Not Applicable
Not Applicable.
The present invention relates to the production of consolidated wood particle panels such as oriented strand board (OSB) more particularly to production of such boards wherein a resin that sticks to a pressing platen during consolidation such as a isocyanate resin preferably a polymeric diphenylmethane diisocyanate (pmdi) is used as the binding resin in the surface layer engaging with the pressing platen and preferably in all the layers of the board.
The invention relates to the production wood based composite panels made by pressing (also called “cooking”) wood particles (also called lignocellulose material, including flakes wafers or strands blended with the adhesive and formed into a mat (layup). The adhesive is activated by heat and pressure to consolidate the layup. The wood mat is pressed between the steel (ordinary or stainless) platens or belts for a given amount of time, then pushed out as the finished product or a substrate for further lamination to its surface. As one of the preferred adhesives, a sticking type resin i.e. a resin that sticks to the press platen during consolidation e.g. an isocyanate resin such as a polymeric diphenylmethane diisocyanate (pmdi) which will strongly adhere itself to the metal surface of the aforementioned can a superior product at a lower cost than other non-sticking resins such as phenolic resins. Sticking type resins may only be used commercially with some form of protection to prevent or significantly reduce such sticking to a commercially acceptable level. Currently used or proposed solutions either isolate the sticking type resin from the press platens before pressing by a barrier, for example interposing a release agent between the press platen and the layup being consolidated, or neutralised by a reactive chemical capable of successful competition with metal for the active binding sites of the adhesive (see for example US application 2016215144, and U.S. Pat. Nos. 8,486,523 and 6,649,098).
In practise the when a release agent is used to overcome this well-known problem it must be used in significant quantities which ads significantly to the cost of production and in most cases causes significant corrosive damage to the carbon steel press platen which add significantly more to the cost of production.
During the wood flake mat (layup) is transported to and evacuated from the press by the means of a caul screen sitting below its bottom surface. This presents a problem specific to the top face release from the top steel platen since the release spray to protect the metal surface from the adhesive-laden mat has to be applied directly on the top surface of the uneven flake mat. This requires a substantial amount of release in order to cover all surfaces of wood strands which might be shadowed or even hidden from direct impact of the release liquid spray due to strands curling or matting. Only by drastically increasing the spray application rate, coverage of the contact surfaces is complete, which results in a substantial additional cost to the sticking adhesive e.g. pmdi-based OSB production. The release of the bottom surface is much facilitated by one's ability to spray the caul screen before wood mat is laid on it. This problem is exacerbated in batch production in a conventionally designed stack (multi-opening) presses
This sticking problem has been addressed by others suggesting other ways of minimising sticking see for example see for example US Patent Application 2015/00542205 published Feb. 26, 2015 Costa et al. and 2017/0151758 published Jun. 1, 2017 Lollar et al.
It is an object of the present invention to provide an improved system (method and/or apparatus) for the production of wood particle board such as OSB using a sticking type resin i.e. isocyanate resin preferably pmdi as the binding resin and significantly reducing the amount of release agent required to protect the press platen.
Broadly the present invention relates to a method and apparatus for the manufacture of wood particle boards such as OSB wherein the binding resin is a sticking type resin such as pmdi while significantly reducing the amount of release agent required to eliminate or reduce sticking in the consolidating press to an acceptable level.
Broadly the present invention relates to method of making a wood particle board comprising forming a layup containing sticking type resin coated wood particles, smoothing a top surface of said layup, applying a release agent to produce said top surface coated with said release agent and pressing said layup in a press with said coated top surface in direct contact with a press platen to consolidate said layup under heat and pressure to consolidate said layup into a board.
More specifically the present invention relates to a method of making oriented strand board (OSB) containing a sticking type resin that adheres to a metal surface of a press platen in a surface layer used to form a smooth surface of said board comprising forming a layup of strand layers formed with resin coated strands with said surface layer forming a top of said layup containing said sticking type resin providing a top surface of said layup, smoothing said top surface of said layup without causing significant sticking of said resin to said smoothing device to provide a smoothed top surface, applying a release agent to said smoothed top surface to provide a release agent coated top surface, consolidating said layup in a consolidating press with said coated top surface in contact with a smooth platen of said consolidating press to form said oriented strand board and removing said board from said consolidating press.
Preferably said smoothing comprises prepressing said layup.
Preferably said prepressing comprises steam prepressing.
Preferably said smoothing of said to surface of said layup comprises prepressing said layup in steam press.
Preferably said prepressing reduces the initial mat height by 20 to 80%, and using steam dosage per unit area between 0 and 140 g/square meter.
The method of making oriented strand board as defined in claim 2 wherein said prepressing comprises reducing the initial mat height by the value between 50 and 67%, while applying a steam dosage between 80 and 120 g/square meter.
Preferably the sticking type resin is an isocyanate resin.
Preferably the sticking type resin is a polymeric diphenylmethane diisocyanate (pmdi) resin.
Further features, objects and advantages will be evident from the following detailed description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings in which;
As shown in
The smoothing station may take different forms but preferably will be a steam type pre pressing operation wherein the top surface 16 of the layup 10 is smoothed in this case by flattening surface preferably using an ironing technique. As this invention is for the manufacture of wood particle boards, preferably OSB using sticking type resins it is important that the condition in the smoothing station 14 not cause sticking of the resin to the surfaces of the smoothing station used to smooth the top surface 16 of the layup or premature setting of the resin being used to a degree that would interfere with production of a consolidated board or panel having the required characteristic. The specific condition in the prepress to ensure significant sticking of said resin to said smoothing device and premature setting of the resin do not occur will be resin dependent and known in the art.
Any suitable smoothing device for example steam preheaters as described above and schematically shown in
In a more preferred operating range, the mat thickness reduction will be between 50% and 67% and the steam dosage will be between 80 and 120 g/square meter of the mat or layup surface area.
Most if not all current installations have apple room between the layup forming station 12 and the consolidating station 22 to accommodate known commercial steam pre-pressing devices 14 and in sequence with the coating station 18. The time of contact between the steaming portion of the smoothing device 12 and the top surface 16 of the layup in current installation is normally between 2 and 6 seconds. This contact time will be optimised for any given installation of the present invention.
Sticking type resins intended to be used with the present invention are isocyanate type resins more preferably polymeric diphenylmethane diisocyanate (pmdi) based adhesive formulations.
It will be apparent from the experimental results reported below a significant reduction in the amount of release agent required can be attained which will dependent to some degree on the specific release agent chosen, but it is expected that reduction in the amount of release agent required may be reduced by at least 30% and probably as much as about 50%.
In order to prove the effectiveness of the present invention a number of experiments were preformed as outlined below and which prove the effectiveness of the present invention are described below.
In a series of laboratory scale tests it was clearly demonstrated that flattening or smoothing of the top layer of the OSB flake mat leads to considerable reduction of the minimum required release application rate for a clean release of consolidated board for OSB production in a multi-daylight press where pMDI is used as a sole adhesive. The range of steam addition used to achieve the desired release reduction was between 0 and 140 g/m2 which could be supplied by one of the readily available commercial devices for steam pre-heating of the wood flake mat. Experimental program and results verifying the effectiveness of the present invention follows.
The flattening method which was used as an example for this invention is the “steam-ironing” principle which has already been used in panel board applications for different purposes, none of which related to the reduction in release application. In order to verify this principle, a simple assembly was used in the lab utilising a lab press where wood mat with resin is consolidated by heat and pressure under reproducible conditions which include temperature, pressure profile of the press cycle, speed of closure and decompression sequence, as shown in Table 1.
The assembly to imitate steam ironing process is schematically shown in
In order to compare results of standard tests in terms of release, the following grading system was used:
From Table 3 data below one can see that the use of steam-ironing step has substantially reduced the minimum required release application rate compared to the control samples:
The next series of tests was conducted by using a regular OSB thickness of 7/16″ (18 mm). In addition to evaluating the effect of steam flattening on the release quality, the resulting sample of 7/16″ panel was evaluated in terms of possible loss in pmdi effected bonding, which under the conditions of our testing was only possible to be related to the so called internal bond value (IB) which corresponds to the breaking force by pulling of the OSB sample in z-direction.
Having described the invention, modifications will be evident to those skilled in the art without departing from the scope of the invention as defined in the appended claims.
This application claims priority from U.S. Provisional Application No. 62/717,214 filed: Aug. 10, 2018.
Number | Name | Date | Kind |
---|---|---|---|
3542629 | Burkner | Nov 1970 | A |
4065003 | Hostettler | Dec 1977 | A |
5063010 | Fischer | Nov 1991 | A |
5762980 | Bielfeldt | Jun 1998 | A |
6470940 | Pu | Oct 2002 | B1 |
6649098 | Mente et al. | Nov 2003 | B2 |
8058193 | Clark | Nov 2011 | B2 |
8486523 | Mente | Jul 2013 | B2 |
20150054205 | Costa et al. | Feb 2015 | A1 |
20160215144 | Mente | Jul 2016 | A1 |
20170151758 | Lollar et al. | Jun 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20200047371 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
62717214 | Aug 2018 | US |