Production of carbon nanotube modified battery electrode powders via single step dispersion

Information

  • Patent Grant
  • 11735705
  • Patent Number
    11,735,705
  • Date Filed
    Monday, December 14, 2020
    4 years ago
  • Date Issued
    Tuesday, August 22, 2023
    2 years ago
Abstract
Methods of making single walled carbon nanotubes (SWNTs) including a single step for preparing a homogeneous dispersion of SWNTs in a battery electrode powder. The method may comprise providing a reactor in fluid communication with a mixer, wherein an aerosol containing SWNTs is transmitted from the reactor directly to the mixer containing a battery electrode powder.
Description
FIELD

The present disclosure relates generally to a method of making single walled carbon nanotubes (SWNTs). The method includes a single step for preparing a homogeneous dispersion of SWNTs in a battery electrode powder.


BACKGROUND

SWNTs provide numerous benefits for use in, for example, electrically and thermally conducting functional materials. In many cases, SWNTs are dispersed in a battery electrode powder material to produce carbon-reinforced composite materials, which often possess improved properties relative to the corresponding non-composite materials.


However, current dispersion technologies are not only expensive but also degrade nanotube properties, leading to reduction of aspect ratio and introduction of defects. The technologies end up requiring more nanotube loading (in terms of weight percent) for improved performance. In addition, current technologies often result in high levels of SWNT agglomeration within the composite materials.


There is thus a need in the art for a more efficient method for preparing SWNT-containing dispersions that preferably reduce SWNT agglomeration.


SUMMARY

The present disclosure relates generally to methods of making SWNTs which, for example, may be used as additives in composite materials, such as for use in battery electrodes. In particular, the present disclosure provides a single step method for preparing a homogeneous dispersion of SWNTs in a battery electrode powder. The method may comprise providing a reactor in fluid communication with a mixer, wherein an aerosol containing SWNTs is transmitted from the reactor directly to the mixer containing a battery electrode powder.


Aspects of the present disclosure also relate to SWNTs, SWNT-containing dispersions, and composite materials including the SWNTs obtainable by the methods disclosed herein. Further, aspects of the present disclosure also relate to apparatuses for preparing SWNT-containing dispersions as described herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an example apparatus for preparing SWNT-containing dispersions according to aspects of the present invention.



FIG. 2 shows a flowchart depicting an example method for preparing SWNT-containing dispersions according to aspects of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present disclosure relates generally to methods of making SWNTs which, for example, may be used as additives in composite materials, such as for use in battery electrodes. In particular, the present disclosure provides a single step method for preparing a homogeneous dispersion of SWNTs in a battery electrode powder. The method may comprise providing a reactor in fluid communication with a mixer, wherein an aerosol containing SWNTs is transmitted from the reactor directly to the mixer containing a battery electrode powder.


The method of the present disclosure comprises providing a reactor for preparing an aerosol of SWNTs. According to some aspects, the reactor is configured for use with a chemical vapor deposition (CVD) method for the preparation of SWNTs.


The reactor may be in fluid communication with a source of catalyst and/or catalyst precursor and a carbon source. For example, as shown in FIG. 1, the reactor 1 may be in fluid communication with a source chamber 2, the source chamber 2 being configured to house a catalyst and/or catalyst precursor and/or a carbon source. According to some aspects, the reactor may be in fluid communication with one or more source chambers. For example, the catalyst and/or catalyst precursor and/or the carbon source gas may be housed in different or the same source chambers.


The method may comprise injecting the catalyst and/or catalyst precursor and the carbon source into the reactor. For example, the reactor may be provided with a first inlet for injecting the catalyst and/or catalyst precursor from the source chamber to the reactor. The first inlet may be in communication with, for example, a liquid pump 3 as shown in FIG. 1, which may pump the catalyst and/or catalyst precursor from the source chamber 2 to the reactor 1.


As used herein, the term “catalyst” refers to a component that provokes or speeds up a chemical reaction, for example, the synthesis of SWNTs. The catalyst may comprise, for example, a metal. Examples of metals include, but are not limited to, transition metals, lanthanide metals, actinide metals, and combinations thereof. For example, the catalyst may comprise a transition metal such as chromium (Cr), molybdenum (Mo), tungsten (W), iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), copper (Cu), silver (Ag), gold (Au), cadmium (Cd), scandium (Sc), yttrium (Y), lanthanum (La), platinum (Pt), and/or combinations thereof.


According to some aspects, a catalyst precursor may be injected into the reactor, either in place of or in combination with a catalyst. As used herein, the term “catalyst precursor” refers to a component that can be converted into an active catalyst. Examples of catalyst precursors include, but are not limited to, transition metal salts, such as a nitrate, acetate, citrate, chloride, fluoride, bromide, iodide, and/or hydrates thereof. For example, the catalyst precursor may be a metallocene, a metal acetylacetonate, a metal phthalocyanine, a metal porphyrin, a metal salt, a metalorganic compound, a metal sulfate, a metal hydroxide, a metal carbonate, or a combination thereof.


According to some aspects, a catalyst may be produced from the catalyst precursor inside the reactor. For example, after the catalyst precursor has been injected into the reactor, a component or all of the catalyst precursor, such as a metal, may be reduced into an active catalyst prior to the production of SWNTs. The reactor may comprise a first region wherein the catalyst may be produced.


According to some aspects, the catalyst and/or catalyst precursor may be provided as a nanoparticle. For example, the catalyst and/or catalyst precursor may have a diameter from about 0.01 to 500 nm, preferably from about 0.01 to 250 nm, even more preferably from about 0.05 to 200 nm, and most preferably from about 0.5 to 100 nm.


According to some aspects, the catalyst and/or catalyst precursor may be injected into the reactor as a liquid, spray, or aerosol. For example, the catalyst and/or catalyst precursor may be mixed with a first carrier gas, such as an inert gas, prior to injection into the reactor. Examples of inert gasses include, but are not limited to, argon gas, hydrogen gas, helium gas, nitrogen gas, and mixtures thereof. For example, as shown in FIG. 1, the catalyst and/or catalyst precursor may be combined with hydrogen gas prior to injection into the reactor.


The method may also comprise injecting the carbon source into the reactor. According to some aspects, the reactor may be provided with a second inlet for injecting the carbon source from the source chamber to the reactor. The second inlet may be the same or different from the first inlet. The second inlet may be in communication with a liquid pump, which may pump the carbon source from the source chamber to the reactor.


Examples of carbon sources include, but are not limited to, a hydrocarbon, an alcohol, an ester, a ketone, an aromatic, an aldehyde, and a combination thereof. For example, the carbon source may be selected from xylene, propane, butane, butene, ethylene, ethanol, carbon monoxide, butadiene, pentane, pentene, methane, ethane, acetylene, carbon dioxide, naphthalene, hexane, cyclohexane, benzene, methanol, propanol, propylene, commercial fuel gases (such as liquefied petroleum gas, natural gas, and the like), and combinations thereof.


According to some aspects, the carbon source may be injected as a liquid, spray, or aerosol. For example, the carbon source may be mixed with a second carrier gas, wherein the second carrier gas is the same or different than the first carrier gas. The carbon source may be injected into the reactor before, after, or simultaneously with the catalyst and/or catalyst precursor.


According to some aspects, an aerosol of SWNTs may be produced in the reactor. For example, the carbon source may decompose at the surface of the catalyst particles in the reactor by thermal and/or catalytic decomposition, thereby resulting in the formation and/or growth of SWNTs.


According to some aspects, the temperature of the reactor may be maintained and/or varied using one or more heat sources, such as a furnace. As shown in FIG. 1, the furnace 4 may be proximal to the reactor 1. For example, the furnace 4 may be proximal to one, two, or more sides of one or more portions of reactor 1, or may completely surround one or more portions of reactor 1.


The one or more heat sources may maintain the temperature of the reactor 1 at a temperature suitable for one or more of the reactions described herein. For example, the furnace 4 may maintain the temperature of the reactor at a temperature suitable for reducing the catalyst precursor into active catalyst and/or for the synthesis and/or formation of SWNTs.


According to some aspects, different regions of the reactor 1 may be maintained at different temperatures. For example, the first region of the reactor may be maintained at a temperature suitable for reducing the catalyst precursor into active catalyst and a second region of the reactor may be maintained at a temperature suitable for the synthesis and/or growth of SWNTs. According to some aspects, each region of the reactor 1 may be heated by the same and/or different heat sources.


According to some aspects, the one or more heat sources may maintain the temperature of the reactor at a temperature of between about 200 and 1600° C.


The SWNTs may be present in the reactor as an aerosol. The method may comprise directly transmitting the SWNT-containing aerosol from the reactor to a mixer, the mixer comprising a battery electrode powder. For example, as shown in FIG. 1, a mixer 5 may be provided in fluid communication with the reactor 1. The mixer 5 may be above, below, or beside the reactor 1. According to some aspects, the aerosol may be continuously introduced to the mixer as the SWNTs are synthesized. Alternatively, the SWNT-containing aerosol may be introduced to the mixer once a portion or all of the SWNTs have been synthesized.


According to some aspects, the battery electrode powder may be any material capable of providing a dispersed SWNT material. For example, the battery electrode powder may comprise a primary battery electrode powder material. As used herein, the term “primary battery electrode powder material” refers to the most prominent material present in the battery electrode powder, such as the material having the highest weight percentage of all the materials making up the battery electrode powder. According to some aspects, the primary battery electrode powder material may comprise a liquid such as a metal alloy, a carbon pitch, a solution of dispersed graphene or graphene oxide sheets, a tar, a cement, an asphalt, an ionic liquid selected from a imidazolium-based liquid, an organic solvent (for example, N,N-dimethylformamide or n-methylpyrrolidone), a melted polymer (for example, a melted polyester, epoxy, polyimide, organosilicone, nylon, Teflon, polystyrene, polyethylene, or a combination thereof), or a combination thereof.


According to some aspects, the battery electrode powder may also comprise one or more secondary battery electrode powder materials. As used herein, the term “secondary battery electrode powder material” refers to one or more components of the battery electrode powder present in lesser amounts than the primary battery electrode powder material.


According to some aspects, the secondary battery electrode powder material may comprise a surfactant, such as an anionic surfactant. Examples of anionic surfactants include, but are not limited to, sodium dodecyl sulfate (SDS), salts of carboxylic acids, salts of sulfonic acids, salts of sulfuric acid, dodecyltrimethylammonium bromide, sodium octylbenzene sulfonate, phosphoric and polyphosphoric acid esters, alkylphosphates, monoalkyl phosphate (MAP), sodium butylbenzene sulfonate, sodium benzoate, and salts of perfluorocarboxylic acids.


According to some aspects, the secondary material may comprise a binder. Examples of binders include, but are not limited to, fluorine resins (for example, polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVdF)), polyacrylonitrile (PAN), polyimide resins, acrylic resins, polyolefin resins, or a combination thereof.


According to some aspects, the SWNT-containing aerosol may comprise one or more carrier gasses that carry the SWNTs from the reactor to the mixer. For example, the carrier gasses may be the same as the first and/or second carrier gas used to inject the catalyst and/or catalyst precursor and/or the carbon source into the reactor. According to some aspects, an additional carrier gas may be injected into or already present in the reactor. The additional carrier gas may be the same or different from the first and/or second carrier gas. For example, as shown in FIG. 1, the reactor may comprise a carrier gas inlet 6 wherein an additional carrier gas, such as a helium gas, is injected into the reactor. According to some aspects, the mixer 5 may be provided with an outlet 11 to allow the one or more carrier gasses to be released as the SWNTs are dispersed within the battery electrode powder.


The method comprises dispersing the SWNTs in the battery electrode powder. For example, the mixer may be provided with a dispersing component, such as a mechanical stirrer, a magnetic stirrer, a ball miller, a sonicator, or a combination thereof. For example, as shown in FIG. 1, the mixer 5 may include a stirrer 7 configured to disperse the SWNTs 8 in a battery electrode powder comprising the primary battery electrode powder material 9 and the secondary materials 10. According to some aspects, the SWNTs may be transmitted to the mixer under constant stirring.


According to some aspects, the amount of any of the components herein may be selected in order to provide a specific ratio of SWNT to battery electrode powder. The specific ratio may be selected in order to provide a low instance of SWNT agglomeration in the battery electrode powder. For example, the ratio of SWNT to battery electrode powder by weight may be from about 0.01 to 100 wt %, preferably from about 0.01 to 80 wt %, more preferably from about 0.01 to 65 wt %, and most preferably from about 0.01 to 50 wt %.


According to some aspects, the method may also optionally comprise mixing the resultant dispersion with an active material and/or making a slurry comprising the dispersion using commonly established methods.


The present disclosure also relates to SWNTs, SWNT-containing dispersions, and composite materials including the SWNTs and/or SWNT-containing dispersions obtainable by the methods disclosed herein. For example, the present disclosure relates to battery electrodes comprising the composite materials described herein.


The present disclosure also relates to an apparatus for preparing SWNT-containing dispersions as described herein. It should be understood that the elements of the apparatus described herein may be arranged in various ways (e.g., above, below, beside one another) so long as they do not depart from the functionalities described herein.


While the aspects described herein have been described in conjunction with the example aspects outlined above, various alternatives, modifications, variations, improvements, and/or substantial equivalents, whether known or that are or may be presently unforeseen, may become apparent to those having at least ordinary skill in the art. Accordingly, the example aspects, as set forth above, are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the disclosure. Therefore, the disclosure is intended to embrace all known or later-developed alternatives, modifications, variations, improvements, and/or substantial equivalents.


Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for.”


Further, the word “example” is used herein to mean “serving as an example, instance, or illustration.” Any aspect described herein as “example” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C,” “at least one of A, B, and C,” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C,” “at least one of A, B, and C,” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. Nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.

Claims
  • 1. A method for preparing a dispersion of single walled carbon nanotubes in a battery electrode powder, the method comprising: preparing an aerosol containing single walled carbon nanotubes in a reactor; andtransmitting the aerosol directly from the reactor to a mixer containing the battery electrode powder to produce the dispersion,wherein the battery electrode powder comprises a primary battery electrode powder material and a secondary material, the secondary material comprising a binder, andwherein the binder is selected from the group consisting of fluorine resins, polyimide resins, acrylic resins, polyolefin resins, and combinations thereof.
  • 2. The method according to claim 1, wherein a ratio of the single walled carbon nanotubes to the battery electrode powder is from about 0.01 to 80 wt %.
  • 3. The method according to claim 2, wherein the ratio of the single walled carbon nanotubes to the battery electrode powder is from about 0.01 to 50 wt %.
  • 4. The method according to claim 1, wherein the primary battery electrode powder material further comprises an organic solvent.
  • 5. The method according to claim 4, wherein the organic solvent comprises n-methylpyrrolidone.
  • 6. The method according to claim 1, wherein the primary battery electrode powder material further comprises a surfactant.
  • 7. The method according to claim 6, wherein the surfactant comprises sodium dodecyl sulfate.
  • 8. The method according to claim 1, wherein the battery electrode powder is continually mixed as the aerosol is transmitted to the mixer.
  • 9. The method according to claim 8, wherein the battery electrode powder is continually mixed by a mechanical stirrer, a magnetic stirrer, a ball miller, a sonicator, or a combination thereof provided as part of the mixer.
  • 10. The method according to claim 1, wherein the aerosol is continuously transmitted to the mixer as the single walled carbon nanotubes are produced in the reactor.
  • 11. The method according to claim 1, wherein the single walled carbon nanotubes are produced by contacting a carbon source and a catalyst in the reactor.
  • 12. The method according to claim 11, wherein the catalyst comprises a metal.
  • 13. The method according to claim 11, wherein a catalyst precursor is converted to the catalyst in the reactor.
  • 14. The method according to claim 11, wherein the catalyst comprises nanoparticles.
  • 15. The method according to claim 1, wherein the aerosol comprises a first carrier gas.
  • 16. The method according to claim 15, wherein the single walled carbon nanotubes are produced by contacting a carbon source and a catalyst in the reactor, and wherein the catalyst is mixed with a second carrier gas.
  • 17. The method according to claim 16, wherein the first carrier gas is the same as the second carrier gas.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/604,131, entitled “Production of Carbon Nanotube Modified Battery Electrode Powders via Single Step Dispersion,” filed on May 24, 2017, the contents of which is expressly incorporated by reference herein in its entirety.

US Referenced Citations (215)
Number Name Date Kind
3513034 Fischbach et al. May 1970 A
3772084 Scholle Nov 1973 A
4119771 Saridakis Oct 1978 A
5985175 Fan et al. Nov 1999 A
7094385 Beguin et al. Aug 2006 B2
7288870 Mitcham et al. Oct 2007 B2
7348101 Gozdz et al. Mar 2008 B2
7622059 Bordere et al. Nov 2009 B2
7999028 Lin et al. Aug 2011 B2
8083905 Choi et al. Dec 2011 B2
8084158 Chu et al. Dec 2011 B2
8293204 Khodadadi et al. Oct 2012 B2
8435676 Zhamu et al. May 2013 B2
8465871 Juzkow et al. Jun 2013 B2
8628747 Zachariah et al. Jan 2014 B2
8703092 Ziegler Apr 2014 B2
8787001 Fleischer et al. Jul 2014 B2
8825178 Feng et al. Sep 2014 B2
8883113 Richter et al. Nov 2014 B2
8974960 Manthiram et al. Mar 2015 B2
8986872 Lev et al. Mar 2015 B2
9034421 Mikhaylik et al. May 2015 B2
9167736 Shah et al. Oct 2015 B2
9396829 Mann et al. Jul 2016 B2
9406985 Amaratunga et al. Aug 2016 B2
9450266 Hosaka et al. Sep 2016 B2
9502734 Lim et al. Nov 2016 B1
9615473 Kim Apr 2017 B2
9692056 Liu et al. Jun 2017 B1
9711763 Sohn et al. Jul 2017 B2
9782082 Gannon et al. Oct 2017 B2
9786872 Suh et al. Oct 2017 B2
9807876 Catchpole Oct 2017 B2
9812681 Heo Nov 2017 B2
9859586 Suh et al. Jan 2018 B2
9887644 Kim et al. Feb 2018 B2
9941492 Suh et al. Apr 2018 B2
9972868 Choi et al. May 2018 B2
9979225 Bernhard May 2018 B2
10033031 Wang et al. Jul 2018 B2
10090556 Rho et al. Oct 2018 B2
10096803 Iseri et al. Oct 2018 B2
10122010 Tajima et al. Nov 2018 B2
10147915 Song et al. Dec 2018 B2
10199851 Hiroki et al. Feb 2019 B2
10217971 Takahashi et al. Feb 2019 B2
10658651 Pierce et al. May 2020 B2
10957939 Zhi et al. Mar 2021 B2
20030084847 Wood et al. May 2003 A1
20030099883 Ochoa et al. May 2003 A1
20040086783 Fong et al. May 2004 A1
20040234445 Serp et al. Nov 2004 A1
20050008778 Utsugi et al. Jan 2005 A1
20050063891 Shaffer et al. Mar 2005 A1
20050148887 Reiter et al. Jul 2005 A1
20050209392 Luo et al. Sep 2005 A1
20050221185 Sakata et al. Oct 2005 A1
20060039849 Resasco et al. Feb 2006 A1
20060078489 Harutyunyan et al. Apr 2006 A1
20060116443 Probst et al. Jun 2006 A1
20060151318 Park et al. Jul 2006 A1
20060228289 Harutyunyan et al. Oct 2006 A1
20060245996 Xie et al. Nov 2006 A1
20070148962 Kauppinen Jun 2007 A1
20070224106 Sakakibara et al. Sep 2007 A1
20070274899 Wolf et al. Nov 2007 A1
20080131351 Wang et al. Jun 2008 A1
20080210550 Walther et al. Sep 2008 A1
20080233402 Carlson et al. Sep 2008 A1
20080258117 Sakakibara et al. Oct 2008 A1
20090117026 Shimazu et al. May 2009 A1
20090142659 Lai et al. Jun 2009 A1
20090208708 Wei et al. Aug 2009 A1
20090226704 Kauppinen et al. Sep 2009 A1
20090274609 Harutyunyan et al. Nov 2009 A1
20090286675 Wei et al. Nov 2009 A1
20090317710 Douglas et al. Dec 2009 A1
20100000441 Jang et al. Jan 2010 A1
20100038602 Plee Feb 2010 A1
20100112443 Blomgren et al. May 2010 A1
20100140560 Wang et al. Jun 2010 A1
20100178543 Gruner et al. Jul 2010 A1
20100221606 Nalamasu et al. Sep 2010 A1
20100276644 Wolf et al. Nov 2010 A1
20100285352 Juzkow et al. Nov 2010 A1
20100285358 Cui et al. Nov 2010 A1
20110060162 Tatsuhara et al. Mar 2011 A1
20110096465 Zhou et al. Apr 2011 A1
20110111279 Smithyman et al. May 2011 A1
20110123429 Bordere et al. May 2011 A1
20110150746 Khodadadi et al. Jun 2011 A1
20110158892 Yamaki Jun 2011 A1
20110171398 Oladeji Jul 2011 A1
20110174519 Shah et al. Jul 2011 A1
20110177393 Park et al. Jul 2011 A1
20110281156 Boren et al. Nov 2011 A1
20110311874 Zhou et al. Dec 2011 A1
20120034516 Koo et al. Feb 2012 A1
20120105370 Moore May 2012 A1
20120107683 Kim et al. May 2012 A1
20120121986 Balu et al. May 2012 A1
20120132861 Tamamitsu et al. May 2012 A1
20120138148 Harutyunyan Jun 2012 A1
20120141864 Juzkow et al. Jun 2012 A1
20120149824 Hooke et al. Jun 2012 A1
20120156034 Sabannavar et al. Jun 2012 A1
20120177934 Vogel et al. Jul 2012 A1
20120193602 Lieber et al. Aug 2012 A1
20120219490 Noda et al. Aug 2012 A1
20120241666 Hong et al. Sep 2012 A1
20120282522 Axelbaum et al. Nov 2012 A1
20120295161 Wang et al. Nov 2012 A1
20120315539 Lashmore et al. Dec 2012 A1
20120321911 Watanabe et al. Dec 2012 A1
20130040229 Grigorian et al. Feb 2013 A1
20130065125 Sawaki et al. Mar 2013 A1
20130065130 Ban et al. Mar 2013 A1
20130106026 Wang et al. May 2013 A1
20130143077 Yebka et al. Jun 2013 A1
20130149440 Pyzik et al. Jun 2013 A1
20130171485 Kodera et al. Jul 2013 A1
20130171496 Wang et al. Jul 2013 A1
20130189565 Lashmore et al. Jul 2013 A1
20130224551 Hiralal et al. Aug 2013 A1
20130256011 Chang et al. Oct 2013 A1
20130323583 Phares Dec 2013 A1
20140005960 Anderson et al. Jan 2014 A1
20140013588 Wang et al. Jan 2014 A1
20140021403 Kim et al. Jan 2014 A1
20140057178 He et al. Feb 2014 A1
20140065447 Liu et al. Mar 2014 A1
20140093769 Busnaina et al. Apr 2014 A1
20140141248 Noyes May 2014 A1
20140170490 Izuhara et al. Jun 2014 A1
20140178543 Russell et al. Jun 2014 A1
20140255782 Jabbour et al. Sep 2014 A1
20140287304 Netz Sep 2014 A1
20140326181 Kim Nov 2014 A1
20140370347 Jung et al. Dec 2014 A1
20150010788 Aria et al. Jan 2015 A1
20150037239 Sue et al. Feb 2015 A1
20150044581 Holme et al. Feb 2015 A1
20150059571 Denton et al. Mar 2015 A1
20150064521 Watanabe et al. Mar 2015 A1
20150087858 Ci et al. Mar 2015 A1
20150133569 Gong et al. May 2015 A1
20150188112 Adre et al. Jul 2015 A1
20150200417 Song et al. Jul 2015 A1
20150207143 Wu et al. Jul 2015 A1
20150207168 Do et al. Jul 2015 A1
20150233010 Pan et al. Aug 2015 A1
20150236366 Chang et al. Aug 2015 A1
20150243451 Kim et al. Aug 2015 A1
20150243452 Gruner et al. Aug 2015 A1
20150255828 Momo et al. Sep 2015 A1
20150279578 Martini et al. Oct 2015 A1
20150325820 Sohn et al. Nov 2015 A1
20150333302 Johns et al. Nov 2015 A1
20150340684 Voillequin et al. Nov 2015 A1
20150340741 Kim et al. Nov 2015 A1
20150349325 Chen et al. Dec 2015 A1
20150364750 Maheshwari et al. Dec 2015 A1
20150372344 Iwasaki et al. Dec 2015 A1
20150380738 Zhou et al. Dec 2015 A1
20160009557 Harutyunyan et al. Jan 2016 A1
20160013457 Suh et al. Jan 2016 A1
20160013458 Suh et al. Jan 2016 A1
20160020437 Sohn et al. Jan 2016 A1
20160023905 Wei Jan 2016 A1
20160036059 Tokune et al. Feb 2016 A1
20160040780 Donahue Feb 2016 A1
20160049569 Negrin Feb 2016 A1
20160079629 Abe et al. Mar 2016 A1
20160082404 Pigos Mar 2016 A1
20160094079 Hiroki et al. Mar 2016 A1
20160126554 Beneventi et al. May 2016 A1
20160149193 Seong May 2016 A1
20160149253 Yi et al. May 2016 A1
20160166837 Strommer et al. Jun 2016 A1
20160329533 Tajima Nov 2016 A1
20160365544 Lee et al. Dec 2016 A1
20160372717 Noda Dec 2016 A1
20170005504 Rho et al. Jan 2017 A1
20170018799 Jeong Jan 2017 A1
20170033326 Goto et al. Feb 2017 A1
20170040582 Kim Feb 2017 A1
20170155098 Park et al. Jun 2017 A1
20170155099 Song et al. Jun 2017 A1
20170214052 Xu Jul 2017 A1
20170263972 Rho et al. Sep 2017 A1
20170288255 Kim et al. Oct 2017 A1
20170338439 Yokoyama Nov 2017 A1
20170338449 Rho et al. Nov 2017 A1
20170338489 Miwa et al. Nov 2017 A1
20180026236 Lee et al. Jan 2018 A1
20180062417 Choi et al. Mar 2018 A1
20180115026 Mairs Apr 2018 A1
20180240609 Park et al. Aug 2018 A1
20180241081 Deng et al. Aug 2018 A1
20180261818 Roumi Sep 2018 A1
20180309117 Zhu et al. Oct 2018 A1
20190027638 Masuda et al. Jan 2019 A1
20190033602 Lee et al. Jan 2019 A1
20190036103 Pierce et al. Jan 2019 A1
20190088925 Harutyunyan et al. Mar 2019 A1
20190099129 Kopelman et al. Apr 2019 A1
20190115633 Akihisa Apr 2019 A1
20190122464 Delong et al. Apr 2019 A1
20190140270 Wang et al. May 2019 A1
20190171315 Park et al. Jun 2019 A1
20190237748 Shin et al. Aug 2019 A1
20190393486 He et al. Dec 2019 A1
20200006772 Yu et al. Jan 2020 A1
20200264663 Kumta et al. Aug 2020 A1
20210399289 Eshraghi et al. Dec 2021 A1
Foreign Referenced Citations (92)
Number Date Country
1922347 Feb 2007 CN
1972739 May 2007 CN
101627494 Jan 2010 CN
101801394 Aug 2010 CN
101809790 Aug 2010 CN
102047488 May 2011 CN
102482098 May 2012 CN
102593436 Jul 2012 CN
102674316 Sep 2012 CN
102856579 Jan 2013 CN
102945947 Feb 2013 CN
103204492 Jul 2013 CN
102674316 May 2014 CN
104064725 Sep 2014 CN
204072059 Jan 2015 CN
104752651 Jul 2015 CN
103219467 Nov 2015 CN
103715394 Jan 2016 CN
105513823 Apr 2016 CN
205375473 Jul 2016 CN
103280846 Aug 2016 CN
106024969 Oct 2016 CN
205697720 Nov 2016 CN
106299237 Jan 2017 CN
104392845 Mar 2017 CN
106602012 Apr 2017 CN
104362326 Aug 2017 CN
107004827 Aug 2017 CN
107074534 Aug 2017 CN
107086306 Aug 2017 CN
107611340 Jan 2018 CN
108878717 Nov 2018 CN
109088071 Dec 2018 CN
208690415 Apr 2019 CN
106129536 Jul 2019 CN
102017123752 Mar 2019 DE
2 213 369 Aug 2010 EP
2 476 648 Jul 2012 EP
2 835 177 Feb 2015 EP
6-267515 Sep 1994 JP
11-31502 Feb 1999 JP
11-87875 Mar 1999 JP
2005-272277 Oct 2005 JP
2007-49789 Feb 2007 JP
2008-305608 Dec 2008 JP
2010-277925 Dec 2010 JP
2012-512956 Jun 2012 JP
2015-105208 Jun 2015 JP
2015-521347 Jul 2015 JP
2015-220004 Dec 2015 JP
2016-25077 Feb 2016 JP
2016-31922 Mar 2016 JP
2016-54113 Apr 2016 JP
2016-73196 May 2016 JP
2017-130274 Jul 2017 JP
2017-147222 Aug 2017 JP
2017-162637 Sep 2017 JP
10-2007-0001220 Jan 2007 KR
10-1548465 Aug 2015 KR
10-2016-0047643 May 2016 KR
10-1632109 Jun 2016 KR
10-2016-0114389 Oct 2016 KR
10-2016-0127641 Nov 2016 KR
10-2016-0129440 Nov 2016 KR
10-2016-0129500 Nov 2016 KR
10-1676641 Nov 2016 KR
10-1703516 Feb 2017 KR
10-2017-0036478 Apr 2017 KR
10-2017-0037510 Apr 2017 KR
10-1729702 Apr 2017 KR
10-1765459 Aug 2017 KR
10-1795544 Nov 2017 KR
10-2019-0040554 Apr 2019 KR
WO 2005052053 Jun 2005 WO
WO 2005096089 Oct 2005 WO
WO 2012156297 Nov 2012 WO
WO 2013052704 Apr 2013 WO
WO 2014102131 Jul 2014 WO
WO 2014153465 Sep 2014 WO
WO 2015100762 Jul 2015 WO
WO 2016031335 Mar 2016 WO
WO 2016178210 Nov 2016 WO
WO 2017052248 Mar 2017 WO
WO 2017083566 May 2017 WO
WO 2017120391 Jul 2017 WO
WO 2017131451 Aug 2017 WO
WO 2017199884 Nov 2017 WO
WO 2018110933 Jun 2018 WO
WO-2018110776 Jun 2018 WO
WO 2018194414 Oct 2018 WO
WO 2018194415 Oct 2018 WO
WO 2019027147 Feb 2019 WO
Non-Patent Literature Citations (78)
Entry
Communication dated May 6, 2022, from the State Intellectual Property Office of People's Republic of China in Chinese Application No. 201710150360.3.
Shan Jiang et al., “Series in Science Communication by Chinese Academy of Sciences: Nanometer”, Popular Science Press, pp. 155-157, Sep. 2013.(Cited in CN Application No. 201710150360.3, dated May 6, 2022).
Yurong Liu, “Applications of Carbon Materials in Supercapacitor”, National Defense Industry Press,(p. 142, 2 pages total), Jan. 2013.(Cited in CN Application No. 201710150360.3, dated May 6, 2022).
Communication dated Dec. 22, 2020, from the Japanese Patent Office in related application No. 2020-002026.
David Schiller, “Development of a Stretchable Battery Pack for Wearable Applications”, submitted by David Schiller, BSc., Johannes Kepler University Linz, Nov. 2019, 28 Pages Total, https://epub.jku.at/obvulihs/content/titleinfo/4605900/full.pdf.
International Search Report and Written Opinion, issued by International Searching Authority in related International Application No. PCT/US2020/043017, dated Dec. 14, 2020.
A. Weidenkaff et al. “Metal Nanoparticles for the Production of Carbon Nanotube Composite Materials by Decomposition of Different Carbon Sources” Materials Science and Engineering C, vol. 19, pp. 119-123, 2002.
A.J. Clancy et al., “A One-Step Route to Solubilised, Purified or Functionalised Single-Walled Carbon Nanotunes”, Journal of Materials Chemistry A, pp. 16708-16715, 2015.
Beate Krause et al., “Disperability and Particle Size Distribution of CNTs in an Aqeous Surfactant Dispersion as a Function of Ultrasonic Treatment Time” Carbon 48, pp. 2746-2754, 2010.
Chee Howe See et al., “CaCO3 Supported Co—Fe Catalysts for Carbon Nanotube Synthesis in Fluidized Bed Reactors” Particle Technology and Fluidization, vol. 54, No. 3, pp. 657-664, Mar. 2008.
Communication dated Jul. 31, 2019, from the European Patent Office in related European Application No. 18194454.7.
Danafar, F. et al., “Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes—a review,” The Chemical Engineering Journal, vol. 155, pp. 37-48, 2009.
Dunens, O., et al., “Synthesis of Multiwalled Carbon Nanotubes on Fly Ash Derived Catalysts,” Environ. Sci. Technol., vol. 43, pp. 7889-7894, 2009.
Extended European Search Report issued in related European Application No. 18184002.6 dated Nov. 30, 2018.
Extended European Search Report issued in related European Patent Application No. 18194469.5 dated Dec. 4, 2018.
Hasegawa Kei et. al., “Lithium Ion Batteries Made of Electrodes with 99 wt% active materials and 1wt% carbon nanotubes without binder or metal foils”, Journal of Power Sources, vol. 321, pp. 155-162, 2016.
Howard Wang, “Dispersing Carbon Nanotubes Usuing Surfactants” Current Opinion in Colloid & Interface Science 14, pp. 364-371, 2009.
Hu, Liangbing et al., Thin, Flexible Secondary Li-Ion Paper Batteries, ACS Nano, vol. 4, No. 10, pp. 5843-5848, 2010.
International Search Report and Written Opinion, issued by International Searching Authority in related International Application No. PCT/US19/49923, dated Jan. 23, 2020.
Jenax Inc., Flexible Lithium Polymer Battery J . FLEX, Copyright 2014, (6 Pages Total).
Joo-Seong Kim et al., Supporting Information, a Half Millimeter Thick Coplanar Flexible Battery with Wireless Recharging Capability, Nano Letters 2015 15 (4), 9 Pages Total, (2015).
Kim et al., “A Half Millimeter Thick Coplanar Flexible Battery with Wireless Recharging Capability”, Nano Letters, American Chemical Society, 2015, (9 Pages Total).
Kun Kelvin Fu et al., “Flexible Batteries: From Mechanics to Devices”, 2016 American Chemical Society, ACS Publications, ACS Energy Letters 1, pp. 1065-1079, (2016).
Linqin Jiang et al., “Production of Aqueous Colloidal Dispersions of Carbon Nanotubes”, Journal of Colloid and Interface Science, pp. 89-94, 2003.
Luo Shu et al., “Binder-Free LiCoO2/Carbon Nanotube Cathodes for High-Performance Lithium Ion Batteries” Advanced Materials, vol. 24, pp. 2294-2298, 2012.
Nanalyze., a Flexible Battery from Blue Spark Technologies, Apr. 8, 2014, (4 Pages Total).
Panasonic Corp., Panasonic Develops Bendable, Twistable, Flexible Lithium-ion Battery, Sep. 29, 2016, (8 Pages Total).
ProLogium Technology Co., Ltd., FLCB Flexible Type LCB, Copyright 2015, (6 Pages Total).
Pu et al., “A Self-Charging Power Unit by Integration of a Textile Triboelectric Nanogenerator and a Flexible Lithium-Ion Battery for Wearable Electronics”, Advanced Materials. 2015, (2015), (7 Pages Total).
Sarah Maghsoodi et al., “A Novel Continuous Process for Synthesis of Carbon Nanotubes Using Iron Floating Catalyst and MgO Particles for CVD of methane in a fluidized bed reactor” Applied Surface Science, vol. 256, pp. 2769-2774, 2010.
Sau Yen Chew et al., “Flexible free-standing carbon nanotube films for model lithium-ion batteries”, Carbon 47, pp. 2976-2983, (2009).
Sebastian Anthony, LG produces the first flexible cable-type lithium-ion battery, ExtremeTech, Aug. 30, 2012, (9 Pages Total).
Sheng Xu et al., “Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems,” Nature communications 4:1543, DOI: 10.1038/ncomms2553, 8 Pages Total, (2013).
Shu Luo et al., “Binder-Free LiCoO2/ Carbon Nanotube Cathodes for High-Performance Lithium Ion Batteries”, Advanced Materials 24, pp. 2294-2298, (2012).
Extended European Search Report issued in related European Patent Application No. 18186402.6 dated Oct. 11, 2018.
The Swatch Group Ltd., A revolutionary battery by Belenos: the Watchmaker Swatch Group Has Signed an Agreement With the Chinese Geely Group for Use of Its Innovative New Battery., as accessed on May 29, 2019, (3 Pages Total), https://www.swatchgroup.com/en/swatch-group/innovation-powerhouse/industry-40/revolutionary-battery-belenos.
Vishwam Sankaran., Samsung is reportedly developing a curved battery for its foldable phone, Jul. 4, 2018, (4 Pages Total).
Wang Ke et al., “Super-Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries” Advanced Functional Materials, vol. 23, pp. 846-853, 2013.
Xian-Ming Liu et al., “Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review”, Composite Science and Technology, vol. 72, pp. 121-144, (2012).
Zhao, M.Q. et al., “Towards high purity graphene/single-walled carbon nanotube hybrids with improved electrochemical capacitive performance,” Carbon, vol. 54, pp. 403-411, 2013.
Zhiqian Wang et al., “Fabrication of High-Performance Flexible Alkaline Batteries by Implementing Multiwalled Carbon Nanotubes and Copolymer Separator” Advanced Materials 26, pp. 970-976, (2014).
Zhiqiang Niu et al., “A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes”, the Royal Society of Chemistry 2012, Energy & Environmental Science 5, pp. 8726-8733, (2012).
Communication dated Aug. 26, 2019, from the European Patent Office in related European Application No. 18186402.6.
Communication issued by International Searching Authority in related International Application No. PCT/US19/49923, dated Nov. 13, 2019 (PCT/ISA/206).
Extended European Search Report issued in related European Patent Application No. 18173644.8 dated Oct. 12, 2018.
Extended Search Report of related EP Application No. 18 19 4454 dated Jul. 23, 2019.
International Search Report and Written Opinion, issued by International Searching Authority in related International Application No. PCT/US2020/020993, dated Jul. 2, 2020.
International Search Report and Written Opinion, issued by International Searching Authority in related International Application No. PCT/US2020/039821, dated Sep. 30, 2020.
O.M. Marago, et al., “Optical trapping of carbon nanotubes”, Physica E, 40 (2008), pp. 2347-2351.
Xiong Pu et al., “A Self-Charging Power Unit by Integration of a Textile Triboelectric Nanogenerator and a Flexible Lithium-Ion Battery for Wearable Electronics”, Advanced Materials 27, pp. 2472-2478, (2015).
Office Action issued by the European Patent Office in related European Patent Application No. 18184002.6, dated May 13, 2020.
Communication dated Feb. 4, 2020, from the European Patent Office in counterpart European Application No. 18 173 644.8.
Communication dated Oct. 19, 2022, from the State Intellectual Property Office of People's Republic of China in Application No. 201811076414.7.
Office Action dated Jun. 28, 2022, issued by the Korean Patent Office in Korean Application No. 10-2022-0057879.
Communication dated Feb. 23, 2022, from the State Intellectual Property Office of People's Republic of China in Application No. 202010079226.0.
Communication dated Jan. 6, 2021, from the Japanese Patent Office in related application No. 2020-002545.
Communication dated Oct. 9, 2022, from the Chinese Patent Office in Chinese Application No. 202010002766.9.
Aminy E. Oslfeld et al., “High-performance flexible energy storage and harvesting system for wearable electronics”, www.nature.com/scientificreports, Scientific Reports, 6:26122,DOI:10.1038/srep26122, (2016), (10 Pages Total).
Communication dated Nov. 9, 2021, from the Japanese Patent Office in related application No. 2018-172178.
Cha, Seung I., et al., “Mechanical and electrical properties of cross-linked carbon nanotubes.” Carbon 46.3 (2008): pp. 482-488 (Year: 2008).
Communication dated Mar. 22, 2022, from the State Intellectual Property Office of People's Republic of China in Application No. 201811076414.7.
Communication dated Sep. 26, 2021, issued by the Korean Intellectual Property Office in related Korean Application No. 10-2018-0058433.
Communication dated Jan. 27, 2022, from the State Intellectual Property Office of People's Republic of China in related Application No. 201710150360.3.
Notice of Reasons for Rejection dated Aug. 17, 2021, from the Japanese Patent Office in related application No. 2020-002545.
Notification of the First Office Action dated Jul. 16, 2021, from the State Intellectual Property Office of People's Republic of China in related Application No. 201710151455.7.
First Office Action dated Aug. 25, 2022, from the State Intellectual Property Office of People's Republic of China in Application No. 201810503719.5.
Ling-ling Gu et al., “Preparation and Applications of Carbon Nanotube/Polymer Composites”, Polymer Materials Science and Engineering, vol. 25 ,No. 11, (Nov. 2009), (5 Pages Total, abstract on p. 5).
Communication dated Mar. 22, 2022, from the Japanese Patent Office in application No. 2018-142355.
Ying Shi et al., “Graphene-based integrated electrodes for flexible lithium ion batteries”, 2D Materials 2 (2015): 024004. (Year: 2015), (9 Pages Total).
Fenghua Su et al., “High-Performance Two-Ply Yarn Supercapacitors Based on Carbon Nanotube Yarns Dotted with CO3O4 and NiO Nanoparticles”, Small 2015, 11, No. 7, pp. 854-861 with Supporting Information(12 Pages Total), www.small-journal.com, (Year: 2015).
Aminy E. Ostfeld et al., “High-performance flexible energy storage and harvesting system for wearable electronics”, www.nature.com/scientificreports, Scientific Reports, 6:26122,DOI:10.1038/srep26122, (2016), (10 Pages Total).
Communication dated Jul. 27, 2021, issued by the Korean Intellectual Property Office in related Korean Application No. 10-2020-0005929.
Sungmook Jung et al., “Wearable Fall Detector using Integrated Sensors and Energy Devices”, www.nature.com/scientificreports, Scientific Reports, 5:17081, DOI: 10.1038/srep17081, (2015), (9 Pages Total).
Ye, Huating, et al., “A true cable assembly with a carbon nanotube sheath and nickel wire core: a fully flexible electrode integrating energy storage and electrical conduction”, Journal of Materials Chemistry A 2018; 6: pp. 1109-1118, The Royal Society of Chemistry, (2018).
Communication dated Feb. 28, 2023 from the Japanese Patent Office in application No. 2021-509213.
Communication dated Nov. 11, 2022, from the Chinese Patent Office in Chinese Application No. 202010079226.0.
Mallakpour et al., “Carbon nanotube-metal oxide nanocomposites: Fabrication, properties and applications,” Chemical Engineering Journal, 2016, vol. 302, pp. 344-367.
Shah et al., “A Layered Carbon Nanotube Architecture for High Power Lithium Ion Batteries,” Journal of the Electrochemical Society, 2014, vol. 161, No. 6, pp. A989-A995.
Related Publications (1)
Number Date Country
20210104721 A1 Apr 2021 US
Continuations (1)
Number Date Country
Parent 15604131 May 2017 US
Child 17121206 US