The present disclosure pertains to processes, systems, and apparatus, for production of molybdenum-99. More particularly, the present disclosure pertains to production of molybdenum-99 from molybdenum-100 targets using high-power electron linear accelerators.
Technetium-99m, referred to hereinafter as 99mTc, is one of the most widely used radioactive tracers in nuclear medicine diagnostic procedures. 99mTc is used routinely for detection of various forms of cancer, for cardiac stress tests, for assessing the densities of bones, for imaging selected organs, and other diagnostic testing. 99mTc emits readily detectable 140 keV gamma rays and has a half-life of only about six hours, thereby limiting patients' exposure to radioactivity. Because of its very short half-life, medical centres equipped with nuclear medical facilities derive 99mTc from the decay of its parent isotope molybdenum-99, referred to hereinafter as 99Mo, using 99mTc generators. 99Mo has a relatively long half life of 66 hours which enables its world-wide transport to medical centres from nuclear reactor facilities wherein large-scale production of 99Mo is derived from the fission of highly enriched 235Uranium. The problem with nuclear production of 99Mo is that its world-wide supply originates from five nuclear reactors that were built in the 1960s, and which are close to the end of their lifetimes. Almost two-thirds of the world's supply of 99Mo currently comes from two reactors: (i) the National Research Universal Reactor at the Chalk River Laboratories in Ontario, Canada, and (ii) the Petten nuclear reactor in the Netherlands. In the past few years, there have been major shortages of 99Mo as a consequence of planned or unplanned shutdowns at both of the major production reactors. Consequently, serious shortages occurred at the medical facilities within several weeks of the reactor shutdowns, causing significant reductions in the provision of medical diagnostic testing and also, placing great production demands on the remaining nuclear reactors. Although both facilities are now active again, there is much global uncertainty regarding a reliable long-term supply of 99Mo.
The exemplary embodiments of the present disclosure pertain to apparatus, systems, and processes for the production of molybdenum-99 (99Mo) from molybdenum-100 (100Mo) by high-energy electron irradiation with linear accelerators. Some exemplary embodiments relate to systems for working the processes of present disclosure. Some exemplary embodiments relate to apparatus comprising the systems of the present disclosure.
The present disclosure will be described in conjunction with reference to the following drawings in which:
The exemplary embodiments of the present disclosure pertain to systems, apparatus, and processes for producing 99Mo from 100Mo targets using high-energy radiation from electron beams generated by linear particle accelerators.
A linear particle accelerator (often referred to as a “linac”) is a particle accelerator that greatly increases the velocity of charged subatomic particles by subjecting the charged particles to a series of oscillating electric potentials along a linear beamline. Generation of electron beams with a linac generally requires the following elements: (i) a source for generating electrons, typically a cathode device, (ii) a high-voltage source for initial injection of the electrons into (iii) a hollow pipe vacuum chamber whose length will be dependent on the energy desired for the electron beam, (iv) a plurality of electrically isolated cylindrical electrodes placed along the length of the pipe, (v) a source of radio frequency energy for energizing each of cylindrical electrodes, i.e., one energy source per electrode, (vi) a plurality of quadrupole magnets surrounding the pipe vacuum chamber to focus the electron beam, (vii) an appropriate target, and (viii) a cooling system for cooling the target during radiation with the electron beam. Linacs have been used routinely for various uses such as the generation of X-rays, and for generation of high energy electron beams for providing radiation therapies to cancer patients.
Linacs are also commonly used as injectors for higher-energy accelerators such as synchrotrons, and may also be used directly to achieve the highest kinetic energy possible for light particles for use in particle physics through bremsstrahlung radiation. Bremsstrahlung radiation is the electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically of an electron by an atomic nucleus. The moving electron loses kinetic energy, which is converted into a photon because energy is conserved. Bremsstrahlung radiation has a continuous spectrum which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the accelerated electrons increases.
However, to those skilled in these arts, it would seem that using electron linacs to produce high-energy photons through bremsstrahlung radiation to then produce radioisotopes through a photo-nuclear reaction would be an inefficient process for production of radio isotopes because the electromagnetic interactions of electrons with nuclei are usually significantly smaller than the strong interactions with protons as the incident particles. We have determined however, that 100Mo has a broad “giant dipole resonance” (GDR) for photo-neutron reactions around 15 MeV photon energy which results in a significant enhancement of the reaction cross-section between 100Mo and 99Mo. Also, the radiation length of a high-energy photon in the 10 to 30 MeV range in 100Mo is about 10 mm which is significantly longer than the range of a proton of the same energy. Consequently, the effective target thickness is also much larger for photo-neutron reactions compared to proton reactions. The reduced number of reaction channels associated with linac-generated electron beams limits the production of undesirable isotopes. In comparison, using proton beams to directly produce 99Tc from 100Mo often results in the generation of other Tc isotopes from other stable Mo isotopes that may be present in the enriched 100Mo targets. Medical applications place strict limits on the amounts of other radio-isotopes that may be present with 99Tc, and it would seem that production of 99Tc from 100Mo with linac-generated electron would be preferable because the risk of producing other Tc isotopes is significantly lower. Furthermore, it appears that photo-neutron reactions with other Mo isotopes present in 100Mo targets usually results in stable Mo.
Accordingly, one embodiment of the present disclosure pertains to an exemplary high-power linac electron beam apparatus for producing 99Mo from a plurality of 100Mo targets through a photo-nuclear reaction on the 100Mo targets. The apparatus generally comprises at least (i) an electron linear accelerator capable of producing electrons beams having at least 5 kW of power, about 10 kW of power, about 15 kW of power, about 20 kW of power, about 25 kW of power, about 30 kW of power, about 35 kW of power, about 45 kW of power, about 60 kW of power, about 75 kW of power, about 100 kW of power, (ii) a water-cooled converter to produce a high flux of high-energy bremsstrahlung photons of at least 20 MeV from the electron beam generated by the linear accelerator, a flux of about 25 MeV of bremsstrahlung photons, a flux of about 30 MeV of bremsstrahlung photons, a flux of about 35 MeV of bremsstrahlung photons, a flux of about 40 MeV of bremsstrahlung photons, a flux of about 45 MeV of bremsstrahlung photons, (iii) of a water-cooled target assembly component for mounting therein a target holder housing a plurality of 100Mo targets and for precisely positioning and aligning the target holder for interception of beam of high-energy bremsstrahlung photon radiation produced by the water-cooled converter, and (iv) a plurality of shielding components for cladding the water-cooled target assembly component to contain gamma radiation and/or neutron radiation within the target assembly component and to prevent radiation leakage outside of the apparatus. Depending on the component being shielded and its location within the installation, the shielding may comprise one or more of lead, steel, copper, and polyethylene. The apparatus additionally comprises (v) an integrated target transfer assembly with a component for remote-controlled loading and conveying a plurality of target holders, each of the target holders loaded with a plurality of 100Mo targets, to a target drive component. An individual loaded target holder is transferrable from the loading/conveying component by remote control into a target drive component contained within the water-cooled target assembly component. The target holder is conveyed with the target drive component to a position which intercepts the bremsstrahlung photon radiation. The base of the target drive component is engaged with a target aligning centering component which precisely positions and aligns the loaded target holder for maximum interception of the bremsstrahlung photon radiation. The integrated target transfer assembly is additionally configured for remote controlled removal of an irradiated target holder from the target drive component and transfer to a lead-shielded hot cell for separation and recovery of 99mTc decaying from 99Mo associated with the irradiated 100Mo targets. Alternatively, the irradiated 100Mo targets may be transferred into a lead-shielded shipping container for transfer to a hot cell off site.
It is apparent that the maximum achievable 99Mo yield is dependent on the amount of energy which can be safely deposited in the 100Mo targets, and also on the probability of giant dipole resonance photons interacting with the target nuclei. The amount of energy which can be safely deposited in the 100Mo targets depends on the heat capacity of the target assembly. If it is possible to quickly transfer large amounts of heat from the 100Mo targets, then it should be possible to deposit more energy into the 100Mo targets before they melt. Water is a desired coolant as it facilitates large heat dissipation and is also economical. Unfortunately, as the electron beam passes through cooling water within the bremsstrahlung converter component, the energy associated with the electron beam causes the water to undergo radiolysis. The radiolysis of water produces, among other things, gaseous hydrogen which creates an explosion hazard and also hydrogen peroxide which is corrosive to molybdenum and therefore, can greatly decrease the potentially achievable yields of 99Mo from the 100Mo targets. The energy associated with the bremsstrahlung photons passing through the cooling water in the water-cooled target assembly component housing the 100Mo targets also causes production of hydrogen peroxide from the water but much lower amounts of gaseous hydrogen.
Accordingly, another embodiment of the present disclosure is that separate cooling water systems are required for the water-cooled energy converter and for the water-cooled target assembly component to enable separate heat load dissipation from the two components, to maximize 99Mo production from the 100Mo targets.
It is within the scope of the present disclosure to incorporate into a first cooling water system for the water-cooled target assembly component, one or more of buffers for ameliorating the corrosive effects of hydrogen peroxide on molybdenum, sacrificial metals, and supplemental gaseous coolant circulation. Suitable buffers are exemplified by lithium hydroxide, ammonium hydroxide and the like. Suitable sacrificial metals are exemplified by copper, titanium, stainless steel, and the like.
It is within the scope of the present disclosure to incorporate into a second cooling water system for the bremsstrahlung converter component an apparatus or equipment or a device for combining the gaseous hydrogen with oxygen to form water within the recirculating water. It is optional to use gaseous coolants for cooling the bremsstrahlung converter component or alternatively, to supplement the water cooling of the bremsstrahlung converter component.
An exemplary high-power linac electron beam apparatus 10 for producing 99Mo from a plurality of 100Mo targets is shown in
The target assembly station 30 comprises a support plate 39 for a support member 38 onto which is mounted the target radiation chamber 42 with an inlet pipe 40 for sealingly engaging the electron beam delivery pipe 28 (
The cooling water supply tube 100 (
The target radiation chamber 42 has an inner chamber 55 wherein is mounted a bremsstrahlung converter station 70 adjacent to the electron beam inlet pipe 40 (
The bremsstrahlung converter station 70 comprises a series of four thin tantalum plates 26 (
Another embodiment of the present disclosure pertains to target holders for receiving and housing therein a plurality of 100Mo target discs. An exemplary target holder 80 housing a series of eighteen 100Mo target discs 85 is shown in
Operation of the high-power linac electron beam apparatus 10 of the present disclosure generally comprises the steps of loading a plurality of sintered 100Mo target discs 85 into a target holder 80, for example with eighteen 100Mo target discs, moving the loaded target holder 80 by remote control into and through the coolant tube housing 44 into the target radiation chamber 42. The coolant tube housing 44 is then lowered onto the target radiation chamber 42 by a remote-controlled overhead crane, and sealingly engaged to the target radiation chamber 42. A coolant supply tube 103 is then lowered into the coolant tube housing 44 until the cooling tube body holder 105 engages the target holder. The target holder 80 is then precisely positioned and aligned by remote-controlled manipulation of the coolant supply tube 103 for maximum irradiation with a photon flux produced by the bremsstrahlung converter station 70. The upper hub assembly of the cooling water supply tube 101 is then sealed into the coolant tube housing 44 by mounting of the coolant tube cap assembly 45 and a first pressurized supply of coolant water is then sealing attached to the water inlet pipe 46 for circulation through the target holder 80, the 100Mo target discs 85, and the radiation chamber 55 of the target radiation chamber 42. A second pressurized supply of coolant water is then sealingly attached to the coolant water supply pipe 50 for separately circulating coolant water through the bremsstrahlung converter station 70.
The linac 20 is then powered up to produce an electron beam for bombarding the tantalum plates 26 housed within the bremsstrahlung converter station 70 to produce a shower of bremsstrahlung photons for irradiating the target holder 80 loaded with the plurality of 100Mo target discs. It is suitable when using the high-power linac electron beam apparatus 10 disclosed herein comprising a 35 MeV, 40 kW electron linac 20 for irradiating a target holder housing a plurality of 100Mo target discs, to irradiate the target holder and discs for a period of time from a range of about 24 hrs to about 96 hrs, about 36 hrs to 72 hrs, about 24 hrs, about 36 hrs, about 48 hrs, about 60 hrs, about 72 hrs, about 80 hrs, about 96 hrs. After providing irradiation to the 100Mo target discs for a selected period of time, the linac 20 is powered down, the two supplies of coolant water are shut off, the target irradiation chamber 42 is drained of coolant water. The cooling water supply is disconnected from the water inlet pipe 46 after which the coolant tube cap assembly 45 is disengaged from the coolant tube housing 44 and removed by a remote-controlled overhead crane. The cooling water supply tube 100 is then removed from the coolant tube housing 44 by the remote-controlled overhead crane after which, the coolant tube housing 44 is disengaged from the target irradiation chamber 42 and removed. The target holder 80 housing the irradiated 100Mo target discs comprising 99Mo is then removed by remote-controlled overhead crane from the target irradiation chamber 42. At this point, it is optional to transfer the target holder 80 with the irradiated 100Mo target discs into a lead-lined container for shipping to a facility for recovery of 99mTc therefrom. Alternatively, the target holder 80 with the irradiated 100Mo target discs can be transferred by remote control into a hot cell wherein 99mTc may be separated and recovered from irradiated 100Mo target discs using equipment and methods known to those skilled in these arts. Suitable equipment for separating and recovering 99mTc is exemplified by a TECHNEGEN® isotope separator (TECHNEGEN is a registered trademark of NorthStar Medical Radioisotopes LLC, Madison, Wis., USA). After recovery of the 99mTc has been completed, the 100Mo is recovered, dried, and reformed into discs for sintering using methods known to those skilled in these arts.
The exemplary high-power linac electron beam apparatus disclosed herein for generating 40 kW, 35 MeV electron beam that is converted into a bremsstrahlung photon shower for irradiating a plurality of 100Mo targets to produce 99Mo through a photo-nuclear reaction on the 100Mo targets, has the capacity to produce on a 24-hr daily basis about 50 curies (Ci) to about 220 Ci, about 60 Ci to about 160 Ci, about 70 Ci to about 125 Ci, about 80Ci to about 100 Ci of 99Mo from a plurality of irradiated 100Mo target discs weighing in aggregate about 12 g to about 20 g, about 14 g to about 18 g, about 15 g to about 17 g. Allowing 48 hrs for dissolution of 99Mo from the plurality of irradiated 100Mo target discs will result in a daily production of about 35 Ci to about 65 Ci, about 40 Ci to about 60 Ci, about 45 Ci to about 55 Ci of 99Mo for shipping to nuclear pharmacies.
It should be noted that while the exemplary high-power linac electron beam apparatus disclosed herein pertains to a 35 MeV, 40 kW electron linac for producing 99Mo from a plurality of 100Mo targets, the apparatus can be scaled-up to about 100 kW of electron-beam power, or alternatively, scaled-down to about 5 kW of electron-beam power.
Number | Date | Country | |
---|---|---|---|
Parent | 13901213 | May 2013 | US |
Child | 15847683 | US |