Production of beta-glucans and mannans

Abstract
Disclosed are methods for producing yeast β-glucan and mannan preparations. The methods employ an autolysis process, followed by enzymatic treatment with one or more of a protease, glucanase or lipase. The preparations produced may be used in food supplements, pharmaceuticals, cosmetics, animal feeds, and neutraceuticals.
Description
BACKGROUND OF THE INVENTION

This invention relates to β-glucan/mannan preparations and to methods for their preparation. In particular, the invention relates to preparations, including β-(1,3/1,6) glucan and mannan, produced from microorganisms including, but not limited, to yeasts.


“Glucan” is a generic term referring to an oligo- or polysaccharide composed predominantly or wholly of the monosaccharide D-glucose. Glucans are widely distributed in nature, and are particularly important for their role in maintaining the structural integrity of bacterial, yeast, and plant cells. For example, glucan, in combination with other polysaccharides such as mannan and chitin, is responsible for the shape and mechanical strength of the cell wall. Glucans typically accounts for approximately 40% to 50% of the weight of the cell wall in these cells.


As polymers of D-glucose, the D-glucose units may be linked together in a variety of ways. For example, glucans with (1,3), (1,4), (1,6) and (1,2) linkages (glucosidic linkages) are all known. The variety of linkages possible means that glucans are normally highly branched compounds. Many forms are possible as a result of this highly variable manner in which this individual glucose units can be joined as well as the overall steric shape of the parent molecule. A common glucan is β-(1,3)-linked glucopyranose (commonly referred to as β-glucan). Cell walls of several species include β-(1,3)-linked glucopyranose coupled with β-(1,6)-linked glucopyranose. For example, the cell wall of Saccharaomyces cerevisiae is primarily composed of β-linked glucan, which is mainly a backbone of β-(1-3)-linked glucose units, with a minor component of inter and intra molecular branching via β-(1-6)-linkages.


Because of their chemical properties, glucans have found a wide variety of uses in the chemical, food and pharmaceutical industries. For example, they may be useful as viscosity imparting agents, emulsifiers, fibers, films, coating substances, supports for affinity chromatography and gel electrophoresis, in cell culture media, as filter pads, and in cement. They are also widely used as food thickeners and as a source of dietary fiber, and as carriers and coating agents in pharmaceutical products. Glucans have been shown to have immunopharmacological activity in humans and animals. For example, strong immunostimulation and protection against pathogenic microorganisms have been demonstrated in shrimp, fish, poultry, swine, cattle, rabbits, mice, rats and humans. Yeast β-glucans may stimulate the innate (non-specific) immune response of vertebrates and invertebrates via interaction with the Toll-like receptor Dectin-1. Such binding stimulates the production of active oxygen species in macrophages and enhances their phagocytosis and killing of microorganisms. These stimulated immune cells also produce cytokins which can circulate throughout the animal and interact with other immune cells to enhance the immune status of the animal.


The purification of β-glucans from yeast and other organisms has been extensively investigated, and a variety of methods is known. Most of these rely on the insolubility of β-(1-3)-glucan in alkali or in organic solvents. The principal known methods are: (a) high temperature extraction with concentrated sodium hydroxide, followed by high temperature extraction with acid and precipitation with ethanol (see, e.g., Manners, D. J. et al., Biochem. J. 135 19-30 (1973), Jamas, S. et al., U.S. Pat. Nos. 4,810,646, 5,028,703, and 5,250,436). Many of these protocols require preliminary homogenization of the yeast cells, and many require multiple repetition of each extraction steps; (b) extraction of yeast cell wall preparations resulting from autolysis or enzyme degradation of yeast with concentrated phenol:water (1:1) (see, e.g., U.S. Pat. No. 4,138,479 by Truscheit, E. et al.); and (c) extraction with organic solvents such as isopropanol, ethanol, acetone, or methanol either alone or in the presence of alkali (see, e.g., European Patent Application No. 515216). Acid treatment is known to reduce the number of β-(1-6)-linkages in the glucan material, which results in an increase in viscosity.


Mannan is a polymer composed of mannose units. In yeasts, mannan is associated with protein in both the external surface of the yeast cell wall, as a muscigenous polysaccharide, and in the inner cell membrane. It generally accounts for about 20-50% of the dry weight of the cell wall. Mannan is linked to a core-peptide chain as an oligomer or polymer. The complex contains about 5-50% proteins. Oligomeric mannan is bonded directly to serine and threonine, whereas polymeric mannan is bonded to aspargine via N-acetylglucosamine. In the manno-protein complex, the mannose units are linked by α-1,6, α-1,2 and α-1,3-linkages.


Mannan-oligosaccharides (MOS) can be released from yeast cell walls by proteolytic action. The released MOS can effectively bind to bacterial pathogens of the intestinal tract and block their ability to colonize the intestinal tract. For example, E. coli, Salmonella spp. and Vibrio cholera have proteins on their surface (lectins) which bind specifically to the mannose sugar residues of the MOS.


Considering the many uses and applications of glucans, there is a clear need in the art for a method of β-glucan/mannan extraction which avoids the use of high concentrations of alkali or acid and the use of high temperatures, which has improved recovery of glucans and mannans, and which results in a biologically useful preparation.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a flowchart of one embodiment of a process for production of β-glucan/mannan preparations in accordance with the present invention.



FIG. 2 is a flowchart of another embodiment for process for production of β-glucan/mannan preparations in accordance with the present invention.





SUMMARY OF THE INVENTION

In one aspect, the present invention provides a method for processing yeast cells using the steps of autolyzing the yeast cells to release yeast cell walls, incubating the yeast cell walls with an exogenous protease, separating the yeast cell walls into a glucan-enriched component and a mannan enriched component, and ultrafiltering the mannan-enriched component to form a filtrate and a retentate.


In another aspect, the invention provides a method for processing yeast cells using the steps of autolyzing the yeast cells at a temperature of 40° C. to 65° C. to release yeast cell walls, incubating the yeast cell walls with an exogenous protease at a pH of 9 to 10, and incubating the protease-treated cell walls with an enzyme such as an amylase, lipase or a combination thereof.


In another aspect, the invention provides a composition comprising α-mannans, wherein at least 85% (w/w) of the total α-mannans have a molecular weight of 10,000 Da or more.


Other embodiments of the invention include animal feeds, food supplements, pharmaceuticals, cosmetics and neutraceuticals that comprise glucans or mannans made by methods of the invention.


BRIEF DESCRIPTION OF THE INVENTION

In one embodiment, the invention provides a process that produces insoluble cell wall preparations enriched in β (1,3) and β (1,6) glucans and a soluble fraction enriched in mannans. The process in accordance with the present invention includes an autolysis step of a source of cell walls, for example, yeast, such as brewer's yeast or baker's yeast, followed by an enzymatic digestion step. In one aspect, the enzymatic digestion is carried out using a high-pH protease. In another aspect, the enzymatic digestion is carried out using a combination of enzymes, such as a high-pH protease, an amylase, glucoamylase and/or lipase. In one embodiment, the enzymatic digestion is carried out using a high-pH protease followed by one or more other enzymes, such as amylase, glucoamylase and/or lipase.


In another embodiment the invention provides a cell wall preparation that is enriched β-(1,3) and β-(1,6) glucans, and in another embodiment, a soluble fraction enriched in mannans.


Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.


DETAILED DESCRIPTION OF THE INVENTION

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of components and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


It also is understood that any numerical range recited herein includes all values from the lower value to the upper value. For example, if a concentration range is stated as 1% to 50%, it is intended that values such as 2% to 40%, 10% to 30%, or 1% to 3%, etc., are expressly enumerated in this specification. These are only examples of what is specifically intended, and all possible combinations of numerical values between the lowest value and the highest value enumerated are to be considered to be expressly stated in this application.


Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.


Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximation, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.


β-glucan/mannan preparations can be prepared from microorganisms, such as yeast, using a simple autolysis process, at slightly acidic/near-neutral pH and only moderately elevated temperature. Autolysis is followed by an enzymatic digestion. In one embodiment, the enzymatic step utilizes a high pH protease (e.g., Protex 6L available from Genencore International or from fermentation of Bacillus lichenformis), typically about 0.05%-1% by weight, at an alkaline pH, and elevated temperature.


Suitable yeast species as a source of β-glucans/mannans include, but are not limited to, yeast strains of Saccharomyces cerevisiae (including baker's yeast strains and brewer's yeast strains), Kluyveromyces fragilis, and Candida strains, such as Candida utilis, and combinations thereof. Other strains of yeast which are suitable sources of β-glucans/mannans include, but are not limited to, Saccharomyces delbruekii, Saccharomyces rosei, Saccharomyces microellipsodes, Saccharomyces carlsbergensis, Schizosaccharomyces pombe, Kluyveromyces lactis, Kluyveromyces polysporus, Candida albicans, Candida cloacae, Candida tropicalis, Candida guilliermondii, Hansenula wingei, Hansenula arni, Hansenula henricii, Hansenula Americana and combinations thereof. These yeast strains can be produced using culture in food grade nutrients either by batch fermentation or continuous fermentation.


Many other species of microorganisms, including, but are not limited to, bacteria, fungi, and plants, for example, unicellular algae, have been reported in the art as a source of β-glucans/mannans. Other microorganisms which may be useful in the invention as sources of β-glucans and/or mannans include, but are not limited to, bacteria, such as Alkaligenes, especially Alkaligenes faecalis Var. mixogenes (ATCC-21680), Agrobacterium, Cellulomonas, such as ATCC 21399 and Cellulomonas flavigena (ATCC 53703), and Pestalotia; fungi, for example Aureobasidum such as Aureohasidum pullulans strain IFO446 and Aureobasidum species K-1 (FERM P1289), Agaricus, Lentinus, Pleurolus ostreatus, Macrophomopsis such as strain KOB55; Ganoderma, Schizophylla, Fachyma hoelen, Pestalotia, Coriolus, and combinations thereof. Non-microorganisms, such as plants, may also be useful in the invention as sources of β-glucans and/or mannans.


Specifically, the process in accordance to the present invention relates to the generation of cell wall preparations enriched in β-(1,3)-and β-(1,6)-glucan content and mannan content, produced from microorganisms including, but not limited to, yeast. In an exemplified embodiment, the process includes a first step of autolysis of yeast, e.g., brewer's yeast, (typically a 7% to 18%, particularly a 10% to 17%, and more particularly a 8% to 12% or 13% to 16% solids slurry). The autolysis may suitably be carried out at a pH of at least 4, particularly at least 4.5, and more particularly at least 5. The autolysis may suitably be carried out at a pH of less than 8, particularly less than 7, and even more particularly less than 6. The temperature for carrying out the autolysis may suitably be at least 30° C., particularly at least 35° C., more particularly at least 40° C., and even more particularly at least 45° C. The temperature for carrying out the autolysis may suitably be less than 55° C., particularly less than 52° C., and even more particularly less than 50° C. The autolysis may suitably be carried out for at least 10 hours, particularly at least 16 hours, and more particularly at least 24 hours. The autolysis may suitably be carried out for less than 100 hours, particularly less than 48 hours, and even more particularly less than 36 hours. The yeast is then separated, suitably by centrifugation, to produce an extract, and a cell wall stream of low β-glucan content. A further step treats the cell wall stream with an enzyme including, but not limited to, a protease, e.g., an alkaline protease, at a pH of at least 8.5, particularly at least 9, and more particularly at least 9.2. The pH may also suitably be less than 10.5, particularly less than 10, and even more particularly less than 9.8. The protease treatment may suitably be carried out at a temperature of at least 45° C., particularly at least 50° C., more particularly at least 53° C. The protease treatment may suitably be carried out at a temperature of less than 70° C., particularly less than 65° C., more particularly less than 60° C., and even more particularly less than 57° C. The protease treatment may be suitably carried out for at least 5 hours, particularly at least 8 hours, more particularly at least 10 hours, even more particularly at least 12 hours. The protease treatment may be suitably carried out for less than 48 hours, particularly less than 36 hours, more particularly less than 24 hours, and even more particularly less than 18 hours. The second product is then separated by centrifugation to produce an extract enriched with mannan (α-mannan), and a cell wall product enriched in β-glucan. This β-(1,3/1,6) cell wall product is then dried, e.g., spray dried, which results in aggregation of the product to particles of about 100-300 microns or larger. The mannan extract is then subjected to a 10,000 molecular weight ultrafiltration to yield a high-molecular weight retentate that is enriched in mannan.


This exemplified process described above is shown in the flowchart of FIG. 1. Live yeast are subjected to autolysis in a process in which endogenous yeast enzymes break down and solubilize some yeast macromolecules. Soluble extract is separated from insoluble yeast cell walls by centrifugation. The cell walls are then treated with a high-pH protease to further remove protein from the cell walls, and subsequently also remove the mannan which is attached to the cell wall protein. The β-glucan enriched cell walls are then separated from the secondary extract by centrifugation. Mannan, which has a high molecular weight, can be further purified and concentrated by passing the secondary extract through a 10,000 Da ultrafilter.


In another embodiment, the process includes a first step of autolysis of yeast, e.g., brewer's yeast, (typically a 8%-12% solids slurry). The autolysis is suitably carried out at a pH of at least 4, particularly at least 4.5, and more particularly at least 5. The pH may also suitably be less than 8, particularly less than 7, and even more particularly less than 6. The temperature for carrying out the autolysis may suitably be at least of at least 30° C., particularly at least 40° C., and more particularly at least 45° C. The temperature may also suitably be less than 55° C., particularly less than 53° C., and even more particularly less than 50° C. The autolysis may suitably be carried out for at least 10 hours, particularly at least 16 hours, and more particularly at least 24 hours. The autolysis may suitably be carried out for less than 100 hours, particularly less than 48 hours, and even more particularly less than 36 hours. The yeast is then separated, suitably by centrifugation, to produce an extract, and a cell wall stream of low β-glucan content. A further step treats the cell wall stream with enzymes. The enzymatic step utilizes first a high pH protease at an alkaline pH, for example, at a pH of at least 8.5, particularly at least 9, and more particularly at least 9.2. The pH may also suitably be less than 10.5, particularly less than 10, and even more particularly less than 9.8. The protease treatment may suitably be carried out at a temperature of at least 45° C., particularly at least 50° C., more particularly at least 53° C. The protease treatment may suitably be carried out at a temperature of less than 70° C., particularly less than 65° C., and more particularly less than 60° C., and even more particularly less than 57° C. The protease treatment may be suitably carried out for at least 5 hours, particularly at least 8 hours, more particularly at least 10 hours, even more particularly at least 12 hours. The protease treatment may be suitably carried out for less than 48 hours, particularly less than 36 hours, more particularly less than 24 hours, and even more particularly less than 18 hours. The protease enzymatic step is followed by incubation with glucoamylase (e.g. from Aspergillus species), an amylase (e.g., α-amylases from Bacillus subtili, Aspergillus oryzae; amyloglucosidases from Aspergillus niger or Rhizopus mold) and/or a lipase (e.g., lipase from Pseudomonas cepacia, Candida rugosa and Mucor javanicus; typically about 0.05%-1% by weight), The incubation with glucoamylase, amylase and/or lipase is suitably carried out at neutral to slightly acidic pH and elevated temperature. For example, the pH may suitably range from at least 3.5, particularly from at least 4, and even more particularly from at least 4.5. The pH may also suitably range from less than 7, particularly less than 6, and even more particularly less than 5.5. The temperature for carrying out the incubation with glucoamylase, amylase and/or lipase may suitably range from at least 40° C., particularly at least 45° C. more particularly at least 50° C. and even more particularly at least 53° C. The temperature may also suitably range from less than 70° C., particularly less than 65° C., more particularly less than 60° C., and even more particularly less than 58° C. Temperatures of at least 60° C., at least 65° C., at least 70° C., at least 75° C., at least 80° C., at least 85° C., or at least 90° C. may be suitably be used, particularly if the protease, amylase or lipase is a thermostable enzyme. The incubation with the alkaline protease can also be followed by incubation with a combination of a glucoamylase and a lipase, a combination of an amylase and a lipase or a combination of a glucoamylase, an amylase and a lipase.


The exemplified process described above is shown in the flowchart of FIG. 2. In the process depicted in FIG. 2, live yeast are subjected to autolysis in a process where endogenous yeast enzymes break down and solubilize some yeast macromolecules. The cell walls from the autolysis are first treated with the high pH-protease. The incubation with the high-pH protease is suitably carried out at a temperature of 50° to 65° C. for approximately 10 to 16 hours. The cell walls are then treated with an amylase (or other glucanase) or lipase, or a combination of amylase and lipase. The incubation with the amylase and/or a lipase is suitably carried out at a pH of 4 to 7 and a temperature of 50° to 65° C. for approximately 4 to 10 hours. The amylase may digest residual alpha-glucans such as glycogen that may still reside with the cell wall. The lipase may degrade cell wall membranes enriched with lipids and fats. The cell wall stream may then be separated by centrifugation to produce a secondary extract enriched with mannan, and a cell wall product enriched in β-glucans. The cell wall product may be dried, e.g., spray dried. The secondary mannan extract may be passed through an ultrafilter, such as a 10,000 Da ultrafilter, a 50,000 Da ultrafilter, or a 100,000 Da ultrafilter to enrich the mannan content of the retentate.


The preparations of the invention may be dried by any suitable process including, but not limited to, freeze-drying, roller drum drying, oven-drying, spray-drying, ring-drying, and combinations thereof and/or dried using film-forming equipment, and either may be used without further processing, or may be milled using any suitable technique.


Suitably, the high-pH protease may have an optimum proteolytic activity at a pH above 7. Suitable proteases include, but are not limited to, those obtained from Actinidia chinensis, Ananas comosus, Aspergillus spp. (e.g. A. niger, A. niger var. awamori, A. oryzae, A. sojae, A. melleus), Bacillus spp. (e.g. B. subtilis, B. alcalophilus, B. amyloliquefaciens, B. halodurans, B. lentus, B. licheniformis, B. stearothermophilus, B. thermoproteolyticus), Carica papya, Cryphonectria parasitica, Endothia parasitica, Ficus glabrata, Kluyveromyces lactis, Penicillum citrinum, Rhizomucor miehei, Rhizopus niveus, from calf, goat or ox stomachs or porcine pancreases, and combinations thereof. Suitable proteases may include, but are not limited to, commercially available enzymes such as subtilisin Carlsberg, subtilisin BPN′, subtilisin Novo, subtilisin 309, subtilisin 147 and subtilisin 168, Alcalase™, Savinase™, Primase™, Duralase™, Durazym™, Esperase™, and Kannase™ (available from Novo Nordisk A/S); Maxatase™, Maxacal™, Maxapem™, Optimase™, Properase™, Purafect™, Purafect OxP™, FN2™, and FN3™ (available from Genencor International Inc.); and Validase™ AFP, Validase™ FP Concentrate, Validase™ FP 500, Validase™ FP II, Validase™ TSP Concentrate, Alkaline Protease Concentrate, Bromelain (available from Valley Research, South Bend, Ind.), and combinations thereof.


Suitable amylases include those of plant, animal, bacterial or fungal origin, and combinations thereof. Amylases include, but are not limited to, glucoamylases or α-amylases obtained from Bacillus spp., (e.g., B. licheniformis, B. amyloliquefaciens, B. subtilis, B. stearothermophilus), Aspergillus oryzae, Aspergillus niger, Aspergillus niger var. awamori, Microbacterium imperiale, Thermomonospora viridis, barley malt (Hordeum spp.), porcine pancreas (Sus spp.), and combinations thereof. Examples of useful amylases include, but are not limited to, commercially available amylases such as Glucoamylase Concentrate, Duramyl™, Termamyl™, Fungamyl™ and BAN™ (available from Novo Nordisk A/S); Rapidase™ and Purastar™ (available from Genencor International Inc.); and Validase™ BAA, Validase™ HT340L, Validase™ FAA, Validase™ AGS, Validase™ GA, Validase™ RGA (available from Valley Research, South Bend, Ind.), and combinations thereof. The amylase may be suitably used at a final concentration of at least 0.001%, particularly at least 0.01% and even more particularly at least 0.02%. The amylase may be suitably used at a final concentration of less than 0.1%, particularly less than 0.05%, and even more particularly less than 0.1%.


Lipases useful in the invention include, but are not limited to, lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus), H. insolens, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes, P. cepacia, P. stutzeri, P. fluorescens, Pseudomonas sp. strain SD 705, P. wisconsinensis, a Bacillus lipase, e.g. from B. subtilis, B. stearothermophilus or B. pumilus (WO 91/16422); Aspergillus oryzae, Aspergillus niger, Candida lipolytica, Candida rugosa, Mucor javanicus, Penicillum roqueforti, Rhizomucor miehei, Rhizopus delemar, Rhizopus niveus, Rhizopusoryzae, Rhizopus arrhizus, and combinations thereof. Commercially available lipase enzymes include, but are not limited to, Lipolase™ and Lipolase Ultra™ (Novo Nordisk A/S), and Fungal Lipase 8000 and Pancreatic Lipase 250 (available from Valley Research, South Bend, Ind.).


The product resulting from autolysis of the yeast cells suitably also comprises, at least 20%, particularly at least 23% and more particularly at least 25% protein of the total product on a dry solids basis. The product also suitably comprises less than 45%, particularly less than 40% and more particularly less than 35% protein of the total product on a dry solids basis. The product resulting from autolysis of the yeast cells suitably comprises at least 20%, particularly at least 23% and more particularly at least 25% total glucans of the total product on a dry solids basis. The product also suitably comprises less than 45%, particularly less than 40% and more particularly less than 35% total glucans of the total product on a dry solids basis.


The product resulting from autolysis of the yeast cells suitably comprises, at least 5%, particularly at least 7% and more particularly at least 10% alpha-glucans of the total product on a dry solids basis. The product also suitably comprises less than 20%, particularly less than 18% and more particularly less than 15% alpha-glucans of the total product on a dry solids basis. The product resulting from autolysis of the yeast cells suitably comprises, at least 7%, particularly at least 10% and more particularly at least 12% beta-glucans of the total product on a dry solids basis. The product also suitably comprises less than 22%, particularly less than 20% and more particularly less than 18% beta-glucans of the total product on a dry solids basis. The product resulting from autolysis of the yeast cells suitably comprises, at least 5%, particularly at least 7% and more particularly at least 10% mannans of the total product on a dry solids basis. The product also suitably comprises less than 20%, particularly less than 18% and more particularly less than 15% mannans of the total product on a dry solids basis.


The enriched β-(1,3/1,6) glucan product cell wall product is characterized, for example, as at least 50%, at least 55%, at least 60% or at least 65% β-(1,3/1,6) glucan with a protein content of less than 20%, less than 15%, or less than 10%. The enriched mannan product (secondary mannan extract) may be characterized as containing at least 50%, particularly at least 55% and even more particularly at least 57% mannan. The enriched mannan product may also be characterized as containing less than 70%, particularly less than 68%, and even more particularly less than 65% mannan. The enriched mannan product (secondary mannan extract) may be also characterized as containing at least 25%, particularly at least 27%, and more particularly at least 29% protein. The enriched mannan product may be also characterized as containing less than 35%, particularly less than 32%, and more particularly less than 30% protein.


The ultrafiltration step may be carried out by forcing an extract produced from the processes described herein, such as a secondary mannan extract, through an ultrafilter under pressure. Suitably, the ultrafilter comprises one or more semi-permeable membranes. The semi-permeable membrane or ultrafilter may have a molecular weight cut-off of, for example, at least 8,000 Da, particularly at least 10,000 Da, more particularly at least 25,000 Da, even more particularly at least 50,000 Da, still more particularly at least 100,000 Da, and yet still more particularly at least 150,000 Da. It is to be understood that the ultrafilter may have a molecular weight cut of any value between those recited herein including, but not limited to, a molecular weight cut off of at least 15,000 Da, 20,000 Da, 30,000 Da, 40,000 Da, 60,000 Da, 70,000 Da, 80,000 Da, 90,000 Da, 110,000 Da, 120,000 Da, 130,000 Da and 140,000 Da. Suitable ultrafilter membranes include, but are not limited to, hollow fiber membranes available from A/G Technology Corp, Needham, Mass.


At least 80% (w/w), particularly at least 85% (w/w), and more particularly at least 90% (w/w) of the total secondary mannans in the retentate following filtration of a secondary mannan extract may have a molecular weight above the molecular weight cut off of the filter used. For example, if a 10,000 Da cut off is used with a secondary mannan extract, typically at least 80% (w/w), particularly at least 85% (w/w), and more particularly at least 90% (w/w)of the total mannans in the retentate may have a molecular weight above 10,000 Da. If a 50,000 Da cut off is used with a secondary mannan extract, typically at least 80% (w/w), particularly at least 85% (w/w), and more particularly at least 90% (w/w)of the total mannans in the retentate may have a molecular weight above 50,000 Da. If a 100,000 Da cut off is used with a secondary mannan extract, typically at least 80% (w/w), particularly at least 85% (w/w), and more particularly at least 90% (w/w) of the total mannans in the retentate may have a molecular weight above 100,000 Da. If a 150,000 Da cut off is used with a secondary mannan extract, typically at least 80% (w/w), particularly at least 85% (w/w), and more particularly at least 90% (w/w)of the total mannans in the retentate may have a molecular weight above 150,000 Da.


The ultrafiltration step may optionally include passing the mannan extract through two or more ultrafilters of different molecular weight cut offs. The final retentate comprises an enriched mannan product wherein a majority of mannans have a molecular weight falling between the molecular weight cut-offs of the ultrafilters. In this embodiment, at least 80% (w/w), particularly at least 85% (w/w), and more particularly at least 90% (w/w) of the total mannans of the final retentate may suitably have a molecular weight between the molecular weight cut-offs of the ultrafilters.


The secondary mannan extract which results from separation from the glucan enriched product following enzymatic treatment of autolyzed cell walls is characterized, for example, from 15% to 50% mannan, 20% to 30% protein, and 20% to 25% other components. When the secondary mannan extract is ultrafiltered according to methods of the invention, the retentant may comprise at least 50%, particularly at least 52%, more particularly at least 55% and even more particularly at least 60% mannan. The retentate may comprise less than 70%, particularly less than 65%, and more particularly less than 62% mannan. The retentate may further comprise at least 10%, particularly at least 12%, more particularly at least 15% and even more particularly at least 17% protein. The retentate may further comprise less than 33%, particularly less than 30%, and more particularly less than 22% protein.


The preparations in accordance with the present invention are contemplated to be of value in, e.g., food supplements, pharmaceuticals (e.g., improving immune response), cosmetics, animal feeds, and neutraceuticals. For example, an animal feed may suitably contain 1 to lOg of preparation/kg feed. Suitably, the preparation may be comprise at least 0.01%, particularly at least 0.02%, more particularly at least 0.05%, and even more particularly at least 0.1% and less than 5%, particularly less than 2%, more particularly less than 0.5%, and even more particularly less than 0.3% of the total weight of the feed, on a weight/weight basis. Suitable animal feeds include, but are not limited to, cattle, horse, swine, poultry, fish (e.g., crustacean, shellfish), bird and pet (e.g., cat, dog) feeds. A liquid composition may contain 0.1%-1% by weight of the preparation in accordance with the present invention. Preparations according to the invention may also be used in a plant protection composition together with an agriculturally acceptable carrier, and optionally an agriculturally acceptable nutrient, herbicide or pesticide.


For example, the enriched beta-glucan fractions made according to the present invention may suitably be used as immune stimulators in animal and human foods, pharmaceuticals or emollients, agents to reduce cholesterol, and thickening agents in foods and beverages. If added to an emollient, lotion or cream and used to treat a condition, the beta glucan may be suitably present at a concentration (w/w) of at least 0.05%, particularly at least 0.1% and more particularly at least 0.5%, and less than 10%, particularly less than 5% and more particularly less than 2%. Suitably, the beta-glucan fractions made according to the present invention may be used to treat eczema, for example, by incorporation into a cream, lotion or emollient. Eczema encompasses various inflamed skin conditions, including atopic dermatitis (“atopic eczema”), and affects about 10% to about 20% of the world population during childhood. Eczema appears to be an abnormal response of the body's immune system.


There are also numerous uses for the mannan-enriched products made according to the present invention. For example, mannan products may be used in the animal feed industry, having advantageously the ability to bind mycotoxins and also pathogenic bacteria, preventing bacteria from colonizing the intestinal tract.


In summary, the invention provides, among other things, enriched preparations of β-glucans and mannans, utilizing processes of relatively mild process conditions.


Various features and aspects of the invention are set forth in the following examples.


EXAMPLE 1
Processing of Yeast Using a High pH Protease

31.1 kg of the cell wall fraction from a commercial autolysis of brewer's yeast (Saccharomyces cerevisiae) was heated to 55° C. in a jacketed stainless steel vessel. The total solids were 10.7% and the total proportion of protein in the solids was 24.5%. The pH was raised to 9.5 with sodium hydroxide and 0.1% (total weight basis) of Protex 6L (an alkaline protease, available from Genencor, Palo Alto, Calif.) was added. The cell walls were agitated at 55° C. for 16 hours. The Protex 6L was heat inactivated at 85° C. for 30 minutes and the cell walls were separated with an Alpha Laval Gyro model bowl centrifuge, using a continuously decanting process. The insoluble cell wall fraction was washed three times with a volume of water equal to the volume of extract removed. The washed cell wall fraction was condensed to 15.4% solids, the pH was adjusted to 7.0 with hydrochloric acid and the fraction was spray dried. A portion of the extract from the Protex 6L treatment (corresponding to the 2° extract shown in FIG. 1) was condensed to 28.3% solids, the pH was adjusted to 7.0 and the extract was spray dried. The remainder of the 2° extract was ultrafiltered using a UFP-10-C-6A 10,000 NMWC hollow fiber membrane (available from A/G Technology Corp, Needham, Mass.). The high molecular weight enriched mannan retentate was adjusted to pH 7.0 and spray dried. The 3° extract (filtrate) was adjusted to pH 7.0, condensed and spray dried.


The composition of the products resulting from this process were analyzed using the following techniques: protein was determined using a LECO protein determinator (LECO Corp., St. Joseph, Mich.); total glucans, alpha-glucans and beta-glucans were measured using Megazyme International Mushroom and Yeast Beta-glucan kit (available from Megazyme International, Wicklow, Ireland); mannans were determined by acid hydrolysis of carbohydrates and linked spectrophotometric assay for free mannose, using hexokinase, glucose-6-phosphate dehydrogenase, phosphoglucose isomerase and phosphomannose isomerase; fat was determined using the methanol-chloroform extraction method of Blich, E. G. and Dyer, W. J. Can. J. Biochem. Physiol. (1959) 37, 911; free glucose was measured using Yellow Springs Instruments Biochemistry Analyzer (available from YSI Incorporated, Yellow Springs, Ohio). The results of these analyses are shown in Table 1.









TABLE 1







Characterization of Products


















Total
Alpha
Beta-
Free







glucans
Glucans
glucans
Glucose
Mannans
Fat %





% (dry
% (dry
% (dry
% (dry
% (dry
(dry





solids
solids
solids
solids
solids
solids


Product
Protein %
Ash %
basis)
basis)
basis)
basis)
basis)
basis)


















Starting
31.4
3.5
28.9
12.4
16.5
1.2
13.6
ND


brewer's










yeast cell










wall










Alkaline
8.6
2.5
54.6
29.2
25.4
0.0
5.7
14.2


Protease Cell










Wall










2° Extract
39.9
10.9
ND
ND
ND
1.0
22.6
ND


Ultrafilter
29.6
5.9
ND
ND
ND
0.0
62.7
ND


retentate










3° Extract
52.3
13.6
ND
ND
ND
1.8
8.6
ND


(filtrate from










ultrafiltration)





ND means not determined.






EXAMPLE 2
Processing of Yeast using a High pH Protease and A Glucoamylase

16,000 gal of cell wall creams from a production run of brewer's yeast extract were heated to 55° C. and the pH was adjusted to 9.5 with sodium hydroxide. Protex 6L was added at 0.1% (v/v), and the mixture was held at 55° C. for 14 hours. The pH was lowered to pH 5.0 with HCl. At pH 5 the Protex 6L is inactive and will not destroy added enzymes. Glucoamylase Concentrate (available from Valley Research, South Bend, Ind.) was added at 0.0175% (weight: total weight). The temperature was held at 55° C. for 4 hours and then raised to 88° C. to inactivate the enzymes. The heated material was separated with a Westfalia bowl separator (available from Westfalia Separator, Inc., Northvale, N.J.). Most of the extract (shown as the 2° extract in FIG. 2) was condensed and spray dried. A portion of the 2° extract was ultrafiltered using a UFP-10-C-6A 10,000 NMWC hollow fiber membrane (available from A/G Technology Corp, Needham, Mass.). The retentate and the filtrate were condensed and spray dried. The spray dried products were analyzed according to the techniques described in Example 1. The results are presented in Table 2. The cell wall fraction was water washed by centrifugation, condensed and spray dried.









TABLE 2







Characterization of Products made according to Process Depicted in FIG. 2


















Total
Alpha
Beta
Free







Glucan
Glucan
Glucan
Glucose
Mannan
Fat %





% (dry
% (dry
% (dry
% (dry
% (dry
(dry





solids
solids
solids
solids
solids
solids


Product
Protein %
Ash %
basis)
basis)
basis)
basis)
basis)
basis)


















Cell walls
12.4
4.3
53.0
2.4
50.6 
5.0
4.8
15.2


from enzyme










treatments










2° Extract
26.4
11.3
ND
ND
ND
29.4
17.4
ND


Ultrafilter
20.7
5.0
 9.5
0.0
0.0
9.3
54.2
ND


retentate










3° extract
30.1
12.6
31.6
0.0
0.0
33.9
3.5
ND


(filtrate from










ultrafiltration)





ND means not determined.






The effectiveness of the glucoamylase added in the process of Example 2 can be seen when comparing the data of Tables 1 and 2. In the process of Example 2, alpha-glucans were not detectable in the retentate and filtrate following ultrafiltration. Also, the 2° and 3° extracts from the process of Example 2 have a much higher level of free glucose, as shown in Table 2 than the 2° and 3° extracts from Example 1, as shown in Table 1.


EXAMPLE 3
Processing of Yeast using Glucoamylase and a High pH Protease Added to Autolyzed Yeast Cell Walls in Different Orders

To each of two jacketed, stainless steel vessels was added 25 Kg of cell walls from a commercial run of a brewer's yeast extract, in which yeast cells had been subjected to autolysis. Solids were 11.8%. Both vessels were heated to 55° C. The pH of Vessel 1 was adjusted to 5.0 and Glucoamylase Concentrate (available from Valley Research, South Bend, Ind.) was added at 0.1% (weight: total weight). Incubation was continued for 14 hours before raising the pH to 9.5. 0.10% Protex 6L was then added and incubation was continued for 4 hours. Samples were taken at various time points and assayed for free glucose released by the action of the glucoamylase.


The pH of Vessel 2 at the start was raised to 9.5 and 0.1% Protex 6L (weight: total weight) was added. The mixture was incubated at 55° C. for 14 hours. The pH was then reduced to 5.0 and 0.1% Glucoamylase Concentrate was added at 0.1%. Incubation continued for 4 more hours. Samples were taken at various time points and assayed for free glucose released by the action of the glucoamylase. Table 3 indicates the level of free glucose in both vessels at various times.









TABLE 3







Release of glucose from α-glucans of


brewer's yeast cell walls (g/L free glucose)










Vessel 1
Vessel 2



Glucoamylase
Protex 6L then



then Protex 6L
Glucoamylase















Zero hours at 55° C.
0.48
0.48



14 hours at 55° C.
4.52
0.35



18 hours at 55° C.
3.63
46.2










The data of table 3 indicate that when glucoamylase is added before the Protex 6L, as in Vessel 1, then the cell walls are not sufficiently altered to permit the glucoamylase to access and digest the large molecular weight α-glucan (glycogen) that is trapped inside the cell walls following the autolysis of brewer's yeast. In contrast, in Vessel 2, adding protease prior to the glucoamylase, permitted the glucoamylase to access and digest the α-glucan, and to release substantially more glucose. This is the case, even though the glucoamylase in vessel 1 had a longer time (14 hours) to work at pH 5.0 than the glucoamylase of Vessel 2 (4 hours). Therefore, for optimal removal of glycogen/α-glucan from brewer's yeast cell walls, the alkaline protease Protex 6L should be added before the glucoamylase.


EXAMPLE 4
Processing of Brewer's and Baker's Yeast According to the Process Shown in FIG. 2

220 g of the cell walls from a commercial autolysis of primary grown baker's yeast (at 15% solids) or brewer's yeast (at 11.8% solids) were heated to 55° C. and the pHs were adjusted to 9.5. The cell walls were then treated for 14 hours with 0.1% (weight: total weight) Protex 6L. After 14 hours the pHs were lowered to 5.0 and 0.0175% Glucoamylase Concentrate was added to each of the vessels. The flasks were incubated at 55° C. for an additional 4 hours. Free glucose was monitored with a YSI Biochemistry Analyzer. The results are shown in Table 4.









TABLE 4







Comparison of Glucose Released From Baker's and Brewer's


Yeast Cell Walls Using the Process Shown in FIG. 2.











% Free Glucose
Baker's Yeast
Brewer's Yeast



(dry solids basis)
Cell Walls
Cell Walls















At Start
0.0
0.41



After Protex 6L
0.0
0.30



After
1.2
39.2



Glucoamylase










The cell walls resulting from the autolysis of baker's yeast contain lower levels of glycogen than do the cell walls from brewer's yeast, because primarily, aerobic grown baker's yeast tend to accumulate less beta-glucan than anaerobically grown brewer's yeast. More glucose was released from brewer's yeast cell walls following incubation with glucoamylase that from baker's yeast cell walls. The process of FIG. 2 is therefore extremely effective for processing beta-glucan from brewer's yeast cell walls.


EXAMPLE 5
Use of Extracts in Animal Feed

A 50:50 (dry solids basis) blend of autolyzed brewer's yeast cells: 2° extract from the process of FIG. 2, made according to Example 2 (i.e. mannans obtained prior following protease and amylase treatment), was formulated by dry blending the two components together. This blend was used to supplement the diets of nursery pigs for 28 days post weaning. The blend was added at 3 lbs/ton of diet during Phase 1 (0-7 days), 2 lbs/ton of diet during Phase 2 (7-14 days) and 2 lbs/ton of diet during Phase 3 (14-28 days). Both control and treatment diets contained antibiotics. Post-weaned pigs (17-22 days old) were randomly allotted to the control diet or treatment diet based on body weight. There were 6 pens with 13 pigs for each diet. The results are shown in Table 5.









TABLE 5







Body Weight, lb. (mean)









Days













7 (end of
14 (end of
28 (end of


Treatment
0
Phase 1)
Phase 2)
Phase 3)





Control
12.22
14.02
18.35a
32.63


50:50 Crude
12.22
14.03
19.69b
33.88


cell wall:extract






a,bMeans significantly differ, P < 0.10.







Pigs fed the treatment diet were significantly heavier on day 14 and there was a tendency for the pigs to show increased in weight for the 28 days.


EXAMPLE 6
Use of Yeast Extracts as a Palatability Enhancer in Animal Feeds

Kibbles for canines were coated with oil and then either 1.0% of dry 3° extract from the process shown in FIG. 2, made according to Example 2 (i.e. the filtrate following ultrafiltration), or 1.0% of an accepted canine palatability enhancer was applied by spraying onto the surface of oil coated kibbles. 1000 g of each ration was offered to a panel of 20 dogs for two days. Bowl positions were reversed daily to prevent “left-right” bias.


The amount of food taken by each dog over the two-day period is shown in Table 6. Table 6 indicates that the 3° extract of the process of FIG. 2, made according to Example 2, enhanced the palatability of a dry dog food at least as much as, if not more than, the standard palatant.











TABLE 6








1.0% 3°
1.0% Standard



Extract
Palatant












DOG #
WT. Kg.
DAY 1
DAY 2
DAY 1
DAY 2















1
22.7
366
178
125
325


2
32.0
385
591
180
40


3
27.2
879
1000
65
119


4
22.4
2
670
571
0


5
23.3
34
274
656
438


6
21.9
412
576
4
0


7
29.1
456
219
111
374


8
25.3
561
455
68
148


9
24.6
83
400
622
431


10
25.4
382
507
126
191


11
22.9
683
696
187
288


12
28.1
278
2
221
583


13
25.0
0
672
300
0


14
26.6
53
0
341
425


15
36.8
89
444
642
406


16
22.5
560
536
149
69


17
28.9
286
394
98
0


18
22.0
220
494
309
184


19
24.8
320
4
1
391


20
16.8
220
470
265
50


TOTAL
508.3















TOTAL per day
6269
8582
5041
4462









GRAND TOTAL
14851 =
9503 =



14.6 g/Kg/day
9.3 g/Kg/day









EXAMPLE 7
(Prophetic) Characteristics of Yeast Cell Wall—Spray Dried Powder

A highly purified yeast cell wall product of Saccharomyces cerevisiae is produced according to the process described in Example 2. It has a high concentration of (β-1,3/1,6) glucan. The product is G.R.A.S. (Generally Recognized as Safe) by the FDA. The product can be used to supplement in a wide variety of foods with a high quality natural source of (β-1,3/1,6) glucan. This biologically active material has been shown to stimulate the immune system of a wide range of animals. The composition and characteristics of the product are shown in Table 7.











TABLE 7





Characteristics
Value/Average
Method







Chemical




β-1,3/1,6 glucan
50.0% Minimum
Megazyme Method


Protein (N × 6.25)
15.0% Maximum
Perkin Elmer


Moisture
6.0% Maximum
Standard method


pH (10% Solution)
5 ± 0.3
pH Meter


Microbiological


Total Bacterial Count
15,000/g Max.
BAM


Yeast and Mold
100/g Max.
BAM


Coliform Organisms
10/g Max.
BAM



E. Coli

Negative
BAM



Salmonella

Negative
BAM









EXAMPLE 8
Prophetic

Brewer's yeast cell wall cream is heated to 131° F. (55° C.). The pH is raised to 9.5 with 50% sodium hydroxide (about 5 ml per Kg of cell wall cream). Protex 6L (Genencore) is added to 0.1% (vol: total weight of cell wall cream). The mixture is held at 131° F. for 14 hours. The pH is lowered to 5.0 with 28% HCI (muriatic acid) and 0.0175% (weight: total weight) Glucoamylase Concentrate (Valley Research) is added. The mixture is held at 55° C. for 4 hours, before heat inactivating the enzymes by heating to 185-195° F. The fractions are separated. Prior to spray drying the beta-glucan enriched insoluble fraction, the pH is adjusted to 6.5. The beta-glucan enriched insoluble fraction is spray dried.


A highly purified yeast cell wall product of Saccharomyces Cerevisiae is produced. It has a high concentration of (β-1,3/1,6) glucan. The product is a G.R.A.S. by the FDA. The product can be used to supplement in a wide variety of foods with a high quality natural source of (β-1,3/1,6) glucan. This biologically active material has been shown to stimulate the immune system of a wide range of animals. The composition and characteristics of the product are shown in Table 7.


EXAMPLE 9
Processing of Yeast using a High pH Protease and a Lipase

220 g of cell walls (at 15% solids) from a commercial baker's yeast autolysis were placed in a glass flask and stirred. The temperature was raised to 55° C. and the pH raised to 9.5 with HCl. 0.1% Protex 6L was added and the sample was incubated for 14 hours. At this time, 30 g aliquots were dispensed into 50 ml centrifuge tubes (available from Nalgene) suitable for use in a Sorvall SS34 centrifuge rotor. A magnetic stirring bar was added to each tube. The following additions, A, B or C, were made to the centrifuge tubes:

    • A. 0.0175% Glucoamylase Concentrate (available from Valley Research)
    • B. 0.1% Lipase CR (a triacylglycerol lipase available from Valley Research)
    • C. 0.0175% Glucoamylase Concentrate+0.1% Lipase CR.


Each tube was incubated at 55° C. for four hours with stirring. The enzymes were heat killed at 85° C. for 15 minutes, and the cell walls were pelleted using a Sorvall™ centrifuge with a SS34 rotor (at 12,000 r.p.m. for 10 min). The pellets were then washed three times with a volume of water equal to the volume of soluble extract removed. The cell walls were resuspended to about 15% solids and spray dried with a Buchi Mini Spray Dryer B-191. The dried cell walls were analyzed for protein (nitrogen X 6.25; LECO protein determinator, available from LECO Corp., St. Joseph, Mich.) and beta-glucan was measured using Megazyme International Mushroom and Yeast Beta-glucan kit (available from Megazyme International, Wicklow, Ireland). The results are shown in Table 8.













TABLE 8







Enzyme treatment





for 4 hours after

Beta-glucan % (dry



Protex 6L
Protein %
solids basis)









A: Glucoamylase
34.2
27.3



Concentrate



B: Lipase CR
34.3
27.1



C: Glucoamylase
30.5
30.8



Concentrate plus



Lipase CR










EXAMPLE 10
(Prophetic) Use of the Beta-Glucan Enriched Product of Example 2 in Broiler Chicken Feed

Standard chicken feed (without antibiotics) either containing 1 g/Kg of beta-glucan enriched product of Example 2, or containing no beta-glucan (control), is fed daily to broiler chickens from age day 1. After 7 days both the control and the beta-glucan fed chicks are given a respiratory challenge with a strain of E. coli pathogenic for chickens. The chicks are continued on their respective diets, and mortality is recorded for one month.


The mortality of the beta-glucan fed chickens is expected to be significantly lower than that for those on the standard feed. The beta-glucan stimulation of the immune system of the chickens is valuable for decreasing production losses due to respiratory infection.


EXAMPLE 11
(Prophetic) Use of the Mannan Enriched Ultrafiltrate Retentate of Example 1 in Broiler Chicken Feed

Standard chicken feed (without antibiotics) either containing 1 g/Kg of the enriched mannan ultrafiltration retentate of Example 1, or containing no enriched mannan (control), is fed daily to broiler chickens for two weeks. The broiler chickens (both the control and the mannan fed groups) are then given an oral inoculation of a strain of Salmonella pathogenic for the chickens. The chickens are continued on their respective diets, and mortality and morbidity are monitored for one month.


The mannan binds to the Salmonella and prevents it from binding to the intestinal tract of the chickens on the mannan feed. This is expected to result in a significant reduction in morbidity and mortality for the mannan fed chickens.


EXAMPLE 12
(Prophetic) Use of the Beta-Glucan Enriched Product of Examples 1 or 2 in Tiger Shrimp Cultivation

One group of tiger shrimp (Penaeus monodon) are immersed in a solution that does not contain enriched beta-glucan (control group). This group is fed a commercial pellet not containing enriched beta-glucan during the course of the study. A second group of tiger shrimp are immersed in a solution containing 0.1% of the enriched beta-glucan from Example 1, and then fed a commercial pellet containing 0.1% of the enriched beta-glucan from Example 1. A third group of tiger shrimp are immersed in a solution containing 0.1% of the enriched beta-glucan from Example 2, and then fed a commercial pellet containing 0.1% of the enriched beta-glucan from Example 2. The mortality of each group is monitored over several months.


There is historically a high rate of mortality in shrimp rearing. The yeast beta-1,3-1,6-glucans from Examples 1 and 2 are each expected to stimulate the immune response of shrimp when the shrimp are immersed in solutions containing beta-glucan, and when the shrimp are subsequently fed a feed containing beta-glucan, compared with the control group. The groups of tiger shrimp immersed in and fed the yeast beta-glucan diets are expected to grow faster and are expected to have reduced mortality compared with the control group, due to the stimulation of their innate immune systems.


EXAMPLE 13
(Prophetic) Use of the Beta-Glucan Enriched Product of Example 2 in Treatment of Eczema

A select group of children suffering from eczema that is not responsive to current accepted skin lotion treatments is treated with a lotion containing a 1% suspension of the enriched β-glucan product of Example 2. The lotion is applied twice daily. The skin is evaluated weekly by a dermatologist for improvement of lesions and pain. The β-glucan lotion is expected to decrease the lesions associated pain and quickens the healing of the lesions.


EXAMPLE 14
(Prophetic) Use of the Beta-Glucan Enriched Product of Example 2 in the Production of Healthy Snack Foods

Yeast beta-glucan extract from Example 2 is added to ice-cream at 1% (w/w) as a partial replacement for fat. The beta-glucan adds a firmness and body to the ice-cream without affecting the texture. The beta-glucan supplemented ice-cream contains fewer calories than ice-cream not containing beta-glucan. Upon ingestion of the supplemented ice-cream, the beta glucans are expected to stimulate the innate immune system of the intestinal tract and benefit the immune status of the consumer.


The yeast beta-glucan extract from Example 2 is added at 0.5% (w/w) and 1% (w/w) to cookies, snack bars and bakery items. The beta-glucan supplemented cookies, snack bars and bakery items contain fewer calories than cookies, snack bars and bakery items not containing beta-glucan. Upon ingestion of the supplemented cookies, snack bars and bakery items, the beta glucans are expected to stimulate the innate immune system of the intestinal tract and benefit the immune status of the consumer.


While the present invention has now been described and exemplified with some specificity, those skilled in the art will appreciate the various modifications, including variations, additions, and omissions that may be made in what has been described. Accordingly, it is intended that these modifications also be encompassed by the present invention and that the scope of the present invention be limited solely by the broadest interpretation that lawfully can be accorded the appended claims.


All patents, publications and references cited herein are hereby fully incorporated by reference. In case of conflict between the present disclosure and incorporated patents, publications and references, the present disclosure should control.

Claims
  • 1. A method for processing yeast cells comprising: (a) autolyzing the yeast cells at a temperature of 50° C. to 65° C. to release yeast cell walls;(b) incubating the cell walls with an exogenous protease at a pH of 9 to 10;(c) incubating the protease-treated cell walls of step (b) with an enzyme comprising at least one of an amylase, lipase and a combination thereof;(d) separating the enzyme-treated cell walls of step (c) into a glucan-enriched component and a mannan-enriched component; and(e) separately retaining said glucan-enriched component and said mannan-enriched component;wherein said glucan-enriched component of step (e) can be added to an animal feed or to a product selected from a food supplement, pharmaceutical, cosmetic and neutraceutical.
  • 2. The method of claim 1, wherein the yeast cells comprise brewer's yeast cells.
  • 3. The method of claim 1, wherein step (c) is carried out at a pH of 4 to 6.
  • 4. The method of claim 1, further comprising adding the glucan-enriched component of step (e) to a product selected from a food supplement, pharmaceutical, cosmetic and neutraceutical.
  • 5. The method of claim 1, further comprising (f) ultrafiltering the mannan-enriched component of step (e) to form a filtrate and a retentate.
  • 6. The method of claim 1, wherein the retentate comprises mannans, and wherein at least 85% (w/w) of the mannans have a molecular weight of at least 10,000 Da.
  • 7. The method of claim 5, further comprising adding the filtrate of step (f) to a product selected from a food supplement, pharmaceutical, cosmetic and neutraceutical.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 60/677,973, filed May 5, 2005, the subject matter of which is hereby fully incorporated by reference.

US Referenced Citations (412)
Number Name Date Kind
3495990 Kayser Feb 1970 A
3754925 Kimura et al. Aug 1973 A
3822250 Kimura et al. Jul 1974 A
3867554 Sucher et al. Feb 1975 A
3880742 James et al. Apr 1975 A
3934039 Cardini et al. Jan 1976 A
3943247 Komatsu et al. Mar 1976 A
3961080 Sugimoto et al. Jun 1976 A
3973008 Sugiyama et al. Aug 1976 A
3975553 Griffon Aug 1976 A
3989847 Kurihara et al. Nov 1976 A
4016295 Burrows et al. Apr 1977 A
4036993 Ikeda et al. Jul 1977 A
4041152 Chany et al. Aug 1977 A
4041181 Burrows et al. Aug 1977 A
4066793 Eguchi Jan 1978 A
4072567 Yokobayashi et al. Feb 1978 A
4075405 Takahashi et al. Feb 1978 A
4088539 Muller May 1978 A
4122196 Robbins et al. Oct 1978 A
4138479 Truscheit et al. Feb 1979 A
4158607 Kalinowski et al. Jun 1979 A
4207344 Cerrillo Jun 1980 A
4211645 Zajic et al. Jul 1980 A
4216293 Fedeli et al. Aug 1980 A
4218481 Chao et al. Aug 1980 A
4244973 Van Megen Jan 1981 A
4247541 Ishida et al. Jan 1981 A
4247574 Utena et al. Jan 1981 A
4279653 Makishima et al. Jul 1981 A
4285976 Akin et al. Aug 1981 A
4295889 Eida et al. Oct 1981 A
4299630 Hwang Nov 1981 A
4303680 Tanekawa et al. Dec 1981 A
4310553 Odintsova Jan 1982 A
4311714 Goering et al. Jan 1982 A
4311717 McGinley Jan 1982 A
4313934 Kitamura et al. Feb 1982 A
4332894 Whistler Jun 1982 A
4339360 Shimizu et al. Jul 1982 A
4340675 Johansen Jul 1982 A
4344968 Aoda et al. Aug 1982 A
4361843 Cooke et al. Nov 1982 A
4368322 Muzzarelli Jan 1983 A
4381946 Yehara et al. May 1983 A
4383859 Moore et al. May 1983 A
4388115 Sugiyama et al. Jun 1983 A
4427710 Terada et al. Jan 1984 A
4454315 Sasaki et al. Jun 1984 A
4477655 Holmes Oct 1984 A
4484012 Stahl et al. Nov 1984 A
4500355 Shimada et al. Feb 1985 A
4508570 Fujii et al. Apr 1985 A
4508745 Fulger et al. Apr 1985 A
4513019 Brancq et al. Apr 1985 A
4526794 Altomare et al. Jul 1985 A
4543370 Porter et al. Sep 1985 A
4544552 Fraefel et al. Oct 1985 A
4572832 Kigasawa et al. Feb 1986 A
4576646 Branco et al. Mar 1986 A
4584197 Takasaki et al. Apr 1986 A
4587285 Ayla et al. May 1986 A
4588827 Mueller et al. May 1986 A
4620876 Fujii et al. Nov 1986 A
4623624 Schultze Nov 1986 A
4652455 Sugino et al. Mar 1987 A
4659388 Innami et al. Apr 1987 A
4676976 Toba et al. Jun 1987 A
4692094 Kulinyak Sep 1987 A
4692404 Ashihara et al. Sep 1987 A
4707471 Larm et al. Nov 1987 A
4731248 Hogan et al. Mar 1988 A
4737190 Shimada et al. Apr 1988 A
4739046 Di Luzio Apr 1988 A
4741907 Furuhashi May 1988 A
4749566 Casellas et al. Jun 1988 A
4759942 Von Fulger Jul 1988 A
4761402 Williams et al. Aug 1988 A
4761405 Rzeszotarski et al. Aug 1988 A
4765992 Geneix et al. Aug 1988 A
4769363 Misaki et al. Sep 1988 A
4774093 Provonchee et al. Sep 1988 A
4793860 Murakami et al. Dec 1988 A
4795653 Bommarito Jan 1989 A
4795745 Larm et al. Jan 1989 A
4798730 Scoville et al. Jan 1989 A
4804545 Goering et al. Feb 1989 A
4806474 Hershberger Feb 1989 A
4808419 Hsu Feb 1989 A
4810509 Kanegae et al. Mar 1989 A
4810646 Jamas et al. Mar 1989 A
4818751 Ibe Apr 1989 A
4818752 Williams et al. Apr 1989 A
4833131 Williams et al. May 1989 A
4835265 Muzzarelli May 1989 A
4859488 Kam et al. Aug 1989 A
4863746 Uchida et al. Sep 1989 A
4871571 Jensen et al. Oct 1989 A
4876103 Kawano et al. Oct 1989 A
4877777 DiLuzio Oct 1989 A
4882160 Yang et al. Nov 1989 A
4891220 Donzis Jan 1990 A
4900571 Kammuri et al. Feb 1990 A
4900722 Williams et al. Feb 1990 A
4942540 Black et al. Jul 1990 A
4943444 Nozaki et al. Jul 1990 A
4948598 Lembke et al. Aug 1990 A
4950749 Johal et al. Aug 1990 A
4962094 Jamas et al. Oct 1990 A
4965347 Misaki et al. Oct 1990 A
4975421 Williams et al. Dec 1990 A
4978551 Sugino Dec 1990 A
4981700 Sarishvili et al. Jan 1991 A
4986999 Takasaki et al. Jan 1991 A
4992540 Jamas et al. Feb 1991 A
4994285 Hisano et al. Feb 1991 A
5008125 Cale et al. Apr 1991 A
5017224 Tomita et al. May 1991 A
5028703 Jamas et al. Jul 1991 A
5032401 Jamas et al. Jul 1991 A
5037972 Jamas et al. Aug 1991 A
5057503 Czop et al. Oct 1991 A
5082936 Jamas et al. Jan 1992 A
5084386 Tuse et al. Jan 1992 A
5089285 Nozaki et al. Feb 1992 A
5116631 Sakamoto et al. May 1992 A
5118673 Carpenter et al. Jun 1992 A
5147862 Nikl et al. Sep 1992 A
5158772 Davis Oct 1992 A
5165968 Johnson et al. Nov 1992 A
5167708 Wilhelm et al. Dec 1992 A
5185327 Matsuzaki et al. Feb 1993 A
5188852 Ongane et al. Feb 1993 A
5189028 Nikl et al. Feb 1993 A
5191016 Yalpani Mar 1993 A
5194600 Bussey et al. Mar 1993 A
5223491 Donzis Jun 1993 A
5250436 Jamas et al. Oct 1993 A
5273772 Cooper Dec 1993 A
5288704 Ungheri et al. Feb 1994 A
5308838 McAnalley et al. May 1994 A
5314872 Kato et al. May 1994 A
5322841 Jamas et al. Jun 1994 A
5332667 Kado et al. Jul 1994 A
5342626 Winston, Jr. et al. Aug 1994 A
5358731 Jakamoto Oct 1994 A
5364462 Crystal et al. Nov 1994 A
5369029 Broker et al. Nov 1994 A
5378232 Easton et al. Jan 1995 A
5387423 Emoto et al. Feb 1995 A
5387427 Lawrence et al. Feb 1995 A
5393333 Trouve Feb 1995 A
5397773 Donzis Mar 1995 A
5401727 Rorstad et al. Mar 1995 A
5422133 Yamamoto et al. Jun 1995 A
5428383 Shields et al. Jun 1995 A
5429828 Fodge et al. Jul 1995 A
5441943 McAnalley et al. Aug 1995 A
5447505 Valentine et al. Sep 1995 A
5449526 Kawano Sep 1995 A
5458893 Smith Oct 1995 A
5462755 Mehnert Oct 1995 A
5468510 Christensen et al. Nov 1995 A
5468737 McAnalley et al. Nov 1995 A
5480662 Boode-Boissevain et al. Jan 1996 A
5488040 Jamas et al. Jan 1996 A
5488402 Shields et al. Jan 1996 A
5496544 Mellul et al. Mar 1996 A
5504079 Jamas et al. Apr 1996 A
5506124 Jamas et al. Apr 1996 A
5506210 Parish et al. Apr 1996 A
5512287 Wang et al. Apr 1996 A
5518710 Bhatty May 1996 A
5519009 Donzis May 1996 A
5519287 Goodale et al. May 1996 A
5523088 Ritchie et al. Jun 1996 A
5532223 Jamas et al. Jul 1996 A
5543302 Boguslawski et al. Aug 1996 A
5545557 Hobson et al. Aug 1996 A
5554386 Groman et al. Sep 1996 A
5565234 Teraguchi et al. Oct 1996 A
5570015 Takaishi et al. Oct 1996 A
5574023 Shibata et al. Nov 1996 A
5576015 Donzis Nov 1996 A
5587364 McAnalley et al. Dec 1996 A
5589591 Lewis Dec 1996 A
5595571 Jaffe et al. Jan 1997 A
5599697 Kanegae et al. Feb 1997 A
5607677 Jamas et al. Mar 1997 A
5614242 Fox Mar 1997 A
5622939 Jamas et al. Apr 1997 A
5622940 Ostroff Apr 1997 A
5626874 Conte et al. May 1997 A
5654028 Christensen et al. Aug 1997 A
5663324 James et al. Sep 1997 A
5681583 Conte et al. Oct 1997 A
5686296 Hobson et al. Nov 1997 A
5688931 Nogusa et al. Nov 1997 A
5690981 Watanabe et al. Nov 1997 A
5695970 Yu et al. Dec 1997 A
5702719 Donzis Dec 1997 A
5703060 McAnalley et al. Dec 1997 A
5705184 Donzis Jan 1998 A
5712110 Flen et al. Jan 1998 A
5716652 Greenberg et al. Feb 1998 A
5718932 Nakao et al. Feb 1998 A
5720777 Jaffe et al. Feb 1998 A
5725901 Fox Mar 1998 A
5741495 Jamas et al. Apr 1998 A
5747045 Ritchie et al. May 1998 A
5753266 Youssefyeh et al. May 1998 A
5760702 Ito et al. Jun 1998 A
5773227 Kuhn et al. Jun 1998 A
5773425 McAnalley et al. Jun 1998 A
5773427 Day Jun 1998 A
5780453 McAnalley et al. Jul 1998 A
5783569 Jamas et al. Jul 1998 A
5785975 Parikh Jul 1998 A
5786342 Carpenter et al. Jul 1998 A
5795979 Kusatsu et al. Aug 1998 A
5807559 Jondal Sep 1998 A
5811542 Jamas et al. Sep 1998 A
5817643 Jamas et al. Oct 1998 A
5827529 Ono et al. Oct 1998 A
5827937 Agerup Oct 1998 A
5843180 Jaffe et al. Dec 1998 A
5843181 Jaffe et al. Dec 1998 A
5849720 Jamas et al. Dec 1998 A
5861048 Kamasaka et al. Jan 1999 A
5871966 Kofod et al. Feb 1999 A
5885617 Jordan Mar 1999 A
5888984 Brown Mar 1999 A
5902607 Taylor May 1999 A
5902796 Shand et al. May 1999 A
5912153 Selitrennikoff et al. Jun 1999 A
5922118 Johnson et al. Jul 1999 A
5932561 Meyers et al. Aug 1999 A
5939129 Kawano Aug 1999 A
5955072 Takahasi et al. Sep 1999 A
5958755 Skelton et al. Sep 1999 A
5968811 Greenshields Oct 1999 A
5972642 Flen et al. Oct 1999 A
5976580 Ivey et al. Nov 1999 A
5985891 Rowe Nov 1999 A
5989552 McKenzie et al. Nov 1999 A
6020016 Castleberry Feb 2000 A
6020324 Jamas et al. Feb 2000 A
6020422 Connors et al. Feb 2000 A
6036946 Greene Mar 2000 A
6046323 Park Apr 2000 A
6056981 Saxby May 2000 A
6060429 Ben-Shalom et al. May 2000 A
6080222 Kawamoto Jun 2000 A
6080442 Yoshikawa et al. Jun 2000 A
6083547 Katta et al. Jul 2000 A
6084092 Wakshull et al. Jul 2000 A
6090938 Wakshull et al. Jul 2000 A
6093426 Tai et al. Jul 2000 A
6093552 Laine et al. Jul 2000 A
6099876 Nussinovitch Aug 2000 A
6110692 Wakshull et al. Aug 2000 A
6117850 Patchen et al. Sep 2000 A
6132750 Perrier et al. Oct 2000 A
6143551 Goebel Nov 2000 A
6143731 Jamas et al. Nov 2000 A
6143883 Lehmann et al. Nov 2000 A
6146684 Kawano Nov 2000 A
6149940 Maggi et al. Nov 2000 A
6159504 Kumabe Dec 2000 A
6165994 Henley Dec 2000 A
6168799 Klein Jan 2001 B1
6177256 McKenzie et al. Jan 2001 B1
6180159 Villagran et al. Jan 2001 B1
6194191 Zhang et al. Feb 2001 B1
6197952 Fox Mar 2001 B1
6210677 Bohannon Apr 2001 B1
6210686 Bell et al. Apr 2001 B1
6214337 Hayen et al. Apr 2001 B1
6214376 Gennadios Apr 2001 B1
6228391 Shimizu et al. May 2001 B1
6235272 Greene May 2001 B1
6242594 Kelly Jun 2001 B1
6248566 Imanaka et al. Jun 2001 B1
6251877 Park et al. Jun 2001 B1
6254869 Petersen et al. Jul 2001 B1
6255291 Germano Jul 2001 B1
6268182 Kamasaka et al. Jul 2001 B1
6271215 Parish et al. Aug 2001 B1
6274370 Hobson et al. Aug 2001 B1
6280740 Gupta et al. Aug 2001 B1
6284509 Ferrer et al. Sep 2001 B1
6284885 Tamura et al. Sep 2001 B1
6284886 Redmond Sep 2001 B1
6287612 Mandova et al. Sep 2001 B1
6291671 Ihoue et al. Sep 2001 B1
6306453 Kurzinger Oct 2001 B1
6307038 Takahashi et al. Oct 2001 B1
6323338 Potter et al. Nov 2001 B1
6342486 Zulli et al. Jan 2002 B1
6352698 Castelli et al. Mar 2002 B1
6355625 Pavliak et al. Mar 2002 B1
6365176 Bell et al. Apr 2002 B1
6365185 Ritschel et al. Apr 2002 B1
6369216 Patchen et al. Apr 2002 B1
6379725 Wang et al. Apr 2002 B1
6395314 Whalen et al. May 2002 B1
6423832 Seljelid Jul 2002 B1
6426077 Grace et al. Jul 2002 B1
6426201 Morgan Jul 2002 B1
6444448 Wheatcroft et al. Sep 2002 B1
6448323 Jordan et al. Sep 2002 B1
6455083 Wang Sep 2002 B1
6455090 Uzuhashi et al. Sep 2002 B1
6465218 Horiuchi et al. Oct 2002 B1
6476003 Jordan et al. Nov 2002 B1
6482632 Agrawal et al. Nov 2002 B1
6482802 Hu et al. Nov 2002 B1
6482942 Vittori Nov 2002 B1
6485945 Potter et al. Nov 2002 B1
6486314 Van Geel-Schutten et al. Nov 2002 B1
6488929 Cutter et al. Dec 2002 B2
6488955 Decombaz et al. Dec 2002 B1
6517829 Frenken et al. Feb 2003 B1
RE38047 Fodge et al. Mar 2003 E
6531178 Cahill, Jr. et al. Mar 2003 B2
6534083 Gilding et al. Mar 2003 B2
6541678 Klein Apr 2003 B2
6548075 Bengs et al. Apr 2003 B1
6548643 McKenzie et al. Apr 2003 B1
6562459 Bengs et al. May 2003 B1
6566516 Sunamoto et al. May 2003 B1
6569475 Song et al. May 2003 B2
6573245 Marciani Jun 2003 B1
6576015 Geistlich et al. Jun 2003 B2
6576307 Otsu et al. Jun 2003 B2
6592897 Bengs et al. Jul 2003 B1
6592914 Triantafyllou Jul 2003 B1
6593470 Bengs et al. Jul 2003 B1
6607775 Aldred et al. Aug 2003 B2
6624300 Potter et al. Sep 2003 B2
6630310 Wakshull et al. Oct 2003 B1
6635275 Scott et al. Oct 2003 B1
6635633 Cai et al. Oct 2003 B2
6656481 Shiku et al. Dec 2003 B1
6669771 Tokiwa et al. Dec 2003 B2
6669975 Abene et al. Dec 2003 B1
6673384 Villagran et al. Jan 2004 B1
6677142 Weissmueller et al. Jan 2004 B1
6680184 Nussinovitch Jan 2004 B2
6699694 Buttcher et al. Mar 2004 B1
6703062 Appleqvist Mar 2004 B1
6706305 Wolt et al. Mar 2004 B2
6713450 Frangione et al. Mar 2004 B2
6713459 Williams et al. Mar 2004 B1
6716462 Prosise et al. Apr 2004 B2
6720015 Prosise et al. Apr 2004 B2
6726943 Prosise et al. Apr 2004 B2
6737089 Wadsworth et al. May 2004 B2
6749885 Cahill, Jr. et al. Jun 2004 B2
6797307 Malkki et al. Sep 2004 B2
6811788 Yu Nov 2004 B2
6824810 Sargent et al. Nov 2004 B2
6827954 Prosise et al. Dec 2004 B2
6831173 Jetten et al. Dec 2004 B1
6835214 Kitano et al. Dec 2004 B2
6835558 Van Lengerich et al. Dec 2004 B2
6846501 Prosise et al. Jan 2005 B2
6852333 Cook Feb 2005 B1
6858214 Kropf et al. Feb 2005 B1
6858244 Kuroda et al. Feb 2005 B2
6875754 Griesbach et al. Apr 2005 B1
6875861 Besemer et al. Apr 2005 B1
6887307 Scott et al. May 2005 B1
6896918 Yokomizo May 2005 B2
6897046 Horiuchi et al. May 2005 B2
6899892 Gallaher et al. May 2005 B2
6899905 Prosise et al. May 2005 B2
6908885 Bengs et al. Jun 2005 B2
6911436 Brown et al. Jun 2005 B2
6919312 Mochizuki et al. Jul 2005 B2
6929807 McAnalley et al. Aug 2005 B1
6936598 Khoo et al. Aug 2005 B2
6939864 Johnson et al. Sep 2005 B1
20020032170 Jamas et al. Mar 2002 A1
20020107226 Berlin et al. Aug 2002 A1
20020143174 Patchen et al. Oct 2002 A1
20020146463 Clayton Oct 2002 A1
20030012819 Ko et al. Jan 2003 A1
20030059416 Slinde et al. Mar 2003 A1
20030124597 Cheung Jul 2003 A1
20030130205 Christian Jul 2003 A1
20030153746 Van Lengerich et al. Aug 2003 A1
20030154974 Morgan Aug 2003 A1
20030165604 Tsubaki et al. Sep 2003 A1
20030219468 Raczek et al. Nov 2003 A1
20040014320 Chen Jan 2004 A1
20040014715 Ostroff Jan 2004 A1
20040023923 Morgan Feb 2004 A1
20040054166 Sauter et al. Mar 2004 A1
20040058889 Sorgente et al. Mar 2004 A1
20040082539 Kelly Apr 2004 A1
20040116379 Cheung Jun 2004 A1
20040116380 Jamas et al. Jun 2004 A1
20040127458 Hunter et al. Jul 2004 A1
20040258829 Zheng et al. Dec 2004 A1
20050008679 Bedding et al. Jan 2005 A1
20050020490 Courie, Jr. et al. Jan 2005 A1
20050058671 Bedding et al. Mar 2005 A1
20050069989 Kim et al. Mar 2005 A1
20050170062 Burling et al. Aug 2005 A1
20080193485 Gorbach et al. Aug 2008 A1
20080194517 Smith Aug 2008 A1
Foreign Referenced Citations (81)
Number Date Country
7586091 Apr 1995 AU
2003258181 Feb 2004 AU
662884 Oct 1965 BE
1074453 Mar 1980 CA
2072145 May 1991 CA
2208896 Dec 1997 CA
2501889 Feb 2005 CA
3741583 Jun 1988 DE
19835767 Feb 2000 DE
0133827 Jul 1984 EP
0153680 Feb 1985 EP
0273000 Apr 1987 EP
0416343 Aug 1990 EP
0440725 Aug 1991 EP
0515216 May 1992 EP
0566347 Oct 1993 EP
0664671 Aug 1995 EP
0507952 Dec 1996 EP
0500718 Jan 1997 EP
0466037 Dec 1997 EP
0811690 Dec 1997 EP
0553176 Jun 1999 EP
0954978 May 2001 EP
1283261 Feb 2003 EP
1480529 Sep 2003 EP
2470598 Nov 1980 FR
2660317 Mar 1990 FR
2836333 Feb 2002 FR
1003976 Sep 1965 GB
1025139 Apr 1966 GB
1502902 Mar 1978 GB
1531498 Nov 1978 GB
53044614 Apr 1978 JP
55000709 Jan 1980 JP
60196195 Oct 1985 JP
60238139 Nov 1985 JP
61167622 Jul 1986 JP
61291509 Dec 1986 JP
62040262 Feb 1987 JP
62201901 Sep 1987 JP
3176418 Jul 1991 JP
3204804 Sep 1991 JP
7184595 Jul 1995 JP
7308157 Nov 1995 JP
7313069 Dec 1995 JP
9084529 Mar 1997 JP
2001008636 Jan 2001 JP
2004099580 Apr 2004 JP
WO 9004334 May 1990 WO
WO 9107091 May 1991 WO
WO 9207064 Apr 1992 WO
WO 9403500 Feb 1994 WO
WO 9404163 Mar 1994 WO
WO 9414953 Jul 1994 WO
WO 9504467 Feb 1995 WO
WO 9607329 Mar 1996 WO
WO 9638057 Dec 1996 WO
WO 9702356 Jan 1997 WO
WO 9738129 Apr 1997 WO
WO 9728700 Aug 1997 WO
WO 9738293 Oct 1997 WO
WO 9813056 Apr 1998 WO
WO 9839014 Sep 1998 WO
WO 9924020 May 1999 WO
WO 9931269 Jun 1999 WO
WO 9967419 Dec 1999 WO
WO 0008201 Feb 2000 WO
WO 0012590 Mar 2000 WO
WO 0212348 Feb 2002 WO
WO 0214317 Feb 2002 WO
WO 0232170 Apr 2002 WO
WO 03068824 Aug 2003 WO
WO 03081882 Oct 2003 WO
WO 2004014320 Feb 2004 WO
WO 2004014715 Feb 2004 WO
WO 2004021994 Mar 2004 WO
WO 2004026277 Apr 2004 WO
WO 2004026968 Apr 2004 WO
WO 2004030613 Apr 2004 WO
WO 2004078788 Sep 2004 WO
WO 2006042403 Apr 2006 WO
Non-Patent Literature Citations (57)
Entry
U.S. Appl. No. 11/418,922 dated Jul. 23, 2009 (8 pages).
U.S. Appl. No. 11/418,922 dated Nov. 21, 2008 (6 pages).
International Search Report for Application No. PCT/US2006/017270 dated Sep. 25, 2006 (5 pages).
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2006/017270 dated Nov. 15, 2007 (9 pages).
Chinese Patent Office Action for Application No. 200680015026.7 dated Dec. 18, 2009 (11 pages).
European Patent Office Action for Application No. 06759096.8 dated Apr. 23, 2010 (3 pages).
Chinese Patent Office Action for Application No. 200680015026.7 dated Mar. 14, 2011 (5 pages).
European Patent Office Action for Application No. 06759096.8 dated Nov. 18, 2011 (7 pages).
Mexican Patent Office Action for Application No. MX/A/2007/013725 dated Oct. 17, 2011 (3 pages) English translation only.
Japanese Patent Office Action for Application No. 2008-510230 dated Nov. 15, 2011 (4 pages).
Chinese Patent Office Action for Application No. 200680015026.7 dated Feb. 6, 2012 (4 pages).
European Patent Office Action for Application No. 06759096.8 dated May 4, 2012 (6 pages).
Mexican Patent Office Action for Application No. MX/A/2007/013725 dated May 18, 2012 (2 pages) English translation only.
Mexican Patent Office Action for Application No. MX/a/2007/013725 dated May 20, 2011 (4 pages).
Babayan, T.L. et al., “Isolation of physiologically active mannan and other polysaccharides from autolysate of baker's yeast,” Biotekhnologiya (1992) 2:23-26.
Bacon, J.S.D. et al., “The glucan components of the cell wall of baker's yeast (Saccharomyces cerevisiae) considered in relation to its ultrastructure,” Biochem. J. (1969) 114:557-567.
Ballou, C., “Some aspects of the structure, immunochemistry, and genetic control of yeast mannans,” Adv. Enzymol. (1974) 40:239-270.
Ballou, C., “Structure and biosynthesis of the mannan component of the yeast cell envelope,” Adv. Microbiol. Physiol. (1976) 14:93-158.
Behall, K.M. et al., “Effect of beta-glucan level in oat fiber extracts on blood lipids in men and women,” J. Amer. Coll. Nutri. (1997) 16(1):46-51.
Bell, D.J. et al., “The structure of a cell wall of baker's yeast,” J. Chem. Soc. (1950) 1944-1947.
Bonaly, R. et al., “Etude des parois de levures du genre rhodotorula. II. Influence des conditions de culture sur la composition climique des parois,” Biochim. Biophys. Acta (1971) 244:484-494.
Braaten, J.T. et al., “Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects,” Eur. J. Clin. Nutri. (1994) 48(7):465-474.
Cabib, E. et al., “Chitin and yeast budding,” J. Biol. Chem. (1971) 246(1):152-159.
Cid, V.J. et al., “Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae,” Microbiol. Reviews (1995) 59:345-386.
Conway, J. et al., “The effect of the addition of proteases and glucanases during yeast autolysis on the production and properties of yeast extracts,” Can. J. Microbiol. (2001) 47(1):18-24 (Abstract).
Fleet, G.H. et al., “Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae,” J. Gen. Microbio. (1976) 94:180-192.
Freimund, S. et al., “A new non-degrading isolation process for 1,3-beta-d-glucan of high purity from baker's yeast Saccharomyces cerevisiae,” Carbohydrate Polymers (2003) 54(2):159-171.
Hernawan, T. et al., “Chemical and cytological changes during the autolysis of yeasts,” J. Indust. Microb. (1995) 14:440-450.
Jamas et al., “Morphology of yeast cell wall as affected by genetic manipulation of B(1-6) glycosidic linkage,” Biotech. Bioengineering (1986) 28:769-784.
Jung, P. et al., “Identification of the lipid intermediate in yeast mannan biosynthesis,” Eur. J. Biochem. (1973) 37:1-6.
Kath, F. et al., “Mild enzymatic isolation of mannan and glucan from yeast Saccharomyces cerevisiae,” Die Angewandte Makromolekulare Chemie (1999) 268(1):59-68 (Abstract).
Klis, F.M. et al., “Review: Cell wall assembly in yeast,” Yeast (1994) 10:851-869.
Kopecka, M., “Electron microscopic study of purified polysaccharide components glucans and mannan of the cell walls in the yeast Saccharomyces cerevisiae,” J. Basic Microbio. (1985) 25(3):161-174.
Lehninger, A.L., Biochemistry, 2nd Edition, Worth Publishers, Inc., NY (1978) 220-221.
Lipke, P.N. et al., “Cell wall architecture in yeast: new structure and new challenges,” J. Bacter. (1998) 180(15):3735-3740.
Manners et al., “The structure of a β-(1→6)-D-glucan from yeast cell walls,”Biochem. J. (1973) 135:31-36.
Manners, D.J. et al., “The structure of a β-(1→3)-D-glucan from yeast cell walls,” Biochem. J. (1973) 135:19-30.
Nakajima, T. et al., “Characterization of the carbohydrate fragments obtained from Saccharomyces cerevisiae mannan by alkaline degradation,” J. Biol. Chem. (1974) 249(23):7679-7684.
Okubo, Y. et al., “Relationship between phosphate content and immunochemical properties of subfractions of bakers' yeast mannan,” J. Bacteriol. (1978) 136(1):63-68.
Pastor, F.I.J. et al., “Structure of the Saccharomyces cerevisiae cell wall. Mannoproteins released by zymolyase and their contribution to wall architecture,” Biochimica et Biophysica Acta (1984) 802:292-300.
Peat, S. et al., “Polysaccharides of baker's yeast. Part III. The presence of 1:6-linkages in yeast glucan,” J. Chem. Soc. (1958) 3868-3870.
Peat, S. et al., “Polysaccharides of baker's yeast. Part IV. Mannan.” J. Chem. Soc. (1961) 29-34.
Pelczar et al., Elements of Microbiology, McGraw-Hill, Inc. (1981) 35.
Phaff, H.J., “Structure and biosynthesis of the yeast cell envelope,” The Yeasts, A.H. Rose et al., Eds. (1971) Chapter 5:135-210.
Sakata et al., “Stimulatory effect of short chain fatty acids on the epithelial cell proliferation in rat large intestine,” Comp. Biochem. Phys. (1983) 74A(2):459-462.
Scaringi, L. et al., “Cell wall components of Candida albicans as immunomodulators: induction of natural killer and machrophage-mediated peritoneal cell cytotoxicity in mice by mannoprotein and glucan fractions,” J. Gen. Microbiol. (1988) 134:1265-1274.
Schoenherr et al., “Titration of MacroGard-S on growth performance of nursery pigs,” J. Animal Science (1994) 72(2):57 Abstract.
Sentandreau, R. et al., “The characterization of ligosaccharides attached to threonine and serine in a mannan glycopeptide obtained from the cell wall of yeast,” Carb. Res. (1969) 10:584-585.
Sentandreau, R. et al., “The structure of a glycopeptide isolated from the yeast cell wall,” Biochem. J. (1968) 109:419-432.
Shibata, N. et al., “Immunochemical properties of mannan-protein complex isolated from viable cells of Saccharomyces cerevisiae 4484-24D-1 mutant strain by the action of zymolyase,” Microbiol. Immunol. (1984) 28(12):1283-1292.
Singleton, Dictionary of Microbiology & Molecular Biology, John Wiley & Sons Ltd. (1987) 389 and 391.
Valentin, E. et al., “Solubilization and analysis of mannoprotein molecules from the cell wall of Saccharomyces cerevisiae,” J. Gen. Microbiol. (1984) 130:1419-1428.
Williams, D.L. et al., “A method for the solubilization of a (1→3)-β-D-glucan isolated from Saccharomyces cerevisiae,” Carb. Res. (1991) 219:203-213.
Williams, D.L. et al., “Molecular weight analysis of a water-insoluble, yeast-derived (1→3)-β-D-glucan by organic-phase size-exclusion chromatography,” Carb. Res. (1994) 253:293-298.
Canadian Patent Office Action for Application No. 2607004 dated Sep. 21, 2012 (2 pages).
Japanese Patent Office Action for Application No. 2008-510230 dated Oct. 30, 2012 (English Translation Only, 2 pages).
Office Action, European Patent Application No. 06759096.8, dated Mar. 18, 2014.
Related Publications (1)
Number Date Country
20100190872 A1 Jul 2010 US
Provisional Applications (1)
Number Date Country
60677973 May 2005 US
Continuations (1)
Number Date Country
Parent 11418922 May 2006 US
Child 12693164 US