPFYPSPWANGQGEWAEAYQ





RAVAIVSQMTLDEKVNLTTGTGWELEKCVGQTGGVPRLNIGGMCL





QDSPLGIRDSDYNSAFPAGVNVAATWDKNLAYLRGQAMGQEFSDK





GIDVQLGPAAGPLGRSPDGGRNWEGFSPDPALTGVLFAETIKGIQ





DAGVVATAKHYILNEQEHFRQVAEAAGYGFNISDTISSNVDDKTI





HEMYLWPFADAVRAGVGAIMCSYNQINNSYGCQNSYTLNKLLKAE





LGFQGFVMSDWGAHHSGVGSALAGLDMSMPGDITFDSATSFWGTN





LTIAVLNGTVPQWRVDDMAVRIMAAYYKVGRDRLYQPPNFSSWTR





DEYGFKYFYPQEGPYEKVNHFVNVQRNHSEVIRKLGADSTVLLKN





NNALPLTGKERKVAILGEDAGSNSYGANGCSDRGCDNGTLAMAWG





SGTAEFPYLVTPEQAIQAEVLKHKGSVYAITDNWALSQVETLAKQ





ASVSLVFVNSDAGEGYISVDGNEGDRNNLTLWKNGDNLIKAAANN





CNNTIVVIHSVGPVLVDEWYDHPNVTAILWAGLPGQESGNSLADV





LYGRVNPGAKSPFTWGKTREAYGDYLVRELNNGNGAPQDDFSEGV





FIDYRGFDKRNETPIYEFGHGLSYTTFNYSGLHIQVLNASSNAQV





ATETGAAPTFGQVGNASDYVYPEGLTRISKFIYPWLNSTDLKASS





GDPYYGVDTAEHVPEGATDGSPQPVLPAGGGSGGNPRLYDELIRV





SVTVKNTGRVAGDAVPQLYVSLGGPNEPKVVLRKFDRLTLKPSEE





TVWTTTLTRRDLSNWDVAAQDWVITSYPKKVHVGSSSRQLPLHAA





LPKVQ





SEQ 37:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Aspergillus caelatus)


MKLGWFEVAALAAASVVSAQDDLAYSPPFYPSPWADGQGEWAEVY





KRAVEIVSQMTLTEKVNLTTGTGWQLERCVGQTGSVPRLNIPSLC





LQDSPLGIRFSDYNSAFPAGVNVAATWDKTLAYLRGQAMGEEFSD





KGIDVQLGPAAGPLGAHPDGGRNWEGFSPDPALTGVLFAETIKGI





QDAGVIATAKHYILNEQEHFRQQPEAAGYGFNVSDSLSSNVDDKT





IHELYLWPFADAVRAGVGAVMCSYNQINNSYGCENSETLNKLLKA





ELGFQGFVMSDWTAHHSGVGAALAGMDMSMPGDVTFDSGTSFWGA





NLTIGVLNGTIPQWRVDDMAVRIMAAYYKVGRDTKYTPPNFSSWT





RDEYGFAHNHVSEGAYERVNEFVDVQRDHADLIRRIGAESTVLLK





NKGALPLSRKEKLVALLGEDAGSNPWGANGCDDRGCDNGTLAMAW





GSGTANFPYLVTPEQAIQNEVLQGRGNVFAVTDSWALDKIAAAAR





QASVSLVFVNSDSGEGFLSVDGNEGDRNNITLWKNGDNVVKTAAN





NCNNTVVIIHSVGPVLINEWYDHPNVTGILWAGLPGQESGNSIAD





VLYGRVNPGAKSPFTWGKTRESYGSPLVNEANNGNGAPQSDFTQG





VFIDYRHFDKFNETPIYEFGYGLSYTTFELSDLHVQPLNASQYTP





TSGMTEAAKNFGETGDASEYVYPEGLERIHEFIYPWINSTDLKAS





SDDSNYGWEDSKYIPEGATDGSAQPRLPASGGAGGNPGLYEDLFR





VSVKVKNTGKVAGDEVPQLYVSLGGPNEPKVVLRKFERIHLAPSQ





EVVWTTTLTRRDLANWDVSAQDWTVTPYPKTIYVGNSSRKLPLQA





SLPKAR





SEQ 38:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Madurellamycetomatis)


MANLVLALLLFLSALTSAATDTPFLGYPSPWATNITDPTWAAAYA





QAIAFVANLTLTEKVNLTTGTGWEADRCIGATGGIPRLGFRPFCL





MDGPLGVRYTDHNSAFPAGVNTAATFSRRLMRLRGEAMGAEFRGK





GIDVMLGPVAGALGRVPQGGRNWEGFSPDPYLTGVAMAETIQGIQ





SRGVVACAKHYILNEQEHFRGSIDVRIDDRTMHELYLWPFADAVR





AGVGSVMCSYNKINGTYACENEWTTNYLLKNELGFQGFVLSDWGA





QHNTLGSALGGLDMAMPGDGGPPPYRAWWGGALTEAVLRGDVPQW





RLDDMAVRIMAAYFRVHTGNYTSRPDINFSAWTNSTVGPLYPAAN





QSYTVVNEFVDVQSDHASLIREIGAKSVVLLKNAYDLLPLRQPGP





PIIAVIGDDAQDHPLGPNACPERGCLNGTLAMGYGSGTANFPYLV





SPLTALTEQARADNTTLLYAPSNWDLDAAITTARNASIAIVFAAA





TSGENFITVDGNAGDRNNLTLWANGDALIKAVASINPNTIVVLHT





PGPVILDYAEEHPNISAILWAGLPGQESGNALVDVLYGKVNPQGR





SPFTWGDSVEEYGAQLMFEAENPRAPVQSFDEGVFIDYRKFSTFG





GKLTYPFGFGLSYTKFRYSGLSVVRKEEVEGRFEPAEGLTGPAPT





FGVVEAELGVHTAPEGFTRISPYVYPWLNNSESLVTGNSTGASEF





PAAARNGSAQPVLPASGAPGGNPGLYEVLYTITASIENVGEVAGT





EIPQLYVQLGGEENPFGVLRGFDEVELEPGETKNVTFELTRRDVS





NWNTSTQNWEITDREKVVFVGSSVRDIRLNASLPAPVGMAWRHG





SEQ 39:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Aureobasidiumpullulans)


MSQSQDYELTPRESPRQSLDHPEDYRLSTSSRDSISSSINELDPL





KTPNRPYKDDVSQTHDSVFVTRRRSTWRRYLLPSRMCCMMVLLFT





AALVMLLSAGGIWVYKTEPEGGQSDPWYPAPRGGSVTAWEEAYKK





AAALVGQMSVVEKVNITTGTGWEMGMCVGNTGPVERLGFPSLCLQ





DGPLGLRFADNITAFPAGITLGTTWNKELIYLKGRAHGREARGKG





VHIALGPSMGPFGRLPAGGRNWEGFGSDPVLQGLAAAAMIRGIQE





EGIIATAKHYIANEQEHFRQSWEWGTPNAISSNLDDRTLHEIYAW





PFAESVKAGVGSVMCSYNLVNQSYACQNSKLLNGILKDELGFQGF





IQSDWLAQRSGVASALAGLDMSMPGDGLRWMDGQSVWGGELTKAV





FNGSVPMERLNDMVLRVVAAWYQFGQDDKKKWPAEKDGGGPNFSS





WTNDEIGLLHPGSNDTTKGVVNKFVNVQGEGDDSHGKLARQIAAE





GTVLLKNDDHVLPLNRDGKKLTKNGDKLRVAIFGEDAYNNGKGPN





ACADRACNEGTLAQGWGSGTVEFPYLVAPAEGIHLGFDVESVTLS





DYPSNYEDLDKHPSRAADQDLCFVFINSDGGEGYVAWKDVKGDRN





DLYAQKGGDELVQKVAAKCGGPTIVVVHAVGPVILEKWIDLPGVK





AVLYANLPGQESGNALASIVFGDINPSGRLPYTIAKNEDDYGPTS





KILYRPNAVIPQQNFSEGLYVDYRYFDKHDIEPRYEFGFGLSYTT





FHLSSLFIHPLATEYSTLPAKRPESITPPHLDVSIPDAREALWPS





NFIALKKYIYPYINSVDDIKTGKYPYPVGYEIAQPLSQAGGAEGG





NPDLYTPLAVVQASLTNTGSLPGDCVVQLYISYPSTPIIDSLGNT





VDFPVRVLRAFDKLFVTPEKRVEVSLQLTRKDLSFWDVGLQNWVL





PMGDFEVQLGFSSRDIQQKGDILSFSRLLL





SEQ 40:


Polypeptide sequence of β-glucosidase 1 (BGL1)


homologue (Fusariumoxysporum)


MALIICFYYPISLGEAPDSDHTLKEKILGLGLKSAVILAGALVCL





FLALQWGGTKHPWSDSRVWGCLVGFGLLLTLFVYIQIRQGEAALI





RPRIISQRSVFLGCLFSALYQGAMTTQSYHLPFYFQAVKGVDPQS





SGVDILPHGVTVTIATLITGSIITWLGYYVPFMWAGSAIFTIGAG





LLYTISQNTPLARWFGYEVLAGAGFGIAIQIPIFAVQVVLVAGDI





PLGTVLIILSQALGGSVGLSISQNVFQNSLRQRLNTIADIDIQVV





IAAGGTDLEHVVSADSLAHVRDAFRYGISNAFLVSTALGGVAVLA





SIGMERKKIKSKKEGVDLYKTARPFDVSVFSSRGSIDTKMTLAKV





AFTLANLVAVGSSAKNVADGFVAAPYYPAPYGGWDEAWADSYARA





KKMVDSMTLAEKTNITAGTGLFMADRVGFPQLCLNDAANGVRLAD





NVTVFPDGITAGATFDKKLMYERGVAIGKEARGKGVNVWLGPSVG





PIGRKPKGGRNWEGFGADPSLQGIGARETIKGVQEQGVIATVKHL





IGNEQEMYRRQTTDVVSPAYSANIDDRTMHELYLWPFAEAVKVGV





GATMTAYNRVNGTISSEHSYLINALLKEELGFQGFVMTDWLSQIT





GVQSAIAGMDMSMPGDTIIPLFGNSLWMYELTRSALNGSVPMSRL





NDMATRIVATWYQFEQDKDFPSVNFDTNTYNRVGPLYPAAWPNSP





SGVVNQYVQVQDDHDEIARQIAQDAITLLKNDEKLLPLSTKSSLK





VFGTGAQTNPDGANACVDRSCNKGTLGQGWGSGTVDYMYLDDPIG





AIKKAAGDVTFYNTDKFPSVPSPSDDDVAIVFVTSDSGENQYTVE





GNNGDRNADKLNVWHNGDALIKAAAAKYKNVVVVIHTVGPVLVDQ





WIDLPSVKSVLVAHLPGQEAGKSLTNILFGDASPCGHLPYSITKK





EDDMPESVTKLIDSGFIDAPQDTYSEGLFIDYRWLNKEKIQPRYA





FGHGLSYTNFTYTNATIKRGTQLSQYPPKRPAKGKVLDYSQDIPD





YKEAIKPSSFKTVWRYLYSWLSESDAKSAAAKAETSKYPYPDGYS





TAQKTALPKAGGVSGGNPALWDEAYTLSVVVTNAGSKFSGKASVQ





AYVQFPSVAGYETPVIQLRDFEKTKVLEPGSSETVQLTLTRKDLS





VWDVKAQDWLVLDGEFKIWLGSASDKLDAVCFTDDLGCEHDVKGP





VSYDS





SEQ 41:


Polynucleotide sequence of exoglucanase


(cex-like) homologue (Cellulomonaswangleii)


ATGACCCCCCCACCCCAGCTCCGACGCGGGCGCCCCCTGGTCGCA





CGCGGCGCCTCCGCCATCGCGATCGTCGCGCTCGCGGTGACGGCC





GCCGCGGCCATCCCGGCGCAGGCCGCCGGCTCGACGCTCCAGGAG





GCCGCCGCCCAGAGCGGCCGCTACTTCGGCACCGCGATCGCCGCG





AACAAGCTCAGCGACTCGACCTACGTGACCATCGCGAACCGTGAG





TTCAACATGATCACGGCCGAGAACGAGATGAAGATGGACGCGACG





GAGCCGAACCAGAACCAGTTCAACTACAGCCAGGGCGACCGGATC





CTCAACTGGGCCAAGCAGAACGGCAAGCAGGTCCGCGGGCACGCG





CTCGCGTGGTACTCCCAGCAGCCGGAGTGGATGAAGCGCATGGAG





GGCTCCGCGCTGCGCAGCGCGATGGTCAACCACGTCACCCAGGTG





GCGACGCACTACAAGGGTCAGATCTACGCCTGGGACGTCGTGAAC





GAGGCGTTCGCCGACGGCAGCTCCGGCGGACGCCGCGACTCCAAC





CTGGAGCGCACCGGCAGCGACTGGATCGAGGTGGCCTTCCGCGCC





GCGCGCGCCGCCGACCCGGCCGCGATCCTCTGCTACAACGACTAC





AACATCGACGACTGGTCGCACGCCAAGACCCAGGGCGTCTACCGG





ATGGTCCGTGACTTCAAGCAGCGCGGCGTCCCGATCGACTGCGTC





GGCCTGCAGTCGCACTTCAACCCGCAGAGCCCGGTCCCGGCCAAC





TACCAGACGACGATCGAGAGCTTCGCCGCCCTCGGCGTCGACGTG





CAGATCACCGAGCTCGACATCGAGGGCTCCGGCTCGGCGCAGGCC





GAGAACTTCCGCAAGGTGACCCAGGCCTGCCTCAACGTCGCCCGC





TGCACCGGCATCACGGTGTGGGGCGTGCGTGACACGGACTCGTGG





CGCGCCTCGGGCACCCCGCTGCTGTTCGACGGCAACGGCAACAAG





AAGCAGGCGTACACCTCGGTGCTCAACACGCTGAACGCGGCGAGC





CCGACCACGCCGCCGCCCACCACGCCGCCGCCGACGACCCCGCCG





CCGGTGACGCCCCCGCCCACGACCCCGCCGCCCACCACGCCGCCG





CCGACGACCCCGCCGCCGACGACCCCGCCGCCGGTGACGGGCAGC





TGCTCCGCCGCACTGACCATCGCCAACGCGTGGCCCGGTGGCTAC





CAGGGCACGGTCACGGTGACGGCCGGCTCGTCGTCCCTCAACGGG





TGGCGGGTGACCCTGCCGGGTGGCGTCTCCACGAACAACGTGTGG





AACGGCGTGGTCTCCGGCAACGTCGTGAGCAACGCGCCCTACAAC





GGCTCCGTCGGGGCCGGGCAGTCGACGACCTTCGGGTTCATCGGG





AACGGCAACGCCCCGTCGCCGACCTCCCTCACCTGCTCCTGA





SEQ 42:


Polynucleotide sequence of exoglucanase


(cex-like) homologue (Cellulomonasshaoxiangyii)


ATGCTCCGACGAGGGAGCAGGCGCGGCCCCGGCGCTCGAGGCGCA





GCCGTCCTCGCCGCCCTGACCCTCGCGGCGACCGCCGCGGCCGCC





ATCCCGGCTCAGGCCGCCGGCTCGACGCTGCAGGACGCGGCCAAC





GACCGCGGCCGCTACTTCGGCACGGCGATCGCCGCGAACCGCCTC





AGCGACTCGACCTACTCGACCATCGCGAACCGTGAGTTCGACATG





ATCACGGCCGAGAACGAGATGAAGATGGATGCGACGGAGCCGTCG





CAGAACCAGTTCAACTACACCAACGGCGACCGCATCGTGAACTGG





GCGCTCCAGAACGGCAAGCAGGTCCGCGGGCACGCGCTGGCGTGG





CACTCGCAGCAGCCGGGCTGGATGCAGAACATGTCCGGCACGGCG





CTGCGCAACGCCATGCTCAACCACGTCACGCAGGTCGCCACGCAC





TACCGCGGCAAGATCTACGCCTGGGACGTCGTGAACGAGGCCTTC





GCCGACGGCTCGTCCGGCGCCCGCCGCGACTCCAACCTGCAGCGC





ACCGGCAACGACTGGATCGAGGCGGCCTTCCGCGCCGCCCGGGCC





GCCGACCCCGGCGCGAAGCTCTGCTACAACGACTACAACACCGAC





GACTGGACGCACGCGAAGACGCAGGCCGTGTACAACATGGTCCGC





GACTTCAAGGCGCGCGGCGTCCCGATCGACTGCGTCGGCCTGCAG





TCGCACTTCAACGCGCAGAGCCCGGTGCCGAGCAACTACCAGACG





ACCCTGTCGAGCTTCGCCGCGCTCGGCGTGGACGTGCAGATCACC





GAGCTCGACATCGAGGGCTCGGGCTCCGCGCAGGCGGAGAGCTAC





CGGCGCGTCGTCCAGGCGTGCCTCAACGTCTCCCGCTGCACCGGC





ATCACGGTGTGGGGCGTGCGGGACACCGACTCGTGGCGCGCCTCG





GGCACGCCGCTGCTCTTCGACGGCCAGGGCAACAAGAAGGCGGCG





TACACCGCGGTCCTCGACACGCTGAACAGCGGACCCGGGACCAAC





CCGACGACGCCTCCGCCCACCAGCCCCCCGCCGACGACCCCGCCG





CCGGTCACCCCGCCGCCGACGACGCCCCCGCCCACGACCCCGCCG





CCGGTCACCCCGCCGCCCAGCGGCACCTGCTCCGCGGCACTGACG





ATCGCGAACAGCTGGGGCGGCGGCTACCAGGCCACCGTCACGGTG





CGGGCCGGTTCGTCCGCTCTCAACGGATGGCGGGTCACCCTGCCC





GGCGGCGTCACGACGTCGAACCTGTGGAACGGCGTCCTCGCCGGC





AGCGTCGTGACGAACGCGCCGTACAACGGCTCCGTCGGAGCCGGC





CAGTCGACGTCCTTCGGGTTCATCGGCAACGGCAGCGCACCCGCC





GCGGGAGCGCTGAGCTGCAGCTGA





SEQ 43:


Polynucleotide sequence of exoglucanase


(cex-like) homologue (Micromonospora sp.


WMMA1998)


ATGGACAAGGTGCTCGCCCGCGGCAGCGGGAGCCCGACCGCCCGA





TACCGGCCGCGTGCCGCCCTGCTGTCGGCCGCCGTCGGCGCGGCG





CTGGTCGCGGCCACGGTCGCGATGGCGACCAGCGCCAGCGCCGGG





ACCACCCTGGGCGCGGCGGCGGCGGAACAGGGCCGCTACTTCGGC





ACCGCGGTGGCCGCGAACAAGCTGTCGGACGCCACGTACGTCGGC





ATCCTGAACCGCGAGTTCACTATGGTCACCCCCGAGAACGAGATG





AAGTGGGACGCCACCGAGCCGTCCCAGGGCCAGTTCAGCTACACC





AACGCCGACCGGATCGTCGCCCACGCCCAGGCCAACGGCATGCGG





GTACGCGGCCACGCGCTGGCCTGGCACTCGCAACAGCCCGGCTGG





GCGCAGAACCTGTCCGGCAGCGCGCTGCGCCAGGCGATGGTCAAC





CACATCACCCAGGTCGCCACCCACTACAAGGGCAAGATCTACGCC





TGGGACGTGGTCAACGAGGCGTTCGACGACGGCAGCGGCGGCCGG





CGCGACTCCAACCTCCAGCGCACCGGCAACGACTGGATCGAGGTG





GCGTTCCGCACCGCGCGCGCCGCCGACCCGGGCGCCAAGCTCTGC





TACAACGACTACAACACCGACAACTGGACCTGGGCCAAGACCCAG





GGCGTCTACAACCTGGTCAAGGACTTCAAGGCCCGGGGCGTGCCG





ATCGACTGCGTCGGCCTGCAGTCGCACTTCAACAGCGGCTCGCCG





TACCCGAGCAACTACCGCACCACGTTGCAGAACTTCGCCGCCCTC





GGCGTCGACGTGCAGATCACCGAACTCGACATCGAGGGTTCGGGC





AGCGCCCAGGCCACCACGTACGCCAACGTGGTCAAGGACTGCCTG





GCCGTGTCGCGGTGCACCGGCATCACCGTCTGGGGAATCCGGGAC





AGCGACTCCTGGCGGGCCGGCGGCACCCCGCTGCTCTTCGACGGC





AACGGCAACAAGAAGGCGGCCTACACCGCCGCGCTCGACGCGCTC





AACGCCGGCGGCACGCCGCCGCCGACCACCACGCCGCCGACCACC





ACGCCCCCGACCACGACTCCGCCGACGACCACGCCGCCCACCACC





GCGCCGCCCACGACTCCCCCGCCCACCGGCGGCGGGTGCACCGCG





TCGCTCACCACCAACCAGTGGCCCGGCGGGTTCGTCACCACCGTG





CGCGTCACCGCCGGCGCCGGCGCGCTCAACGGCTGGACGGTGACG





CTCACCGTGCCGTCCGGCTCGGCGGTCACCAACACGTGGAGCGCC





CAGGCCAGCGGCGCCAGTGGCGCGGTGACGTTCCGCAACGTCGCC





TACAACGGCCAGGTCGGTGCCGGCGGCAGCACCGAGTTCGGCTTC





CAGGGGACCGGCACGGCCCCCTCCGGCACGCCCACCTGCGCGGCG





GGCTGA





SEQ 44:


Polynucleotide sequence of exoglucanase


(cex-like) homologue (Xylanimonascellulosilytica)


ATGAACCATCAGCACCACCGTCGTAGGTTGCGCAGCGTCGCAGCC





GTCGCGCTCGCCTCCCTGGTCGTCGCCACGGGAGTGGTGACCGCC





CAGGCGGCCGGATCCACGCTCCAGGAAGCGGCGGGCAGCCGCTAC





TTCGGCACGGCCATCGCGGCCAACAAGCTCTCGGACTCGACCTAC





TCGACCATCGCGAACCGTGAGTTCGACATGATCACGGCCGAGAAC





GAGATGAAGATGGACGCCACCGAGCCGTCTCAGGGCAGCTTCAAC





TTCACCAACGCCGACAGGATCGTCGACTGGGCCACCGCCAACGGC





AAGCGGATGCGCGGTCACGCCCTCGCGTGGCACTCGCAGCAGCCG





GGGTGGATGCAGAACATGTCGGGCACCGCGCTGCGCACGGCGATG





CTCAACCACGTCACCGAGGTCGCTGCGCACTACAAGGGCAAGATC





TACGCCTGGGACGTCGTCAACGAGGCCTTCGCCGACGGGTCCTCG





GGCGCCCGCCGCGACTCGAACCTGCAGCGCACGGGCGACGACTGG





ATCGAGGCCGCGTTCAGGGCCGCCCGGGCCGCCGACCCGTCCGCC





AAGCTCTGTTACAACGACTACAACACGGACAACTGGAACTGGGAG





AAGACCCAGGCCGTGTACGCCATGGTCAAGGACTTCAAGGAACGC





GGCGTGCCGATCGACTGCGTCGGGCTCCAGTCCCACTTCAACTCG





GGCAGCCCCTACCCGAGCAACTACCGCACGACGCTGCAGAACTTC





GCGGCGCTCGGCGTCGACGTCCAGATCACCGAGCTGGACATCGAG





GGCTCGGGCAGCACGCAGGCCGACACGTACGCCAAGGTGGTCGCC





GACTGCCTCGCGGTGAGCCGCTGCACCGGCATCACGGTGTGGGGC





GTGCGCGACTCCGACTCGTGGCGCGCGAGCGGTACGCCGCTGCTG





TTCGACGCGTCGGGCAACAAGAAGGCCGCCTACACGTCGGTGCTG





AACACCCTCAACGGCGGTGCGACGCCGACGCCGACGCCGACGCCG





ACGCCGACGCCGACCCCGACTCCCACGCCGACTCCGACCCCGACG





CCGACGCCGACTCCCACGCCGACGCCGACGCCGACGCCGACTCCC





ACGCCGACGCCGACGTCCGGTCCGTGCACCGCCACGATGACGATC





ACGAACTCGTGGCAGGGCGGCTTCCAGGGTGAGGTCACGGTCAAG





GCGGGCAGTGCCCGCACGTCCTGGTCGACGTCGTTCACCTCGGCC





GCCACGGTCCAAGTCTGGAACGGGGTGCACTCGACCTCCGGCTCG





GTGCACACGGTGTCGAACCAGCCGTACAACGGCACGCTGGCCGCC





GGTGCGTCGACGACGTACGGCTTCACGGCCACCGGGACGGCGCCG





AGCAGCCCGCCCGCGGTGACCTGCTCGTGA





SEQ 45:


Polynucleotide sequence of exoglucanase (cex-like)


homologue (Verrucosispora sp.


WMMD573)


ATGAACAACGCCCACGCCCGCGCCAGCGGGCGGCCGGCTACCCGA





CTGCGACCGCGCGCCGCGCTGGTCTCGGCCGCGGTCGGTCTCGCC





CTCGTCGCCACCAGCATGGTGGTGACCTCCAGCGCCCAGGCCGCC





GAGTCCACCCTCGGTGCGGCCGCGGCCCAGTCCGGCCGGTACTTC





GGTGCCGCGGTGGCGGCGAACAAGCTGTCCGACTCCACCTACGTC





GGCATCCTGAACCGCGAGTTCAACTCGGTCACGGCCGAGAACGAG





ATGAAGATCGACGCGCTCGAGCCGCAGCAGAACAACTTCACGTTC





GGCAACGCGGACCGGATCGTCAACCACGCCCTGTCCCGGGGCTGG





AAGGTCCGGGGGCACACCCTGGCCTGGCACTCGCAGCAGCCTGGC





TGGATGCAGCAGATGGAAGGCACGGCGCTGCGTAACGCGATGCTG





AACCACGTCACCCGGGTCGCGACCTACTACCGCGGCAAGATCGAC





TCGTGGGACGTGGTGAACGAGGCGTTCGACGACGGCAACAACGGC





GCGCGCCGTAACTCGAACCTGCAGCGCACCGGTAACGACTGGATC





GAGGCCGCGTTCCGGGCCGCCCGGGCCGCCGACCCGGGCGCCAAG





CTCTGCTACAACGACTACAACACCGACAACTGGACCTGGGCCAAG





ACTCAGGCCGTCTACCGGATGGTGCAGGACTTCAAGCAGCGTGGC





GTGCCGATCGACTGCGTCGGCCTCCAGTCGCACTTCAACAGCGGC





TCGCCGTATCCGAGCAACTACCGCACCACGCTGTCCAGCTTCGCC





GCGCTCGGCGTGGACGTGCAGATCACCGAGCTGGACATCGAAGGC





TCCGGCAGCACCCAGGCCAACACCTACCGCAACGTGGTCAACGAC





TGCCTCGCGGTGCCCCGCTGCAACGGCATCACCGTGTGGGGAATC





CGGGACACCGACTCCTGGCGTTCCGGTGGCACCCCGCTGCTCTTC





GACGGCAACGGCAACAAGAAGCAGGCGTACGACGCGACGCTCCAG





GCGCTGAACTCGGGCGGCACCACCCCGCCGCCCACGACCCCGCCG





CCGCCCACGACCCCGCCGCCCACCACGCCGCCGCCCACGACCCCG





CCGCCGACCACCCCGCCGCCCGGCGGGTCCGGCTGCACGGCAACG





GTGTCCCTGAACCAGTGGAACGGTGGTTTCGTCGCCACGATCCGC





GTCACCGCCGGTTCCGCGAGACTGAACGGCTGGTCGGTGGGCATC





GGGATTCCGGGCGGTAGCTCGGTGACCAACACCTGGAACGCCCAG





GCCAGCGGCAACAGCGGCAACGTGACGTTCCGCAACGTCAGCTAC





AACGGCACCGTGAACGCCGGTGCCACCACGGAGTTCGGCTTCCAG





GGCACCGGTACCGGTCCATCCGGTACCCCCACCTGCACCGGTAGC





TGA





SEQ 46:


Polynucleotide sequence of exoglucanase


(cex-like) homologue (Saccharothrixsyringae)


ATGTCCAGAACTGCTGTCACAGCTGCCGGCAGGTCGGAGGCACGA





GGCCGGTCGCGGCGCGCCGCGGTGGTGGTCGGTGCGATCGGGTTG





CTGAGCGCGGCGGCCGTGGTGCTGCCGAACGTGGCCACCGCCGGC





ACCACGCTGGGCGCGTCCGCCGCGGAGAGCGGGCGCTACTTCGGC





ACGGCGGTCGCGGCCAACAAGCTCTCGGACTCGACCTACGTGGGC





ATCCTCAACCGTGAGTTCGACATGGTCACGGCTGAGAACGAGATG





AAGATGGACGCCACGGAGCCGAACCAGAACCAGTTCTCGTTCGGC





AACGGTGACCGGATCGTCAACCACGCCCGCAACCAGGGCAAGCGG





GTCCGTGGCCACGCGTTGGCGTGGCACTCGCAGCAGCCGGGCTGG





ATGCAGAACATGTCCGGCACGGCGTTGCGCAACGCGATGCTCAAC





CACGTCACCCAGGTCGCCACGTACTACAAGGGCAAGATCTACGCC





TGGGACGTGGTCAACGAGGCGTACGCCGACGGCAGCTCCGGCGGT





CGGCGTGACTCGAACCTCCAGCGGACCGGCAACGACTGGATCGAG





GCCGCCTTCCGGGCCGCCCGCGCCGCCGACCCGAACGCGAAGCTG





TGCTACAACGACTACAACACCGACAACTGGTCGCACGCCAAGACC





CAGGGCGTGTACCGGATGGTGCAGGACTTCAAGTCGCGCGGTGTG





CCGATCGACTGCGTCGGCTTCCAGGCGCACTTCAACAGCGGCAAC





CCGGTGCCGTCGAACTACCACACCACCCTGCAGAACTTCGCCGAC





CTCGGCGTGGACGTCCAGATCACCGAGCTGGACATCGAGGGCTCC





GGCAGCACCCAGGCCCAGCAGTACCAGGGCGTGGTCCAGGCGTGC





CTCGCGGTGACCCGCTGCACCGGCATCACGGTGTGGGGCATCCGC





GACAGCGACTCGTGGCGTTCCTCGGGCACCCCGCTGCTGTTCGAC





GGCTCGGGCAACAAGAAGGCCGCCTACACCTCGGTCCTCAACGCC





CTCAACGCGGGCAGCACCGCGCCGCCGTCCACCACCACGACGACG





ACCCCGCCGAACACCTCGGACTGCCGCGCCGGCTACGTCGGCCTG





ACCTACGACGACGGCCCCAACGGCAGCACCACCACGCAGCTGCTC





AACGCGCTGCGGTCGGCCGGCCTGCGCGCCACGTTCTTCAACCAG





GGCAACCGGGTCCAGCAGAACCCCGGCCTGGCCAAGGCGCAGCGC





GACGCCGGCATGTGGGTCGGCAACCACAGCTGGAGCCACCCGCAC





ATGACCCAGCTGAGCCAGTCGCAGATGGCCTCGGAGATCTCCCAG





ACCCAGCAGGCCATCCAGTCGGCCACCGGTGAGGCGCCGAAGCTG





TTCCGCCCGCCCTACGGCGAGACCAACAGCACGCTCAAGTCGGTC





GAGGCCCAGTACGGCCTGACCGAGGTGCTGTGGAGCGTCGACTCG





CAGGACTGGAACAACGCCAGCACCGCGCAGATCGTGCAGGCCGCG





TCGACCCTGCAGAACGGCGGCGTGATCCTGATGCACGACGGCTAC





CAGACGACGATCAACGCCATCCCCCAGATCGCGGCCAACCTCGCC





AGCCGCGGCCTGTGCGCCGGCATGATCTCCACGTCGACCGGCCAG





GCCGTCGCGCCGAACGACAACCCGCCCACCACCGGCCCGACGACC





ACCACCACGACGACGTCCCAGCAGCCCGGCGGCTCGTGCACCGCG





ACCTACCGGACCACCCAGCAGTGGGGCGACCGCTTCAACGGCGAG





GTGACCGTCCGGGCGGGCGCCTCCGCGATCACCAGCTGGACGGCC





ACCGTCACGGTGACCTCCCCGCAGAAGGTGTCGGCCACCTGGAAC





GGCACGCCGAGCTGGGACTCCAGCGGCAACGTCATGACCATGAAG





CCCAACGGCAACGGAAACCTCGCCGCGGGCGCGAGCACGACGTTC





GGCTTCACCGTGATGACCAACGGCCAGTGGGCGGCGCCGACCGTC





TCCTGCCGCACGCCGTGA





SEQ 47:


Polynucleotide sequence of exoglucanase


(cex-like) homologue (Cellulomonaspalmilytica)


ATGACCCCCTCATCCATGTCCAGACGCGCGCGCTTCGCGGCCGCG





CTCGCAGTCGTCACGCTCGGGGCGACCATCGCTGCGACGATCCCC





GCCCAGGCCGCGGGAAGCACGCTGAAGGATGCCGCAGCGCAGAGC





GGCCGGTACTTCGGCACCGCGATCGCCGGCTTCAAGCTGAGCGAC





TCGACGTACTCGTCCATCGCGAACCGTGAGTTCAACATGATCACG





GCCGAGAACGAGATGAAGATGGACGCGACGGAGCCGTCGCAGAAC





AACTTCAACTTCTCCAGCGGCGACCAGATCCTCAACTGGGCCGTC





CAGAACGGCAAGCGCGTGCGCGGCCACGCCCTGGCCTGGCACTCG





CAGCAGCCCAGCTGGATGCAGGGCATGTCCGGCAGCGCGCTGCGC





AGCGCCATGCTCAACCACGTCACCAAGGTCGCCGAGCACTACAAG





GGCAAGGTCTATGCCTGGGACGTCGTGAACGAGGCGTTCGACGAC





AGCAACGGCGGGCGCCGCGACTCCAACCTGCAGCGCACCGGCAAC





GACTGGATCGAGGCCGCGTTCAAGGCCGCCCGCGCCGCCGACCCG





AACGCCAAGCTCTGCTACAACGACTACAACACCGACAACTGGACC





TGGGCCAAGACGCAGGGCGTCTACAACATGGTCAAGGACTTCAAG





GCCCGTGGCGTGCCGATCGACTGCGTCGGCTTCCAGTCGCACTTC





AACGCGCAGAGCGCCTACAACAGCAACTACCGCACCACGCTGTCG





AGCTTCGCGGCGCTGGGTGTCGAGGTCCAGATCACCGAGCTCGAC





ATCGAGGGCTCCGGCTCGCAGCAGGCGGACACGTACCGTCGCGTC





GTCGAGGACTGCCTCGCCGTCAAGGCCTGCACCGGCATCACGGTG





TGGGGCGTTCGTGACTCCGACTCGTGGCGCTCCTACGGCACGCCG





CTGCTGTTCGACAACAACGGCGGCAAGAAGGCCGCGTACACCTCG





GTCCTCAACGCGCTGAACGCCGCGGACCCGACGGACCCGACGACC





GACCCCACGCAGGACCCGACGGACGACCCGACCCAGGACCCGACG





GACGACCCGACGGACGACCCGACGGACCCGGAGACGACGAACCCG





CCGGACCCGACCGGTAAGTGCTCCGCGGCGCTCACGATCGTGAAC





TCCTGGCCGGGCGGCTACCAGGCCACGGTGACGGTCAAGGCCGGC





TCCTCGTCGATCAACGGCTGGCGGGTCACCCTGCCCAGCAGTGTG





AACACGAACAACCTGTGGAACGGCGTCCTGTCCGGTGGCGTGGTG





ACCAACGCCCCGTACAACGGCTCGGTCGGTGCCGGCCAGTCGACG





ACCTTCGGGTTCGTCGGCAACGGCAGCGCCCCGGGCGCAGGCAAC





CTGACCTGCGCCTGA





SEQ 48:


Polynucleotide sequence of exoglucanase


(cex-like) homologue (Micromonospora



carbonacea)



ATGAGACGCAAGAGAGCCCTCCTGACGACGGTGACCCTCGCGGTC





ACCGGCGCACTCACCGCCGGCGTGCTGGTGACGATGGCCCCCGCC





GCCAGCGCCGGGACGACCCTGCGGGCTGCCGCGGCCGAGAAGGGC





CGCTACTTCGGCGCCGCGGTCGCGACGGGCAAACTCTCCAACAGC





ACGTACACGACGATTCTCAACCGCGAGTTCAACAGCGTCGTGGCC





GAGAACGAGATGAAGTGGGACGCCACCGAGCCGCAGCAGGGCCAG





TTCAACTACAGCGGCGGCGACCGCCTCGTCAGCCACGCCCGGGCC





AACGGGATGAGCGTGCGGGGCCACGCCCTGCTCTGGCACCAGCAG





GAGCCGGGCTGGGCGCAGGGCATGTCCGGCAGCGCCCTGCGCAGC





GCGATGATCAACCACGTCACCCAGGTCGCCACCCACTTCAAGGGG





CAGATCTACGCCTGGGACGTGGTGAACGAGGCGTTCGCCGACGGC





AACAGCGGCGGCCGGCGTGACTCGAACCTCCAGCGCACCGGCAAC





GACTGGATCGAGGCGGCGTTCCGCGCCGCGCGGGCCGCCGACCCG





GGCGCGAAGCTCTGCTACAACGACTACAACACCGACGGGGTCAAC





GCGAAGTCGACCGGCATCTACAACATGGTGCGCGACTTCAAGTCC





CGGGGCGTGCCGATCGACTGCGTCGGCTTCCAGTCCCACCTGGGC





ACCACGCTGGCCAGCGACTACCAGGCCAACCTCCAGCGCTTCGCC





GACCTCGGCGTCGACGTGCAGATCACCGAGCTGGACGTCATGACC





GGCGGCAACCAGGCGAACATCTTCGGCGCGGTGACCCGGGCGTGC





ATGAACGTGTCGCGCTGCACCGGCATCACGGTGTGGGGCGTGCGG





GACTGCGACTCGTGGCGGGGGTCCGACAACGCCCTGCTGTTCGAC





TGCAACGGCAACAAGAAGCCGGCGTACGACTCCGTCCTCAACGCC





CTCAATGCCGGCACCGGCATCCCCAACCCGACGACCACCCCGCCG





AACCCCACCACCACTCCGCCGAACCCGACGACTCCGCCGCCGGGT





GGGGCCGGGTGTTCGGCGACGGTGTCGGCGAATTCGTGGACGGGT





GGTTTCGTGGCCACGGTGAAGGTGACCGCTGGTTCTGGTGGTACC





CGGGGTTGGAACGTGAGTGTGACGTTGCCGGGTGGTACGAGTGTC





ACGGGTACGTGGTCGGCGACGGCCAGTGGTAGTTCGGGGACGGTG





CGGTTCGCCAACGTGGACTACAACGGTCAGCTCGCCGCCGGTCAG





GTGACCGAGTTCGGGTTCCAGGGCAACGGCACCGCGCCCACCCAG





ACCCCCACCTGCACCGCCAGCTGA





SEQ 49:


Polypeptide sequence of exoglucanase


(CEX-like) homologue (Cellulomonaspalmilytica)


MTPSSMSRRARFAAALAVVTLGATIAATIPAQAAGSTLKDAAAQS





GRYFGTAIAGFKLSDSTYSSIANREFNMITAENEMKMDATEPSQN





NFNFSSGDQILNWAVQNGKRVRGHALAWHSQQPSWMQGMSGSALR





SAMLNHVTKVAEHYKGKVYAWDVVNEAFDDSNGGRRDSNLQRTGN





DWIEAAFKAARAADPNAKLCYNDYNTDNWTWAKTQGVYNMVKDFK





ARGVPIDCVGFQSHFNAQSAYNSNYRTTLSSFAALGVEVQITELD





IEGSGSQQADTYRRVVEDCLAVKACTGITVWGVRDSDSWRSYGTP





LLFDNNGGKKAAYTSVLNALNAADPTDPTTDPTQDPTDDPTQDPT





DDPTDDPTDPETTNPPDPTGKCSAALTIVNSWPGGYQATVTVKAG





SSSINGWRVTLPSSVNTNNLWNGVLSGGVVTNAPYNGSVGAGQST





TFGFVGNGSAPGAGNLTCA





SEQ 50:


Polypeptide sequence of exoglucanase


(CEX-like) homologue (Promicromonospora



iranensis)



MTRTLTSPRHRRSLRAISLATLTAVVLAGGMAATTAQAAGSTLQA





AATEKGRYFGTAIAANKLSDSTYTTIANREFNMVTAENEMKIDAL





EPNQNQFNWINGDRIVSWARSNGKQVRGHTLAWHSQQPGWMQNMS





GTALRNAMLNHVTQVATHYRGQIHSWDVVNEAFQDGSSGARRDSN





LQRTGNDWIEAAFRAARAADPNAKLCYNDYNTDDWTHAKTQAVYN





LVRDFKARGVPIDCVGLQSHFNAQSPVPSNYQTTISSFAALGVDV





QITELDIEGSGSAQADNYRKVVQACLAVSRCTGISVWGVRDTDSW





RASGTPLLFDGNGNKKPAYTATLDTLNGGTSNPQPGGCTVAVTRS





TDWSDRFNVSLAVSGSSTWRVSIQLQGGQTLQNSWNATVSGSSGT





LTATPNGAGNNFGITVYKNGNTNLPTATCSTT





SEQ 51:


Polypeptide sequence of exoglucanase


(CEX-like) homologue (Micromonosporaferruginea)


MDKVFARTSHSTAARPRTRAAVVSMLAGAAAVAATVAVATSASAG





TTLGASAAEQGRYFGTAVAANKLSDATYVGILNREFNMVTPENEM





KWDATEPSQNQFTYSSSDRIVAHAQANGMRVRGHALAWHSQQPGW





AQSLSGTALRNAMVNHITQVATHFKGKIYAWDVVNEAFDDGNGGR





RDSNLQRTGNDWIEVAFRTARAADPGAKLCYNDYNTDNWTWAKTQ





GVYNMVKDFKARGVPIDCVGFQSHFNSGSPYPGNYRTTLQNFADL





GVDVQITELDIEGSGSAQATTYGNVVKDCLAVARCNGITVWGIRD





SDSWRASGTPLLFDGSGNKKAAYTSTLNALNAGGTTPPTSTPPTS





TPPTSTPPTTPPPTTTPPTTPPPAGACTASLTTNQWQGGFVTTVR





VTAGGSALNGWSVSLTLPSGSSVTNTWSAQASGAGGAVTFRNVDY





NRQVGAGGSTEFGFQGTGTAPSGTVSCTAG





SEQ 52:


Polypeptide sequence of exoglucanase


(CEX-like) homologue (Actinoplanesfriuliensis)


MLSAASAGVVLAASIAVVGTAEAASTLGASAAQTGRYYGAAIAAG





RLGDSTYTRILNTEFNSVTPENEMKWDATEPSQGRFTYTNGDRIL





NQGLSNGSKVRGHALLWHAQQPGWAQALSGSALRNAAINHVTQVA





THYKGKIYAWDVVNEAFADGGSGGRRDSNLQRTGNDWIEAAFRAA





RAADPAAKLCYNDYNTDGINAKSTGIFNMVRDFKSRGVPIDCVGF





QSHLGTGIDSTYQANLKRFADLGVDVQITELDIEQGGNQANIYST





VTKACLAVSRCTGITVWGIRDTDSWRTGANPLLFDGSGNKKPAYT





AVLNALNAGGTTNPTTPPVTSPPASPTTPPPSGSGCTATVSLNSW





SGGYVATVKVTAGSSAVTGWTVSATLPSGGALTGVWSATNTGTTG





AVSFRNVEYNGRIPAGGSTEFGFQGTGTGPSAAPACRVG





SEQ 53:


Polypeptide sequence of exoglucanase


(CEX-like) homologue (Actinoplanesianthinogenes)


MIVAGIAGLVAAGLGVVYTQTADAATTLSASANQTGRYFGTAIPV





SKLGDSAYTTILKTEFNAVTPENEMKWDATEPSQGSFNYTNGDKI





LNQGRAQGAKVRGHALLWHSQQPTWAQSLSGSALRTAAINHVTQV





ATHYKGKIYAWDVVNEAFADGGSGGRRDSNLQRTGNDWIEAAFKA





ARAADPAAKLCYNDYNTDGVNAKSTGVYTMVKDFKARGVPIDCVG





FQSHLGTTVPADYQANLQRFADLGVDVQITELDVAQGGNQANIYA





SVTKACLAVSRCTGITVWGIRDSDSWRTGENPLLFDNSGTKKAAY





TSVLNALNAGGTKPATSATTTPPGTAAPSAGAGCTAKLTAGEVWG





DRYNSTITVSGASTWTVVVTITAPQKVSTVWNGTATYGGGSGQIM





TVKPNGNGNSFGFTTMNNGNSTARPTITSCVAGGSTTSATAAPTT





VPASAPSSCALPSKYRWTSTGALATPKSGWASLKDFTVVPYNGKH





LVYATTHDTGSSWGSMNFSPFTNFSDMASAGQNAMSSGAVAPTLF





YFAPKKIWVLTYQWGGSAFSYRTSSDPTNANGWSAAKPLFTGSIS





GSGTGPIDQTIIGDGTNMYLFFAGDNGKIYRASMPIGNFPGNFGS





SYTTIMSDTTNNLFEAPQVYKVQGQNQYLMIVEAIGSNGRYFRSF





TATSLSGSWTPQAATESNPFAGKANSGATWTNDISHGELVRVTAD





QTMTVDPCHLQLLYQGRSPSSGGDYGLLPYRPGVLTLQR





SEQ 54:


Polypeptide sequence of exoglucanase (CEX-like)


homologue (Antribactergilvus)


MKDLSPHRAGKFPWRSLAGAAGALAVAASLAVGVSTSAQAAGTTL





QAAAAESGRYFGTAIAANKLSDSTYTTIANREFNMITAENEMKLD





ATEPSQNQFNYTNGDRIVNWATSNGKQVRGHTLAWHSQQPGWMQN





MSGTALRSAMLNHVTQVATHYRGKIHSWDVVNEAFQDGSSGARRD





SNLQRTGNDWIEAAFRAARAADPNAKLCYNDYNTDDWTHAKTQAV





YNLVRDFKARGVPIDCVGLQSHFNSQSPVPSNYQTTLSSFAALGV





DVQITELDIEGSGTAQADNYRRVVQACLAVSRCTGITVWGVRDTD





SWRSSGTPLLFDGSGNKKAAYTSTLNALNAGGTTNPPTTPPPTTP





PPTTPPPTTAPPTTPPPTQPGACTAAYRLVNSWQGGFQAEVVVTA





GSARTGWTTSFTLPGGTSISQLWSGTLTSSGSTHTVRNVSWNGNL





GAGQSTTYGFTGTGSAPSSATVSCS





SEQ 55:


Polypeptide sequence of exoglucanase (CEX-like)


homologue (Nonomuraeajiangxiensis)


MRTNALPPPRTRRSFGGFRRAVAVGVLALAGTIAPLALSVPADAA





ETTLGAAAMQSNRYFGAAIAAGKLNESAYTTIANREFNMVTPENE





MKIDATEPNRGQFTFTNADRIYNWAVQNGKRVRGHTLAWHSQQPG





WMQSLSGSTLRQAMIDHINGVMAHYRGNIYAWDVVNEAFADGNSG





GRRDSNLQRTGNDWIEVAFRTARAADPAAKLCYNDYNIENWTWAK





TQGVYNMVRDFKSRGVPIDCVGLQAHFNSGSPYNSNFRTTLSSFA





ALGVDVQITELDIQGASATTYANVINDCLAVPRCTGITVWGVRDS





DSWRSGDTPLLFDGSGNKKPAYTSVLNALNSVNPNPDTTPPSTPG





TPAASNVTSSGATLTWAASTDTGGSGLAGYNVYREQGTTDPQLGQ





SATNSITLTGLTAGTQYQVYVRARDGAGNLSGNSQLVTFTTQTGG





GTDTTPPSTPGTPAASNVTASGATLTWTASTDTGGSGLAGYDVYR





EQGATDPLLGQSATNSITLTGLTAGTQYQVYVRARDGAGNLSGNS





QPATFTTTGGGTGGSCTVTPTTQTQWPSGYVIDPVRVTAGTSAIS





GWTVTFTLPAGHTVTGSWNTQLTVSGQTVTARNAAHNGNLGPGAS





TAFGFQVSRPNGNTSLPSGYTCA





SEQ 56:


Polypeptide sequence of exoglucanase (CEX-like)


homologue (Kibdelosporangiumaridum)


MSRTVGRHAALLALLGTFLLPGTADAGTTLGASAAEKGRYFGAAV





AAHKLGDSTYVGILNREFNMVTPENEMKIDATEPNQNQFSFGNAD





RIVNHAVSQGMRVRGHTLAWHSQQPGWMQNMSGSALRQAMLNHVT





RVASYYRGKIYAWDVVNEAFADGSSGARRDSNLQRTGNDWIEAAF





RAARAADPNAKLCYNDYNTDDWSHAKTQAVYRMVQDFKSRGVPID





CVGLQSHFNNNSPYPSNYRTTLSSFAALGVDVQITELDIEGAPPT





TYGNVVRDCLAVARCNGITVWGIRDSDSWRASQTPLLFNNSGGKK





PAYDAVLSALNSGSIPPPGGSNCSAGYVGLTFDDGPNSSTTPQLL





NALRSAGVRATFFNVGQRVQQNPALTRSQIDAGMWVGNHSWTHPH





LTQMTAAQITSELSQTQQALQQATGQTPRLFRPPYGETNSTVRQV





QAQLGLTEVMWTVDSQDWNNASTAQIVQAASTLQPGGIILMHDGY





QTTVNAIPQIVANLSSRNLCAGMISTNGQVVAPGTEPGNGSCTAS





YRTTQQWGDRENGEVTIKAGSAAITSWTSTVTITAPQRVSTTWNG





TASWDSSGTVMTMKPNGNGNLAAGASTTFGFTVMANGQWAQPSVS





CGSP





SEQ 57:


Polypeptide sequence of exoglucanase (CEX-like)


homologue (Actinomaduramadurae)


MRANVIPKSRIRIRKRAILAGALGVLATAALVAPSPAAAAESTLG





AAAAQNGRYFGTAIASGKLNDSVYTTIANREFNSVTAENEMKIDA





TEPQRGRFDFSAGDRVYNWAVQNGKQVRGHTLAWHSQQPGWMQSL





EGGTLRQAMIDHINGVMAHYTGKIVQWDVVNEAFADGSSGARRDS





NLQRTGNDWIEVAFRTARAADPAAKLCYNDYNIENWTWAKTQAVY





SMVRDFKQRGVPIDCVGFQSHFNSGSPYNGNFRTTLQSFAALGVD





VAITELDIQGASATTYANVINDCLAVSRCLGITVWGVRDTDSWRS





EQTPLLFDGNGNKKAAYTAVLNALNGGTTTPPDGAGTIKGDGSGR





CLDVPNASTTDGTQVQLWDCHGGTNQQWTYTDASELRVYGDKCLD





AAGTGNGARVQIYSCWGGDNQKWRLNSDGSVVGVQSGLCLDAAGT





ANGSAIQLYSCWNGGNQRWTRT





SEQ 58:


Polypeptide sequence of exoglucanase (CEX-like)


homologue (Nonomuraeaindica)


MRVDAMSPPTARRPLGARRRTLITGVLGALGLITALAPAIPADAA





ASTLGAAAAQSGRYFGTAIASGKLGDSAYTTIAGREFDMVTAENE





MKIDATEPNRGQFTFTAGDRVYNWAVQNGKRVRGHTLAWHNQQPG





WMQSLSGSSLRQAMINHINGVMGHYKGKIYAWDVVNEAYADGNSG





GRRDSNLQRTGNDWIEVAFRTARAADPAAKLCYNDYNIDNWTWAK





TQGVYNMVRDFRARGVPIDCVGLQSHFNANSPYNSNYRTTIQSFA





ALGVDVQITELDIQGGSATTYANVVRDCLAVPRCTGISVWGVRDS





DSWLGAGATPLLFDGNGNKKAAYTAVLDVLNGGSTTPPPGDAGQI





RNTASGRCVDVPNSATADGTAVQLWDCNGQSNQRWTRTAAGELKY





GDKCLDAGGTGNGARIQIYSCWGGDNQKWRLNSDGTIVGVQSGLC





LDAVGGGTGNGTGLQLYGCWGGGNQRWDYNPGTA





SEQ 59:


Polypeptide sequence of exoglucanase (CEX-like)


homologue (Saccharothrixsyringae)


MSRTAVTAAGRSEARGRSRRAAVVVGAIGLLSAAAVVLPNVATAG





TTLGASAAESGRYFGTAVAANKLSDSTYVGILNREFDMVTAENEM





KMDATEPNQNQFSFGNGDRIVNHARNQGKRVRGHALAWHSQQPGW





MQNMSGTALRNAMLNHVTQVATYYKGKIYAWDVVNEAYADGSSGG





RRDSNLQRTGNDWIEAAFRAARAADPNAKLCYNDYNTDNWSHAKT





QGVYRMVQDFKSRGVPIDCVGFQAHFNSGNPVPSNYHTTLQNFAD





LGVDVQITELDIEGSGSTQAQQYQGVVQACLAVTRCTGITVWGIR





DSDSWRSSGTPLLFDGSGNKKAAYTSVLNALNAGSTAPPSTTTTT





TPPNTSDCRAGYVGLTYDDGPNGSTTTQLLNALRSAGLRATFFNQ





GNRVQQNPGLAKAQRDAGMWVGNHSWSHPHMTQLSQSQMASEISQ





TQQAIQSATGEAPKLFRPPYGETNSTLKSVEAQYGLTEVLWSVDS





QDWNNASTAQIVQAASTLQNGGVILMHDGYQTTINAIPQIAANLA





SRGLCAGMISTSTGQAVAPNDNPPTTGPTTTTTTTSQQPGGSCTA





TYRTTQQWGDRENGEVTVRAGASAITSWTATVTVTSPQKVSATWN





GTPSWDSSGNVMTMKPNGNGNLAAGASTTFGFTVMTNGQWAAPTV





SCRTP





SEQ 60:


Polypeptide sequence of exoglucanase (CEX-like)


homologue (Cellulomonascellasea)


MNRSGLRPPSSTHRRRTGAVLVAALAVTLAGATLPAQGAGSTLQA





AAAESGRYYGTAIAANKLSDSTYTTIANREFNMITAENEMKMDAT





EPSQNQFNYSSGDRIVSWARSNGKRVRGHALAWHSQQPGWMQNMS





GTALRNAMLNHVTQVATHYKGQIYAWDVVNEAYADGSSGARRDSN





LQRTGNDWIEAAFRAARAADPAAKLCYNDYNTDNWSHAKTQGVYT





MVRDFKSRGVPIDCVGFQAHFNSGNPVPSNYDVTLRNFAALGVDV





QITELDIEGSGSSQAQQYAGVHQACLSVARCTGVTVWGVRDTDSW





RASGTPLLFDGSGNKKAAYTSTLNALNAGGTTTPNPTPNPTTPQP





TPTTTTPPVTGTGSCTATYSEGQKWGDRFNGVVTIRANSAITSWT





STVTVSQAQRITSTWSGTPSWDSSGKVMTMRPAGNGTLAAGQTTS





FGFTVLHGGDWTWPRVTCSAS





SEQ 61:


Polypeptide sequence of exoglucanase (CEX-like)


homologue (Couchioplanescaeruleus)


MHKPRTPLRALGVAAAAAVVAAGSVVALTSTAEAATTLGASAAAT





GRYFGTAVAANKLSDSTYVGILDREFNAVTPENEMKWDATEPNQN





QFNYSSADRIVSHAQAQNMRIRGHALAWHQQQPGWAQNLSGTALR





NAMLNHVTTVAAHYKGQIYAWDVVNEAFDDGGNGARRDSNLQRTG





NDWIEAAFRAARAADPGAKLCYNDYNTDGQNAKSNAVYAMVQDFK





SRGVPIDCVGFQSHFNAQSPVPSDYQANLQRFANLGVDVQITELD





IEGSGQTQADNFGRVVKACLAVSRCTGITVWGIRDSDSWRASGTP





LLFDSSGNKKAAYTSTLNALNSGGTTPPSDPPTSPSTPPSTPTDP





GTGACTATISLNQWNGGFVATVRVSAGSSALSGWSVSTTLPSGAA





VTNSWSSQSSGSSGTVRFANVSYNGSVAAGGSTEFGFQGTGTGPS





SATCSAS





SEQ 62:


Polypeptide sequence of exoglucanase (CEX-like)


homologue (Glycomycestritici)


MITSTPRRRRRVWSTIAAVATASLAATTALVMLPGTAQAGTTLGA





SAAESGRYFGAAVSTQYLSESAYANTLGAEFNSVVAENAMKWDAT





EPNPGQFNFSGGDQLVNWAQARGMKVRGHTLVWHAQQPGWAQNLT





GQNLRNAMLNHIAGVANHYEGDVFAWDVVNEAFEWDGSRRQSNLQ





RQLGNGWIEEAFRAADAADPTATLCYNDYGTDSINAKSTAIYNMV





RDFKSRGVPIDCVGFQTHIAHNENLSSYQANLQRFADLGVDVEIT





ELDVGQGSGQAATYGTVTNACMAVARCKGITVWGITDKYSWRDDN





PLLFDGNYQKKQAYHTVLAALNNGNPGGGGGKHITSAASGRCLDV





PNQSTTNGTQLQIYDCWTGANQQWTVANGEISVYSGGSKKCLDAS





GGGTANGTAAIIWSCHGGANQRWNVNSNGTITNAASGLCLDVAAA





ATANGSKVQLWSCTGGSNQRWTV





SEQ 63:


Polypeptide sequence of exoglucanase (CEX-like)


homologue (Actinoplanesauranticolor)


MTVIAARARLLLGAACAVVIAVSSVAVATLAHADLTGPPGTTLKA





AAERSGRYFGAAMGRDRLTDNGFLTIANREFDMMTAVNEMKPDAT





EPNRGQFDFRAGDAIYNWATQRGMRFRGHTLAWHAQQPRFWGSLS





GSALRQAMIDHINGVMAHYKGKLYAWDVVNEAFAENGSRRSSNLQ





ATGNDWIEAAFRAARAADPGVQLCYNDYNIENWTYAKTQGVYNMI





RDFKARGVPIDCVGLQTHFTGGSSLPGNFQQTLSSFAALGVDVAL





TEADVTNASSSQYQGLTQACMNVPRCVGITTWGIRDSDSWRGNEN





PLLFDRNSNPKPAYTSVLNALNAASTTVPGTSTPPSTPPSTPPST





PPSTPPSTPPVTGQPGACTATYRTASTWNGGYQGEVTVANNGSAA





LTGWTVQLTLAGGQTVANVWNGINTGTSGTISVRNAAYNGSVGAN





ASTSFGFLVNGSTGTAPGSLTCTSP





SEQ 64:


Polypeptide sequence of exoglucanase (CEX-like)


homologue (Sphaerisporangiumrubeum)


MVVIGTAVVVGAGVCAGAGAADAAGTLGAAAAGSGRDFGTAVQAG





RLGEAAYVETLDREFTSVTPENEMKWDAVEPARGTFVFTAADRIV





EHARARGMKIRGHTLVWHPGLPGWLTNLSSAEFRIAVNNHIATVM





GHWRGQIDSWDVVNEAFQDGSGALRSTIFRSRLGDGYIEEAFRAA





RAADPAAKLCYNDYNIEDADAAKTRAVYAMVRDFKERGVPIDCVG





VQSHFNASMPFPANYRRTIEQFAALGVDVQITQLDVDGGAAQAAT





YRAAVEACVAVPRCTGITVWGVPDHYSWRAPNTPLLFDRDYQKKP





AYFAVLEALNAAGGEPTPAPTPTPSPTPTPTPTVTPVPVSCRVTA





ELWARSRTGYVIKPVTVRNTGRAAVSGWTVTFTLPQGHVVTGSWD





AVLTVAGGTVTARNAGHNGTLAPGATATFGFQVRRASGGTALPSG





YACRAG





SEQ 65:


Polypeptide sequence of exoglucanase (CEX-like)


homologue (Phytoactinopolyspora



halotolerans)



MITRHRRQAILASMALVGATLVVPIGAAQAQDTLRGAADAQGLRM





GAAVANGPLSSDAQYRNILGTEFNSVTAENSMKWESLQPSQGQFT





FSQGDAIVDFAQANNQAVYGHTLVWHNQTPSWVQNLSGQQLDDAM





QTHITTVLDHYEGQVEAWDVANEVIDDGANLRNSFWLQGLGEGYI





ADAFRYADAADPNAKLYINDYNIDGINAKSNAYYDLVSGLLNQGV





PIDGIGLQAHMILGQVPSSLEDNIRRFAQLGLEVRITELDIRMDL





PVTQAKLEQQRQDYAAVVDACMSVDGCVGVTTWGFTDAHSWVPDQ





FGGQGAALPFDENYNKKPAYYGILDTLDGGTPNDTTPPTQPGAPQ





ISDVTSNSASLTWSASSDSGGSGLAGYSVYREQSGNDQLLASPST





NSVTLTGLDPQTQYSVYVVARDGAGNTSSPSTAASFTTQEGPGGG





GACDVEYTANNWGGSEGFTASVTITNTGSSQLNGWTLGFTFPGDQ





SVREGWSATWSQSGADVTAESIGWNDALAPGGSTTVGFNGTYSGS





NPEPTEFTLNGEPCSVS





SEQ 66:


Polypeptide sequence of exoglucanase (CEX-like)


homologue (Glycomycesparidis)


MHTRKRRRALIAGVVTVATAALGIGLSTQFASAQTTLRGAADEAG





IDIGIAVDANQLQNNATYRNLVATEFNSLTAENAMKWDATEPSDN





SWNFSGADAIVDFAEDNDQTVHGHTFVWHSQTPQWVQNLSASAMQ





AAMVDHINTLANRYEGRVDSWDVVNEVVSDNNGAMRDSFWRNTLG





DGYITTAFQTARAADPNADLYINDYSIEGDNAKSDRIYTIAQGLN





SQNLIDGVGFQSHLILGQVPSTMEANLQRFIDLGLKVRITELDIR





IQTPADANELQQQANDYERVVSICAELADCSGVTVWGLRDADSWV





PGVFPGYGAPLLFDDNFGKKPAYNAVLEALGGDGSEEPTTTDPGT





TTPPPTGDGDCTAEIDVVNDWGSGWQGNVLITADNGAVNGWTLTW





TWPSGQSITSSWNATVTSSGSSVTASDVGWNANIAAGQTMNAWGF





VGSGSSAAPQVTCTAD





SEQ 67:


Polypeptide sequence of exoglucanase (CEX-like)


homologue (Streptomonosporaalba)


MRLVRHGGHETPRRTRAGSARRVAGAALATFLGAAVLAPAGPAAA





DSPLRDHAAQQGFEIGAALGVDHLQNDSQFADLAATEFNAATAEN





SMKWESTEPSRGQFDFSGADAFMDFAQQNNQKVRGHTLVWHSQLP





SWVENGNFSQSELRSVMEDHIDEVAGRYAGEVAYWDVANEIFEGD





GSWRNSVFYDTLGPDFVADALRMTAEADPNAELWLNDYSIDGINA





KSDAYYNLIQDLQAQGVPIDGIGLQAHLINGQVPGDLQQNIQRFA





DLGIKVAITELDVRIDMPASQSELQQQAQDYRAVMDACLAVNGCV





GVTVWGIVDKYSWVPDTFEGEGAPLLFNDDYQPKPAYDAVHEALG





GSSDDDDDDDNGGGEDPPPTGPCEVSYSVANEWNSGFTGQVTVTN





GGSSALNGWDLQFDFSGGQQITNGWNADWSQSGSTVTASNTEWNG





SVPAGGSVDIGFNASHSGSNPEPGSFALNGESCSVS





SEQ 68:



Zymomonas mobilis codon optimized polynucleotide



sequence of exoglucanase (cex-like)


ATGACGCCAAGTTCAATGTCCCGTCGGGCCCGCGTTGCGTCAGCT





CTTGCCATCGTGACGTTGGGCGCTACTATCGCTACTACGATTCCT





GCCCAAGCCGCCGGCTCTACATTACAAGCGGCTGCTTCTGAAAGT





GGTCGTTATTTCGGTACAGCGATTGCTGCGTTTAAATTGAATGAT





TCAACGTACAGCTCCATTGCGAATCGGGAGTTCAATATGATTACA





GCAGAAAATGAAATGAAAATGGACGCGACTGAGCCGTCTCAGAAT





AATTTTTCGTATTCGAGTGGCGATCAGATTCTTAATTGGGCACGG





TCTAATGGTAAGCGTGTTCGTGGCCATGCATTGGCCTGGCATTCG





CAGCAACCGGGGTGGATGCAAAATATGTCCGGTACACAGTTACGC





AATGCCATGTTGAATCATGTGACGCAGGTTGCTACGCATTATAAA





GGCAAGATTTATGCATGGGATGTCGTTAATGAAGCCTATGCGGAC





TCTGGTGGGGGGCGTCGTGACAGTAATCTTCAACGGACCGGTGAT





GATTGGATTGAAGCTGCTTTTCGCGCTGCGCGGGCGGCAGATCCA





GGTGCCAAACTTTGCTATAATGATTATAATACAGACAATTGGACG





TGGGCTAAAACACAGGGTGTCTACAACATGGTTAAAGATTTTAAA





GCTCGTGGGGTGCCGATTGATTGCGTTGGCTTTCAATCTCATTTC





AATTCCGGGTCGCCGTATCCGTCAAATTATCGTACAACCTTACAA





AATTTCGCCGCCCTGGGTGTGGAAGTTCAGATTACCGAATTAGAT





ATCGAAGGTTCGGGGCAACAACAGGCACAGACTTATGCCAATGTC





GTCGCTGATTGCTTGGCAGTGAAGGCTTGCACCGGTATCACAGTT





TGGGGCGTCAGAGACTCAGACTCTTGGCGCAGCTCCGGGACGCCG





TTGTTGTTTGATGGCAGCGGTAATAAAAAGGCTGCGTATACCTCT





ACCTTGGACGCTCTTAACCGGGGTGGAGTCCCGACTGATCCGACC





ACTCCGCCGACAGACCCCACGACACCACCCACTGATCCCACGACA





CCGCCTACCGATCCTACCACTCCGCCTACGGATCCTACAACCCCA





CCCACGGATCCAACTGGCCGTTGCACCGCGAGCCTTGCGATTGCC





AACGCCTGGCCGGGTGGATATCAGGCCACGGTCACGGTCAAAGCA





GGGTCCAGTAGTATCAATGGATGGCGCGTTACATTACCTTCTGGC





GTTTCCACTAGTAACCTGTGGAATGGCGTCCTGGCGAACGGAGTG





GTCACGAATGCCCCTTATAATGGCTCTGTTGGCGCGGGGCAATCC





ACGACCTTTGGCTTTGTCGGCAATGGCTCGGCGCCCAGTGCTGGT





AGCGTGACTTGTGCCTGA





Claims
  • 1. A genetically modified ethanologenic organism which comprises an exoglucanase (cex-like) polynucleotide sequence with at least 70% sequence coverage to SEQ 1 or SEQ 68, and at least 70% sequence identity to SEQ 1 or SEQ 68.
  • 2. The genetically modified ethanologenic organism according to claim 1, wherein said cex-like polynucleotide sequence is selected from the group consisting of SEQ 1; SEQ 41; SEQ 42; SEQ 43; SEQ 44; SEQ 45; SEQ 46; SEQ 47; SEQ 48; and SEQ 68.
  • 3. The genetically modified ethanologenic organism according to claim 1, wherein said cex-like polynucleotide sequence, upon transcription and translation under the control of a native or synthetic promoter and Ribosomal binding site (RBS), provides an exoglucanase (CEX-like) polypeptide sequence, wherein said CEX-like polypeptide sequence has at least 70% sequence coverage to SEQ 2, and at least 35% sequence identity to SEQ 2.
  • 4. The genetically modified ethanologenic organism according to claim 3, wherein said CEX-like polypeptide sequence is selected from a group consisting of SEQ 2; SEQ 49; SEQ 50; SEQ 51; SEQ 52; SEQ 53; SEQ 54; SEQ 55; SEQ 56; SEQ 57; SEQ 58; SEQ 59; SEQ 60; SEQ 61; SEQ 62; SEQ 63; SEQ 64; SEQ 65; SEQ 66; and SEQ 67.
  • 5. A genetically modified ethanologenic organism which comprises a (3-glucosidase 1 (bgl1) polynucleotide sequence with at least 70% sequence coverage to SEQ 3 or SEQ 14, and at least 70% sequence identity to SEQ 3 or SEQ 14.
  • 6. The genetically modified ethanologenic organism according to claim 5, wherein said bgl1 polynucleotide sequence is selected from the group consisting of SEQ 3; SEQ 14; SEQ 15; SEQ 16; SEQ 17; SEQ 18; SEQ 19; SEQ 20; and SEQ 21.
  • 7. The genetically modified ethanologenic organism according to claim 5, wherein said bgl1 polynucleotide sequence, upon transcription and translation under the control of the native of a native or synthetic promoter and Ribosomal binding site (RBS), provides a 3-glucosidase 1 (BGL1) polypeptide sequence, wherein said BGL1 polypeptide sequence has at least 70% sequence coverage to SEQ 4, and at least 35% sequence identity to SEQ 4.
  • 8. The genetically modified ethanologenic organism according to claim 7, wherein said BGL1 polypeptide sequence is selected from a group consisting of: SEQ 4; SEQ 22; SEQ 23; SEQ 24; SEQ 25; SEQ 26; SEQ 27; SEQ 28; SEQ 29; SEQ 30; SEQ 31; SEQ 32; SEQ 33; SEQ 34; SEQ 35; SEQ 36; SEQ 37; SEQ 38; SEQ 39; and SEQ 40.
  • 9. A genetically modified ethanologenic organism which comprises: a. an exoglucanase (cex-like) polynucleotide sequence with at least 70% sequence coverage to SEQ 1 or SEQ 68, and at least 70% sequence identity to SEQ 1 or SEQ 68; andb. a β-glucosidase 1 (bgl1) polynucleotide sequence with at least 70% sequence coverage to SEQ 3 or SEQ 14, and at least 70% sequence identity to SEQ 3 or SEQ 14.
  • 10. The genetically modified ethanologenic organism according to claim 9, which comprises: a. an exoglucanase (cex-like) polynucleotide sequence selected from the group consisting of: SEQ 1; SEQ 41; SEQ 42; SEQ 43; SEQ 44; SEQ 45; SEQ 46; SEQ 47; SEQ 48; and SEQ 68; andb. a β-glucosidase 1 (bgl1) polynucleotide sequence selected from the group consisting of: SEQ 3; SEQ 14; SEQ 15; SEQ 16; SEQ 17; SEQ 18; SEQ 19; SEQ 20; and SEQ 21.
  • 11. The genetically modified ethanologenic organism according to claim 9, which upon transcription and translation under the control of the native of a native or synthetic promoter and Ribosomal binding site (RBS), comprises: a. an exoglucanase (CEX-like) polypeptide sequence, wherein said CEX-like polypeptide sequence has at least 70% sequence coverage to SEQ 2, and at least 35% sequence identity to SEQ 2; andb. a β-glucosidase 1 (BGL1) polypeptide sequence, wherein said BGL1 polypeptide sequence has at least 70% sequence coverage to SEQ 4, and at least 35% sequence identity to SEQ 4.
  • 12. The genetically modified ethanologenic organism according to claim 11, wherein: a. said exoglucanase (CEX-like) polypeptide sequence is selected from the group consisting of: SEQ 2; SEQ 49; SEQ 50; SEQ 51; SEQ 52; SEQ 53; SEQ 54; SEQ 55; SEQ 56; SEQ 57; SEQ 58; SEQ 59; SEQ 60; SEQ 61; SEQ 62; SEQ 63; SEQ 64; SEQ 65; SEQ 66; and SEQ 67; andb. said β-glucosidase 1 (BGL1) polypeptide sequence is selected from the group consisting of: SEQ 4; SEQ 22; SEQ 23; SEQ 24; SEQ 25; SEQ 26; SEQ 27; SEQ 28; SEQ 29; SEQ 30; SEQ 31; SEQ 32; SEQ 33; SEQ 34; SEQ 35; SEQ 36; SEQ 37; SEQ 38; SEQ 39; and SEQ 40.
  • 13. The genetically modified ethanologenic organism according to claim 1 further comprising a promoter and RBS sequence which drives gene expression, wherein the genetic material for the promoter/RBS sequences comprises at least one or another of the following: SEQ 5; SEQ 6; SEQ 7; SEQ 8; SEQ 9; SEQ 10; SEQ 11; SEQ 12; and SEQ 13.
  • 14. The genetically modified ethanologenic organism according to claim 1, where the organism is a bacterium.
  • 15. The genetically modified ethanologenic organism according to claim 1 where the organism is selected from the group consisting of the genera Aspergillus, Mucor, Zymomonas, Escherichia, Clostridia, Bacillus, and Pseudomonas.
  • 16. The genetically modified ethanologenic organism according to claim 1 where the organism is a prokaryotic organism.
  • 17. The genetically modified ethanologenic organism according to claim 1 where the organism belongs to the bacterial genus Zymomonas.
Priority Claims (1)
Number Date Country Kind
3208555 Aug 2023 CA national