Kubota et al, Meiji Seika Kenkya Nenpo, 31:41-50, 1992.* |
Anthonsen, M. W. et al., “Solution properties of chitosans: conformation and chain stiffness of chitosans with different degrees of N-acetylation,” Carbohydrate Polymers, 22:193-201 (1993). |
Arcidiacono, S. et al., “Molecular Weight Distribution of Chitosan Isolated from Mucor rouxii under Different Culture and Processing Conditions,” Biotechnology and Bioengineering, 39:281-286 (1992). |
Bartnicki-Garcia, S. et al., “Nutrition, Growth, and Morphogenesis of Mucor Rouxii,” J. Bacteriol., 84:841-858 (1962). |
Canale-Parola, E. et al., “Synthesis of cellulose by Sarcina ventriculi,” Biochim. Biophys. Acta., 82:403-405 (1964). |
Canale-Parola, E., “Biology of the Sugar-Fermenting Sarcinae,” Bacteriological Reviews, 34(1):82-97 (1970). |
Colvin, J. R. et al., “The structure of cellulose-producing bacteria, Acetobacter xylinum and Acetobacter acetigenus,” Can. J. Microbiol., 23:790-797 (1977). |
Hackman, R. H. et al., “Light-Scattering and Infrared-Spectrophotometric Studies of Chitin an Chitin Derivatives,” Carbohydrate Research, 38:35-45 (1974). |
Kent, R. A. et al., “Bacterial Cellulose Fiber Provides an Alternative for Thickening and Coating,” Food Technology, pp. 108 (1991). |
Lee, J. W. et al., “Exopolymers from curdlan production: incorporation of glucose-related sugars by Agrobacterium sp. strain ATCC 31749,” Can. J. Microbiol., 43:149-156 (1997). |
Legge, R. L., “Microbial Cellulose as a Speciality Chemical,” Biotech Adv., 258:303-319 (1990). |
Matthysse, A. G. et al., “Genes Required for Cellulose Synthesis in Agrobacterium tumefaciens,” J. of Bacteriology, 177(4):1069-1075 (1995). |
Ogawa, R. et al., “Incorporation of GlcNAc residue into bacterial cellulose by A. xylinum—characterization of novel BC,” CELLULOSICS: Chemical, Biological and Material Aspects, pp. 35-40 (1993). |
Ogawa, R. et al., “Preparation of bacterial cellulose containing N-acetylglucosamine residues,” Carbohydrate Polymers, 19:171-178 (1992). |
Ogawa, R. et al., “Biosynthesis of Cellulose Susceptible for Chitinolytic Enzyme by Acetobacter SP,” In Adv. Chitin Chitosan, Brine, C.J. et al., eds. (Proc. Int. Conf.), pp. 323-333 (1992). |
Osawa, Z. et al., “Synthesis of sulfated derivatives of curdlan and their anti-HIV activity,” Carbohydrate Polymers, 21:283-288 (1993). |
Pinsent, C., “Getting There,” Open to the World, pp. 26-30 (1997). |
Roesser, D. S. et al., “Effects of Substitution Stie on Acetyl Amylose Biodegradability by Amylase Enzymes,” Macromolecules, 29(1):1-9 (1996). |
Ross, P. et al., “Cellulose Biosynthesis and Function in Bacteria,” Microbiological Reviews, 55(1):35-58 (1991). |
Schramm, M. et al, “Synthesis of Cellulose by Acetobacter xylinum,” Biochem J., 56:163-166 (1954). |
Shirai, A. et al., “Preparation of a novel (1→4)-β-D-glycan by Acetobacter xylinum—a proposed mechanism for incorporation of a N-acetylglucosamine residue into bacterial cellulose,” Carbohydrate Polymers, 32:223-227 (1997). |
Shirai, A. et al., “Biosynthesis of a novel polysaccharide by Acetobacter xylinum,” Int. J. Biol. Macromol., 16(6):297-300 (1994). |
White, S. A. et al., “Production and Isolation of Chitosan from Mucor rouxii,” Applied and Environmental Microbiol., 38(2):323-382 (1979). |
Yamamoto, I. et al., “Synthesis, Structure and Antiviral Activity of Sulfates of Cellulose and its Branched Derivatives,” Carbohydrate Polymers, 14:53-63 (1991). |