The present Application for Patent claims priority to U.S. Provisional Application No. 60/988,017 entitled “Production of Bone Morphogenic Proteins (BMPs) Using a Novel Tissue Culture Platform” filed Nov. 14, 2007, assigned to the assignee hereof, and hereby expressly incorporated by reference herein.
The invention relates to the use ex vivo-derived mineralized three-dimensional bone constructs for the preparation of Bone Morphogenetic Proteins (BMPs).
BACKGROUND
One of the central problems associated with studying both the normal and pathophysiology of bone is that as an organ system it is slow growing and the time to show an observable response to a particular stimulus is relatively long. The nature of the mineralized tissue matrix of bone in vivo and its complex architecture also presents several technical problems associated with how experimental observations can be made. At present, truly informative studies designed to understand bone physiology have relied primarily on the removal of samples of bone tissue from normal or diseased tissue either in a clinical setting or from experimental animal models.
To date, there is no three dimensional tissue culture model of bone, either of animal or human origin. The prior art has relied primarily on the use of monotype cell type cultures of osteoblasts or osteoclast cells grown on planar, two dimensional tissue culture surfaces. Such cultures have also been grown in three dimensional collagen support gels and some investigators have utilized culture systems that allow types of mechanical strain to be applied to the cells in order to study the effects of mechanical loading. However, these cultures have been primarily focused on the responses of a single cell type, such as osteoblasts, to various environmental stimuli.
Existing planar monotype tissue culture models of bone do not allow the study of the interactions between the different cell types present in normal bone responsible for normal bone remodeling. The developmentally inactive osteocyte cell type present in the mineralized matrix of normal bone in vivo (from which osteoblasts are derived) have yet to be fully characterized in any tissue culture model due to their supposed transformation into osteoblasts once they have been removed from the bone matrix and placed into culture.
Moreover, the process of mineralization, which is essential to the formation of new bone, has previously only been studied in monotype cultures of osteoblasts. The mineralization process has been studied in such models in the absence of the major cell type involved in the removal of mineralized material, namely the osteoclast. However, the complex interplay between both of these cell types is essential for normal bone remodeling (i.e. bone formation and bone loss). Without both cell types being present, a true in vitro/ex vivo representation of the normal or indeed pathological processes involved in the bone remodeling process is impossible. As such, the use of such monotype culture models to investigate the effects of manipulations, such as anti-osteoporetic drugs or mechanical load interventions, have limited utility due to the lack of similarity to the true physiological state existing within bone tissue in vivo.
In one aspect, the disclosure provides a method for producing Bone Morphogenetic Proteins (BMPs). The method involves culturing mineralized three-dimensional bone constructs in a culture medium. The bone constructs secrete BMPs into the culture medium. Predetermined quantities of the culture medium are removed periodically, and the BMPs are purified from the removed culture medium.
In another embodiment, BMPs may be directly extracted from the mineralized three-dimensional bone constructs through mechanical disruption in the presence of protein extraction reagents and subsequent removal of the extraction reagent from the liquid extract containing the BMPs using centrifugal ultra-filtration.
In one aspect, the present disclosure provides mineralized three-dimensional bone constructs (sometimes referred to herein as “OsteoSpheres” or simply as “bone constructs”). The mineralized three dimensional constructs of the disclosure are “bone like” in appearance by visual inspection, in certain important respects resembling trabecular bone (also known in the art as “spongy bone”). In preferred embodiments, the mineralized three-dimensional bone constructs of the disclosure are macroscopic in size and are approximately spheroidal in shape, preferably between about 200 μm and about 4 mm in diameter; however, larger and smaller bone constructs are specifically contemplated.
The bone constructs comprise an inner core surrounded by an outer layer. The inner core comprises a three-dimensional crystalline matrix that stains positively with Alizarin Red S stain and with the von Kossa histochemical stain, indicating that it comprises mineral elements observed in normal human bone in vivo, including calcium, phosphates, and carbonates. The inner core also comprises osteoblasts and/or osteocytes embedded within the crystalline matrix, and is preferably devoid of necrotic tissue. Osteocytes are developmentally inactive cells found only in native bone tissue in vivo and are believed to be formed from osteoblasts that have become trapped in the crystalline matrix. The outer layer is comprised of osteoclasts. The cell types in the bone constructs of the disclosure can be obtained from any mammalian species, but are preferably obtained from humans.
In another aspect, the disclosure provides methods for producing the mineralized three-dimensional bone constructs. In general, the bone constructs of the disclosure are produced by culturing osteoclast precursors and osteoblasts together under randomized gravity vector conditions (approaching those conditions that cultured cells experience during microgravity culture) in a matrix-free culture medium. Osteoclast precursors may be obtained from bone marrow and/or peripheral blood lymphocytes by techniques well known in the art. Osteoclast precursors may also be obtained from commercial sources (for example, from Cambrex/Lonza, Inc.). Osteoblasts, preferably primary human osteoblasts, may also be obtained by techniques well known in the art, and may also be obtained from commercial sources (for example, from PromoCell, Inc. and from Cambrex/Lonza, Inc.). A “matrix-free culture medium” is a cell culture medium which does not include carrier material (such as microcarrier beads or collagen gels) onto which osteoblasts and osteoclast precursors can attach. Suitable cell culture media include Eagle's Minimal Essential Medium (EMEM) or Dulbecco's Modified Eagle's Medium (DMEM), preferably supplemented with fetal bovine serum (FBS). Preferably, the matrix-free culture medium also comprises osteoblast growth supplements such as ascorbic acid. The matrix-free culture medium preferably also further comprises osteoclast differentiation factors, such as Receptor Activator of NF-kB (RANK) ligand and macrophage colony stimulating factor (M-CSF). For example, in one embodiment the matrix-free culture medium comprises FBS-supplemented DMEM, ascorbic acid, RANK ligand, and M-CSF. Example 2 includes a description of one suitable matrix-free culture medium.
The osteoclast precursors and the osteoblasts are cultured together under randomized gravity vector conditions effective to achieve the formation of mixed aggregates of the two cell types. The aggregates are then further cultured under randomized gravity vector conditions to increase the aggregates size and to differentiate the osteoclast precursors into mature osteoclasts.
After a predetermined time, the aggregates are cultured under randomized gravity vector conditions in a matrix-free mineralization culture medium. A “matrix-free mineralization culture medium” is a cell culture medium that includes one or more mineralization agents, such as osteoblast differentiation factors, that induce osteoblasts to produce crystalline deposits (comprising calcium, phosphate, and carbonates) but which does not include carrier material (such as microcarrier beads and collagen gels) onto which osteoblasts and osteoclast precursors can attach. For example, in one embodiment, a matrix-free mineralization culture medium comprises FBS-supplemented EMEM or DMEM, supplemented with the osteoblast differentiation factors. Osteoblast differentiation factors include beta-glycerophosphate and hydrocortisone-21-hemisuccinate. Preferably, the matrix-free mineralization culture medium also includes osteoclast differentiation factors such as RANK ligand and M-CSF, and also includes osteoblast growth supplements such as ascorbic acid. For example, in one embodiment the matrix-free mineralization culture medium comprises FBS-supplemented DMEM, beta-glycerophosphate, ascorbic acid, hydrocortisone-21-hemisuccinate, RANK ligand and M-CSF. Example 2 includes a description of one suitable matrix-free mineralization medium.
In preferred embodiments, randomized gravity vector conditions are obtained by culturing osteoclast precursors and osteoblasts in a low shear stress rotating bioreactor. Such bioreactors were initially designed to mimic some of the physical conditions experienced by cells cultured in true microgravity during space flight. In general, a low shear stress rotating bioreactor comprises a cylindrical culture vessel. One or more ports are operatively associated with the lumen of the vessel for the introduction and removal of cells and culture media. The cylindrical culture vessel is completely filled with a culture medium to eliminate head space. The cylindrical culture vessel rotates about a substantially central horizontal axis. The resulting substantially horizontal rotation occurs at a rate chosen so that (1) there is essentially no relative motion between the walls of the vessel and the culture medium; and (2) cells remain in suspension within a determined spatial region of the vessel such that they experience a continuous “free fall” through the culture medium at terminal velocity with low shear stress and low turbulence. This free fall state may be maintained continuously for up to several months in some applications described in the prior art. The continuous orbital movement of the medium relative to the cells also allows for highly efficient transfer of gases and nutrients.
In some embodiments, the diameter of the cylindrical culture vessel is substantially greater than its height. Such cylindrical culture vessels are often referred to in the art as High Aspect Ratio Vessels (HARVs). For example, a HARV having a volume of 10 mL may have a diameter of about 10 cm and a height of about 1 cm. At least a portion of the vessel walls may be comprised of a gas permeable membrane to allow gas exchange between the culture medium and the surrounding incubator environment. A suitable HARV is described in, for example, U.S. Pat. No. 5,437,998, incorporated by reference herein in its entirety. One commercial embodiment of a HARV is the Rotating Cell Culture System (RCCS) available from Synthecon, Inc.
In some embodiments, the diameter of the cylindrical culture vessel is substantially smaller than its height. Such cylindrical culture vessels are often referred to in the art as Slow Turning Lateral Vessels (STLVs). STLVs typically have a core, comprised of a gas permeable membrane, running through the center of the cylinder in order to allow gas exchange between the culture medium and the surrounding incubator environment. STLVs are available from Synthecon, Inc.
The use of low shear stressing rotating bioreactor culture systems is described in, for example, Nickerson et al., Immunity. 69:7106-7120 (2001); Carterson et al., Infection & Immunity. 73(2):1129-40 (2005); and in Goodwin et al. U.S. Pat. No. 5,496,722, each of which is specifically incorporated herein by reference in its entirety.
In one embodiment, osteoclast precursors and osteoblasts are introduced into a cylindrical culture vessel in matrix-free culture medium. The osteoclast precursors and the osteoblasts may be introduced into the cylindrical culture vessel separately, or they may be introduced into the cylindrical culture vessel as a pre-mixture of the two cell types. Preferably, the cells are introduced into the cylindrical culture vessel at a osteoblast:osteoclast precursor ratio of from about 2:1 to about 3:1, although higher and lower ratios are within the scope of the disclosure. The absolute number of cells introduced into the cylindrical culture vessel may also be varied. For example, in some embodiments where a ratio of about 2:1 is employed, about 2 million osteoblasts and about 1 million osteoclast precursors are introduced; in other embodiments about 4 million osteoblasts and about 2 million osteoclast precursors are introduced; and in still further embodiments about 8 million osteoblasts and about 4 million osteoclast precursors are introduced. The ratio of osteoblasts: osteoclast precursors and the absolute number of cells can be varied in order to vary the size and the number of aggregates formed. In addition, other cell types may also be introduced into the cylindrical culture vessel. For example, bone marrow stroma and stem cells may be cultured along with the osteoblasts and the osteoclast precursors.
One or more cell types may optionally be labeled with a cell-tracking marker, such as a fluorescent cell-tracking dye, prior to their introduction into the cylindrical culture vessel. In this way, it is possible to determine the location of the individual cell types during, or at the conclusion of, the formation of the bone constructs. For example, fluorescent CellTracker dyes, available from Invitrogen, Inc., may be used in conjunction with fluorescence microscopy techniques, such as confocal fluorescence microscopy. If more than one cell type is labeled, then they are labeled with different colored dyes so that each cell type can be tracked independently.
Cells are then cultured in the matrix-free culture medium in the cylindrical culture vessel during substantially horizontal rotation to form aggregates of the two cell types. The rate of substantially horizontal rotation during the aggregation phase is chosen so that both (1) low shear conditions are obtained; and (2) the osteoclast precursors and the osteoblasts are able to coalesce and form aggregates. The rate of substantially horizontal rotation may be selected by monitoring the cylindrical culture vessel and by monitoring the cells and aggregates in the cylindrical culture vessel (for example using microscopy), to insure that the cells and aggregates are not sedimenting (which may be caused by too low a rate of rotation) or experiencing mechanical or excessive hydrodynamic shear stress. In embodiments in which a HARV is used, osteoclast precursors and osteoblasts may form a “boundary” layer situated in the middle of the HARV during the aggregation phase.
Preferably, the rate of substantially horizontal rotation during the aggregation phase is lower than the rate typically used for culturing cells. For example, in embodiments where the cylindrical culture vessel is a 10 mL HARV having a diameter of about 10 cm and a height of about 1 cm, substantially horizontal rotation at less than about 14 revolutions per minute (rpm) may be used. More preferably, substantially horizontal rotation at less than about 12 rpm is used. In certain preferred embodiments, substantially horizontal rotation at between about 1 rpm and about 4 rpm is used. In one specific embodiment, substantially horizontal rotation at about 2 rpm is used. Note that the aforementioned rpm values are provided with reference to a 10 mL HARV having the aforementioned dimensions. The rpm values will vary depending on the volume and dimensions of the cylindrical culture vessel. The rpm values during the aggregation phase for all such vessels are easily determined using the aforementioned methodology.
Without being bound by a particular theory or mechanism, it is believed that the use of a matrix-free culture medium allows the use of rates of rotation that are substantially lower than previously reported in the art for culturing mammalian cells in a low shear stress rotating bioreactor. The use of low rotation rates, in turn, is believed for the first time to promote efficient association of osteoclast precursors and osteoblasts into aggregates, and to promote three-dimensional organization of these two cell types within the aggregates. Thus, the organization of the cell types within the aggregate is not constrained or influenced by an exogenous carrier material, but rather by native cell-cell interaction. Consequently, the three-dimensional organization of the osteoblasts and osteoclasts is physiologically realistic.
The rate of substantially horizontal rotation may optionally be adjusted periodically during the aggregation phase in order to compensate for the increase in the sedimentation velocity (which is a function of volume and density) of the forming aggregates, thereby maintaining the aggregates in low shear “free fall” and preventing impact with the vessel wall.
The aggregation phase proceeds for a period of time sufficient to produce the desired size of aggregates. Aggregate formation may be monitored during the aggregation phase by visual inspection, including through the use of microscopy. It will be apparent from the disclosure that the size of the aggregates is also dependent on the number of cells that are initially introduced into the cylindrical culture vessel, the length of time allowed for aggregation, as well as the rotation rate. In one example, the aggregation phase is allowed to proceed for between about 24 hours and about 48 hours.
Once aggregates of the desired size have formed, the aggregates are preferably further cultured in the cylindrical culture vessel during substantially horizontal rotation for a period of time sufficient to allow the aggregates to grow to a desired size through cell proliferation and/or to allow the osteoclast precursors in the aggregates to differentiate into osteoclasts. For example, the further culturing of the aggregates may proceed for between about 5 and about 7 days and may lead to grown aggregates having a diameter from between about 200 μm and about 4 mm. The resultant aggregates are sometimes referred to herein as “spheroids.” Preferably, the rate of substantially horizontal rotation during the further culturing is higher than the rate during the aggregation phase, but still provides low shear conditions in the cylindrical culture vessel. For example, a rotation rate of between about 9 rpm and about 16 rpm, preferably about 14 rpm, may be used during further culturing for the 10 mL HARV exemplified above. The rate of substantially horizontal rotation may optionally be adjusted periodically during the further culturing phase in order to compensate for the increase in the sedimentation pathway of the aggregates as they grow in size (and hence undergo changes in volume and density), thereby maintaining the growing aggregates in low shear “free fall” and preventing impact with the vessel wall.
Once aggregates have attained a desired size, a matrix-free mineralization culture medium is introduced into the cylindrical culture vessel and the aggregates are cultured during substantially horizontal rotation until they become mineralized (either partially mineralized or fully mineralized), thereby forming the mineralized three-dimensional bone constructs of the disclosure. For example, the mineralization process may proceed for between about 7 days and about 21 days depending on the size of the aggregates and the degree of mineralization required. Preferably, the rate of substantially horizontal rotation during such the mineralization process is higher than the rate during the aggregation phase, but still provides low shear conditions in the cylindrical culture vessel. For example, a rotation rate of between about 9 rpm and about 20 rpm, preferably about 14 rpm, may be used during the mineralization phase for the 10 mL HARV exemplified above. The rate of substantially horizontal rotation may optionally be adjusted periodically during the mineralization phase in order to compensate for the increase in the sedimentation pathway of the aggregates as they increase in mass, thereby maintaining the mineralizing aggregates in low shear “free fall” and preventing impact with the vessel walls.
Mineralized three-dimensional bone constructs are harvested once they have achieved the desired size and mass. In cylindrical culture vessels with one or more access ports, the bone constructs are removed through a part. When the bone constructs exceed the diameter of the port, the vessel is disassembled to remove the bone constructs.
Osteoclasts and osteoblasts act coordinately in the mineralization process that occurs in vivo during bone formation and bone restructuring. Accordingly, the mineralized three-dimensional bone constructs of the disclosure, formed by the coordinated activity of osteoblasts and osteoclasts, are physiologically realistic.
As described above, the mineralized three-dimensional bone constructs of the disclosure mimic trabecular bone in many important aspects. The bone constructs of the disclosure therefore have a great many uses in the fields of, for example, physiology research and development, pharmaceutical research, and orthopedics. Without limitation, these include the direct benefit of developing a model for studying both normal bone physiology and the pathological responses observed in disease states such as osteoporosis, as well as providing a highly economical platform for drug development as it relates to the treatment of bone diseases.
The bone constructs of the disclosure also can be used for autologous grafts.
Specifically, diseased or missing bone may be replaced with ex-vivo-derived mineralized three-dimensional bone constructs in which the component osteoclasts and osteoblasts are harvested from healthy bone and peripheral blood lymphocytes of the patient requiring the bone graft. Examples of pathologies where the bone constructs of the disclosure have therapeutic utility include fractures, non-unions of fractures, congenital deformities of bone, bone infections, bone loss, segmental bone defects, bone tumors, metabolic and endocrine disorders affecting bone, and tooth loss.
The bone constructs of the disclosure can also be used for allogenic (allograft) grafts. Specifically, diseased or missing bone can be replaced with ex vivo-derived mineralized three-dimensional bone constructs in which the component osteoclasts and osteoblasts are harvested from healthy bone and peripheral blood lymphocytes of another donor for the benefit of a patient requiring bone graft. Examples of pathologies where the bone constructs of the disclosure have therapeutic utility include fractures, non-unions of fractures, congenital deformities of bone, bone infections, bone loss, segmental bone defects, bone tumors, metabolic and endocrine disorders affecting bone, and tooth loss.
Because the bone constructs of the disclosure closely resemble bone formed in vivo, it is expected that they produce unique factors and/or cytokines essential for bone remodeling. Accordingly, the bone constructs of the disclosure serve as a source for identification and harvesting of these factors.
The bone constructs of the disclosure may also be used to study the interface between prosthetic devices/materials and bone tissue.
Sensors or stimulation devices may be incorporated into the bone constructs of the disclosure, and the resulting constructs implanted into bone tissue in vivo.
The bone constructs of the disclosure also may be used in the production of large structures of specific dimensions for “form-fitted” applications such as replacement of large regions of the skeleton. This may be achieved using a combination of tissue scaffolding/synthetic support materials embedded with numerous bone constructs to generate a much larger composite tissue aggregate.
The bone constructs of the disclosure also provide a low cost alternative in which to study the effects of microgravity, and of other space environment insults, such as radiation, on the process of bone formation/bone loss.
The following examples are not to be construed as limiting the scope of the invention disclosed herein in any way.
A flow chart of the method for producing mineralized three-dimensional bone constructs is provided in
Cryopreserved primary normal human osteoblast cells and normal human osteoclast precursor cells were purchased from the Cambrex Corporation (East Rutherford, N.J.) and stored frozen under liquid nitrogen until needed.
Osteoblast cells were rapidly thawed by placing the vial in a 37° C. oven, removing the cell suspension from the vial and placing it in a 15 ml centrifugation tube and then diluting the cell suspension with 10 ml of Dulbecco's Modified Essential Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum (10% FBS-DMEM). The cells were then collected by centrifugation at 100×g for 5 min at 4° C. The supernatant was then removed and the cell pellet was resuspended by gentle tituration in 10 ml of fresh 10% FBS-DMEM supplemented with 5 μM ascorbic acid and 1 mg/ml GA-1000 (gentamicin/amphotericin B mixture). This process was carried out to wash away the cryopreservatives in which the osteoblast cells had been frozen.
The resulting cell suspension was then inoculated into a T-75 tissue culture flask and incubated at 37° C. in a 5% CO2 atmosphere tissue culture incubator for a total period of seven days, with the medium being exchanged every three days. After seven days the osteoblast culture was approaching confluence and the osteoblast cells were harvested by removing the cells from the surface of the flask using trypsin/EDTA digestion followed by collection of the cells by centrifugation as above. The cell pellet was then gently resuspended in 20 ml of fresh 10% FBS-DMEM supplemented with 5 μM ascorbic acid and 1 mg/ml GA-1000. The resulting cell suspension was then inoculated into two T-75 tissue culture flasks and again cultured for an additional seven days. This process of osteoblast cell expansion continued until the cells had reached passage 5 (i.e. five expansion/population doubling cycles).
When the osteoblast cells had reached Passage 5 in culture they were harvested using trypsin/EDTA digestion followed by collection of the cells by centrifugation as above. The cell pellet was then gently resuspended in 10 ml of fresh 10% FBS-DMEM supplemented with 5 μM ascorbic acid, 100 U/ml penicillin and 100 ug/ml streptomycin, penicillin/streptomycin being substituted for GA-1000 at this point due to the potential negative effects of gentamicin on the capability of osteoblast cells to produce mineralized extracellular matrix. The resulting osteoblast cell suspension was counted using a hemacytometer to ascertain the number of osteoblast cells/ml. An aliquot of cell suspension containing a total of six million osteoblast cells was removed and placed in a separate 15 ml centrifugation tube in preparation for the addition of osteoclast precursor cells.
Osteoclast precursor cells were rapidly thawed by placing the vial in a 37° C. oven, removing the cell suspension from the vial and placing it in a 15 ml centrifugation tube and then diluting the cell suspension with 10 ml of Dulbecco's Modified Essential Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum (10% FBS-DMEM). The cells were then collected by centrifugation at 100×g for 5 min at 4° C. The supernatant was then removed and the cell pellet was resuspended by gentle tituration in 1 ml of fresh 10% FBS-DMEM supplemented with 5 μM ascorbic acid, 100 U/ml penicillin and 100 ug/ml streptomycin. This process was carried out to wash away the cryopreservatives in which the osteoclast cells had been frozen.
The resulting osteoclast precursor cell suspension was counted using a hemacytometer to ascertain the number of osteoclast precursor cells/ml. An aliquot of cell suspension containing a total of two million osteoclast cells was removed and added to the 15 ml centrifuge tube containing the six million osteoblast cells. The volume of medium in the centrifuge tube was then was adjusted to a total of 10 ml by the addition of fresh 10% FBS-DMEM supplemented with 5 μM ascorbic acid, 100 U/ml penicillin and 100 ug/ml streptomycin. Finally, the 10 ml of medium containing both osteoblast and osteoclast cells was supplemented with 50 ng/ml macrophage colony stimulating factor (M-CSF) and 50 ng/ml of receptor activator of NF-kB (RANK) ligand.
The resulting osteoblast/osteoclast cell suspension was then inoculated into a 10 ml rotating cell culture system (RCCS) flask (also know as a High Aspect Ratio Vessel—ARV) (Synthecon, Inc.) and horizontally rotated at 2 RPM for a period of 24 hr to allow coalescence of the osteoblast and osteoclast cells into a solid, three dimensional tissue construct. After a period of 24 hr, the rotation speed of the HARV was increased to 14 RPM in order ensure that the tissue construct was maintained in an optimal position within the HARV, namely not touching or hitting the sides of the rotating HARV rather in a state of “free-fall” within the medium contained within the rotating HARV. The cell medium within the HARV was exchanged with 10 ml of fresh 10% FBS-DMEM supplemented with 5 μM ascorbic acid, 100 U/ml penicillin, 100 ug/ml streptomycin, 50 ng/ml macrophage colony stimulating factor (M-CSF) and 50 ng/ml of receptor activator of NF-kB (RANK) ligand (a matrix-free culture medium) after every fourth day of culture.
After a period of seven days of culture in the HARV under the above conditions the medium was exchanged for 10 ml of fresh 10% FBS-DMEM supplemented with 5 μM ascorbic acid, 100 U/ml penicillin, 100 ug/ml streptomycin, 50 ng/ml macrophage colony stimulating factor (M-CSF), 50 ng/ml of receptor activator of NF-kB (RANK) ligand, 200 μM hydrocortisone-21-hemisuccinate and 10 mM beta-glycerophosphate (a matrix-free mineralization culture medium). The hydrocortisone-21-hemisuccinate and beta-glycerophosphate were added to the medium to induce mineralization of the tissue construct by the osteoblasts. The cell medium within the HARV was exchanged with 10 ml of fresh 10% FBS-DMEM supplemented with 5 μM ascorbic acid, 100 U/ml penicillin, 100 ug/ml streptomycin, 50 ng/ml macrophage colony stimulating factor (M-CSF), 50 ng/ml of receptor activator of NF-kB (RANK) ligand, 200 μM hydrocortisone-21-hemisuccinate and 10 mM beta-glycerophosphate every fourth day until the tissue construct was harvested.
The method of Example 2 was followed, with the following differences: primary osteoblasts and osteoclast precursors were mixed together at about a 2:1 ratio of osteoblasts to osteoclast precursors, with the total number of cells being about 9 million cells; the mixture of cells was then horizontally rotated at 2 rpm for 48 hrs, and then at 14 rpm for 5 days; and mineralization proceeded at 16 rpm for 21 days. The resulting mineralized three-dimensional bone constructs are pictured in
The method of Example 2 was followed, with the following differences: osteoclast precursors were labeled with the fluorescent CellTracker-Red probe (Invitrogen, Inc.) prior to mixing with osteoblasts; primary osteoblasts and labeled osteoclast precursors were mixed together at about a 2:1 ratio of osteoblasts to osteoclast precursors, with the total number of cells being about 3 million cells; the mixture of cells was then horizontally rotated at 2 rpm for 24 hrs, and then at 14 rpm for 5 days; and mineralization proceeded at 16 rpm for 14 days.
The method of Example 2 was followed, with the following differences: osteoclast precursors were labeled with the fluorescent CellTracker-Green probe (Invitrogen, Inc.) prior to mixing with osteoblasts; primary osteoblasts and labeled osteoclast precursors were mixed together at about a 2:1 ratio of osteoblasts to osteoclast precursors, with the total number of cells being about 6 million cells; the mixture of cells was then horizontally rotated at 2 rpm for 48 hrs, and then at 14 rpm for 5 days; and mineralization proceeded at 16 rpm for 21 days. Three dimensional reconstruction of a resulting large bone construct was performed using Z series confocal imaging. Panels A-I in
Mineralized three-dimensional bone constructs were prepared as detailed in Example 3. The bone constructs were then fixed using a Bouin's solution (a rapid penetrating fixative solution), frozen sectioned, and stained for calcium using the Alizarin red S stain and for phosphates and carbonates using the von Kossa histochemical stain.
The same sections were also stained for the presence of nucleated cells using the Harris Hematoxylin stain. The results are shown in
The method of Example 2 was followed, with the following differences: osteoclast precursors were labeled with the fluorescent CellTracker-Orange probe (Invitrogen, Inc.) prior to mixing with osteoblasts; primary osteoblasts and labeled osteoclast precursors were mixed together at about a 2:1 ratio of osteoblasts to osteoclast precursors, with the total number of cells being about 6 million cells; the mixture of cells was then horizontally rotated at 2 rpm for 48 hrs, and then at 14 rpm for 5 days; and mineralization proceeded at 16 rpm for 21 days. The resulting mineralized three-dimensional bone constructs were fixed using a phosphate buffered saline solution (pH 7.2) containing 1% (v/v) freshly generated formaldehyde. The fixed bone constructs were then immunochemically stained using a monoclonal antibody against osteocalcein (an osteoblast differentiation marker) as the primary antibody and an Alexa 488-labeled secondary antibody.
The method of Example 6 was followed for producing frozen sections of Bouin's fixed, mineralized OsteoSpheres grown for 21 days under mineralization conditions. A total of eight, 10 micron frozen sections of Bouin's fixed mineralized OsteoSpheres were collected and total RNA was extracted from the material using a micro-scale mRNA extraction/purification kit. The presence of intact mRNA in the extract was verified using a Pico™ Total mRNA Chip Assay (Agilent Technolgies). The OsteoSphere-derived mRNA was then converted to cDNA and duplicate samples of cDNA where then probed with human sequence primer sets directed against sequences of either 18S ribosomal RNA (control), BMP-2, BMP-4 or BMP-7 using a real-time quantitative PCR assay (BioRad Laboratories).
Bones are organs made up of bone tissue (osseous tissue) as well as marrow, blood vessels, epithelium and nerves. Bone tissue (the mineralized component) refers specifically to the mineral matrix that makes up the rigid portion of the bone and provides the mechanical stability of the organ as a whole. The process of bone tissue formation is one that involves a variety of physiological signals, including mechanical loading and a myriad of biochemical signaling molecules that act in concert upon the cells that are responsible for bone matrix production.
One of the major classes of signaling molecules involved in directing the formation of bone tissue are the bone morphogenic proteins (BMPs) who belong to the transforming growth factor super family of molecules. Although BMPs have previously been shown to regulate the growth and differentiation of various cell types, including chondrocytes where they stimulate the production of collagenous extra-cellular matrix, their osteoinductive properties have received wide attention as a possible means of stimulating new bone growth in the repair of a variety of clinically relevant bony defects.
BMPs induce early mesenchymal progenitor cells to enter the osteogenic differentiation pathway and stimulate the production of both collagen and alkaline phosphatase by osteoblasts during the formation of new bone. One clinical approach has been to harness the osteoinductive properties of BMPs by applying them to the site of a fracture or bony defect in order to stimulate new bone formation by the existing damaged bone. For example, BMP-7 (also known as OP-1) and BMP-2 have both received FDA approval for use in certain orthopedic procedures and the use of these compounds is being explored in the repair of a variety of other bone pathologies. Both these compounds have received significant success in enhancing bone repair and demonstrate the clinical efficacy of this approach. These data indicate that the use of BMPs to enhance bone formation may have utility in a variety of other clinical situations.
The therapeutic use of BMPs in the field of orthopedics has been negatively impacted by difficulties in obtaining or producing large quantities of these proteins in a biologically active form. BMPs have been produced either from endogenous or recombinant sources. Bone and other tissues, such as cartilage, contain very small concentrations of mature BMPs. Several methods exist that are capable of extracting biologically active BMPs from raw bone material. However, these protocols are prolonged, time consuming and produce very low yields of biologically active BMPs. For example, it has been reported that 15 kg of raw bone material will only generate approximately 0.5 g of partially purified BMPs (Urist et al. Meth Enz 1987; 146:294-312).
Commercially available BMP preparations, such as those that contain BMP-2 or BMP-7 are based upon mammalian protein expression systems. Both human BMP-2 and BMP-7 have been expressed in CHO Chinese hamster ovary (CHO) cells. However, this approach has a low productivity and overall yield. Due to these low yields, recombinant BMPs that can be utilized in clinical procedures are currently very expensive.
From a theoretical perspective, optimal BMP production for clinical applications would consist of a cell-based manufacturing process producing biologically active native BMP molecules from a human source that could be easily harvested and purified in a continuous or batch-type culture process. It is clear that BMPs do not act independently of each other during the osteoinduction process, rather act in concert not only with other BMPs, but with additional growth factors not of the BMP family. As such, it is very probable that optimal BMP production will only occur when the cellular milieu surrounding the cultured cells is providing the appropriate biochemical signals. This cellular milieu is, by definition that which exists during normal bone remodeling or repair.
As described above, the mineralized three-dimensional bone constructs (sometimes referred to as “OsteoSpheres”) of the disclosure can be produced on demand in practically limitless supply from cryogenically stored human osteoblasts and osteoclasts (using, for example, the methods of the preceeding examples). As such, the raw material for the production of OsteoSpheres, namely the two distinct starting cell populations, can be carefully controlled for both quality and consistency. It is also apparent from the mechanical, biological and morphological properties of these OsteoSpheres that they have undergone complete conversion ex vivo to a material indistinguishable at the microscopic level from normal mature trabecular bone in vivo undergoing remodeling. Some of these properties include the production of a mineralized extracellular matrix, the expression of activated osteoblast protein markers (i.e. osteocalcin) by the osteoblast cell population that has organized as a surface layer along with the osteoclasts in the OsteoSphere, the appearance of osteoclast-containing structures on the surface of the mineralized Osteo Spheres reminiscent of resorption pits or lacunae found in actively remodeling bone in vivo, the production of a mixture of differentially expressed BMP's within the Osteo Sphere as evidenced by the presence of differing levels of mRNA for at least BMP-2 and BMP-7, and the loss of osteoblast protein markers (i.e. bone specific alkaline phosphatase) by the cells embedded in the mineral matrix of the mature mineralized OsteoSphere.
Based on these direct observations, the inventors have realized that during the process of OsteoSphere production in culture that the biochemical and cellular milieu generated within the OsteoSpheres during their formation, differentiation and mineralization ex vivo must follow the same cellular pathways that occur during normal bone formation in vivo. As such, OsteoSpheres display both the osteoconductive and osteoinductive properties of normal human bone. Based on the concept that both of these properties are generated as a function of the presence of BMP molecules within bone tissue in vivo, the inventors have also realized that OsteoSpheres are producing not only BMPs, but that they are also producing the cellular milieu required for normal bone formation. It may also be expected that depending on the stage the OsteoSpheres are at in their culture cycle (i.e. immature non-mineralized OsteoSphere 0-7 days of culture; mature partially mineralized OsteoSpheres 7-14 days of culture; mature completely mineralized OsteoSpheres 14-21 of culture) the relative types and concentrations of BMPs being produced by the cells that make up the OsteoSphere will reflect the optimal BMP profile required for that phase of normal bone growth in vivo.
For example, immature non-mineralized OsteoSpheres (0-7 days of culture) are analogous to bone material in vivo at the beginning of the bone formation process; mature partially mineralized OsteoSpheres (7-14 days of culture) are analogous to bone material in vivo at the beginning of the mineralization process but after the laying down of a collagenous matrix; mature completely mineralized OsteoSpheres (14-21 of culture) are analogous to mature bone. This progression is by definition controlled by cellular signals that include a variety of BMPs acting in concert to drive the process. Based on this information, it is entirely possible that the profile of BMPs being produced by OsteoSpheres with differing levels of maturation is different.
We here describe a novel source and method for the production of human-derived BMPs from OsteoSpheres that are being maintained at different levels of differentiation and mineralization. This process involves the harvesting of BMPs from the tissue culture medium in which the OsteoSpheres are growing. OsteoSpheres of uniform diameter (from 200 micron up to 4 mm in diameter) are grown for pre-determined lengths of time (i.e. 7, 14, or 21 days) under rotation in the presence of defined amounts of osteoblast and osteoclast differentiation (e.g. asorbic acid, RANK ligand, M-CSF) and/or mineralization agents (e.g. beta-glycerolphosphate and hydrocortisone-21-hemisucinate) as described in the preceeding examples. Osteospheres are maintained at various stages of maturation within a rotating cell culture system by maintaining them in medium without mineralization agents, stimulating mineralization for only a short period of time (i.e. 7 days) and then removing the mineralization agents, or in the fully mineralized mature state. Conditioned medium containing BMPs are continuously removed from the culture vessel and replaced with the relevant type of culture medium to maintain the pre-determined OsteoSphere maturation state. In addition, it is contemplated that Osteospheres could be removed from the HARV after formation and kept in an appropriate bioreactor or culture setting or media for an extended period of time as they continue to secrete BMPs. In addition, OsteoSphere cultures can also be stimulated with additional growth factors that promote cellular activity associated with the osteoinductive phenotype. These include the hormone, PTH and the growth factor, basic fibroblast growth factor (i.e. bFGF or FGF-2). Addition of these factors to the medium of OsteoSpheres will stimulate and increase osteoblast activity that will be paralleled by an increase in production and release of BMPs. As with the vast majority of proteins that are secreted and that can act as autocrine signaling molecules, BMPs that are produced and secreted by the cells of the Osteo Sphere can then be sequestrated in the surrounding extra-cellular matrix leading to a down-regulation of BMP production via a negative feedback loop. As BMPs are produced within the three dimensional mass of the OsteoSpheres, culture conditions that promote removal of the secreted BMPs from that three dimensional matrix or displacement of sequestered BMPs from the extra-cellular matrix will increase overall amounts of BMPs that can be harvested from the medium. Examples of such strategies include addition of low molecular weight heparin to the culture medium to disrupt the binding of BMPs to heparin sulphate moieties in the extra-cellular matrix of the OsteoSpheres, the use of higher rotational rates to promote medium flow and exchange within the three dimensional structure of the OsteoSphere or even removing mature OsteoSpheres from rotational culture and placing them in a static, continuous perfusion culture system in order to achieve high rates of tissue culture medium exchange with the three dimensional matrix of the OsteoSphere.
An additional means of stimulating BMP production in OsteoSpheres is the use of mechanical stimulation. It is widely understood that increases in bone mineral density in vivo are directly linked to increased levels of cyclical strain placed on the bone. This is the basis for the use of high load resistive exercise protocols for increasing bone mineral density in subjects suffering from bone loss due to reduced musculoskeletal loading associated with prolonged bed-rest, osteoporosis, aging-induced osteopenia and space flight. Recently, the use of low frequency vibration (i.e. between 10 and 60 Hz) has been demonstrated to induce increases in bone mineral density in a variety of animals, including turkeys and sheep. Similar increases in bone mineral density have been observed in human subjects exposed to low frequency vibration. Increases in bone mineral density during bone remodeling are known to be associated with an increase in bone formation (i.e. increased osteoblast activity) and a decrease in bone resorption (i.e. decreased osteoclast activity), and as such mechanical stimulation by definition must enhance the production of the various signaling molecules responsible for this modified cellular activity. As OsteoSpheres are an ex vivo preparation of human bone, exposing OsteoSpheres to similar mechanical stimulation in culture will result in similar up-regulation of the signaling molecules, such as BMP's, responsible for increased bone mineral density in vivo. This can be achieved by exposure of the constructs to pulses of low frequency vibration using a sonicator, increased hydrodynamic shear by cyclically increasing and decreasing the rotational speed at which OsteoSpheres are cultured or compression loading by placing mature, mineralized OsteoSpheres in a non-rotating yet mechanically dynamic tissue culture environment such as that embodied in the commercially available Flexcell Tissue Culture System.
As clinically relevant BMPs are known to have heparin-binding properties, extraction and purification of biologically active BMPs from OsteoSphere conditioned tissue culture medium will use heparin affinity chromatography as the initial basis for extraction and concentration of the OsteoSphere-produced BMPs.
In addition, BMPs may be directly extracted from partially or fully mineralized OsteoSpheres. This may be achieved, for example, through mechanical disruption in the presence of protein extraction reagents, such as guanidine-HCl or urea, and subsequent removal of the extraction reagent from the liquid extract containing the BMPs using centrifugal ultra-filtration.
In one embodiment, the OsteoSpheres are first washed with phosphate buffered saline (preferably ice-cold, with a pH of about 7.2) to remove medium constituents. A protein extraction solution is added to the washed OsteoSpheres, which are then placed in a laboratory scale ball mill apparatus, such as a RETSCH MM301 mixer mill. The OsteoSpheres are then pulverized in the presence of the protein extraction reagent (e.g. 4M guanidine-HCl or 8M urea) into a micron-sized particle suspension. After grinding, the suspension of ground OsteoSpheres is removed from the ball mill, placed in a conical centrifuge tube and centrifuged at approximately 20,000×g for about 30 minutes at about 4° C. This separates insoluble material, which collects as a pellet in the base of the tube, from OsteoSphere-derived proteins dissolved in the protein extraction solution, which form a supernatant above the pellet. The supernatant is decanted from the centrifuge tube, and the protein extraction reagent is removed from supernatant using a standard buffer exchange column where, for example, the 4M guanidine-HCl or the 8M urea solution is exchanged for a phosphate buffered saline (approx. pH 7.2) solution using size exclusion chromotogaphy. Once the protein extraction reagent has been removed from the supernatant, BMPs contained in the supernatant can be purified using standard heparin affinity chromatography as used for isolating and purifying BMPs from OsteoSphere-conditioned tissue culture medium.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/83450 | 11/13/2008 | WO | 00 | 12/15/2010 |
Number | Date | Country | |
---|---|---|---|
60988017 | Nov 2007 | US |