Porro et al. Replacement of a Metabolic Pathway for Large-Scale Production of Lactic Acid from Engineered Yeasts. Applied and Environmental Microbiology (Sep., 1999) 65(9):4211-4215.* |
Franzblau et al. Induction of fermentation in Crabtree-negative yeasts. Mycopathologia (1983) 82:185-190.* |
Passoth et al. Peculiarities of the Regulation of Fermentation and Respiration in the Crabtree-Negative, Xylose-Fermenting Yeast Pichia stipitis. Applied Biochemistry and Biotechnology (1996) 57/58:201-211.* |
Porro, D. et al., “Development of Metabolically Engineered Saccharomyces cerevisiae Cells for the Production of Lactic Acid”, Biotechnol. Prog., vol. 11, No. 3, pp. 294-298 (May 1, 1995). |
Stewart, J., “A Chemist's Perspective On The Use Of Genetically Engineered Microbes As Reagents For Organic Synthesis”, Biotechnology and Genetic Engineering Reviews, vol. 14, pp. 67-143 (Apr. 1, 1997). |
Urk, H. et al., “Transient-State Analysis Of Metabolic Fluxes In CrabtreePositive and Crabtree-Negative Yeasts”, Applied and Environmental Microbiology, vol. 56, No. 1, pp. 281-287 (1990). |
“36.12. Kluyveromyces thermotolerans(Filipov) Yarrow (1972)”, TheYeasts, A Taxonomic Study, Elsevier, Fourth Edition, pp. 240-241 (1998). |
“Yeast Metabolism”, Yeast Physiology and Biotechnology, Chapter 5, pp. 203-264 (Date Unknown). |
Adachi, E. et al., “Modification of Metabolic Pathways of Saccharomyces cerevisiae by the Expression of Lactate Dehydrogenase and Deletion of Pyruvate Decarboxylase Genes for the Lactic Acid Fermentation at Low pH Value”, Journal of Fermentation and Bioengineering, vol. 86, No. 3, pp. 284-289 (1998). |
Becker, D. et al., “High-Efficiency Transformation of Yeast by Electroporation”, Methods in Enzymology, vol. 194, pp. 182-187 (1991). |
Bianchi, M. et al., “The ‘petite-negative’ yeast Kluyveromyces Iactis has a single gene expressing pyruvate decarboxylase activity”, Molecular Microbiology, vol. 19, No. 1, pp. 27-36 (1996). |
Billard, P. et al., “Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces lactis”, Gene, vol. 162, No. 1, pp. 93-97 (1995). |
Brambilla, L. et al., “High Production of Lactic Acid from Metabolically Engineered Saccharomyces cerevisiae”, Advances in Bioprocess Engineering, pp. 417-423 (1994). |
Cho, J. et al., “Pichia stipitis Genes for Alcohol Dehydrogenase with Fermentative and Respiratory Functions”, Applied And Environmental Microbiology, vol. 64, No. 4, pp. 1350-1358 (Apr. 1998). |
Danners, H. et al., “Biotechnological Production of Acrylic Acid from Biomass”, Applied Biochemistry and Biotechnology, vol. 70-72, pp. 887-894 (1998). |
Dequin, S. et al., “Mixed Lactic Acid-Alcoholic Fermentation by Saccharomyes cerevisiae Expressing the Lactobacillus casei L(+)-LDH”, Bio/Technology, vol. 12, pp. 173-177 (Feb. 1994). |
Destruelle, M. et al., “Regulation of the Expression of the Kluyveromyces lactis PDC1 Gene: Carbon Source—Responsive Elements and Autoregulation”, Yeast, vol. 15, pp. 361-370 (1999). |
Durrens, P. et al., “Express of the aviangag-myc oncogene in Saccharomyces cerevisiae”, Current Genetics, vol. 18, No. 1, pp. 7-12 (Jul. 1990). |
Flikweert, M. et al., “Pyruvate Decarboxylase: An Indispensable Enzyme for Growth of Saccharomyces cerevisiae on Glucose”, Yeast, vol. 12, pp. 247-257 (1996). |
Flikweert, M. et al., “Metabolic Responses of Pyruvate Decarboxylase-NegativeSaccharomyces cerevisiae to Glucose Excess”, Applied And Environmental Microbiology, pp. 3399-3404 (Sep. 1997). |
Garmyn, D. et al., “Cloning, Nucleotide Sequence, and Transcriptional Analysis of the Pediococcus acidilactici L-(+)-Lactate Dehydrogenase Gene”, Applied And Environmental Microb I ology, vol. 61, No. 1, pp. 266-272 (1995). |
Gonzalez, F. et al., “Molecular Cloning of TvDAO1, a Gene Encoding a D-Amino Acid Oxidase from Trigonopsis variabilis and its Expression in Saccharomyces cerevisiae and Kluyveromyces lactis”, Yeast, vol. 13, pp. 1399-1408 (1997). |
Gunge, N. et al., “Isolation and Characterization of Linear Deoxyribonucleic Acid Plasmids from Kluyveromyces lactis and the Plasmid-Associated Killer Character”, Journal of Bacteriology, vol. 145, No. 1, pp. 382-390 (Jan. 1981). |
Gunge, N. et al., “Replication And Maintenance Of The Kluyveromyces Linear pGKL Plasmids”, European Journal of Epidemiology, vol. 4, No. 4, pp. 409-414 (Sep. 1988). |
Hohmann, S., “Characterisation of PDC2, a gene necessary for high level expression of pyruvate decarboxylase structural genes in Saccharomyces cerevisiae”, Mol. Gen. Genet., vol. 241, pp. 657-666 (1993). |
Hohmann, S., “Characterization of PDC6, a Third Structural Gene for Pyruvate Decarboxylase in Saccharomyces cerevisiae”, Journal of Bacteriology, vol. 173, No. 24, pp. 7963-7969 (Dec. 1991). |
Hsieh, H. et al., “An autoselection system in recombinant Kluyveromyces lactis enhances cloned gene stability and provides freedom in medium selection”, Appl. Microbiol. Biotechnol., vol. 49, No. 2, pp. 147-152 (1998). |
Hsieh, H. et al., “Partial-pKD1 plasmids provide enhanced structural stability for heterologous protein production in Kluyveromyces lactis”, Appl. Microbiol. Biotechnol., vol. 49, No. 4, pp. 411-416 (1998). |
Ito, H. et al., “Transformation of Intact Yeast Cells Treated with Alkali Cations”, Journal of Bacteriology, vol. 153, No. 1, pp. 163-168 (Jan. 1983). |
Kiers, J. et al., “Regulation of Alcoholic Fermentation in Batch and Chemostat Cultures of Kluyveromyces lactis CBS 2359”, Yeast, vol. 14, No. 5, pp. 459-469 (Mar. 30, 1998). |
Lighthelm, M. et al., “The effect of respiratory inhibitors on the fermentative ability of Pichia stipitis, Pachysolen tannophilus and Saccharomyces cerevisiae under various conditions of aerobiosis”, Appl. Microbiol. Biotechnol., vol. 29, pp. 67-71 (1988). |
Morsomme, P. et al., “Single point mutations in various domains of a plant plasma membrane H+-ATPase expressed in Saccharomyces cerevisiae increase H+-pumping and permit yeast growth at low pH”, The EMBO Journal, vol. 15, No. 20, pp. 5513-5526 (Oct. 15, 1996. |
Seeboth, P. et al., “pdc10 Mutants of Saccharomyces cerevisiae Give Evidence for an Additional Structural PDC Gene: Cloning of PDC5, a Gene Homologous to PDC1”, Journal of Bacteriology, vol. 172, No. 2, pp. 678-685 (Feb. 1990). |
Shi, N. et al., “Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae”, Appl. Microbiol. Biotechnol., vol. 50, pp. 339-345 (1998). |
Siso, M. et al., “Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose by Kluyveromyces lactis rag2 mutants”, FEBS Letters, vol. 387, pp. 7-10 (1996). |
Subden, R. et al., “An L-lactic acid dehydrogenase based method for detecting microbial colonies performing a malo-lactic fermentation”, Canadian Journal of Microbiology, vol. 28, No. 7, pp. 883-886 (Jul. 1982). |
Ullrich, J., “Yeast Pyruvate Decarboxylase (2-Oxoacid Carboxy-lyase, EC 4.1.1.1) Assay of Thiamine Pyrophospate”, Methods in Enzymology Volume XVIII Vitamins and Coenzymes Part A, Academic Press, pp. 109-115 (1970). |
Van Hoek, P. et al., “Effects of Pyruvate Decarboxylase Overproduction on Flux Distribution at the Pyruvate Branch Point in Saccharomyces cerevisiae”, Applied And Environmental Microbiology, vol. 64, No. 6, pp. 2133-2140 (Jun. 1998). |
Warnecke, D. et al., “Cloning and Functional Expression of UGT Genes Encoding Sterol Glucosyltransferases from Saccharomyces cerevisiae, Candida albicans, Pichia pastoris, and Dictyostelium discoideum”, The Journal of Biological Chemistry, vol. 274, No. 19, pp. 13048-13059 (May 7, 1999). |
Wésolowski-Louvel, M. et al., “Kluyveromyces lactis”, Nonconventional Yeasts in Biotechnology, A Handbook, Chapter 5, Klaus Wolf ed., Springer-Verlag, pp. 139-201 (1996). |
Witte, V. et al., “Characterization of yeasts with high L[+]-lactic acid production: Lactic acid specific soft-agar overlay (LASSO) and TAFE-patterns”, J. Basic Microbiol., vol. 29, No. 10, pp. 707-716 (1989). |
Zeeman, A. et al., “Inactivation of the Kluyveromyces lactis KIPDA1 gene leads to loss of pyruvate dehydrogenase activity, impairs growth on glucose and triggers aerobic alcoholic fermentation”, Microbiology, vol. 144, pp. 3437-3446 (1998). |