Production of Steviol Glycosides in Recombinant Hosts

Information

  • Patent Application
  • 20220127655
  • Publication Number
    20220127655
  • Date Filed
    September 01, 2021
    2 years ago
  • Date Published
    April 28, 2022
    2 years ago
Abstract
The invention relates to recombinant microorganisms and methods for producing steviol glycosides and steviol glycoside precursors.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

This disclosure relates generally to the recombinant production of steviol glycosides such as rebaudioside A (RebA), rebaudioside B (RebB), rebaudioside D (RebD), and rebaudioside M (RebM) by recombinant hosts such as recombinant microorganisms and isolation methods thereof. In particular, this disclosure relates to modifications to transport systems in a recombinant host to increase production of such steviol glycosides and/or transport of such steviol glycosides into the culture medium.


Description of Related Art

Sweeteners are well known as ingredients used most commonly in the food, beverage, or confectionary industries. The sweetener can either be incorporated into a final food product during production or for stand-alone use, when appropriately diluted, as a tabletop sweetener or an at-home replacement for sugars in baking. Sweeteners include natural sweeteners such as sucrose, high fructose corn syrup, molasses, maple syrup, and honey and artificial sweeteners such as aspartame, saccharine, and sucralose. Stevia extract is a natural sweetener that can be isolated and extracted from a perennial shrub, Stevia rebaudiana. Stevia is commonly grown in South America and Asia for commercial production of stevia extract. Stevia extract, purified to various degrees, is used commercially as a high intensity sweetener in foods and in blends or alone as a tabletop sweetener.


Chemical structures for several steviol glycosides are shown in FIG. 1, including the diterpene steviol and various steviol glycosides. Extracts of the Stevia plant generally comprise rebaudiosides and other steviol glycosides that contribute to the sweet flavor, although the amount of each steviol glycoside often varies, inter alia, among different production batches.


As recovery and purification of steviol glycosides from the Stevia plant have proven to be labor intensive and inefficient, there remains a need for a recombinant production system that can produce high yields of desired steviol glycosides, such as RebD and RebM.


SUMMARY OF THE INVENTION

It is against the above background that the present invention provides certain advantages and advancements over the prior art.


In particular, the invention provides a recombinant host capable of synthesizing a steviol glycoside, comprising a gene encoding a transporter polypeptide and/or a gene encoding a transcription factor polypeptide that regulates expression of at least one transporter gene; wherein expression of the gene encoding the transporter polypeptide and/or the gene encoding the transcription factor polypeptide that regulates expression of at least one transporter gene is modified and the recombinant host transports at least a portion of the synthesized steviol glycoside from the host into a culture medium.


In some aspects of the recombinant host disclosed herein, the gene encoding the transporter polypeptide is an endogenous gene.


In some aspects of the recombinant host disclosed herein, the transporter polypeptide comprises an ATP-binding cassette (ABC) transporter, a major facilitator superfamily (MFS) transporter, an amino acid/auxin permease (AAAP) family transporter, ATPase transporter, a sulfate permease (SuIP) family transporter, a lysosomal cystine transporter (LCT) family transporter, a Ca2+:cation antiporter (CaCA) family transporter, an amino acid-polyamine-organocation (APC) superfamily transporter, a multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) transporter, a ZRT/IRT-like protein (ZIP) metal transporter family transporter, a mitochondrial protein translocase (MPT) family transporter, a voltage-gated ion channel (VIC) family transporter, a monovalent cation:proton antiporter-2 (CPA2) family transporter, a ThrE family of putative transmembrane amino acid efflux transporter, an oligopeptide transporter (OPT) family transporter, a K+ transporter (Trk) family transporter, a bile acid:Na symporter (BASS) family transporter, a drug/metabolite transporter (DMT) superfamily transporter, a mitochondrial carrier (MC) family transporter, an auxin efflux carrier (AEC) family transporter, an ammonia channel transporter (Amt) family transporter, a metal ion (Mn2+-iron) transporter (Nramp) family transporter, a transient receptor potential Ca2+ channel (TRP-CC) family transporter, an arsenical resistance-3 (ACR3) family transporter, a nucleobase:cation symporter-1 (NCS1) family transporter, an inorganic phosphate transporter (PiT) family transporter, an arsenite-antimonite (ArsAB) efflux family transporter, an IISP family of transporter, a glycerol uptake (GUP) family transporter, a metal ion transport (MIT) family transporter, a copper transport (Ctr) family or a cation diffusion facilitator (CDF) family transporter.


In some aspects of the recombinant host disclosed herein, the modified expression comprises modified expression comprises:

    • (a) overexpressing the gene encoding the transporter polypeptide and/or the gene encoding the transcription factor polypeptide; or
    • (b) deleting the gene encoding the transporter polypeptide and/or the gene encoding the transcription factor polypeptide.


In some aspects of the recombinant host disclosed herein, the gene encoding the transporter polypeptide and/or the gene encoding the transcription factor polypeptide has an activity that is increased.


In some aspects of the recombinant host disclosed herein, one or more of the genes encoding the transporter polypeptide and/or one or more of the genes encoding the transcription factor polypeptide are overexpressed.


In some aspects of the recombinant host disclosed herein, the transporter polypeptide and/or transcription polypeptide comprise YAL067C set forth in SEQ ID NO:14, YBL089W set forth in SEQ ID NO:15, YBL099W set forth in SEQ ID NO:16, YBR008C set forth in SEQ ID NO:86, YBR021W set forth in SEQ ID NO:87, YBR043C set forth in SEQ ID NO:88, YBR180W set forth in SEQ ID NO:13, YBR241C set forth in SEQ ID NO:17, Y8R287W set forth in SEQ ID NO:89, YBR294W set forth in SEQ ID NO:18, YBR295W set forth in SEQ ID NO:90, YBR296C set forth in SEQ ID NO:91, YCL038C set forth in SEQ ID NO:92, YCL069W set forth in SEQ ID NO:19, YCR011C set forth in SEQ ID NO:93, YCR028C set forth in SEQ ID NO:20, YCR075C set forth in SEQ ID NO:21, YDL054C set forth in SEQ ID NO:94, YDL100C set forth in SEQ ID NO:95, YDL128W set forth in SEQ ID NO:22, YDL185W set forth in SEQ ID NO:23, YDL194W set forth in SEQ ID NO:24, YDL210W set forth in SEQ ID NO:25, YDL245C set forth in SEQ ID NO:96, YDL247W set forth in SEQ ID NO:97, YDR011W set forth in SEQ ID NO:98, YDR061W set forth in SEQ ID NO:26, YDR093W set forth in SEQ ID NO:27, YDR292C set forth in SEQ ID NO:99, YDR338C set forth in SEQ ID NO:28, YDR406W set forth in SEQ ID NO:29, YDR497C set forth in SEQ ID NO:100, YDR536W set forth in SEQ ID NO:30, YEL006W set forth in SEQ ID NO:101, YEL027W set forth in SEQ ID NO:102, YEL031W set forth in SEQ ID NO:31, YEL065W set forth in SEQ ID NO:103, YER019C-A set forth in SEQ ID NO:104, YER053C set forth in SEQ ID NO:105, YER119C set forth in SEQ ID NO:106, YER166W set forth in SEQ ID NO:32, YFL011W set forth in SEQ ID NO:33, YFL028C set forth in SEQ ID NO:107, YFR045W set forth in SEQ ID NO:108, YGL006W set forth in SEQ ID NO:34, YGL013C set forth in SEQ ID NO:35, YGL084C set forth in SEQ ID NO:109, YGL104C set forth in SEQ ID NO:110, YGL114W set forth in SEQ ID NO:111, YGL167C set forth in SEQ ID NO:112, YGL255W set forth in SEQ ID NO:36, YGR125W set forth in SEQ ID NO:37, YGR181W set forth in SEQ ID NO:38, YGR217W set forth in SEQ ID NO:39, YGR224W set forth in SEQ ID NO:40, YGR257C set forth in SEQ ID NO:113, YGR281W set forth in SEQ ID NO:41, YHL016C set forth in SEQ ID NO:42, YHL035C set forth in SEQ ID NO:114, YHL036W set forth in SEQ ID NO:115, YHR002W set forth in SEQ ID NO:116, YHR096C set forth in SEQ ID NO:117, YIL006W set forth in SEQ ID NO:118, YIL088C set forth in SEQ ID NO:43, YIL120W set forth in SEQ ID NO:119, YIL121W set forth in SEQ ID NO:120, YIL166C set forth in SEQ ID NO:121, YJL093C set forth in SEQ ID NO:44, YJL094C set forth in SEQ ID NO:45, YJL108C set forth in SEQ ID NO:46, YJL133W set forth in SEQ ID NO:122, YJL212C set forth in SEQ ID NO:47, YJL219W set forth in SEQ ID NO:123, YJR106W set forth in SEQ ID NO:48, YJR160C set forth in SEQ ID NO:49, YKL016C set forth in SEQ ID NO:124, YKL050C set forth in SEQ ID NO:125, YKL064W set forth in SEQ ID NO:50, YKL120W set forth in SEQ ID NO:126, YKL146W set forth in SEQ ID NO:127, YKL209C set forth in SEQ ID NO:128, YKR039W set forth in SEQ ID NO:129, YKR050W set forth in SEQ ID NO:51, YKR105C set forth in SEQ ID NO:52, YKR106W set forth in SEQ ID NO:53, YLR411W set forth in SEQ ID NO:130, YLR447C set forth in SEQ ID NO:54, YML038C set forth in SEQ ID NO:131, YML116W set forth in SEQ ID NO:55, YMR034C set forth in SEQ ID NO:56, YMR056C set forth in SEQ ID NO:57, YMR166C set forth in SEQ ID NO:132, YMR253C set forth in SEQ ID NO:58, YMR279C set forth in SEQ ID NO:133, YNL003C set forth in SEQ ID NO:134, YNL065W set forth in SEQ ID NO:59, YNL070W set forth in SEQ ID NO:60, YNL083W set forth in SEQ ID NO:61, YNL095C set forth in SEQ ID NO:62, YNL121C set forth in SEQ ID NO:63, YNL142W set forth in SEQ ID NO:64, YNL268W set forth in SEQ ID NO:135, YNR055C set forth in SEQ ID NO:136, YOL020W set forth in SEQ ID NO:65, YOL075C set forth in SEQ ID NO:66, YOL077W-A set forth in SEQ ID NO:67, YOL122C set forth in SEQ ID NO:68, YOL158C set forth in SEQ ID NO:137, YOR079C set forth in SEQ ID NO:69, YOR087W set forth in SEQ ID NO:70, YOR092W set forth in SEQ ID NO:71, YOR100C set forth in SEQ ID NO:138, YOR130C set forth in SEQ ID NO:72, YOR153W set forth in SEQ ID NO:139, YOR222W set forth in SEQ ID NO:73, YOR271C set forth in SEQ ID NO:140, YOR273C set forth in SEQ ID NO:141, YOR291W set forth in SEQ ID NO:74, YOR306C set forth in SEQ ID NO:75, YOR307C set forth in SEQ ID NO:142, YOR316C set forth in SEQ ID NO:76, YOR332W set forth in SEQ ID NO:143, YOR334W set forth in SEQ ID NO:77, YOR348C set forth in SEQ ID NO:144, YPL036W set forth in SEQ ID NO:145, YPL078C set forth in SEQ ID NO:78, YPL270W set forth in SEQ ID NO:79, YPL274W set forth in SEQ ID NO:80, YPR003C set forth in SEQ ID NO:81, YPR011C set forth in SEQ ID NO:82, YPR058W set forth in SEQ ID NO:83, YPR128C set forth in SEQ ID NO:84, or YPR201W set forth in SEQ ID NO:85.


In some aspects of the recombinant host disclosed herein, YBR043C set forth in SEQ ID NO:88, YDL100C set forth in SEQ ID NO:95, YDL054C set forth in SEQ ID NO:94, YDL128W set forth in SEQ ID NO:22, YDL198C set forth in SEQ ID NO:146, YDR061W set forth in SEQ ID NO:26, YDR536W set forth in SEQ ID NO:30, YEL027W set forth in SEQ ID NO:102, YFL054C set forth in SEQ ID NO:147, YGL167C set forth in SEQ ID NO:112, YGR181W set forth in SEQ ID NO:38, YHL016C set forth in SEQ ID NO:42, YIL166C set forth in SEQ ID NO:121, YJL093C set forth in SEQ ID NO:44, YJR106W set forth in SEQ ID NO:48, YKL120W set forth in SEQ ID NO:126, YKL146W set forth in SEQ ID NO:127, YKR039W set forth in SEQ ID NO:129, YMR034C set forth in SEQ ID NO:56, YMR166C set forth in SEQ ID NO:132, YOL122C set forth in SEQ ID NO:68, YOR079C set forth in SEQ ID NO:69, YPL270W set forth in SEQ ID NO:79, and/or YPR011C set forth in SEQ ID NO:82 are overexpressed.


In some aspects, the recombinant host further comprises:

    • (a) one or more genes encoding a sucrose transporter and a sucrose synthase;
    • (b) a gene encoding a geranylgeranyl diphosphate synthase (GGPPS) polypeptide;
    • (c) a gene encoding an ent-copalyl diphosphate synthase (CDPS) polypeptide;
    • (d) a gene encoding a kaurene synthase (KS) polypeptide;
    • (e) a gene encoding a kaurene oxidase (KO) polypeptide;
    • (f) a gene encoding a steviol synthase (KAH) polypeptide;
    • (g) a gene encoding a cytochrome P450 reductase (CPR) polypeptide;
    • (h) a gene encoding a UGT85C2 polypeptide;
    • (i) a gene encoding a UGT76G1 polypeptide;
    • (k) a gene encoding a UGT91D2 functional homolog; and/or
    • (l) a gene encoding a EUGT11 polypeptide;
    • wherein at least one of the genes is a recombinant gene; and
    • wherein the host is capable of producing one or more of RebA, RebB, RebD and/or RebM.


In some aspects of the recombinant host disclosed herein, at least one of the genes is codon optimized for expression in the host.


In some aspects of the recombinant host disclosed herein, at least one of the genes is codon optimized for expression in Saccharomyces cerevisiae.


In some aspects of the recombinant host disclosed herein,

    • (a) the GGPPS polypeptide comprises a polypeptide having at least 70% identity to an amino acid sequence set forth in SEQ ID NO:149;
    • (b) the CDPS polypeptide comprises a polypeptide having at least 70% identity to an amino acid sequence set forth in SEQ ID NO:150;
    • (c) the KO polypeptide comprises a polypeptide having at least 70% identity to an amino acid sequence set forth in SEQ ID NO:152;
    • (d) the KS polypeptide comprises a polypeptide having at least 40% identity to an amino acid sequence set forth in SEQ ID NO:151;
    • (e) the KAH polypeptide comprises a polypeptide having at least 60% identity to an amino acid sequence set forth in SEQ ID NO:154;
    • (f) the CPR polypeptide comprises a polypeptide having at least 70% identity to an amino acid sequence set forth in SEQ ID NO:153 and/or a polypeptide having at least 65% identity to an amino acid sequence set forth in SEQ ID NO:155;
    • (g) the UGT85C2 polypeptide comprises a polypeptide having at least 55% identity to an amino acid sequence set forth in SEQ ID NO:156;
    • (h) the UGT76G1 polypeptide comprises a polypeptide having at least 50% identity to an amino acid sequence set forth in SEQ ID NO:158;
    • (i) the UGT74G1 polypeptide comprises a polypeptide having at least 55% identity to an amino acid sequence set forth in SEQ ID NO:157;
    • (j) the a UGT91D2 functional homolog comprises a UGT91D2e-b polypeptide having at least 90% identity to the amino acid sequence set forth in SEQ ID NO:159; and
    • (k) the EUGT11 polypeptide comprises a polypeptide having at least 65% identity to an amino acid sequence set forth in SEQ ID NO:148.


In some aspects, the recombinant host disclosed herein comprises a microorganism that is a plant cell, a mammalian cell, an insect cell, a fungal cell, or a bacterial cell.


In some aspects, the bacterial cell comprises Escherichia bacteria cells, Lactobacillus bacteria cells, Lactococcus bacteria cells, Corynebacterium bacteria cells, Acetobacter bacteria cells, Acinetobacter bacteria cells, or Pseudomonas bacterial cells.


In some aspects, the fungal cell is a yeast cell.


In some aspects, the yeast cell is a cell from Saccharomyces cerevisiae, Schizosaccharomyces pombe, Yarrowia lipolytica, Candida glabrata, Ashbya gossypii, Cyberlindnera jadinii, Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, Candida boidinii, Arxula adeninivorans, Xanthophyllomyces dendrorhous, or Candida albicans species.


In some aspects, the yeast cell is a Saccharomyces.


In some aspects, the yeast cell is a cell from the Saccharomyces cerevisiae species.


The invention further provides a method of producing a steviol glycoside, comprising:

    • (a) growing the recombinant host disclosed herein in a culture medium, under conditions in which the genes comprising recombinant host disclosed herein are expressed,
    • wherein the steviol glycoside is synthesized by the host; and
    • (b) optionally isolating the steviol glycoside.


In some aspects of the methods disclosed herein, the steviol glycoside is RebA, RebB, RebD, and/or RebM, and wherein:

    • (a) RebA is capable of being synthesized in the recombinant host disclosed herein expressing UGT85C2, UGT76G1, UGT74G1, and UGT91D2;
    • (b) RebB is capable of being synthesized in the recombinant host disclosed herein expressing UGT85C2, UGT76G1, and UGT91D2;
    • (c) RebD is capable of being synthesized in the recombinant host disclosed herein expressing UGT85C2, UGT76G1, UGT74G1, and UGT91D2 and/or EUGT11; and
    • (d) RebM is capable of being synthesized in the recombinant host disclosed herein expressing UGT85C2, UGT76G1, UGT74G1, and UGT91D2 and/or EUGT11.


In some aspects of the methods disclosed herein a gene encoding YBR043C set forth in SEQ ID NO:88, YDL100C set forth in SEQ ID NO:95, YDL054C set forth in SEQ ID NO:94, YDL128W set forth in SEQ ID NO:22, YDL198C set forth in SEQ ID NO:146, YDR061W set forth in SEQ ID NO:26, YDR536W set forth in SEQ ID NO:30, YEL027W set forth in SEQ ID NO:102, YFL054C set forth in SEQ ID NO:147, YGL167C set forth in SEQ ID NO:112, YGR181W set forth in SEQ ID NO:38, YHL016C set forth in SEQ ID NO:42, YIL166C set forth in SEQ ID NO:121, YJL093C set forth in SEQ ID NO:44, YJR106W set forth in SEQ ID NO:48, YKL120W set forth in SEQ ID NO:126, YKL146W set forth in SEQ ID NO:127, YKR039W set forth in SEQ ID NO:129, YMR034C set forth in SEQ ID NO:56, YMR166C set forth in SEQ ID NO:132, YOL122C set forth in SEQ ID NO:68, YOR079C set forth in SEQ ID NO:69, YPL270W set forth in SEQ ID NO:79, and/or YPR011C set forth in SEQ ID NO:82 is overexpressed.


In some aspects of the methods disclosed herein the steviol glycoside is produced at a concentration of between about 500 mg/L to about 10,000 mg/L.


The invention further provides a method of increasing production or transport of a steviol glycoside into a culture medium, comprising:

    • (a) growing the recombinant host disclosed herein in a culture medium, under conditions in which the genes comprising the host disclosed herein are expressed,
    • wherein the steviol glycoside is synthesized by the host; and
    • (b) optionally isolating the steviol glycoside.


In some aspects of the methods disclosed herein, the steviol glycoside is RebA, RebB, RebD, and/or RebM.


The invention further provides a method increasing production of steviol or a steviol glycoside in a recombinant host, comprising modifying expression of a gene encoding a transporter polypeptide and/or a gene encoding a transcription that regulates expression of at least one transporter gene, wherein the host is capable of transporting at least a portion of the produced steviol or a steviol glycoside from the host into a culture medium.


These and other features and advantages of the present invention will be more fully understood from the following detailed description of the invention taken together with the accompanying claims. It is noted that the scope of the claims is defined by the recitations therein and not by the specific discussion of features and advantages set forth in the present description.





DESCRIPTION OF DRAWINGS


FIG. 1 shows the chemical structures and synthesis pathways for various steviol glycosides.



FIG. 2 is a bar graph of the amount (μM) of RebA, RebB, RebD, or RebM in the supernatant of a steviol glycoside-producing strain overexpressing transporter genes YGR181W (SEQ ID NO:38) or YDR061W (SEQ ID NO:26), compared to a control steviol glycoside-producing strain. See Example 4.



FIG. 3A and FIG. 3B are bar graphs of the amount (mg/L) of RebA, RebD, or RebM in the supernatant (FIG. 3A) or total culture (FIG. 3B) of a YGR181W (SEQ ID NO:38) or YDR061W (SEQ ID NO:26) overexpressing strain, compared to a control steviol glycoside-producing strain. See Example 4.



FIG. 4A shows levels of 13-SMG (total levels and supernatant levels; μM/OD600), FIG. 4B shows levels of RebA (total levels and supernatant levels; μM/OD600), FIG. 4C shows levels of RebB (total levels and supernatant levels; μM/OD600), FIG. 4D shows levels of RebD (total levels and supernatant levels; μM/OD600), and FIG. 4E shows levels of RebM (total levels and supernatant levels; μM/OD600) in a steviol glycoside-producing S. cerevisiae strain with a genomically integrated transporter gene. The genomically integrated transporter genes of FIGS. 4A-E are YBR043C (SEQ ID NO:88), YEL027W (SEQ ID NO:102), YJL093C (SEQ ID NO:44), YJR106W (SEQ ID NO:48), YMR166C (SEQ ID NO:132), YIL166C (SEQ ID NO:121), YKL120W (SEQ ID NO:126), YDL054C (SEQ ID NO:94), YDL128W (SEQ ID NO:22), YDR536W (SEQ ID NO:30), YGL167C (SEQ ID NO:112), YKL146W (SEQ ID NO:127), YKR039W (SEQ ID NO:129), YOL122C (SEQ ID NO:68), and YPR011C (SEQ ID NO:82). See Example 6.



FIG. 5A shows supernatant levels of RebA, RebB, RebD, and RebM (in μM/OD600) of a steviol glycoside-producing strain overexpressing YMR166C (SEQ ID NO:132), YEL027W (SEQ ID NO:102), YKL120W (SEQ ID NO:126), YIL166C (SEQ ID NO:121), YJR106W (SEQ ID NO:48), YJL093C (SEQ ID NO:44), and YBR043C (SEQ ID NO:88) by the USER cloning system. FIG. 5B shows total levels of RebA, RebB, RebD, and RebM (in μM/OD600) of a steviol glycoside-producing strain overexpressing YMR166C (SEQ ID NO:132), YEL027W (SEQ ID NO:102), YKL120W (SEQ ID NO:126), YIL166C (SEQ ID NO:121), YJR106W (SEQ ID NO:48), YJL093C (SEQ ID NO:44), and YBR043C (SEQ ID NO:88) by the USER cloning system.





DETAILED DESCRIPTION

All publications, patents and patent applications cited herein are hereby expressly incorporated by reference in their entirety for all purposes.


Before describing the present invention in detail, a number of terms will be defined. As used herein, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. For example, reference to “a nucleic acid” means one or more nucleic acids.


It is noted that terms like “preferably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed invention or to imply that certain features are critical, essential, or even important to the structure or function of the claimed invention. Rather, these terms are merely intended to highlight alternative or additional features that can or cannot be utilized in a particular embodiment of the present invention.


For the purposes of describing and defining the present invention it is noted that the term “substantially” is utilized herein to represent the inherent degree of uncertainty that can be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” is also utilized herein to represent the degree by which a quantitative representation can vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.


Methods well known to those skilled in the art can be used to construct genetic expression constructs and recombinant cells according to this invention. These methods include in vitro recombinant DNA techniques, synthetic techniques, in vivo recombination techniques, and polymerase chain reaction (PCR) techniques. See, for example, techniques as described in Green & Sambrook, 2012, MOLECULAR CLONING: A LABORATORY MANUAL, Fourth Edition, Cold Spring Harbor Laboratory, New York; Ausubel et al., 1989, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Greene Publishing Associates and Wiley Interscience, New York, and PCR Protocols: A Guide to Methods and Applications (Innis et al., 1990, Academic Press, San Diego, Calif.).


As used herein, the terms “polynucleotide,” “nucleotide,” “oligonucleotide,” and “nucleic acid” can be used interchangeably to refer to nucleic acid comprising DNA, RNA, derivatives thereof, or combinations thereof.


As used herein, the terms “microorganism,” “microorganism host,” “microorganism host cell,” “host cell,” “recombinant host,” “recombinant microorganism host,” and “recombinant host cell” can be used interchangeably. As used herein, the term “recombinant host” is intended to refer to a host, the genome of which has been augmented by at least one DNA sequence. Such DNA sequences include but are not limited to genes that are not naturally present, DNA sequences that are not normally transcribed into RNA or translated into a protein (“expressed”), and other genes or DNA sequences which one desires to introduce into the non-recombinant host. It will be appreciated that typically the genome of a recombinant host described herein is augmented through stable introduction of one or more recombinant genes. Generally, introduced DNA is not originally resident in the host that is the recipient of the DNA, but it is within the scope of this disclosure to isolate a DNA segment from a given host, and to subsequently introduce one or more additional copies of that DNA into the same host, e.g., to enhance production of the product of a gene or alter the expression pattern of a gene. In some instances, the introduced DNA will modify or even replace an endogenous gene or DNA sequence by, e.g., homologous recombination or site-directed mutagenesis. Suitable recombinant hosts include microorganisms.


As used herein, the term “recombinant gene” refers to a gene or DNA sequence that is introduced into a recipient host, regardless of whether the same or a similar gene or DNA sequence may already be present in such a host. “Introduced,” or “augmented” in this context, is known in the art to mean introduced or augmented by the hand of man. Thus, a recombinant gene can be a DNA sequence from another species or can be a DNA sequence that originated from or is present in the same species but has been incorporated into a host by recombinant methods to form a recombinant host. It will be appreciated that a recombinant gene that is introduced into a host can be identical to a DNA sequence that is normally present in the host being transformed and is introduced to provide one or more additional copies of the DNA to thereby permit overexpression or modified expression of the gene product of that DNA. Said recombinant genes are particularly encoded by cDNA.


As used herein, the term “engineered biosynthetic pathway” refers to a biosynthetic pathway that occurs in a recombinant host, as described herein, and does not naturally occur in the host.


As used herein, the term “endogenous” gene refers to a gene that originates from and is produced or synthesized within a particular organism, tissue, or cell. In some embodiments, the endogenous gene is a yeast transporter. In some embodiments, the transporter is endogenous to S. cerevisiae, including, but not limited to S. cerevisiae strain S288C. In some embodiments, an endogenous yeast transporter gene is overexpressed. As used herein, the term “overexpress” is used to refer to the expression of a gene in an organism at levels higher than the level of gene expression in a wild type organism. See, e.g., Prelich, 2012, Genetics 190:841-54. In some embodiments, an endogenous yeast transporter gene is deleted. See, e.g., Giaever & Nislow, 2014, Genetics 197(2):451-65. As used herein, the terms “deletion,” “deleted,” “knockout,” and “knocked out” can be used interchangeably to refer to an endogenous gene that has been manipulated to no longer be expressed in an organism, including, but not limited to, S. cerevisiae. In some embodiments, a deleted/knocked out gene is a transporter gene or a transcription factor gene that regulates expression of a transporter gene.


As used herein, the terms “heterologous sequence” and “heterologous coding sequence” are used to describe a sequence derived from a species other than the recombinant host. In some embodiments, the recombinant host is an S. cerevisiae cell, and a heterologous sequence is derived from an organism other than S. cerevisiae. A heterologous coding sequence, for example, can be from a prokaryotic microorganism, a eukaryotic microorganism, a plant, an animal, an insect, or a fungus different than the recombinant host expressing the heterologous sequence. In some embodiments, a coding sequence is a sequence that is native to the host.


A “selectable marker” can be one of any number of genes that complement host cell auxotrophy, provide antibiotic resistance, or result in a color change. Linearized DNA fragments of the gene replacement vector then are introduced into the cells using methods well known in the art (see below). Integration of the linear fragments into the genome and the disruption of the gene can be determined based on the selection marker and can be verified by, for example, PCR or Southern blot analysis. Subsequent to its use in selection, a selectable marker can be removed from the genome of the host cell by, e.g., Cre-LoxP systems (see, e.g., Gossen et al., 2002, Ann. Rev. Genetics 36:153-173 and U.S. 2006/0014264). Alternatively, a gene replacement vector can be constructed in such a way as to include a portion of the gene to be disrupted, where the portion is devoid of any endogenous gene promoter sequence and encodes none, or an inactive fragment of, the coding sequence of the gene.


As used herein, the terms “variant” and “mutant” are used to describe a protein sequence that has been modified at one or more amino acids, compared to the wild type sequence of a particular protein.


As used herein, the term “inactive fragment” is a fragment of the gene that encodes a protein having, e.g., less than about 10% (e.g., less than about 9%, less than about 8%, less than about 7%, less than about 6%, less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, or 0%) of the activity of the protein produced from the full-length coding sequence of the gene. Such a portion of a gene is inserted in a vector in such a way that no known promoter sequence is operably linked to the gene sequence, but that a stop codon and a transcription termination sequence are operably linked to the portion of the gene sequence. This vector can be subsequently linearized in the portion of the gene sequence and transformed into a cell. By way of single homologous recombination, this linearized vector is then integrated in the endogenous counterpart of the gene with inactivation thereof.


As used herein, the term “steviol glycoside” refers to Rebaudioside A (RebA) (CAS #58543-16-1), Rebaudioside B (RebB) (CAS #58543-17-2), Rebaudioside C (RebC) (CAS #63550-99-2), Rebaudioside D (RebD) (CAS #63279-13-0), Rebaudioside E (RebE) (CAS #63279-14-1), Rebaudioside F (RebF) (CAS #438045-89-7), Rebaudioside M (RebM) (CAS #1220616-44-3), Rubusoside (CAS #63849-39-4), Dulcoside A (CAS #64432-06-0), Rebaudioside I (RebI) (MassBank Record: FU000332), Rebaudioside Q (RebQ), 1,2-Stevioside (CAS #57817-89-7), 1,3-Stevioside (RebG), 1,2-Bioside (MassBank Record: FU000299), 1,3-Bioside, Steviol-13-O-glucoside (13-SMG), Steviol-19-O-glucoside (19-SMG), a tri-glucosylated steviol glycoside, a tetra-glycosylated steviol glycoside, a penta-glucosylated steviol glycoside, a hexa-glucosylated steviol glycoside, a hepta-glucosylated steviol glycoside, di-glucosylated kaurenoic acid, tri-glucosylated kaurenoic acid, di-glucosylated kaurenol, tri-glucosylated kaurenol, and isomers thereof.


Recombinant steviol glycoside-producing Saccharomyces cerevisiae (S. cerevisiae) strains are described in WO 2011/153378, WO 2013/022989, WO 2014/122227, and WO 2014/122328, each of which has been incorporated by reference herein in its entirety. See, also, Example 2. Methods of producing steviol glycosides in recombinant hosts, by whole cell bio-conversion, and in vitro are also described in WO 2011/153378, WO 2013/022989, WO 2014/122227, and WO 2014/122328.


In some embodiments, steviol glycosides and/or steviol glycoside precursors are produced in vivo through expression of one or more enzymes involved in the steviol glycoside biosynthetic pathway in a recombinant host. For example, a steviol-producing recombinant host expressing one or more of a gene encoding a geranylgeranyl diphosphate synthase (GGPPS) polypeptide, a gene encoding an ent-copalyl diphosphate synthase (CDPS) polypeptide, a gene encoding a kaurene synthase (KS) polypeptide, a gene encoding a kaurene oxidase polypeptide (KO), a gene encoding a steviol synthase (KAH) polypeptide, a gene encoding a cytochrome P450 reductase (CPR) polypeptide, and a gene encoding a UGT polypeptide can produce a steviol glycoside and/or steviol glycoside precursors in vivo. See Example 2.


In some embodiments, a recombinant host comprises a nucleic acid encoding a UGT85C2 polypeptide, a nucleic acid encoding a UGT76G1 polypeptide, a nucleic acid encoding a UGT74G1 polypeptide, a nucleic acid encoding a UGT91D2 polypeptide, and/or a nucleic acid encoding a EUGT11 polypeptide. The skilled worker will appreciate that expression of these genes may be necessary to produce a particular steviol glycoside but that one or more of these genes can be endogenous to the host provided that at least one (and in some embodiments, all) of these genes is a recombinant gene introduced into the microorganism. In a particular embodiment, a steviol-producing recombinant microorganism comprises exogenous nucleic acids encoding UGT85C2, UGT76G1, or UGT91D2 polypeptides. In another particular embodiment, a steviol-producing recombinant microorganism comprises exogenous nucleic acids encoding UGT85C2, UGT76G1, UGT74G1, and UGT91D2 polypeptides. In yet another particular embodiment, a steviol-producing recombinant microorganism comprises exogenous nucleic acids encoding UGT85C2, UGT76G1, UGT74G1, and EUGT11 polypeptides. In yet another particular embodiment, a steviol-producing recombinant microorganism comprises the exogenous nucleic acids encoding UGT85C2, UGT76G1, UGT74G1, UGT91D2 (including inter alia 91D2e, 9102m, 91D2e-b, and functional homologs thereof), and EUGT11 polypeptides. See Example 2.


In certain embodiments, the steviol glycoside is RebA, RebB, RebD, and/or RebM. RebA can be synthesized in a steviol-producing recombinant microorganism expressing UGT85C2, UGT76G1, UGT74G1, and UGT91D2. RebB can be synthesized in a steviol-producing recombinant microorganism expressing UGT85C2, UGT76G1, and UGT91D2. RebD can be synthesized in a steviol-producing recombinant microorganism expressing UGT85C2, UGT76G1 UGT74G1, and UGT91D2 and/or EUGT11. RebM can be synthesized in a steviol-producing recombinant microorganism expressing UGT85C2, UGT76G1, UGT74G1, and UGT91D2 and/or EUGT11 (see FIG. 1, Example 2).


In some embodiments, steviol glycosides and/or steviol glycoside precursors are produced through contact of a steviol glycoside precursor with one or more enzymes involved in the steviol glycoside pathway in vitro. For example, contacting steviol with a UGT polypeptide can result in production of a steviol glycoside in vitro. In some embodiments, a steviol glycoside precursor is produced through contact of an upstream steviol glycoside precursor with one or more enzymes involved in the steviol glycoside pathway in vitro. For example, contacting ent-kaurenoic acid with a KAH enzyme can result in production of steviol in vitro.


In some embodiments, a steviol glycoside or steviol glycoside precursor is produced by whole cell bioconversion. For whole cell bioconversion to occur, a host cell expressing one or more enzymes involved in the steviol glycoside pathway takes up and modifies a steviol glycoside precursor in the cell; following modification in vivo, a steviol glycoside remains in the cell and/or is excreted into the culture medium. For example, a host cell expressing a gene encoding a UGT polypeptide can take up steviol and glycosylate steviol in the cell; following glycosylation in vivo, a steviol glycoside can be excreted into the culture medium. In some embodiments, the cell is permeabilized to take up a substrate to be modified or to excrete a modified product.


In some embodiments, a steviol glycoside or steviol glycoside precursor composition produced in vivo, in vitro, or by whole cell bioconversion comprises less contaminants than a stevia extract from, inter alia, a stevia plant. Contaminants include plant-derived compounds that contribute to off-flavors. Potential contaminants include pigments, lipids, proteins, phenolics, saccharides, spathulenol and other sesquiterpenes, labdane diterpenes, monoterpenes, decanoic acid, 8,11,14-eicosatrienoic acid, 2-methyloctadecane, pentacosane, octacosane, tetracosane, octadecanol, stigmasterol, β-sitosterol, α- and β-amyrin, lupeol, β-amryin acetate, pentacyclic triterpenes, centauredin, quercitin, epi-alpha-cadinol, carophyllenes and derivatives, beta-pinene, beta-sitosterol, and gibberellin.


As used herein, the terms “detectable amount,” “detectable concentration,” “measurable amount,” and “measurable concentration” refer to a level of steviol glycosides measured in AUC, μM/OD600, mg/L, μM, or mM. Steviol glycoside production (i.e., total, supernatant, and/or intracellular steviol glycoside levels) can be detected and/or analyzed by techniques generally available to one skilled in the art, for example, but not limited to, liquid chromatography-mass spectrometry (LC-MS), thin layer chromatography (TLC), high-performance liquid chromatography (HPLC), ultraviolet-visible spectroscopy/spectrophotometry (UV-Vis), mass spectrometry (MS), and nuclear magnetic resonance spectroscopy (NMR).


As used herein, the terms “or” and “and/or” is utilized to describe multiple components in combination or exclusive of one another. For example, “x, y, and/or z” can refer to “x” alone, “y” alone, “z” alone, “x, y, and z,” “(x and y) or z,” “x or (y and z),” or “x or y or z.” In some embodiments, “and/or” is used to refer to the exogenous nucleic acids that a recombinant cell comprises, wherein a recombinant cell comprises one or more exogenous nucleic acids selected from a group. In some embodiments, “and/or” is used to refer to production of steviol glycosides and/or steviol glycoside precursors. In some embodiments, “and/or” is used to refer to production of steviol glycosides, wherein one or more steviol glycosides are produced. In some embodiments, “and/or” is used to refer to production of steviol glycosides, wherein one or more steviol glycosides are produced through one or more of the following steps: culturing a recombinant microorganism, synthesizing one or more steviol glycosides in a recombinant microorganism, and/or isolating one or more steviol glycosides.


Transporters and Transcription Factor Expression

This document describes reagents and methods that can be used to efficiently produce steviol glycoside compositions. Modification of transport systems in a recombinant host that are involved in transport of steviol glycosides into culture medium can allow more effective production of steviol glycosides in recombinant hosts.


As set forth herein, recombinant cells having modifications to cellular transport are capable of producing steviol. Recombinant hosts described herein can produce steviol and have altered expression of at least one endogenous transporter gene. Recombinant hosts described herein can produce steviol and have altered expression of a transcription factor that regulates expression of at least one endogenous transporter gene. Altering expression of endogenous transporter genes can be useful for increasing production of steviol and/or excretion of steviol into the culture medium.


As set forth herein, recombinant cells having modifications to cellular transport are capable of producing at least one steviol glycoside, including, but not limited to, RebA, RebB, RebD, and/or RebM. Recombinant hosts described herein can produce at least one steviol glycoside such as RebA, RebB, RebD, and/or RebM and have altered expression of at least one endogenous transporter gene. Recombinant hosts described herein can produce at least one steviol glycoside such as RebA, RebB, RebD, and/or RebM and have altered expression of a transcription factor that regulates expression of at least one endogenous transporter gene. Recombinant hosts described herein can produce at least one steviol glycoside such as RebA, RebB, RebD, and/or RebM and have altered expression of a plurality of endogenous transporter genes and/or of a plurality of transcription factor genes that regulate expression of a plurality of endogenous transporter genes. Altering expression of endogenous transporter genes and/or transcription factors regulating expression of at least one transporter gene can be useful for increasing production of steviol glycosides and/or excretion of steviol glycosides into the culture medium.


Recombinant hosts disclosed herein can include one or more biosynthesis genes, such as one or more genes encoding a sucrose transporter and a sucrose synthase; a gene encoding a geranylgeranyl diphosphate synthase (GGPPS) polypeptide; a gene encoding an ent-copalyl diphosphate synthase (CDPS) polypeptide; a gene encoding a kaurene synthase (KS) polypeptide; a gene encoding a kaurene oxidase (KO) polypeptide; a gene encoding a steviol synthase (KAH) polypeptide; a gene encoding a cytochrome P450 reductase (CPR) polypeptide; a gene encoding a UGT85C2 polypeptide; a gene encoding a UGT76G1 polypeptide; a gene encoding a UGT74G1 polypeptide; a gene encoding a UGT91D2 functional homolog; and/or a gene encoding a EUGT11 polypeptide; wherein expression of one or more of these genes results in production of steviol glycosides such as RebA, RebB, RebD, and/or RebM.


As used herein, the terms “transport of a steviol glycoside,” “steviol glycoside transport,” “excretion of a steviol glycoside,” and “steviol glycoside excretion” can be used interchangeably.


As used herein, the term “transporter” (also referred to as a membrane transport protein) refers to a membrane protein involved in the movement of small molecules, macromolecules (such as carbohydrates), and ions across a biological membrane. Transporters span the membrane in which they are localized and across which they transport substances. Transporter proteins can assist in the movement (i.e., transport or excretion) of a substance from the intracellular space to the culture medium. Transporters are known to function as passive transport systems, carrying molecules down their concentration gradient, or as active transport systems, using energy to carry molecules uphill against their concentration gradient. Active transport is mediated by carriers which couple transport directly to the use of energy derived from hydrolysis of an ATP molecule or by carriers which make use of a pre-established electrochemical ion gradient to drive co-transport of the nutrient molecule and a co-transported ion. The latter category comprises symporters and antiporters, which carry the ion in the same or opposite direction, respectively, as the transported substrate.


Transport proteins have been classified according to various criteria at the Transporter Classification Database (on the world wide web at tcdb.org). See, Saier Jr. et al., Nucl. Acids Res., 42(1):D251-258 (2014). Non-limiting examples thereof include, among others, the family of Multiple Drug Resistance (MDR) plasma membrane transporters that is thought to be ubiquitous among living organisms. The MDR transporter superfamily can be further subdivided according to the mode of operation by which the substrate is transported from one side of the membrane to the other. Transporters can operate to move substances across membranes in response to chemiosmotic ion gradients or by active transport. ATP-binding cassette transporters (ABC transporters) are transmembrane proteins that utilize the energy of adenosine triphosphate (ATP) hydrolysis to carry out translocation of various substrates across membranes. They can transport a wide variety of substrates across the plasma membrane and intracellular membranes, including metabolic products, lipids and sterols, and drugs. Particular non-limiting examples of endogenous ABC transporter genes include PDR5, YDR061W, PDR15, SNQ2, YOR1, YOL075C, MDL2, ADP1, CAF16, VMR1 and STE6 (or a functional homolog thereof). In some aspects, ABC transporters transport steviol glycosides.


A second group of MDRs is further subdivided based on the nature of the chemiosmotic gradient that facilitates the transport. Saier, Jr. et al., J. Mol. Microbiol. Biotechnol. 1:257-279 (1999). In some aspects, MDR transporters transport steviol glycosides.


Another transporter family, the Major Facilitator Superfamily (MFS) transporters are monomeric polypeptides that can transport small solutes in response to proton gradients. The MFS transporter family is sometimes referred to as the uniporter-symporter-antiporter family. MFS transporters function in, inter alia, in sugar uptake and drug efflux systems. MFS transporters typically comprise conserved MFS-specific motifs. Non-limiting examples of endogenous MFS transporter genes include DTR1, SEO1, YBR241C, VBA3, FEN2, SNF3, STL1, HXT10, AZR1, MPH3, VBA5, GEX2, SNQ1, AQR1, MCH1, MCH5, ATG22, HXT15, MPH2, ITR1, SIT1, VPS73, HXT5, QDR1, QDR2, QDR3, SOA1, HXT9, YMR279C, YIL166C, HOL1, ENB1, TPO4 and FLR1 (or a functional homolog thereof). In some aspects, MFS transporters transport steviol glycosides.


Other transporter families include the SMR (small multidrug resistant) family, RND (Resistance-Nodulation-Cell Division) family, and the MATE (multidrug and toxic compound extrusion) family. The SMR family members are integral membrane proteins characterized by four alpha-helical transmembrane strands that confer resistance to a broad range of antiseptics, lipophilic quaternary ammonium compounds (QAC), and aminoglycoside resistance in bacteria. See, Bay & Turner, 2009, BMC Evol Biol., 9:140. In some aspects, SMR transporters transport steviol glycosides.


The MATE family members comprise 12 transmembrane (TM) domains. Members of the MATE family have been identified in prokaryotes, yeast such as S. cerevisiae and Schizosaccharomyces pombe, and plants. See Diener et al., 2001, Plant Cell. 13(7):1625-8. The MATE family members are sodium or proton antiporters. In some aspects, MATE transporters transport steviol glycosides.


Additional transporter families include the amino acid/auxin permease (AAAP) family (for example, YKL146W/AVT3, YBL089W/AVT5, YER119C/AVT6 and YIL088C/AVT7), the ATPase family (for example, YBL099W/ATP1, YDL185W/VMA1, YLR447C/VMA6, YOL077W/ATP19, YPL078C/ATP4, YEL027W/VMA3, YKL016C/ATP7, and YOR332W/VMA4), the sulfate permease (SuIP) family (for example, YBR294W/SUL1, YGR125W and YPR003C), the lysosomal cystine transporter (LCT) family (for example, YCR075C/ERS1), the Ca2+:cation antiporter (CaCA) family (for example, YDL128W/VCX1 and YJR106W/ECM27), the amino acid-polyamine-organocation (APC) superfamily (for example, YDL210W/UGA4, YOL020W/TAT2, YPL274W/SAM3, YNL268W/LYP1, YHL036W/MUP3, YKR039W/GAP1 and YOR348C/PUT4), multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) (for example, YDR338C), the ZRT/IRT-like protein (ZIP) metal transporter family (for example, YGL225W/ZRT1 and YOR079C/ATX2), the mitochondrial protein translocase (MPT) family (for example, YGR181W/TIM13, YNL070W/TOM7, YNL121C/TOM70, the voltage-gated ion channel (VIC) family (for example, YGR217W/CCH1 and YJL093C/TOK1), the monovalent cation:proton antiporter-2 (CPA2) family (for example, YJL094C/KHA1), the ThrE family of putative transmembrane amino acid efflux transporters (for example, YJL108C/PRM10), the oligopeptide transporter (OPT) family (for example, YJL212C/OPT1 and YGL114W), the K+ transporter (Trk) family (for example, TKR050W/TRK2), the bile acid:Na symporter (BASS) family (for example, YMR034C), the drug/metabolite transporter (DMT) superfamily (for example, YMR253C, YML038C/YMD8, and YOR307C/SLY41), the mitochondrial carrier (MC) family (for example, YMR056C/AAC1, YNL083W/SAL1, YOR130C/ORT1, YOR222W/ODC2, YPR011C, YPR058W/YMC1, YPR128C/ANTI, YEL006W/YEA6, YER053C/PIC2, YFR045W, YGR257C/MTM1, YHR002W/LEU5, YIL006W/YIA6, YJL133W/MRS3, YKL120W/OAC1, YMR166C, YNL003C/PET8 and YOR100C/CRC1), the auxin efflux carrier (AEC) family (for example, YNL095C, YOR092W/ECM3 and YBR287W), the ammonia channel transporter (Amt) family (for example, YNL142W/MEP2), the metal ion (Mn2+-iron) transporter (Nramp) family (for example, YOL122C/SMF1), the transient receptor potential Ca2+ channel (TRP-CC) family (for example, YOR087W/YVC1), the arsenical resistance-3 (ACR3) family (for example, YPR201W/ARR3), the nucleobase:cation symporter-1 (NCS1) family (for example, YBR021W/FUR4), the inorganic phosphate transporter (PiT) family (for example, YBR296C/PH089), the arsenite-antimonite (ArsAB) efflux family (for example, YDL100C/GET3), the IISP family of transporters, the glycerol uptake (GUP) family (for example, YGL084C/GUP1), the metal ion transport (MIT) family (for example, YKL064W/MNR2, YKL050C and YOR334W/MRS2), the copper transport (Ctr) family (for example, YLR411W/CTR3) and the cation diffusion facilitator (CDF) family (for example, YOR316C/COT1). Particular members of any of these transporter families are included within the scope of the disclosed invention to the extent that altered expression in a cell capable of producing steviol glycoside increases production of said steviol glycoside from the cell; exemplary members are disclosed above and in Tables 5, 6, and 14.


As used herein, the term “transcription factor” refers to a DNA-binding protein that regulates gene expression. Preferably, the transcription factor regulates expression of at least one transporter gene.


Methods for identifying a gene affecting production or transport of steviol glycosides and steviol glycoside pathway intermediates are disclosed herein. Such methods can involve inactivating at least one endogenous transporter gene or modifying expression of at least one transporter gene. Typically, a library of mutant microorganisms is prepared, each mutant in the library having a different endogenous transporter gene inactivated. Methods of inactivating genes and determining their effect in a microorganisms are known to a person having ordinary skill in the art; additional methods are disclosed in WO 2014/122328, the disclosure of which is incorporated by reference in its entirety. The mutant microorganisms comprising one or more steviol glycoside pathway genes are cultured in a medium under conditions in which steviol or a steviol glycoside is synthesized, and the amount of total, supernatant, and/or intracellular steviol glycosides produced by the microorganism is measured (e.g., using LC-MS) as described herein.


The disclosure is directed to recombinant host cells in which expression of endogenous transporter or transcription factor genes is modified. In some embodiments, the transporter or transcription factor gene is endogenous to S. cerevisiae, including, but not limited to S. cerevisiae strain S288C. In some embodiments, expression of an endogenous transporter or transcription factor can be modified by replacing the endogenous promoter with a different promoter that results in increased expression of the transporter protein (e.g., at least a 5% increase in expression, such as at least a 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50%, 100%, 200% increase or more in expression). For example, an endogenous promoter can be replaced with a constitutive or inducible promoter that results in increased expression of the transporter. Homologous recombination can be used to replace the promoter of an endogenous gene with a different promoter that results in increased expression of the transporter. In other embodiments, the inducible or constitutive promoter and endogenous transporter or transcription factor can be integrated into another locus of the genome using homologous recombination. In other embodiments, the transporter or transcription factor gene can be introduced into a microorganism using exogenous plasmids with a promoter that results in overexpression of the transporter or transcription factor in the microorganism. In yet another embodiment, the exogenous plasmids may also comprise multiple copies of the transporter or transcription factor gene. In a further embodiment, the endogenous transporter or transcription factor can be induced to be overexpressed using native mechanisms to the recombinant microorganism (e.g. heat shock, stress, heavy metal, or antibiotic exposure). In yet a further embodiment, the activity of an endogenous gene product is enhanced or increased (for example, by mutation). In yet another embodiment, a homologous or orthologous gene of an endogenous yeast transporter or transcription factor gene is overexpressed.


In certain other embodiments, modified expression of a target gene in a recombinant microorganism comprises overexpressing a transporter gene and/or a transcription factor gene involved in expression of said transporter gene. In yet other embodiments, a plurality of endogenous transporter genes or transcription factor genes is overexpressed in said recombinant microorganism.


Modification of transcription factor expression can be used to increase transporter expression. For example, yeast transcriptions factor PDR1 regulates expression of the genes encoding ABC transporters PDR5, SNQ2 and YOR1. Therefore, in some embodiments, promoters for the endogenous PDR1 locus can be replaced with a different promoter that results in increased expression of the transcription factors, which can increase production of endogenous transporters.


In some embodiments, the transporter gene or transcription factor gene is (using Uniprot Ordered Locus Name for each): YAL067C, YBL089W, YBL099W, YBR008C, YBR021W, YBR043C, YBR180W, YBR241C, YBR287W, YBR294W, YBR295W, YBR296C, YCL038C, YCL069W, YCR011C, YCR028C, YCR075C, YDL054C, YDL100C, YDL128W, YDL185W, YDL194W, YDL210W, YDL245C, YDL247W, YDR011W, YDR061W, YDR093W, YDR292C, YDR338C, YDR406W, YDR497C, YDR536W, YEL006W, YEL027W, YEL031W, YEL065W, YER019C-A, YER053C, YER119C, YER166W, YFL011W, YFL028C, YFR045W, YGL006W, YGL013C, YGL084C, YGL104C, YGL114W, YGL167C, YGL255W, YGR125W, YGR181W, YGR217W, YGR224W, YGR257C, YGR281W, YHL016C, YHL035C, YHL036W, YHR002W, YHR0,96C, YIL006W, YIL088C, YIL120W, YIL121W, YIL166C, YJL093C, YJL094C, YJL108C, YJL133W, YJL212C, YJL219W, YJR106W, YJR160C, YKL016C, YKL050C, YKL064W, YKL120W, YKL146W, YKL209C, YKR039W, YKR050W, YKR105C, YKR106W, YLR411W, YLR447C, YML038C, YML116W, YMR034C, YMR056C, YMR166C, YMR253C, YMR279C, YNL003C, YNL065W, YNL070W, YNL083W, YNL095C, YNL121C, YNL142W, YNL268W, YNR055C, YOL020W, YOL075C, YOL077W-A, YOL122C, YOL158C, YOR079C, YOR087W, YOR092W, YOR100C, YOR130C, YOR153W, YOR222W, YOR271C, YOR273C, YOR291W, YOR306C, YOR307C, YOR316C, YOR332W, YOR334W, YOR348C, YPL036W, YPL078C, YPL270W, YPL274W, YPR003C, YPR011C, YPR058W, YPR128C, and/or YPR201W. SEQ ID NOs, Uniprot Accession Numbers, and gene names for each Ordered Locus can be found in Tables 5, 6, and 14. In some embodiments, the above transporter genes and transcription factor genes regulate excretion of steviol glycosides.


In some embodiments, deletion in a steviol glycoside-producing strain of YDL128W (SEQ ID NO:22), YDL194W (SEQ ID NO:24), YDL210W (SEQ ID NO:25), YDR536W (SEQ ID NO:30), YFL011W (SEQ ID NO:33), YGL006W (SEQ ID NO:34), YGL013C (SEQ ID NO:35), YGL255W (SEQ ID NO:36), YGR181W (SEQ ID NO:38), YGR217W (SEQ ID NO:39), YHL016C (SEQ ID NO:42), YIL088C (SEQ ID NO:43), YJL094C (SEQ ID NO:45), YJR106W (SEQ ID NO:48), YKR050W (SEQ ID NO:51), YNL065W (SEQ ID NO:59), YNL083W (SEQ ID NO:61), YNL121C (SEQ ID NO:63), YNL142W (SEQ ID NO:64), YOR291W (SEQ ID NO:74), YOR306C (SEQ ID NO:75), YOR334W (SEQ ID NO:77), YPL270W (SEQ ID NO:79), YPR011C (SEQ ID NO:82), YPR128C (SEQ ID NO:84) results in a measurable decrease of RebD excreted into the culture medium, indicating that each plays a role in RebD excretion. See Example 3 and Tables 7-10.


In some embodiments, deletion in a steviol glycoside-producing strain of YBR180W (SEQ ID NO:13), YAL067C (SEQ ID NO:14), YBR241C (SEQ ID NO:17), YCL069W (SEQ ID NO:19), YCR075C (SEQ ID NO:21), YDL128W (SEQ ID NO:22), YDL194W (SEQ ID NO:24), YDR093W (SEQ ID NO:27), YDR338C (SEQ ID NO:28), YDR406W (SEQ ID NO:29), YER166W (SEQ ID NO:32), YFL011W (SEQ ID NO:33), YGL006W (SEQ ID NO:34), YGL013C (SEQ ID NO:35), YGL255W (SEQ ID NO:36), YGR217W (SEQ ID NO:39), YHL016C (SEQ ID NO:42), YJL094C (SEQ ID NO:45), YJL212C (SEQ ID NO:47), YJR106W (SEQ ID NO:48), YJR160C (SEQ ID NO:49), YKR050W (SEQ ID NO:51), YKR106W (SEQ ID NO:53), YML116W (SEQ ID NO:55), YMR034C (SEQ ID NO:56), YMR056C (SEQ ID NO:57), YMR253C (SEQ ID NO:58), YNL070W (SEQ ID NO:60), YNL083W (SEQ ID NO:61), YNL095C (SEQ ID NO:62), YNL121C (SEQ ID NO:63), YOL075C (SEQ ID NO:66), YOL122C (SEQ ID NO:68), YOR087W (SEQ ID NO:70), YOR222W (SEQ ID NO:73), YOR291W (SEQ ID NO:74), YOR306C (SEQ ID NO:75), YPL274W (SEQ ID NO:80), YPR003C (SEQ ID NO:81), YPR011C (SEQ ID NO:82), or YPR201W (SEQ ID NO:85) results in a measurable decrease of RebM, indicating that each plays a role in RebM excretion. See Example 3 and Tables 7-10.


In some embodiments, overexpression of YGR181W (SEQ ID NO:38) or YDR061W (SEQ ID NO:26) improves RebD and RebM transport into the culture medium by approximately 2-fold (˜400-500 mg/L of supernatant RebD and RebM in YGR181W (SEQ ID NO:38) and YDR061W (SEQ ID NO:26) overexpression strains versus ˜250 mg/L of supernatant RebD and RebM in a control steviol glycoside-producing strain). See Example 4, FIG. 2, and FIG. 3.


In some embodiments, overexpression of a transporter of Table 11 increases excretion of RebA, RebB, RebD, and/or RebM by at least 20%. In some embodiments, overexpression of a transporter of Table 12 increases production of RebA, RebB, RebD, and/or RebM by at least 40%. See Example 5.


In some embodiments, a transporter gene is integrated into the genome of a steviol glycoside-producing host. In some embodiments, the integrated transporter is YBR043C (SEQ ID NO:88), YEL027W (SEQ ID NO:102), YJL093C (SEQ ID NO:44), YJR106W (SEQ ID NO:48), YMR166C (SEQ ID NO:132), YIL166C (SEQ ID NO:121), YKL120W (SEQ ID NO:126), YDL054C (SEQ ID NO:94), YDL128W (SEQ ID NO:22), YDR536W (SEQ ID NO:30), YGL167C (SEQ ID NO:112), YKL146W (SEQ ID NO:127), YKR039W (SEQ ID NO:129), YOL122C (SEQ ID NO:68), or YPR011C (SEQ ID NO:82). In some embodiments, integration of YBR043C (SEQ ID NO:88), YEL027W (SEQ ID NO:102), YJL093C (SEQ ID NO:44), YJR106W (SEQ ID NO:48), YKL120W (SEQ ID NO:126), or YMR166C (SEQ ID NO:132) improves excretion and/or total production of 13-SMG. In some embodiments, integration of YBR043C (SEQ ID NO:88), YEL027W (SEQ ID NO:102), or YMR166C (SEQ ID NO:132) improves excretion and/or total production of RebA. In some embodiments, integration of YBR043C (SEQ ID NO:88), YEL027W (SEQ ID NO:102), or YMR166C (SEQ ID NO:132) improves excretion and/or total production of RebB. In some embodiments, integration of YBR043C of SEQ ID NO:88, YEL027W of SEQ ID NO:102, YJL093C of SEQ ID NO:44, YJR106W of SEQ ID NO:48, and YMR166C of SEQ ID NO:132 improves excretion and/or total production of RebD, and YBR043C of SEQ ID NO:88, YEL027W of SEQ ID NO:102, YIL166C (SEQ ID NO:121), YJL093C of SEQ ID NO:44, YJR106W of SEQ ID NO:48, and YMR166C of SEQ ID NO:132 improves excretion and/or total production of RebM, as measured by an increase in RebD and RebM levels in the supernatant compared to a control steviol glycoside-producing strain. See Example 6.


In some embodiments, steviol glycoside-producing S. cerevisiae strains overexpressing YJL093C (SEQ ID NO:44) or YBR043C (SEQ ID NO:88) produce higher levels of RebD+RebM, compared to a steviol glycoside-producing S. cerevisiae strain that does not overexpress YJL093C or YBR043C. See Example 7.


In some embodiments, a transporter that is knocked out can also have specificity for transport of larger molecular weight steviol glycosides (for example, RebD and the knockout of YGR181W of SEQ ID NO:38 or YOR291W of SEQ ID NO:74), and therefore, can be useful to overexpress in strains where transport of RebD into the culture medium is desired. With appropriate balancing of the rate of glycosylation activity through expression of pathway UGTs, smaller molecular weight steviol glycosides are further glycosylated before they are transported into the culture medium. For example, higher expression levels of a UGT76G1 and UGT91D2e and/or EUGT11, as compared to the UGT74G1 and UGT85C2 enzymes, can prevent accumulation of the steviol monoglucosides that are transported more readily. If the UGT activity level is higher (so the glycosylation rate is faster) than the rate of transport, then greater amounts of larger molecular weight steviol glycosides will be produced.


Steviol and Steviol Glycoside Biosynthesis Nucleic Acids

A recombinant gene encoding a polypeptide described herein comprises the coding sequence for that polypeptide, operably linked in sense orientation to one or more regulatory regions suitable for expressing the polypeptide. Because many microorganisms are capable of expressing multiple gene products from a polycistronic mRNA, multiple polypeptides can be expressed under the control of a single regulatory region for those microorganisms, if desired. A coding sequence and a regulatory region are considered to be operably linked when the regulatory region and coding sequence are positioned so that the regulatory region is effective for regulating transcription or translation of the sequence. Typically, the translation initiation site of the translational reading frame of the coding sequence is positioned between one and about fifty nucleotides downstream of the regulatory region for a monocistronic gene.


In many cases, the coding sequence for a polypeptide described herein is identified in a species other than the recombinant host, i.e., is a heterologous nucleic acid. Thus, if the recombinant host is a microorganism, the coding sequence can be from other prokaryotic or eukaryotic microorganisms, from plants or from animals. In some case, however, the coding sequence is a sequence that is native to the host and is being reintroduced into that organism. A native sequence can often be distinguished from the naturally occurring sequence by the presence of non-natural sequences linked to the exogenous nucleic acid, e.g., non-native regulatory sequences flanking a native sequence in a recombinant nucleic acid construct. In addition, stably transformed exogenous nucleic acids typically are integrated at positions other than the position where the native sequence is found. “Regulatory region” refers to a nucleic acid having nucleotide sequences that influence transcription or translation initiation and rate, and stability and/or mobility of a transcription or translation product. Regulatory regions include, without limitation, promoter sequences, enhancer sequences, response elements, protein recognition sites, inducible elements, protein binding sequences, 5′ and 3′ untranslated regions (UTRs), transcriptional start sites, termination sequences, polyadenylation sequences, introns, and combinations thereof. A regulatory region typically comprises at least a core (basal) promoter. A regulatory region also may include at least one control element, such as an enhancer sequence, an upstream element or an upstream activation region (UAR). A regulatory region is operably linked to a coding sequence by positioning the regulatory region and the coding sequence so that the regulatory region is effective for regulating transcription or translation of the sequence. For example, to operably link a coding sequence and a promoter sequence, the translation initiation site of the translational reading frame of the coding sequence is typically positioned between one and about fifty nucleotides downstream of the promoter. A regulatory region can, however, be positioned as much as about 5,000 nucleotides upstream of the translation initiation site, or about 2,000 nucleotides upstream of the transcription start site.


The choice of regulatory regions to be included depends upon several factors, including, but not limited to, efficiency, selectability, inducibility, desired expression level, and preferential expression during certain culture stages. It is a routine matter for one of skill in the art to modulate the expression of a coding sequence by appropriately selecting and positioning regulatory regions relative to the coding sequence. It will be understood that more than one regulatory region may be present, e.g., introns, enhancers, upstream activation regions, transcription terminators, and inducible elements.


One or more genes can be combined in a recombinant nucleic acid construct in “modules” useful for a discrete aspect of steviol and/or steviol glycoside production. Combining a plurality of genes in a module, particularly a polycistronic module, facilitates the use of the module in a variety of species. For example, a steviol biosynthesis gene cluster, or a UGT gene cluster, can be combined in a polycistronic module such that, after insertion of a suitable regulatory region, the module can be introduced into a wide variety of species. As another example, a UGT gene cluster can be combined such that each UGT coding sequence is operably linked to a separate regulatory region, to form a UGT module. Such a module can be used in those species for which monocistronic expression is necessary or desirable. In addition to genes useful for steviol or steviol glycoside production, a recombinant construct typically also comprises an origin of replication, and one or more selectable markers for maintenance of the construct in appropriate species.


It will be appreciated that because of the degeneracy of the genetic code, a number of nucleic acids can encode a particular polypeptide; i.e., for many amino acids, there is more than one nucleotide triplet that serves as the codon for the amino acid. Thus, codons in the coding sequence for a given polypeptide can be modified such that optimal expression in a particular host is obtained, using appropriate codon bias tables for that host (e.g., microorganism). As isolated nucleic acids, these modified sequences can exist as purified molecules and can be incorporated into a vector or a virus for use in constructing modules for recombinant nucleic acid constructs.


In some cases, it is desirable to inhibit one or more functions of an endogenous polypeptide in order to divert metabolic intermediates towards steviol or steviol glycoside biosynthesis. For example, it may be desirable to downregulate synthesis of sterols in a strain in order to further increase steviol or steviol glycoside production, e.g., by downregulating squalene epoxidase. As another example, it may be desirable to inhibit degradative functions of certain endogenous gene products, e.g., glycohydrolases that remove glucose moieties from secondary metabolites or phosphatases as discussed herein. As another example, expression of membrane transporters involved in transport of steviol glycosides can be activated, such that transportation of steviol glycosides is increased. Such regulation can be beneficial in that transportation of steviol glycosides can be increased for a desired period of time during culture of the microorganism, thereby increasing the yield of glycoside product(s) at harvest. In such cases, a nucleic acid that overexpresses the polypeptide or gene product may be included in a recombinant construct that is transformed into the strain. Alternatively, mutagenesis can be used to generate mutants in genes for which it is desired to increase or enhance function.


Recombinant Hosts

Recombinant hosts can be used to express polypeptides for the producing steviol glycosides, including mammalian, insect, plant, and algal cells. A number of prokaryotes and eukaryotes are also suitable for use in constructing the recombinant microorganisms described herein, e.g., gram-negative bacteria, yeast, and fungi. A species and strain selected for use as a steviol glycoside production strain is first analyzed to determine which production genes are endogenous to the strain and which genes are not present. Genes for which an endogenous counterpart is not present in the strain are advantageously assembled in one or more recombinant constructs, which are then transformed into the strain in order to supply the missing function(s).


Typically, the recombinant microorganism is grown in a fermenter at a defined temperature(s) for a desired period of time. The constructed and genetically engineered microorganisms provided by the invention can be cultivated using conventional fermentation processes, including, inter alia, chemostat, batch, fed-batch cultivations, semi-continuous fermentations such as draw and fill, continuous perfusion fermentation, and continuous perfusion cell culture. Depending on the particular microorganism used in the method, other recombinant genes such as isopentenyl biosynthesis genes and terpene synthase and cyclase genes may also be present and expressed. Levels of substrates and intermediates, e.g., isopentenyl diphosphate, dimethylallyl diphosphate, GGPP, kaurene and kaurenoic acid, can be determined by extracting samples from culture media for analysis according to published methods.


Carbon sources of use in the instant method include any molecule that can be metabolized by the recombinant host cell to facilitate growth and/or production of the steviol glycosides. Examples of suitable carbon sources include, but are not limited to, sucrose (e.g., as found in molasses), fructose, xylose, ethanol, glycerol, glucose, cellulose, starch, cellobiose or other glucose-comprising polymer. In embodiments employing yeast as a host, for example, carbon sources such as sucrose, fructose, xylose, ethanol, glycerol, and glucose are suitable. The carbon source can be provided to the host organism throughout the cultivation period or alternatively, the organism can be grown for a period of time in the presence of another energy source, e.g., protein, and then provided with a source of carbon only during the fed-batch phase.


After the recombinant microorganism has been grown in culture for the desired period of time, steviol and/or one or more steviol glycosides can then be recovered from the culture using various techniques known in the art. In some embodiments, a permeabilizing agent can be added to aid the feedstock entering into the host and product getting out. For example, a crude lysate of the cultured microorganism can be centrifuged to obtain a supernatant. The resulting supernatant can then be applied to a chromatography column, e.g., a C-18 column, and washed with water to remove hydrophilic compounds, followed by elution of the compound(s) of interest with a solvent such as methanol. The compound(s) can then be further purified by preparative HPLC. See also, WO 2009/140394.


It will be appreciated that the various genes and modules discussed herein can be present in two or more recombinant hosts rather than a single host. When a plurality of recombinant hosts is used, they can be grown in a mixed culture to produce steviol and/or steviol glycosides.


Alternatively, the two or more hosts each can be grown in a separate culture medium and the product of the first culture medium, e.g., steviol, can be introduced into second culture medium to be converted into a subsequent intermediate, or into an end product such as, for example, RebA. The product produced by the second, or final host is then recovered. It will also be appreciated that in some embodiments, a recombinant host is grown using nutrient sources other than a culture medium and utilizing a system other than a fermenter.


Exemplary prokaryotic and eukaryotic species are described in more detail below. However, it will be appreciated that other species can be suitable. For example, suitable species can be in a genus such as Agaricus, Aspergillus, Bacillus, Candida, Corynebacterium, Eremothecium, Escherichia, Fusarium/Gibberella, Kluyveromyces, Laetiporus, Lentinus, Phaffia, Phanerochaete, Pichia, Physcomitrella, Rhodoturula, Saccharomyces, Schizosaccharomyces, Sphaceloma, Xanthophyllomyces or Yarrowia. Exemplary species from such genera include Lentinus tigrinus, Laetiporus sulphureus, Phanerochaete chrysosporium, Pichia pastoris, Cyberlindnera jadinii, Physcomitrella patens, Rhodoturula glutinis, Rhodoturula mucilaginosa, Phaffia rhodozyma, Xanthophyllomyces dendrorhous, Fusarium fujikuroi/Gibberella fujikuroi, Candida utilis, Candida glabrata, Candida albicans, and Yarrowia lipolytica.


In some embodiments, a microorganism can be a prokaryote such as Escherichia coll.


In some embodiments, a microorganism can be an Ascomycete such as Gibberella fujikuroi, Kluyveromyces lactis, Schizosaccharomyces pombe, Aspergillus niger, Yarrowia lipolytica, Ashbya gossypii, or S. cerevisiae.


In some embodiments, a microorganism can be an algal cell such as Blakeslea trispora, Dunaliella saline, Haematococcus pluvialis, Chlorella sp., Undaria pinnatifida, Sargassum, Laminaria japonica, Scenedesmus almeriensis species.


In some embodiments, a microorganism can be a cyanobacterial cell such as Blakeslea trispora, Dunaliella salina, Haematococcus pluvialis, Chlorella sp., Undaria pinnatifida, Sargassum, Laminaria japonica, Scenedesmus almeriensis.



Saccharomyces Spp.


Saccharomyces is a widely used chassis organism in synthetic biology, and can be used as the recombinant microorganism platform. For example, there are libraries of mutants, plasmids, detailed computer models of metabolism and other information available for S. cerevisiae, allowing for rational design of various modules to enhance product yield. Methods are known for making recombinant microorganisms.



Aspergillus Spp.


Aspergillus species such as A. oryzae, A. niger and A. sojae are widely used microorganisms in food production and can also be used as the recombinant microorganism platform. Nucleotide sequences are available for genomes of A. nidulans, A. fumigatus, A. oryzae, A. clavatus, A. flavus, A. niger, and A. terreus, allowing rational design and modification of endogenous pathways to enhance flux and increase product yield. Metabolic models have been developed for Aspergillus, as well as transcriptomic studies and proteomics studies. A. niger is cultured for the industrial production of a number of food ingredients such as citric acid and gluconic acid, and thus species such as A. niger are generally suitable for producing steviol glycosides.



E. coli



E. coli, another widely used platform organism in synthetic biology, can also be used as the recombinant microorganism platform. Similar to Saccharomyces, there are libraries of mutants, plasmids, detailed computer models of metabolism and other information available for E. coli, allowing for rational design of various modules to enhance product yield. Methods similar to those described above for Saccharomyces can be used to make recombinant E. coli microorganisms.



Agaricus, Gibberella, and Phanerochaete Spp.



Agaricus, Gibberella, and Phanerochaete spp. can be useful because they are known to produce large amounts of isoprenoids in culture. Thus, the terpene precursors for producing large amounts of steviol glycosides are already produced by endogenous genes. Thus, modules comprising recombinant genes for steviol glycoside biosynthesis polypeptides can be introduced into species from such genera without the necessity of introducing mevalonate or MEP pathway genes.



Arxula adeninivorans (Blastobotrys adeninivorans)



Arxula adeninivorans is dimorphic yeast (it grows as budding yeast like the baker's yeast up to a temperature of 42° C., above this threshold it grows in a filamentous form) with unusual biochemical characteristics. It can grow on a wide range of substrates and can assimilate nitrate. It has successfully been applied to the generation of strains that can produce natural plastics or the development of a biosensor for estrogens in environmental samples.



Yarrowia lipolytica



Yarrowia lipolytica is dimorphic yeast (see Arxula adeninivorans) and belongs to the family Hemiascomycetes. The entire genome of Yarrowia lipolytica is known. Yarrowia species is aerobic and considered to be non-pathogenic. Yarrowia is efficient in using hydrophobic substrates (e.g. alkanes, fatty acids, oils) and can grow on sugars. It has a high potential for industrial applications and is an oleaginous microorganism. Yarrowia lipolytica can accumulate lipid content to approximately 40% of its dry cell weight and is a model organism for lipid accumulation and remobilization. See e.g., Nicaud, 2012, Yeast 29(10):409-18; Beopoulos et al., 2009, Biohimie 91(6):692-6; Bankar et al., 2009, Appl Microbiol Biotechnol. 84(5):847-65.



Rhodotorula Sp.


Rhodotorula is unicellular, pigmented yeast. The oleaginous red yeast, Rhodotorula glutinis, has been shown to produce lipids and carotenoids from crude glycerol (Saenge et al., 2011, Process Biochemistry 46(1):210-8). Rhodotorula toruloides strains have been shown to be an efficient fed-batch fermentation system for improved biomass and lipid productivity (Li et al., 2007, Enzyme and Microbial Technology 41:312-7).



Rhodosporidium toruloides



Rhodosporidium toruloides is oleaginous yeast and useful for engineering lipid-production pathways (See e.g. Zhu et al., 2013, Nature Commun. 3:1112; Ageitos et al., 2011, Applied Microbiology and Biotechnology 90(4):1219-27).



Candida boidinii



Candida boidinii is methylotrophic yeast (it can grow on methanol). Like other methylotrophic species such as Hansenula polymorpha and Pichia pastoris, it provides an excellent platform for producing heterologous proteins. Yields in a multigram range of a secreted foreign protein have been reported. A computational method, IPRO, recently predicted mutations that experimentally switched the cofactor specificity of Candida boidinii xylose reductase from NADPH to NADH. See, e.g., Mattanovich et al., 2012, Methods Mol Biol. 824:329-58; Khoury et al., 2009, Protein Sci. 18(10):2125-38.



Hansenula polymorpha (Pichia angusta)



Hansenula polymorpha is methylotrophic yeast (see Candida boidinii). It can furthermore grow on a wide range of other substrates; it is thermo-tolerant and can assimilate nitrate (see also Kluyveromyces lactis). It has been applied to producing hepatitis B vaccines, insulin and interferon alpha-2a for the treatment of hepatitis C, furthermore to a range of technical enzymes. See, e.g., Xu et al., 2014, Virol Sin. 29(6):403-9.



Kluyveromyces lactis



Kluyveromyces lactis is yeast regularly applied to the production of kefir. It can grow on several sugars, most importantly on lactose which is present in milk and whey. It has successfully been applied among others for producing chymosin (an enzyme that is usually present in the stomach of calves) for producing cheese. Production takes place in fermenters on a 40,000 L scale. See, e.g., van Ooyen et al., 2006, FEMS Yeast Res. 6(3):381-92.



Pichia pastoris



Pichia pastoris is methylotrophic yeast (see Candida boidinii and Hansenula polymorpha). It provides an efficient platform for producing foreign proteins. Platform elements are available as a kit and it is worldwide used in academia for producing proteins. Strains have been engineered that can produce complex human N-glycan (yeast glycans are similar but not identical to those found in humans). See, e.g., Piirainen et al., 2014, N Biotechnol. 31(6):532-7.



Physcomitrella Spp.


Physcomitrella mosses, when grown in suspension culture, have characteristics similar to yeast or other fungal cultures. This genera can be used for producing plant secondary metabolites, which can be difficult to produce in other types of cells.


Steviol Glycoside Compositions

Steviol glycosides do not necessarily have equivalent performance in different food systems. It is therefore desirable to have the ability to direct the synthesis to steviol glycoside compositions of choice. Recombinant hosts described herein can produce compositions that are selectively enriched for specific steviol glycosides (e.g., RebD) and have a consistent taste profile. Thus, the recombinant hosts described herein can facilitate the production of compositions that are tailored to meet the sweetening profile desired for a given food product and that have a proportion of each steviol glycoside that is consistent from batch to batch. Hosts described herein do not produce the undesired plant by-products found in Stevia extracts. Thus, steviol glycoside compositions produced by the recombinant hosts described herein are distinguishable from compositions derived from Stevia plants.


The amount of an individual steviol glycoside (e.g., RebA, RebB, RebD, or RebM) produced can be from about 1 mg/L to about 2,800 mg/L, e.g., about 1 to about 10 mg/L, about 3 to about 10 mg/L, about 5 to about 20 mg/L, about 10 to about 50 mg/L, about 10 to about 100 mg/L, about 25 to about 500 mg/L, about 100 to about 1,500 mg/L, or about 200 to about 1,000 mg/L, at least about 1,000 mg/L, at least about 1,200 mg/L, at least about at least 1,400 mg/L, at least about 1,600 mg/L, at least about 1,800 mg/L, or at least about 2,800 mg/L. In some aspects, the amount of an individual steviol glycoside can exceed 2,800 mg/L. The amount of a combination of steviol glycosides (e.g., RebA, RebB, RebD, or RebM) produced can be from about 1 mg/L to about 6,000 mg/L, e.g., about 200 to about 1,500, at least about 2,000 mg/L, at least about 3,000 mg/L, at least about 4,000 mg/L, at least about 5,000 mg/L, or at least about 6,000 mg/L. In some aspects, the amount of a combination of steviol glycosides can exceed 6,000 mg/L. In general, longer culture times will lead to greater amounts of product. Thus, the recombinant microorganism can be cultured for from 1 day to 7 days, from 1 day to 5 days, from 3 days to 5 days, about 3 days, about 4 days, or about 5 days.


It will be appreciated that the various genes and modules discussed herein can be present in two or more recombinant microorganisms rather than a single microorganism. When a plurality of recombinant microorganisms is used, they can be grown in a mixed culture to produce steviol and/or steviol glycosides. For example, a first microorganism can comprise one or more biosynthesis genes for producing steviol and null mutations in a first group of endogenous transporters, while a second microorganism comprises steviol glycoside biosynthesis genes and null mutations in a second group of endogenous transporters. The product produced by the second, or final microorganism is then recovered. It will also be appreciated that in some embodiments, a recombinant microorganism is grown using nutrient sources other than a culture medium and utilizing a system other than a fermenter.


Alternatively, the two or more microorganisms each can be grown in a separate culture medium and the product of the first culture medium, e.g., steviol, can be introduced into second culture medium to be converted into a subsequent intermediate, or into an end product such as RebA. The product produced by the second, or final microorganism is then recovered. The microorganisms can have the same or a different group of mutations in endogenous transporters. It will also be appreciated that in some embodiments, a recombinant microorganism is grown using nutrient sources other than a culture medium and utilizing a system other than a fermenter.


Steviol glycosides do not necessarily have equivalent performance in different food systems. It is therefore desirable to have the ability to direct the synthesis to steviol glycoside compositions of choice. Recombinant hosts described herein can produce compositions that are selectively enriched for specific steviol glycosides (e.g., RebD) and have a consistent taste profile. Thus, the recombinant microorganisms described herein can facilitate the production of compositions that are tailored to meet the sweetening profile desired for a given food product and that have a proportion of each steviol glycoside that is consistent from batch to batch. Microorganisms described herein do not produce the undesired plant byproducts found in Stevia extracts. Thus, steviol glycoside compositions produced by the recombinant microorganisms described herein are distinguishable from compositions derived from Stevia plants.


Steviol glycosides and compositions obtained by the methods disclosed herein can be used to make food products, dietary supplements and sweetener compositions. See, e.g., WO 2011/153378, WO 2013/022989, WO 2014/122227, and WO 2014/122328, each of which has been incorporated by reference in its entirety.


For example, substantially pure steviol or steviol glycoside such as RebM or RebD can be included in food products such as ice cream, carbonated beverages, fruit juices, yogurts, baked goods, chewing gums, hard and soft candies, and sauces. Substantially pure steviol or steviol glycoside can also be included in non-food products such as pharmaceutical products, medicinal products, dietary supplements and nutritional supplements. Substantially pure steviol or steviol glycosides may also be included in animal feed products for both the agriculture industry and the companion animal industry. Alternatively, a mixture of steviol and/or steviol glycosides can be made by culturing recombinant microorganisms separately, each producing a specific steviol or steviol glycoside, recovering the steviol or steviol glycoside in substantially pure form from each microorganism and then combining the compounds to obtain a mixture comprising each compound in the desired proportion. The recombinant microorganisms described herein permit more precise and consistent mixtures to be obtained compared to current Stevia products. For example, recombinant microorganisms described herein can express transporters specific for transport of a particular rebaudioside into the culture medium. When a transporter is specific for a particular rebaudioside it will enrich the concentration of that compound in the fermentation broth, preventing it from being further reacted to a different compound, and by selectively transporting the rebaudioside into the fermentation broth it will make it easier to recover from the other rebaudiosides and therefore making the process more efficient.


In another alternative, a substantially pure steviol or steviol glycoside can be incorporated into a food product along with other sweeteners, e.g. saccharin, dextrose, sucrose, fructose, erythritol, aspartame, sucralose, monatin, or acesulfame potassium. The weight ratio of steviol or steviol glycoside relative to other sweeteners can be varied as desired to achieve a satisfactory taste in the final food product. See, e.g., U.S. 2007/0128311. In some embodiments, the steviol or steviol glycoside may be provided with a flavor (e.g., citrus) as a flavor modulator.


Compositions produced by a recombinant microorganism described herein can be incorporated into food products. For example, a steviol glycoside composition produced by a recombinant microorganism can be incorporated into a food product in an amount ranging from about 20 mg steviol glycoside/kg food product to about 1800 mg steviol glycoside/kg food product on a dry weight basis, depending on the type of steviol glycoside and food product. For example, a steviol glycoside composition produced by a recombinant microorganism can be incorporated into a dessert, cold confectionary (e.g., ice cream), dairy product (e.g., yogurt), or beverage (e.g., a carbonated beverage) such that the food product has a maximum of 500 mg steviol glycoside/kg food on a dry weight basis. A steviol glycoside composition produced by a recombinant microorganism can be incorporated into a baked good (e.g., a biscuit) such that the food product has a maximum of 300 mg steviol glycoside/kg food on a dry weight basis. A steviol glycoside composition produced by a recombinant microorganism can be incorporated into a sauce (e.g., chocolate syrup) or vegetable product (e.g., pickles) such that the food product has a maximum of 1000 mg steviol glycoside/kg food on a dry weight basis. A steviol glycoside composition produced by a recombinant microorganism can be incorporated into a bread such that the food product has a maximum of 160 mg steviol glycoside/kg food on a dry weight basis. A steviol glycoside composition produced by a recombinant microorganism, plant, or plant cell can be incorporated into a hard or soft candy such that the food product has a maximum of 1600 mg steviol glycoside/kg food on a dry weight basis. A steviol glycoside composition produced by a recombinant microorganism, plant, or plant cell can be incorporated into a processed fruit product (e.g., fruit juices, fruit filling, jams, and jellies) such that the food product has a maximum of 1000 mg steviol glycoside/kg food on a dry weight basis.


For example, such a steviol glycoside composition can have from 90-99% RebA and an undetectable amount of stevia plant-derived contaminants, and be incorporated into a food product at from 25-1600 mg/kg, e.g., 100-500 mg/kg, 25-100 mg/kg, 250-1000 mg/kg, 50-500 mg/kg or 500-1000 mg/kg on a dry weight basis.


Such a steviol glycoside composition can be a RebB-enriched composition having greater than 3% RebB and be incorporated into the food product such that the amount of RebB in the product is from 25-1600 mg/kg, e.g., 100-500 mg/kg, 25-100 mg/kg, 250-1000 mg/kg, 50-500 mg/kg or 500-1000 mg/kg on a dry weight basis. Typically, the RebB-enriched composition has an undetectable amount of stevia plant-derived contaminants.


Such a steviol glycoside composition can be a RebD-enriched composition having greater than 3% RebD and be incorporated into the food product such that the amount of RebD in the product is from 25-1600 mg/kg, e.g., 100-500 mg/kg, 25-100 mg/kg, 250-1000 mg/kg, 50-500 mg/kg or 500-1000 mg/kg on a dry weight basis. Typically, the RebD-enriched composition has an undetectable amount of stevia plant-derived contaminants.


Such a steviol glycoside composition can be a RebE-enriched composition having greater than 3% RebE and be incorporated into the food product such that the amount of RebE in the product is from 25-1600 mg/kg, e.g., 100-500 mg/kg, 25-100 mg/kg, 250-1000 mg/kg, 50-500 mg/kg or 500-1000 mg/kg on a dry weight basis. Typically, the RebE-enriched composition has an undetectable amount of stevia plant-derived contaminants.


Such a steviol glycoside composition can be a RebM-enriched composition having greater than 3% RebM and be incorporated into the food product such that the amount of RebM in the product is from 25-1600 mg/kg, e.g., 100-500 mg/kg, 25-100 mg/kg, 250-1000 mg/kg, 50-500 mg/kg or 500-1000 mg/kg on a dry weight basis. Typically, the RebM-enriched composition has an undetectable amount of stevia plant-derived contaminants.


In some embodiments, a substantially pure steviol or steviol glycoside is incorporated into a tabletop sweetener or “cup-for-cup” product. Such products typically are diluted to the appropriate sweetness level with one or more bulking agents, e.g., maltodextrins, known to those skilled in the art. Steviol glycoside compositions enriched for RebA, RebB, RebD, RebE, or RebM, can be package in a sachet, for example, at from 10,000 to 30,000 mg steviol glycoside/kg product on a dry weight basis, for tabletop use.


The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.


EXAMPLES

The Examples that follow are illustrative of specific embodiments of the invention, and various uses thereof. They are set forth for explanatory purposes only, and are not to be taken as limiting the invention.


Example 1. LC-MS Analytical Procedures

The LC-MS methods described here are oriented towards the separation, general detection and potential identification of chemicals of particular masses (i.e. steviol glycosides) in the presence of a mixture (i.e. culture media). LC-MS analyses were performed on: (A) an UltiMate® 3000-TSQ (Thermo Fisher Scientific); (B) a 1290 Infitity—6130SQ (Agilent); or (C) an Acquity—XevoTQD (Waters) system. Specific methods used for each system are described below.


Method A: LC-MS analyses were performed using an UltiMate® 3000 UPLC system (Dionex) fitted with a waters ACQUITY UPLC® BEH shield RP18 column (2.1×50 mm, 1.7 μm particles, 130 Å pore size) connected to a TSQ Quantum® Access (ThermoFisher Scientific) triple quadropole mass spectrometer with a heated electrospray ion (HESI) source, unless otherwise indicated. Elution was carried out using a mobile phase of eluent B (MeCN with 0.1% Formic acid) and eluent A (water with 0.1% Formic acid) by increasing the gradient from 25% to 47% B from min. 0.0 to 4.0, increasing 47% to 100% B in min. 4.0 to 5.0, holding 100% B from min. 5.0 to 6.5 re-equilibration. The flow rate was 0.4 mL/min and the column temperature 35° C. The steviol glycosides were detected using SIM (Single Ion Monitoring) with the following m/z-traces.









TABLE 1







MS analytical information for Steviol Glycosides













compound


Description
Exact Mass
m/z trace
(typical tR in min)





Steviol +
[M + H]+
481.2 ± 0.5
19-SMG (2.29),


1 Glucose
481.2796
503.1 ± 0.5
13-SMG (3.5)



[M + Na]+



503.2615


Steviol +
[M + Na]+

665 ± 0.5

Rubusoside (2.52)


2 Glucose
665.3149

Steviol-1,2-bioside (2.92)





Steviol-1,3-bioside (2.28)


Steviol +
[M + Na]+
827.4 ± 0.5
1,2-Stevioside (2.01)


3 Glucose
827.3677

1,3-Stevioside (2.39)





RebB (2.88)


Steviol +
[M + Na]+
989.4 ± 0.5
RebA (2.0)


4 Glucose
989.4200


Steviol +
[M + Na]+
1151.4 ± 0.5 
RebD (1.1)


5 Glucose
1151.4728 


Steviol +
[M + Na]+
1313.5 ± 0.5 
RebM (1.3)


6 Glucose
1313.5257 









The levels of steviol glycosides were quantified by comparing with calibration curves obtained with authentic standards from LGC Standards. For example, standard solutions of 0.5 to 100 μM RebA were typically utilized to construct a calibration curve.


Method B: A second analytical method was performed on the Agilent system 1290 Infinity fitted with a waters ACQUITY UPLC® BEH shield RP18 column (2.1×50 mm, 1.7 μm particles, 130 Å pore size, Waters) was connected to a 6130 single quadrupole mass detector (Agilent) with a APCI ion source. Elution was carried out using a mobile phase of eluent B (MeCN with 0.1% Formic acid) and eluent A (water with 0.1% Formic acid) by increasing the gradient from 23% to 47% B from min. 0.0 to 4.0, increasing 47% to 100% B in min. 4.0 to 5.0, holding 100% B from min. 5.0 to 6.5 re-equilibration. The flow rate was 0.6 mL/min and the column temperature 50° C. The steviol glycosides were detected using SIM (Single Ion Monitoring) with the following m/z-traces.









TABLE 2







MS analytical information for Steviol Glycosides












SIM
time
m/z


compound


trace No
window
trace
Exact Mass
Description
(typical tR in min)
















1
0.0-1.51
min
1289.5
[M − H]
Steviol +
RebM (0.91)






1289.5281 
6 Glucose



1.51-1.90
min
687.3
[M + HCOOH − H]
Steviol +
Rubusoside






687.3217
2 Glucose



1.90-5.0
min
641.0
[M − H]
Steviol +
1,2-Stevioside (1.44)






641.3168
2 Glucose
1,3-stevioside (1.74)


2
0.0-1.0
min
1127.4
[M − H]
Steviol +
RebD (0.81)






1127.4752 
5 Glucose



1.0-5.0
min
525.3
[M − HCOOH − H]
Steviol +
19SMG (2.49)






525.2689
1 Glucose
13SMG (2.65)


3
0.0-2.8
min
965.4
[M − H]
Steviol +
RebA (1.42)






965.4224
4 Glucose


4
0.0-3.2
min
803.4
[M − H]
Steviol +
1,2-Stevioside (2.16)






803.3696
2 Glucose
1,3-Stevioside (2.34)








RebB (2.13)









The levels of steviol glycosides were quantified by comparing with calibration curves obtained with authentic standards from LGC Standards. For example, standard solutions of 0.3 to 25 μM RebA were typically utilized to construct a calibration curve.


Method C: A third analytical method used was LC-MS analyses performed using a Waters ACQUITY UPLC (Waters Corporation, Milford, Mass.) with Waters ACQUITY UPLC® BEH C18 column (2.1×50 mm, 1.7 μm particles, 130 Å pore size) coupled to a Waters ACQUITY TQD triple quadropole mass spectrometer with electrospray ionization (ESI) in negative mode. Compound separation was achieved by a gradient of the two mobile phases A (water with 0.1% formic acid) and B (MeCN with 0.1% formic acid) by increasing from 20% to 50% B between 0.3 to 2.0 min, increasing to 100% B at 2.01 min, holding 100% B for 0.6 min and re-equilibrate for another 0.6 min. The flow rate was 0.6 ml/min and the column temperature 55° C. RebD (m/z 1127.5), RebM (m/z 1289.5), rebaudioside A (m/z 965.4) and RebB (m/z 803.4) were monitored using SIM (Single Ion Monitoring) and quantified by comparing with authentic standards.


Example 2. Construction of a Steviol Glycoside-Producing Yeast Strain

Steviol glycoside-producing S. cerevisiae strains were constructed as described in WO 2011/153378, WO 2013/022989, WO 2014/122227, and WO 2014/122328, each of which is incorporated by reference in its entirety. For example, a yeast strain comprising a recombinant gene encoding a Synechococcus sp. GGPPS polypeptide (SEQ ID NO:1, SEQ ID NO:149), a recombinant gene encoding a truncated Zea mays CDPS polypeptide (SEQ ID NO:2, SEQ ID NO:150), a recombinant gene encoding an A. thaliana KS polypeptide (SEQ ID NO:3, SEQ ID NO:151), a recombinant gene encoding a recombinant S. rebaudiana KO1 polypeptide (SEQ ID NO:4, SEQ ID NO:152), a recombinant gene encoding an A. thaliana ATR2 polypeptide (SEQ ID NO:5, SEQ ID NO:153), a recombinant gene encoding an O. sativa EUGT11 polypeptide (SEQ ID NO:12; SEQ ID NO:148), a recombinant gene encoding an SrKAHe1 polypeptide (SEQ ID NO:6, SEQ ID NO:154), a recombinant gene encoding an S. rebaudiana CPR8 polypeptide (SEQ ID NO:7, SEQ ID NO:155), a recombinant gene encoding an S. rebaudiana UGT85C2 polypeptide (SEQ ID NO:8, SEQ ID NO:156), a recombinant gene encoding an S. rebaudiana UGT74G1 polypeptide (SEQ ID NO:9, SEQ ID NO:157), a recombinant gene encoding an S. rebaudiana UGT76G1 polypeptide (SEQ ID NO:10, SEQ ID NO:158), and a recombinant gene encoding an S. rebaudiana UGT91D2 variant (or functional homolog), UGT91D2e-b (SEQ ID NO:11, SEQ ID NO:159) polypeptide produced steviol glycosides. As analyzed by LC-MS (Method C) following DMSO-extraction of total steviol glycosides from the whole cell and broth mixture (total production), the strain produced between 18-21 μg/mL or 1-1.5 μg/mL/OD600 RebM after growth for five days in 1 mL SC (Synthetic Complete) media at 30° C. with 400 rpm shaking in deep-well plates. See Table 3.









TABLE 3





Steviol glycoside production in a representative



S. cerevisiae strain comprising genes encoding GGPPS,



truncated CDPS, KS, KO, ATR2, EUGT11, SrKAHe1, CPR8,


UGT85C2, UGT74G1, UGT76G1, and EUGT11 polypeptides.





















RebB
RebA
RebD
RebM




(μg/mL/
(μg/mL/
(μg/mL/
(μg/mL/
Normalized by



OD600)
OD600)
OD600)
OD600)
OD600







0.21
0.33
0.33
1.3
Average



0.028
0.054
0.032
0.14
Std Deviation







RebB
RebA
RebD
RebM



(μg/mL)
(μg/mL)
(μg/mL)
(μg/mL)







3.1
4.9
5.0
19.0
Average



0.42
0.81
0.48
2.1
Std Deviation










A second strain, which comprised additional copies of the genes of the first strain, was analyzed for steviol glycoside production. The second strain produced RebD and RebM as primary steviol glycosides, although at higher levels than the first strain.


As analyzed by LC-MS (Method C) following DMSO-extraction of total steviol glycosides from the whole cell and broth mixture (total production), the second strain produced between 60-80 μg/mL or 4-6 μg/mL/OD600 RebM, after growth for five days in 1 mL SC media at 30° C. with 400 rpm shaking in deep-well plates. Production of RebA, RebB, RebD and RebM by the second strain is shown in Table 4.









TABLE 4





Steviol glycoside production in an S. cerevisiae strain


comprising additional copies of genes encoding GGPPS,


truncated CDPS, KS, KO, ATR2, EUGT11, SrKAHe1, CPR8,


UGT85C2, UGT74G1, UGT76G1, and EUGT11 polypeptides.





















RebA
RebB
RebD
RebM




(μg/mL/
(μg/mL/
(μg/mL/
(μg/mL/
Normalized by



OD600)
OD600)
OD600)
OD600)
OD600







2.1
0.67
1.6
4.8
Average



0.66
0.21
0.75
2.3
Std Deviation







RebA
RebB
RebD
RebM



(μg/mL)
(μg/mL)
(μg/mL)
(μg/mL)







31.0
10.1
23.7
72.5
Average



9.9
3.1
11.3
34.4
Std Deviation










Example 3. Knockout of Yeast Endogenous Transport Genes and Transport-Related Genes

Observations from deep-well studies of Example 2 and similar strains indicated that the fraction of RebA, RebB, RebD or RebM in the supernatant changes with time, and the effect was determined not to be the result of cell lysis. To determine the effect of various transporters on steviol glycoside excretion in S. cerevisiae, deletion cassettes for homologous recombination were obtained by designing primers annealing approximately 200 bp upstream and downstream of the open reading frame (ORF) and then amplifying the ORF-specific deletion cassette from the S. cerevisiae deletion collection. The candidate genes selected include identified ORFs with relation to transport or comprising membrane spanning domains, regardless of subcellular localization. In the resulting colonies, the presence of the deletion cassette at the correct locus was verified by colony PCR. A maximum of 6 clones of each deletion was frozen down as freezer stock. All samples for analysis were initiated from the freezer stock and grown in SC medium for 5 days (30° C., shaking 400 rpm) prior to harvest and extraction of samples for LC-MS. Samples were analyzed for the presence of RebA, RebB, RebD and RebM in the culture broth lacking cells (Supernatant) as well as in the whole cell and broth mixture (Total production).


Concentrations of total and supernatant RebA, RebB, RebD and RebM were compared to the levels in a control steviol glycoside-producing strain. The amounts of RebA, RebB, RebD and RebM in each sample were normalized to the control strain by dividing the value of a particular steviol glycoside with the corresponding value for the control strain, thereby calculating a percentage to the control strain, where 1 equals 100 percent. The “ideal candidate” would exhibit a decrease in RebA, RebB, RebD and/or RebM levels in the supernatant, as compared to the control steviol glycoside-producing strain, without decreasing RebA, RebB, RebD, and/or RebM total production.


The effect of yeast gene knockouts on transport of higher molecular weight steviol glycosides into the culture medium was tested in a strain that produces steviol glycosides, such as the strains described in Example 2. Disruption of each specific transporter gene was performed by homologous recombination. After 5 days of growth in 1 mL SC medium at 30° C. and 400 rpm, cells were harvested. A 50 μL aliquot of the culture was mixed with an equal volume of 100% DMSO, vortexed, and heated to 80° C. for 10 min. The suspension was then centrifuged to remove cell debris. 60 μL of the mixture were analyzed by LC-MS as the “Total” sample. The remaining culture was then centrifuged to pellet cells. An aliquot of 50 μL was removed from the supernatant (i.e., the culture medium) and mixed with an equal volume of 100% DMSO. The suspension was heated to 80° C. for 10 min and centrifuged. 60 μL of the mixture were analysed by LC-MS as the “Supernatant” sample. The amounts of higher molecular weight steviol glycosides (including RebA, RebB, RebD, RebM) were measured by LC-MS (Method C), as described in Example 1


The data demonstrate that disruption of a single endogenous yeast transporter gene in a steviol glycoside-producing strain resulted in a decrease in the level of various steviol glycosides in the supernatant of the culture media, as evaluated by the normalized amount transported into the supernatant (see Tables 5-10). Tables 5-10 comprise lists of transport related genes that were knocked out in a steviol glycoside-producing strain. More specifically, Table 5 comprises a compiled list of genes by ordered locus name found to affect steviol glycoside excretion in steviol glycoside-producing strains and are therefore identified as having a role in steviol glycoside excretion. When the specified genes were knocked out, a more than 40% decrease in either the supernatant alone or in the ratio of supernatant/total production of RebA, RebB, RebD, and/or RebM was observed. This corresponded approximately to more than 2 standard deviations removed from the mean of a control steviol glycoside-producing strain (a value of 1 equals 100 percent of the control strain, whereas a value of 0.5 indicates a 50% decrease).


Table 6 comprises a compiled list of genes by ordered locus name found to affect steviol glycoside excretion in steviol glycoside-producing strains and are therefore identified as having a role in steviol glycoside excretion. When knocked out, these genes caused a mean of between 20-40% decrease in either the supernatant alone or in the ratio of supernatant/total production. This corresponded to approximately between 1 and 2 standard deviations removed from the mean of the control strain (a value of 1 equals 100 percent of the control strain, whereas a value of 0.5 indicates a 50% decrease).









TABLE 5A







Transport related genes with over a 40% decrease


in Reb A, RebB, RebD or RebM levels compared to


a control steviol glycoside-producing strain.












SEQ
Ordered



Uniprot


ID
Locus


Gene
Accession


No.
Name
Family
Description
name
No.















13
YBR180W
MFS
Secondary
DTR1
P38125





Transporter


14
YAL067C
MFS
Secondary
SEO1
P39709





Transporter


15
YBL089W
AAAP
Secondary
AVT5
P38176





Transporter


16
YBL099W
F-ATPase
ATP-Dependent
ATP1
P07251


17
YBR241C
MFS
Secondary

P38142





Transporter


18
YBR294W
SulP
Secondary
SUL1
P38359





Transporter


19
YCL069W
MFS
Secondary
VBA3
P25594





Transporter


20
YCR028C
MFS
Secondary
FEN2
P25621





Transporter


21
YCR075C
LCT
Secondary
ERS1
P17261





Transporter


22
YDL128W
CaCA
Secondary
VCX1
Q99385





Transporter


23
YDL185W
F-ATPase
ATP-Dependent
VMA1
P17255


24
YDL194W
MFS
Secondary
SNF3
P10870





Transporter


25
YDL210W
APC
Secondary
UGA4
P32837





Transporter


26
YDR061W
ABC
ATP-Dependent

Q12298


27
YDR093W
P-ATPase
ATP-Dependent
DNF2
Q12675


28
YDR338C
MOP/
Secondary

Q05497




MATE
Transporter


29
YDR406W
ABC
ATP-Dependent
PDR15
Q04182


30
YDR536W
MFS
Secondary
STL1
P39932





Transporter


31
YEL031W
P-ATPase
ATP-Dependent
SPF1
P39986


32
YER166W
P-ATPase
ATP-Dependent
DNF1
P32660


33
YFL011W
MFS
Secondary
HXT10
P43581





Transporter


34
YGL006W
P-ATPase
ATP-Dependent
PMC1
P38929











35
YGL013C
Transcription factor
PDR1
P12383












36
YGL255W
ZIP
Secondary
ZRT1
P32804





Transporter


37
YGR125W
SulP
Secondary

P53273





Transporter


38
YGR181W
MPT
ATP-Dependent
TIM13
P53299


39
YGR217W
VIC
Ion Channels
CCH1
P50077


40
YGR224W
MFS
Secondary
AZR1
P50080





Transporter


41
YGR281W
ABC
ATP-Dependent
YOR1
P53049


42
YHL016C
SSS
Secondary
DUR3
P33413





Transporter


43
YIL088C
AAAP
Secondary
AVT7
P40501





Transporter


44
YJL093C
VIC
Ion Channels
TOK1
P40310


45
YJL094C
CPA2
Secondary
KHA1
P40309





Transporter


46
YJL108C
ThrE
Secondary
PRM10
P42946





Transporter


47
YJL212C
OPT
Secondary
OPT1
P40897





Transporter


48
YJR106W
CaCA
Secondary
ECM27
P47144





Transporter
















TABLE 5B







Continued list of Transport related genes with over a


40% decrease in Reb A, RebB, RebD or RebM levels compared


to a control steviol glycoside-producing strain.













Ordered



Uniprot



Locus


Gene
Accession


No.
Name
Family
Description
name
No.















49
YJR160C
MFS
Secondary
MPH3
P0CE00





Transporter


50
YKL064W
MIT
Ion Channels
MNR2
P35724


51
YKR050W
Trk
Secondary
TRK2
P28584





Transporter


52
YKR105C
MFS
Secondary
VBA5
P36172





Transporter


53
YKR106W
MFS
Secondary
GEX2
P36173





Transporter


54
YLR447C
F-ATPase
ATP-Dependent
VMA6
P32366


55
YML116W
MFS
Secondary
SNQ1/
P13090





Transporter
ATR1


56
YMR034C
BASS
Secondary

Q05131





Transporter


57
YMR056C
MC
Secondary
AAC1
P04710





Transporter


58
YMR253C
DMT
Secondary

Q04835





Transporter


59
YNL065W
MFS
Secondary
AQR1
P53943





Transporter


60
YNL070W
MPT
ATP-Dependent
TOM7
P53507


61
YNL083W
MC
Secondary
SAL1
D6W196





Transporter


62
YNL095C
AEC
Secondary

P53932





Transporter


63
YNL121C
MPT
ATP-Dependent
TOM70
P07213


64
YNL142W
Amt
Ion Channels
MEP2
P41948


65
YOL020W
APC
Secondary
TAT2
P38967





Transporter


66
YOL075C
ABC
ATP-Dependent

Q08234


67
YOL077W-
F-ATPase
ATP-Dependent
ATP19
P81451



A


68
YOL122C
Nramp
Secondary
SMF1
P38925





Transporter


69
YOR079C
ZIP
Secondary
ATX2
Q12067





Transporter


70
YOR087W
TRP-CC
Ion Channels
YVC1
Q12324


71
YOR092W
AEC
Secondary
ECM3
Q99252





Transporter


72
YOR130C
MC
Secondary
ORT1
Q12375





Transporter


73
YOR222W
MC
Secondary
ODC2
Q99297





Transporter


74
YOR291W
P-ATPase
ATP-Dependent
YPK9
Q12697


75
YOR306C
MFS
Secondary
MCH5
Q08777





Transporter


76
YOR316C
CDF
Secondary
COT1
P32798





Transporter


77
YOR334W
MIT
Ion Channels
MRS2
Q01926


78
YPL078C
F-ATPase
ATP-Dependent
ATP4
P05626


79
YPL270W
ABC
ATP-Dependent
MDL2
P33311


80
YPL274W
APC
Secondary
SAM3
Q08986





Transporter


81
YPR003C
SulP
Secondary

P53394





Transporter


82
YPR011C
MC
Secondary

Q12251





Transporter


83
YPR058W
MC
Secondary
YMC1
P32331





Transporter


84
YPR128C
MC
Secondary
ANT1
Q06497





Transporter


85
YPR201W
ACR3
Secondary
ARR3
Q06598





Transporter
















TABLE 6A







Transport related genes with a 20-40% decrease


in Reb A, RebB, RebD or RebM levels compared to


a control steviol glycoside-producing strain.












SEQ
Ordered



Uniprot


ID
Locus


Gene
Accession


No.
Name
Family
Description
name
No.















86
YBR008C
MFS
Secondary
FLR1
P38124





Transporter


87
YBR021W
NCS1
Secondary
FUR4
P05316





Transporter


88
YBR043C
MFS
Secondary
QDR3
P38227





Transporter


89
YBR287W
AEC
Secondary

P38355





Transporter


90
YBR295W
P-ATPase
ATP-Dependent
PCA1
P38360


91
YBR296C
PiT
Secondary
PHO89
P38361





Transporter


92
YCL038C
MFS
Secondary
ATG22
P25568





Transporter


93
YCR011C
ABC
ATP-Dependent
ADP1
P25371


94
YDL054C
MFS
Secondary
MCH1
Q07376





Transporter


95
YDL100C
ArsAB
ATP-Dependent
GET3
Q12154


96
YDL245C
MFS
Secondary
HXT15
P54854





Transporter


97
YDL247W
MFS
Secondary
MPH2
P0CD99





Transporter


98
YDR011W
ABC
ATP-Dependent
SNQ2
P32568


99
YDR292C
IISP
ATP-Dependent
SRP101
P32916


100
YDR497C
MFS
Secondary
ITR1
P30605





Transporter


101
YEL006W
MC
Secondary
YEA6
P39953





Transporter


102
YEL027W
F-ATPase
ATP-Dependent
VMA3
P25515


103
YEL065W
MFS
Secondary
SIT1
P39980





Transporter


104
YER019C-A
IISP
ATP-Dependent
SBH2
P52871


105
YER053C
MC
Secondary
PIC2
P40035





Transporter


106
YER119C
AAAP
Secondary
AVT6
P40074





Transporter


107
YFL028C
ABC
ATP-Dependent
CAF16
P43569


108
YFR045W
MC
Secondary

P43617





Transporter


109
YGL084C
GUP
Secondary
GUP1
P53154





Transporter


110
YGL104C
MFS
Secondary
VPS73
P53142





Transporter


111
YGL114W
OPT
Secondary

P53134





Transporter


112
YGL167C
P-ATPase
ATP-Dependent
PMR1
P13586


113
YGR257C
MC
Secondary
MTM1
P53320





Transporter


114
YHL035C
ABC
ATP-Dependent
VMR1
P38735


115
YHL036W
APC
Secondary
MUP3
P38734





Transporter
















TABLE 6B







Continued list of Transport related genes with a 20-40%


decrease in Reb A, RebB, RebD or RebM levels compared


to a control steviol glycoside-producing strain.













Ordered







Locus


Gene
Accession


No.
Name
Family
Description
name
No.















116
YHR002W
MC
Secondary
LEU5
P38702





Transporter


117
YHR096C
MFS
Secondary
HXT5
P38695





Transporter


118
YIL006W
MC
Secondary
YIA6
P40556





Transporter


119
YIL120W
MFS
Secondary
QDR1
P40475





Transporter


120
YIL121W
MFS
Secondary
QDR2
P40474





Transporter


121
YIL166C
MFS
Secondary
SOA1
P40445





Transporter


122
YJL133W
MC
Secondary
MRS3
P10566





Transporter


123
YJL219W
MFS
Secondary
HXT9
P40885





Transporter


124
YKL016C
F-ATPase
ATP-Dependent
ATP7
P30902


125
YKL050C
MIT
Ion Channels

P35736


126
YKL120W
MC
Secondary
OAC1
P32332





Transporter


127
YKL146W
AAAP
Secondary
AVT3
P36062





Transporter


128
YKL209C
ABC
ATP-Dependent
STE6
P12866


129
YKR039W
APC
Secondary
GAP1
P19145





Transporter


130
YLR411W
Ctr
Ion Channels
CTR3
Q06686


131
YML038C
DMT
Secondary
YMD8
Q03697





Transporter


132
YMR166C
MC
Secondary

Q03829





Transporter


133
YMR279C
MFS
Secondary

Q03263





Transporter


134
YNL003C
MC
Secondary
PET8
P38921





Transporter


135
YNL268W
APC
Secondary
LYP1
P32487





Transporter


136
YNR055C
MFS
Secondary
HOL1
P53389





Transporter


137
YOL158C
MFS
Secondary
ENB1
Q08299





Transporter


138
YOR100C
MC
Secondary
CRC1
Q12289





Transporter


139
YOR153W
ABC
ATP-Dependent
PDR5
P33302


140
YOR271C
MTC
Secondary
FSF1
Q12029





Transporter


141
YOR273C
MFS
Secondary
TPO4
Q12256





Transporter


142
YOR307C
DMT
Secondary
SLY41
P22215





Transporter


143
YOR332W
F-ATPase
ATP-Dependent
VMA4
P22203


144
YOR348C
APC
Secondary
PUT4
P15380





Transporter


145
YPL036W
P-ATPase
ATP-Dependent
PMA2
P19657









Steviol glycoside exporter candidates were selected from the data based on two selection criteria for each steviol glycoside measured (i.e., two methods of normalizing expression).


Transporter selection criterion 1 corresponded to selection based on the level of high molecular weight steviol glycosides (RebA, RebB, RebD, or RebM) available in the supernatant, as well as the total production of the said steviol glycoside. Both values were normalized to the value of the corresponding steviol glycoside-producing control strain. The control level was set to 1, and the corresponding steviol glycoside level was calculated as a percentage of the control. For Ordered Locus Names (i.e., genes) of interest, the steviol glycoside available in the supernatant should be below 0.6 (below 60% of the control) or between 0.8-0.6 (80-60% of the control). To avoid false positives or a bias towards transporters that decrease the production in general, the calculation had an additional requirement that the total production had to be similar to the control. In the current calculation, production was set to be between 0.85 and 1.15 of the control, when the control is set to 1. In this regard, steviol glycoside production levels did not affect results. Table 7 shows the supernatant/total ratio for each candidate that fulfills the selection criteria.


Transporter selection criterion 2 corresponded to selection based on the ratio of high molecular weight steviol glycosides (RebA, RebB, RebD, or RebM) in the supernatant relative to total production of the said steviol glycoside. The supernatant-to-total production ratio was normalized to the ratio of the corresponding steviol glycoside-producing strain control. The control level was set to 1, and the corresponding steviol glycoside ratio was calculated as a percentage of the control. For Ordered Locus Names (i.e., genes) of interest, the supernatant-to-total production ratio for a given steviol glycoside should be below 0.6 (below 60% of the control) or between 0.8-0.6 (80-60% of the control). To avoid false positives or a bias towards transporters that decrease the production in general, the calculation had an additional requirement that the total production had to be similar to the control. In the current calculation, production was set to be between 0.85 and 1.15 of the control, when the control is set to 1. In this regard, steviol glycoside production levels did not affect results. Table 8 shows the supernatant/total ratio for each candidate that fulfills the selection criteria.


The data demonstrate that disruption of a single endogenous yeast transporter gene in a steviol glycoside-producing strain resulted in a decrease in the level of various steviol glycosides in the supernatant of the culture media, as evaluated by the normalized amount transported into the supernatant (see Tables 5-10), and are therefore identified as having a role in steviol glycoside excretion.


For example, deletion in a steviol glycoside-producing strain of YDL128W (SEQ ID NO:22), YDL194W (SEQ ID NO:24), YDL210W (SEQ ID NO:25), YFL011W (SEQ ID NO:33), YGL006W (SEQ ID NO:34), YGL013C (SEQ ID NO:35), YGL255W (SEQ ID NO:36), YGR181W (SEQ ID NO:38), YGR217W (SEQ ID NO:39), YIL088C (SEQ ID NO:43), YJL094C (SEQ ID NO:45), YJR106W (SEQ ID NO:48), YNL065W (SEQ ID NO:59), YNL083W (SEQ ID NO:61), YNL121C (SEQ ID NO:63), YNL142W (SEQ ID NO:64), YOR306C (SEQ ID NO:75), or YPR011C (SEQ ID NO:82) led to a measurable decrease of RebD excreted into the culture medium, indicating that each plays a role in RebD excretion. This was confirmed by transporter selection criteria 1 and 2 (see Tables 7 and 8, RebD column).


Furthermore, for example, deletion in a steviol glycoside-producing strain of YBR180W (SEQ ID NO:13), YBR241C (SEQ ID NO:17), YCL069W (SEQ ID NO:19), YCR075C (SEQ ID NO:21), YDL128W (SEQ ID NO:22), YDL194W (SEQ ID NO:24), YDR093W (SEQ ID NO:27), YDR338C (SEQ ID NO:28), YER166W (SEQ ID NO:32), YFL011W (SEQ ID NO:33), YGL006W (SEQ ID NO:34), YGL013C (SEQ ID NO:35), YGL255W (SEQ ID NO:36), YGR217W (SEQ ID NO:39), YJL094C (SEQ ID NO:45), YJR106W (SEQ ID NO:48), YJR160C (SEQ ID NO:49), YKR106W (SEQ ID NO:53), YML116W (SEQ ID NO:55), YMR056C (SEQ ID NO:57), YNL070W (SEQ ID NO:60), YNL083W (SEQ ID NO:61), YNL095C (SEQ ID NO:62), YNL121C (SEQ ID NO:63), YOR087W (SEQ ID NO:70), YOR291W (SEQ ID NO:74), YOR306C (SEQ ID NO:75), YPL274W (SEQ ID NO:80), or YPR011C (SEQ ID NO:82) led to a measurable decrease of RebM, indicating that each plays a role in RebM excretion. This was confirmed by transporter selection criteria 1 and 2 (see Tables 7 and 8, RebM column).


Table 7 represents the calculated ratio, normalized to a steviol glycoside-producing strain comprising genes encoding GGPPS, truncated CDPS, KS, KO, ATR2, EUGT11, SrKAHe1, CPR8, UGT85C2, UGT74G1, UGT76G1, and EUGT11 polypeptides, of supernatant/total production for each gene (by ordered locus name) deleted in the steviol glycoside-producing strain. The supernatant or supernatant/total ratio of less than 0.6 represented a more than 40% decrease in either the supernatant alone or in the ratio of supernatant/total production of RebA, RebB, RebD, or RebM, which corresponded approximately to more than 2 standard deviations removed from the mean of the control steviol glycoside-producing strain and indicates the gene as having a role in steviol glycoside transportation (Table 7). The supernatant or ratio supernatant/total of between 0.6 and 0.8 represents a 40-20% decrease in either the supernatant alone or in the ratio of supernatant/total production of RebA, RebB, RebD, or RebM, which corresponds to approximately between 1 and 2 standard deviations removed from the mean of the control steviol glycoside-producing strain, and indicates the gene as having a role in steviol glycoside transportation and/or production (Table 8). Total production of each steviol glycoside was between 0.85 and 1.15 compared to the steviol glycoside-producing strain. Table 8 shows the supernatant/total ratio for each candidate that fulfills the selection criteria.









TABLE 7







Transport related genes with over a 40% decrease in RebA, RebB, RebD


or RebM compared to a control steviol glycoside-producing strain comprising


genes encoding GGPPS, truncated CDPS, KS, KO, ATR2, EUGT11, SrKAHe1,


CPR8, UGT85C2, UGT74G1, UGT76G1, and EUGT11 polypeptides.










Transporter selection
Transporter selection



criterion 1
criterion 2



Total vs. Supernatant
Ratio Sup/Total vs. Total
















RebA
RebB
RebD
RebM
RebA
RebB
RebD
RebM



















YBR180W



0.486



0.486


YBR241C



0.529



0.529


YCL069W



0.519



0.519


YCR075C



0.448



0.448


YDL128W


0.459
0.405


0.459
0.405


YDL194W


0.652
0.482



0.482


YDL210W


0.000



0.000


YDR093W



0.569



0.569


YDR338C



0.451



0.451


YEL031W

0.488



0.488


YER166W



0.495



0.495


YFL011W


0.581
0.547


0.581
0.547


YGL006W






0.410
0.424


YGL013C


0.673
0.507



0.507


YGL255W


0.669
0.632


YGR181W


0.419



0.419


YGR217W


0.598
0.429


0.598
0.429


YIL088C


0.135



0.135


YJL094C


0.568
0.525


0.568
0.525


YJR106W


0.470
0.432


0.470
0.432


YJR160C



0.689


YKL064W

0.337



0.337


YKR106W



0.509



0.509


YML116W



0.706


YMR056C







0.591


YNL065W






0.571


YNL070W



0.633


YNL083W



0.481


0.592
0.481


YNL095C



0.610


YNL121C


0.620
0.456



0.456


YNL142W
0.561

0.369

0.561

0.369


YOR087W



0.611


YOR291W



0.681


YOR306C


0.596
0.559


0.596
0.559


YOR334W

0.520



0.520


YPL078C

0.590



0.590


YPL270W

0.665


YPL274W



0.561



0.561


YPR011C


0.542
0.611


0.542
















TABLE 8







Transport related genes with a 20-40% decrease in Reb A, RebB, RebD


or RebM compared to a control steviol glycoside-producing strain comprising


genes encoding GGPPS, truncated CDPS, KS, KO, ATR2, EUGT11, SrKAHe1,


CPR8, UGT85C2, UGT74G1, UGT76G1, and EUGT11 polypeptides.










Transports cal 1; total vs sup
Transports cal 2; ratio sup/total vs total
















RebA
RebB
RebD
RebM
RebA
RebB
RebD
RebM



















YBL089W



0.739



0.739


YBR008C
0.784


0.640
0.784


0.640


YBR021W

0.731



0.731


YBR043C
0.755


0.796
0.755


0.796


YBR180W


0.747



0.747


YBR241C


0.688

0.798

0.688


YBR287W
0.781
0.823
0.768

0.781

0.768


YBR295W


0.885
0.876


YBR296C

0.724
0.799
0.790

0.724
0.799
0.790


YCL038C

0.709

0.752

0.709

0.752


YCL069W


0.785



0.785


YCR075C


0.634



0.634


YDL054C


0.920


YDL100C


0.867


YDL194W






0.652


YDL210W



0.834


YDL245C
0.852


YDL247W



0.682



0.682


YDR011W


0.852


YDR093W
0.792
0.775
0.704

0.792
0.775
0.704


YDR338C
0.711
0.695
0.680

0.711
0.695
0.680


YDR497C



0.694



0.694


YEL006W



0.657


0.774
0.657


YEL065W


0.635



0.635


YER119C



0.872


YER166W
0.771
0.843
0.687

0.771

0.687


YFL011W

0.787



0.787


YFL028C


0.641



0.641


YFR045W


0.779



0.779


YGL006W


0.410
0.424


YGL013C






0.673


YGL084C

0.804


YGL104C
0.628
0.731

0.683
0.628
0.731

0.683


YGL114W





0.796


YGL167C
0.829


YGL255W






0.669
0.632


YGR217W

0.801


YGR257C
0.842


YHL035C


0.900
0.792



0.792


YHL036W



0.798



0.798


YHR096C


0.879
0.798



0.798


YIL006W
0.763


0.689
0.763

0.791
0.689


YIL120W



0.814


YIL121W


0.903


YIL166C


0.844


YJL212C


0.817
0.682



0.682


YJR106W
0.719



0.719


YJR160C

0.781
0.985


0.781

0.689


YKL050C



0.896


YKL120W



0.706



0.706


YKL146W

0.890


YKR039W
0.763



0.763


YKR106W

0.785
0.738


0.785
0.738


YLR411W
0.852

0.782



0.782


YML038C


0.724



0.724


YML116W


0.898




0.706


YMR056C


0.675
0.591

0.786
0.675


YMR279C



0.885


YNL065W
0.710
0.792
0.571

0.710
0.792


YNL070W
0.893

0.892




0.633


YNL083W


0.592


YNL095C


0.726



0.726
0.610


YNL121C






0.620


YNL268W

0.920


YNR055C


0.643



0.643


YOL122C



0.935


YOL158C


0.848
0.728



0.728


YOR087W







0.611


YOR100C

0.916


YOR271C

0.889
0.758
0.608


0.758
0.608


YOR273C
0.726
0.916
0.635

0.726

0.635


YOR291W







0.681


YOR307C







0.765


YOR348C



0.644



0.644


YPL036W
0.763

0.698

0.763

0.698


YPL078C


0.798



0.798


YPL270W


0.746


0.665
0.746


YPL274W
0.817
0.807
0.721



0.721


YPR011C
0.763



0.763


0.611









The effect of yeast gene knockouts on transport of higher molecular weight steviol glycosides into the culture medium (i.e., supernatant) also was tested in a steviol glycoside-producing strain comprising additional copies of genes encoding GGPPS, truncated CDPS, KS, KO, ATR2, EUGT11, SrKAHe1, CPR8, UGT85C2, UGT74G1, UGT76G1, and EUGT11 polypeptides, which was described in Example 2. The data demonstrated that disruption of a single endogenous yeast transporter gene in the steviol glycoside-producing strain resulted in a decrease in the level of various steviol glycosides in the supernatant of the culture media, as evaluated by the normalized amount transported or by the supernatant-to-total-production ratio (see Tables 9 and 10, RebD column). For example, deletion in the steviol glycoside-producing strain of YDR536W (SEQ ID NO:30), YHL016C (SEQ ID NO:42), YKR050W (SEQ ID NO:51), YOR291W (SEQ ID NO:74), YOR334W (SEQ ID NO:77), YPL270W (SEQ ID NO:79), YPR058W (SEQ ID NO:83), or YPR128C (SEQ ID NO:84) led to a measurable decrease of RebD transported into the supernatant, indicating that they play a role in RebD excretion. This was confirmed by transporter selection criteria 1 and 2 (see Tables 9 and 10, RebD column).


Furthermore, for example, deletion of YAL067C (SEQ ID NO:14), YDR406W (SEQ ID NO:29), YHL016C (SEQ ID NO:42), YJL212C (SEQ ID NO:47), YKR050W (SEQ ID NO:51), YMR034C (SEQ ID NO:56), YMR253C (SEQ ID NO:58), YOL075C (SEQ ID NO:66), YOL122C (SEQ ID NO:68), YOR222W (SEQ ID NO:73), YPR003C (SEQ ID NO:81), or YPR201W (SEQ ID NO:85) led to a measurable decrease of RebM transported into the supernatant, indicating that they play a role in RebM excretion. This was confirmed by transporter selection criteria 1 and 2 (see Tables 9 and 10, RebM column).


Table 9 represents the calculated ratio, normalized to a steviol glycoside-producing strain comprising additional copies of genes encoding GGPPS, truncated CDPS, KS, KO, ATR2, EUGT11, SrKAHe1, CPR8, UGT85C2, UGT74G1, UGT76G1, and EUGT11 polypeptides, of supernatant/total production for each gene (by ordered locus name) deleted in the steviol glycoside-producing strain. The supernatant or ratio supernatant/total of less than 0.6 represents a more than 40% decrease in either the supernatant alone or in the ratio of supernatant/total production of RebA, RebB, RebD, or RebM, which corresponds approximately to more than 2 standard deviations removed from the mean of a control steviol glycoside-producing strain, and indicates the gene as having a role in steviol glycoside transportation and/or production (Table 9). The supernatant or ratio supernatant/total of between 0.6 and 0.8 represents a 40-20% decrease in either the supernatant alone or in the ratio of supernatant/total production of RebA, RebB, RebD, or RebM, which corresponds to approximately between 1 and 2 standard deviations removed from the mean of the control strain, and indicates the gene as having a role in steviol glycoside transportation and/or production, and indicates the gene as having a role in steviol glycoside transportation and/or production (Table 10). Total production of each steviol glycoside was between 0.85 and 1.15 compared to the control steviol glycoside-producing strain. Table 10 shows the supernatant/total ratio for each candidate that fulfills the selection criteria.









TABLE 9







Transport related genes with over a 40% decrease in Reb A,


RebB, RebD or RebM compared to a control steviol glycoside-


producing strain comprising additional copies of genes encoding


GGPPS, truncated CDPS, KS, KO, ATR2, EUGT11, SrKAHe1, CPR8,


UGT85C2, UGT74G1, UGT76G1, and EUGT11 polypeptides.










Transporter selection
Transporter selection



criterion 1
criterion 2



total vs sup
ratio sup/total vs total
















RebA
RebB
RebD
RebM
RebA
RebB
RebD
RebM



















YAL067C



0.541



0.541


YBL089W
0.433
0.416


0.433
0.416


YBL099W
0.523



0.523


YBR294W
0.495



0.495


YCR028C

0.419



0.419


YDL185W
0.551



0.551


YDL210W
0.626
0.469



0.469


YDR061W
0.482

0.471

0.482

0.471


YDR406W



0.288



0.288


YDR536W
0.715

0.365



0.365


YFL011W

0.444



0.444


YGR125W

0.400



0.400


YGR224W

0.361



0.361


YGR281W

0.596



0.596


YHL016C


0.427
0.296


0.427
0.296


YJL093C

0.499



0.449


YJL108C
0.589



0.589


YJL212C
0.442


0.461
0.442


0.461


YKR050W
0.554

0.378
0.304
0.554

0.378
0.304


YLR447C
0.512



0.512


YMR034C
0.331


0.316
0.331


0.316


YMR253C
0.389


0.375
0.389


0.375


YOL020W
0.371



0.371


YOL075C
0.494


0.471
0.494


0.471


YOL077W-A
0.531



0.531


YOL122C



0.457



0.457


YOR079C
0.552



0.552


YOR092W
0.407



0.407


YOR130C
0.588



0.588


YOR222W
0.469


0.457
0.469


0.457


YOR291W


0.428



0.428


YOR334W


0.327



0.327


YPL270W


0.375



0.375


YPR003C
0.400


0.418
0.400


0.418


YPR058W


0.461



0.461


YPR128C


0.342



0.342


YPR201W
0.376


0.353
0.376


0.353
















TABLE 10







Transport related genes with a 20-40% decrease in Reb A, RebB,


RebD or RebM compared to a control steviol glycoside-producing


strain comprising additional copies of genes encoding GGPPS,


truncated CDPS, KS, KO, ATR2, EUGT11, SrKAHe1, CPR8, UGT85C2,


UGT74G1, UGT76G1, and EUGT11 polypeptides.










Transports cal 1; total vs sup
Transport cal 2; ratio sup/total vs total
















RebA
RebB
RebD
RebM
RebA
RebB
RebD
RebM



















YCR011C



0.654



0.654


YDL210W


0.729

0.626

0.729


YDR292C
0.724



0.724


YDR536W




0.715


YEL027W

0.799



0.799


YER019C-A
0.789



0.789


YER053C
0.651



0.651


YGR256W
0.744



0.744


YHR002W
0.795



0.795


YJL133W
0.691



0.691


YJL219W
0.674



0.674


YKL016C
0.627



0.627


YKL209C
0.721



0.721


YKR105C




0.646


YMR166C

0.924


YNL003C

0.814


YOR153W
0.801


YOR316C




0.640


YOR332W
0.700



0.700









Knockouts of YDL210W (SEQ ID NO:25) and YPL270W (SEQ ID NO:79) resulted in decreased RebD excretion in the steviol glycoside-producing strain comprising genes encoding GGPPS, truncated CDPS, KS, KO, ATR2, EUGT11, SrKAHe1, CPR8, UGT85C2, UGT74G1, UGT76G1, and EUGT11 polypeptides and the steviol glycoside-producing strain comprising additional copies of genes encoding GGPPS, truncated CDPS, KS, KO, ATR2, EUGT11, SrKAHe1, CPR8, UGT85C2, UGT74G1, UGT76G1, and EUGT11 polypeptides. As well, knockouts of YJL212C (SEQ ID NO:47) and YOL122C (SEQ ID NO:68) resulted in decreased RebM transport in both strains.


Example 4. Confirmation of Knockout of Yeast Endogenous Transport Genes by Overexpression in a RebD/M-Producing Strain

Overexpression of a subset of the initial candidate transporters from Example 3 was performed using both plasmid-based expression and an integration cassette. First, deep-well microtiter plate culture experiments were carried out. Two transport genes were overexpressed using a plasmid in a RebD/M-producing strain in order to confirm the results from the knockout experiments. YGR181W (SEQ ID NO:38), a TIM complex, helper protein for insertion of mitochondrial inner membrane proteins, and YDR061W (SEQ ID NO:26) an ABC-like transporter were overexpressed. The data shown in FIG. 2 demonstrate that the phenotype based on the knockout studies was confirmed with a plasmid based overexpression phenotype for YGR181W (SEQ ID NO:38) and YDR061W (SEQ ID NO:26) in deep-well plates.


Next, confirmation of the phenotype in fermenters was performed in additional steviol glycoside-producing strains, which were characterized by intergration of YGR181W (SEQ ID NO:38) or YDR061W (SEQ ID NO:26) on chromosome XII. The steviol glycoside-producing strains were grown on defined media at 30° C. in a fed-batch fermentation for about 5 days under glucose-limited conditions, and the levels of RebA, RebB, RebD, and RebM were measured using LC-MS (Method B, Example 1). The graphs shown in FIG. 3 illustrate an approximate 2-fold increase in RebD and RebM transported in the culture medium for the new integration constructs, and little change in RebA and RebB transport. Overexpression of YGR181W (SEQ ID NO:38) or YDR061W (SEQ ID NO:26) resulted in improved (˜2-fold) RebD and RebM transport into the culture medium (˜400-500 mg/L of supernatant RebD and RebM in YGR181W (SEQ ID NO:38) and YDR061W (SEQ ID NO:26) overexpression strains versus ˜250 mg/L of supernatant RebD and RebM in a control steviol glycoside-producing strain). See FIG. 3A. The ratio of transported RebD as compared to the total RebD increased from 0.158 in the control strain to 0.21-0.25 with the candidate genes overexpressed. RebM transport into the culture medium was also simultaneously improved. See FIG. 3.


Example 5. Overexpression of Selected Yeast Endogenous Transport Genes

Overexpression in a steviol glycoside-producing strain (as described in Example 2) using a plasmid with a constitutive promoter of the transporter genes shown in Table 11 resulted in greater than a 20% increase in excretion of RebA, RebB, RebD, and/or RebM. Results were analyzed using criterion 2 described in Example 3. Additionally, overexpression of the transporter genes shown in Table 12 resulted in greater than a 40% improvement in production of RebA, RebB, RebD, and/or RebM. Table 11 shows the supernatant/total ratio for each candidate that fulfills the selection criteria.









TABLE 11







Transport related genes with over a 20% increase


in RebA, RebB, RebD or RebM excretion, compared


to a control steviol glycoside-producing strain.










Ratio Supernatant/Total













RebB
RebA
RebD
RebM

















YOR079C


1.21




YMR166C

1.36
1.53
1.38



YEL027W

1.62
1.82
1.52



YDL054C

1.45
1.38
1.31



YKL120W

1.83
1.89
1.93



YDR536W

1.79
1.80
1.76



YBL099W



1.22



YML116W

1.32
1.31
1.42



YIL166C


1.27
1.22



YKR039W


1.26
1.41



YOR307C



1.23



YKL146W

1.36
1.47
1.66



YGL167C



1.33



YJL093C



1.29



YOR306C
1.67



YDL128W
1.85

1.29



YOR153W
1.42

1.21



YKL050C
1.59
1.22



YJL094C
1.71
1.24
1.24



YCL069W
1.59



YOL158C
1.52



YFL011W
1.44



YJR106W


1.38
1.33



YBR043C



1.20



YPR011C



1.27

















TABLE 12







Transport related genes with over a 40% increase


in RebA, RebB, RebD or RebM production, compared


to a control steviol glycoside-producing strain.










Increases in Production













RebB
RebA
RebD
RebM
















YMR166C


1.52



YIL166C
1.41
1.50
1.55



YKR039W

1.48
1.52



YKL146W


1.42



YJL093C

1.46
1.43



YOR306C


1.59



YDL128W


1.49



YOL122C

1.41
1.59



YIL006W

1.64
2.03



YFL028C


1.55



YBR021W

1.51
1.87



YHR002W

1.51
1.73



YEL031W

1.45
1.66



YCL069W


1.53



YOL158C

1.42
1.63



YKL064W

1.40
1.44



YHR096C


1.42



YOR332W


1.44



YDR338C

1.50
1.55



YJR106W

1.41
1.44



YBR043C

1.55
1.49



YPR011C


1.43



YFR045W

1.44










Example 6. Genomic Integration of Transporter Genes

DNA of the transporter genes selected for integration into the genome of a RebD/M-producing S. cerevisiae strain (see Example 2) was amplified from an S288C background by PCR and cloned into a plasmid with homology regions for the integration site and a PGK1 promoter for overexpression, using the USER cloning system. See, e.g., Nour-Eldin et al., 2010, Methods Mol Biol. 643:185-200. The USER cloning construct including the homology regions and the transporter was cut out from the plasmid using restriction enzymes, and the linear piece of DNA was integrated into the genome of the receiving RebD/M-producing strain by standard LiAc method. The genomically integrated transporters were tested in plates that release glucose from a polymer after addition of a growth medium. A polymer that releases 20 g/L glucose over 3 days was used to mimic the feed profile during fermentation. Steviol glycoside levels were measured by LC-MS (see Example 1), and OD600 was measured on a Perkin Elmer 2104 Multilabel reader. YBR043C (SEQ ID NO:88), YEL027W (SEQ ID NO:102), YJL093C (SEQ ID NO:44), YJR106W (SEQ ID NO:48), YKL120W (SEQ ID NO:126), and YMR166C (SEQ ID NO:132) showed improved excretion of 13-SMG. (FIG. 4A). YBR043C (SEQ ID NO:88), YEL027W (SEQ ID NO:102), and YMR166C (SEQ ID NO:132) showed improved excretion of RebA (FIG. 4B). YBR043C (SEQ ID NO:88), YEL027W (SEQ ID NO:102), and YMR166C (SEQ ID NO:132) showed improved excretion of RebB (FIG. 4C). YBR043C of SEQ ID NO:88, YEL027W of SEQ ID NO:102, YJL093C of SEQ ID NO:44, YJR106W of SEQ ID NO:48, and YMR166C of SEQ ID NO:132 showed improved production of RebD, and YBR043C of SEQ ID NO:88, YEL027W of SEQ ID NO:102, YIL166C (SEQ ID NO:121), YJL093C of SEQ ID NO:44, YJR106W of SEQ ID NO:48, and YMR166C of SEQ ID NO:132 showed improved production of RebM, as measured by an increase in RebD and RebM levels in the supernatant compared to a control steviol glycoside-producing strain. See FIGS. 4D and 4E. Controls with a URA marker are also shown in FIG. 4.



FIG. 5A shows supernatant levels of RebA, RebB, RebD, and RebM of an additional steviol glycoside-producing strain overexpressing YMR166C (SEQ ID NO:132), YEL027W (SEQ ID NO:102), YKL120W (SEQ ID NO:126), YJR106W (SEQ ID NO:48), YJL093C (SEQ ID NO:44), and YBR043C (SEQ ID NO:88) by the USER cloning system. The strain of FIG. 5 comprised a recombinant gene encoding a Synechococcus sp. GGPPS polypeptide (SEQ ID NO:1, SEQ ID NO:149), a recombinant gene encoding a truncated Zea mays CDPS polypeptide (SEQ ID NO:2, SEQ ID NO:150), a recombinant gene encoding an A. thaliana KS polypeptide (SEQ ID NO:3, SEQ ID NO:151), a recombinant gene encoding a recombinant S. rebaudiana KO1 polypeptide (SEQ ID NO:4, SEQ ID NO:152), a recombinant gene encoding a KO polypeptide (SEQ ID NO:XX, SEQ ID NO:XX), a recombinant gene encoding an A. thaliana ATR2 polypeptide (SEQ ID NO:5, SEQ ID NO:153), a recombinant gene encoding an O. sativa EUGT11 polypeptide (SEQ ID NO:12; SEQ ID NO:148), a recombinant gene encoding an SrKAHe1 polypeptide (SEQ ID NO:6, SEQ ID NO:154), a recombinant gene encoding an S. rebaudiana CPR8 polypeptide (SEQ ID NO:7, SEQ ID NO:155), a recombinant gene encoding an S. rebaudiana UGT85C2 polypeptide (SEQ ID NO:8, SEQ ID NO:156), a recombinant gene encoding an S. rebaudiana UGT74G1 polypeptide (SEQ ID NO:9, SEQ ID NO:157), a recombinant gene encoding an S. rebaudiana UGT76G1 polypeptide (SEQ ID NO:10, SEQ ID NO:158), and a recombinant gene encoding an S. rebaudiana UGT91D2 variant (or functional homolog), UGT91D2e-b (SEQ ID NO:11, SEQ ID NO:159) polypeptide. FIG. 5B shows total levels of RebA, RebB, RebD, and RebM of the above described steviol glycoside-producing strain overexpressing YMR166C (SEQ ID NO:132), YEL027W (SEQ ID NO:102), YKL120W (SEQ ID NO:126), YIL166C (SEQ ID NO:132), YJR106W (SEQ ID NO:48), YJL093C (SEQ ID NO:44), and YBR043C (SEQ ID NO:88) by the USER cloning system.


Example 7. Production of RebD and RebM by Fermentation of Steviol Glycoside-Producing S. cerevisiae Strains Overexpressing YJL093C or YBR043C

YJL093C (SEQ ID NO:44) and YBR043C (SEQ ID NO:88) were individually overexpressed in the steviol glycoside-producing strain described in Example 3. The strains were cultivated by fermentation (fed-batch, minimum medium, glucose-limiting) for approximately 130 h. Production of RebD and RebM was measured by LC-MS. As shown in Table 13, the strains overexpressing YJL093C or YBR043C produced higher levels of RebD and RebD+RebM, as compared to a control steviol glycoside-producing strain.









TABLE 13







Production of RebD and RebM in S. cerevisiae


strains overexpressing YJL093C and YBR043C.














Ferm.
Final Cell
RebD
RebM

RebD/RebM



Length
Dry
Titer
Titer
RebD +
Ratio


Strain
(h)
Weight
(g/L)
(g/L)
RebM
(g/g)
















Control
126.83
104.53
1.38
4.47
5.85
0.31


YJL093C
130.10
114.40
3.42
2.80
6.22
1.22


YBR043C
129.17
112.00
3.56
2.72
6.28
1.31
















TABLE 14





Sequences disclosed herein.















SEQ ID NO: 1



Synechococcus sp. GGPPS (GenBank A5098596.1)









atggtcgcac aaactttcaa cctggatacc tacttatccc aaagacaaca acaagttgaa
60


gaggccctaa gtgctgctct tgtgccagct tatcctgaga gaatatacga agctatgaga
120


tactccctcc tggcaggtgg caaaagatta agacctatct tatgtttagc tgcttgcgaa
180


ttggcaggtg gttctgttga acaagccatg ccaactgcgt gtgcacttga aatgatccat
240


acaatgtcac taattcatga tgacctgcca gccatggata acgatgattt cagaagagga
300


aagccaacta atcacaaggt gttcggggaa gatatagcca tcttagcggg tgatgcgctt
360


ttagcttacg cttttgaaca tattgcttct caaacaagag gagtaccacc tcaattggtg
420


ctacaagtta ttgctagaat cggacacgcc gttgctgcaa caggcctcgt tggaggccaa
480


gtcgtagacc ttgaatctga aggtaaagct atttccttag aaacattgga gtatattcac
540


tcacataaga ctggagcctt gctggaagca tcagttgtct caggeggtat tctcgcaggg
600


gcagatgaag agcttttggc cagattgtct cattacgcta gagatatagg cttggctttt
660


caaatcgtcg atgatatcct ggatgttact gctacatctg aacagttggg gaaaaccgct
720


ggtaaagacc aggcagccgc aaaggcaact tatccaagtc tattgggttt agaagcctct
780


agacagaaag cggaagagtt gattcaatct gctaaggaag ccttaagacc ttacggttca
840


caagcagagc cactcctagc gctggcagac ttcatcacac gtcgtcagca ttaa
894










SEQ ID NO: 2



Zea mays truncated CDPS









atggcacagcaca catcagaatc cgcagctgtc gcaaagggca gcagtttgac ccctatagtg
60


agaactgacg ctgagtcaag gagaacaaga tggccaaccg atgacgatga cgccgaacct
120


ttagtggatg agatcagggc aatgcttact tccatgtctg atggtgacat ttccgtgagc
180


gcatacgata cagcctgggt cggattggtt ccaagattag acggcggtga aggtcctcaa
240


tttccagcag ctgtgagatg gataagaaat aaccagttgc ctgacggaag ttggggcgat
300


gccgcattat tctctgccta tgacaggctt atcaataccc ttgcctgcgt tgtaactttg
360


acaaggtggt ccctagaacc agagatgaga ggtagaggac tatctttttt gggtaggaac
420


atgtggaaat tagcaactga agatgaagag tcaatgccta ttggcttcga attagcattt
480


ccatctttga tagagcttgc taagagccta ggtgtccatg acttccctta tgatcaccag
540


gccctacaag gaatctactc ttcaagagag atcaaaatga agaggattcc aaaagaagtg
600


atgcataccg ttcdaacatc aatattgcac agtttggagg gtatgcctgg cctagattgg
660


gctaaactac ttaaactaca gagcagcgac ggaagttttt tgttctcacc agctgccact
720


gcatatgctt taatgaatac cggagatgac aggtgtttta gctacatcga tagaacagta
780


aagaaattca acggcggcgt ccctaatgtt tatccagtgg atctatttga acatatttgg
840


gccgttgata gacttgaaag attaggaatc tccaggtact tccaaaagga gatcgaacaa
900


tgcatggatt atgtaaacag gcattggact gaggacggta tttgttgggc aaggaactct
960


gatgtcaaag aggtggacga cacagctatg gcctttagac ttcttaggtt gcacggctac
1020


agcgtcagtc ctgatgtgtt taaaaacttc gaaaaggacg gtgaattttt cgcatttgtc
1080


ggacagtcta atcaagctgt taccggtatg tacaacttaa acagagcaag ccagatATCC
1140


ttcccaggcg aggatgtgct tcatagagct ggtgccttct catatgagtt cttgaggaga
1200


aaagaagcag agggagcttt gagggacaag tggatcattt ctaaagatct acctggtgaa
1260


gttgtgtata ctttggattt tccatggtac ggcaacttac ctagagtcga ggccagagac
1320


tacctagagc aatacggagg tggtgatgac gtttggattg gcaagacatt gtataggatg
1380


ccacttgtaa acaatgatgt atatttggaa ttggcaagaa tggatttcaa ccactgccag
1440


gctttgcatc agttagagtg gcaaggacta aaaagatggt atactgaaaa taggttgatg
1500


gactttggtg tcgcccaaga agatgccctt agagcttatt ttcttgcagc cgcatctgtt
1560


tacgagcctt gtagagctgc cgagaggctt gcatgggcta gagccgcaat actagctaac
1620


gccgtgagca cccacttaag aaatagccca tcattcagag aaaggttaga gcattctctt
1680


aggtgtagac ctagtgaaga gacagatggc tcctggttta actcctcaag tggctctgat
1740


gcagttttag taaaggctgt cttaagactt actgattcat tagccaggga agcacagcca
1800


atccatggag gtgacccaga agatattata cacaagttat taagatctgc ttgggccgag
1860


tgggttaggg aaaaggcaga cgctgccgat agcgtgtgca atggtagttc tgcagtagaa
1920


caagagggat caagaatggt ccatgataaa cagacctgtc tattattggc tagaatgatc
1980


gaaatttctg ccggtagggc agctggtgaa gcagccagtg aggacggcga tagaagaata
2040


attcaattaa caggctccat ctgcgacagt cttaagcaaa aaatgctagt ttcacaggac
2100


cctgaaaaaa atgaagagat gatgtctcac gtggatgacg aattgaagtt gaggattaga
2160


gagttcgttc aatatttgct tagactaggt gaaaaaaaga ctggatctag cgaaaccagg
2220


caaacatttt taagtatagt gaaatcatgt tactatgctg ctcattgccc acctcatgcc
2280


gttgatagac acattagtag agtgattttc gagccagtaa gtgccgcaaa gtaaccgcgg
2340










SEQ ID NO: 3



Arabidopsis thaliana KS (similar to GenBank AEE36246.1)









atgtctatta atttgagatc ttccggttgt agctccccaa taagcgcaac tttggaaagg
60


ggtctagact ctgaagttca aacaagagca aacaatgtat cttttgagca gaccaaagag
120


aagatcagga aaatgcttga gaaggtcgag ttgagcgtga gtgcctatga cactagttgg
180


gtagctatgg tcccatcacc atccagtcaa aacgcacctc ttttcccaca gtgcgtcaaa
240


tggctacttg ataatcaaca tgaggacggc tcttggggat tggataacca cgaccatcag
300


agcttaaaga aagatgtgtt gtcatccaca ttagcctcta tcctagctct taagaaatgg
360


ggaataggcg aaagacagat caataagggt ctacagttca ttgaattaaa ctctgcacta
420


gttaccgatg aaactataca aaaacctaca ggtttcgaca tcatttttcc aggaatgatt
480


aagtacgcca gggaccttaa tttgaccata cctcttggct cagaagtagt cgacgatatg
540


atcaggaaaa gagatctaga cttaaagtgt gatagcgaga aattcagcaa aggtagagag
600


gcttatcttg cctatgttct tgaaggaact aggaacttga aggactggga cttaattgtg
660


aaatatcaga gaaagaacgg tagtctattt gatagtccag ctacaaccgc cgcagctttc
720


actcaatttg gcaatgacgg ttgcttgagg tacttatgtt cacttttaca gaaattcgag
780


gccgcagtgc ctagtgtata tccatttgat caatacgcta gattaagcat aatcgtcact
840


ttagaatcat tgggaattga cagagatttc aagactgaga taaaaagcat attggatgag
900


acctataggt actggcttag aggtgacgaa gaaatttgcc tagatttggc cacatgtgca
960


cttgctttta ggttgctttt agcccacggc tatgacgtgt catacgatcc tctaaagcca
1020


tttgcagagg aatctggttt cagcgatacc cttgagggat atgttaaaaa caccttttcc
1080


gtattagagc ttttcaaggc tgcccaaagt taccctcatg agagtgcttt gaaaaagcag
1140


tgttgctgga caaaacaata tctagaaatg gaactaagtt catgggttaa aacaagcgtt
1200


agggacaagt acttgaaaaa ggaagtggag gatgctttgg catttccatc atatgcctct
1260


ttagaaagaa gtgaccacag aaggaaaatt cttaatggct cagcagttga aaacacaaga
1320


gtaaccaaga cctcttacag gttgcataat atatgtacat cagatatctt aaaacttgct
1380


gtcgacgatt tcaacttttg ccaatctatt catagagagg aaatggaaag attggataga
1440


tggatagtgg agaatagact acaggaatta aagttcgcca gacaaaaatt ggcttactgt
1500


tactttagtg gcgctgccac actattctct ccagaattgt ctgacgcaag gatctcatgg
1560


gctaagggag gtgttctaac cacagtagtc gatgactttt ttgatgttgg cggtagtaaa
1620


gaagagcttg agaacttaat tcacttggtg gaaaagtggg atcttaatgg agttcctgaa
1680


tactcttcag agcatgtaga aataattttc tctgtcctaa gagacactat cttagaaacc
1740


ggtgataaag cctttacata tcagggcaga aacgttactc accatattgt gaaaatatgg
1800


ttggacttac ttaagagcat gctaagggag gctgaatggt ccagtgacaa atcaacccca
1860


tctttggaag attacatgga gaatgcctat atcagcttcg cattaggtcc tattgtattg
1920


ccagctacat accttatagg acctccacta cctgaaaaga ctgtcgactc ccaccaatat
1980


aatcaattat acaaattggt tagtaccatg ggtagactat taaacgatat ccagggcttt
2040


aagagggaat cagccgaggg aaaacttaat gcagtgtctc tacatatgaa gcatgaaaga
2100


gacaacagaa gcaaagaggt tattatagaa tccatgaaag gattggctga aaggaaaaga
2160


gaggaattac acaaacttgt actagaagag aaaggtagtg tcgttccaag agaatgcaag
2220


gaaggettct taaaaatgtc aaaagtgttg aacctttttt ataggaagga tgatggcttc
2280


acatctaacg acttgatgag ccttgtgaaa tccgtcatct acgagcctgt ttcacttcaa
2340


aaggagagtc taacttga
2358










SEQ ID NO: 4



S. rebaudiana KO1 (codon optimized)









atggatgctg tgacgggttt gttaactgtc ccagcaaccg ctataactat tggtggaact
60


gctgtagcat tggaggtagc gctaatcttt tggtacctga aatcctacac atcagctaga
120


agatcccaat caaatcatct tccaagagtg cctgaagtcc caggtgttcc attgttagga
180


aatctgttac aattgaagga gaaaaagcca tacatgactt ttacgagatg ggcagcgaca
240


tatggaccta tctatagtat caaaactggg gctacaagta tggttgtggt atcatctaat
300


gagatagcca aggaggcatt ggtgaccaga ttccaatcca tatctacaag gaacttatct
360


aaagccctga aagtacttac agcagataag acaatggtcg caatgtcaga ttatgatgat
420


tatcataaaa cagttaagag acacatactg accgccgtct tgggtcctaa tgcacagaaa
480


aagcatagaa ttcacagaga tatcatgatg gataacatat ctactcaact tcatgaattc
540


gtgaaaaaca acccagaaca ggaagaggta gaccttagaa aaatctttca atctgagtta
600


ttcggcttag ctatgagaca agccttagga aaggatgttg aaagtttgta cgttgaagac
660


ctgaaaatca ctatgaatag agacgaaatc tttcaagtcc ttgttgttga tccaatgatg
720


ggagcaatcg atgttgattg gagagacttc tttccatacc taaagtgggt cccaaacaaa
780


aagttcgaaa atactattca acaaatgtac atcagaagag aagctgttat gaaatcttta
840


atcaaagagc acaaaaagag aatagcgtca ggcgaaaagc taaatagtta tatcgattac
900


cttttatctg aagctcaaac tttaaccgat cagcaactat tgatgtcctt gtgggaacca
960


atcattgaat cttcagatac aacaatggtc acaacagaat gggcaatgta cgaattagct
1020


aaaaacccta aattgcaaga taggttgtac agagacatta agtccgtctg tggatctgaa
1080


aagataaccg aagagcatct atcacagctg ccttacatta cagctatttt ccacgaaaca
1140


ctgagaagac actcaccagt tcctatcatt cctctaagac atgtacatga agataccgtt
1200


ctaggcggct accatgttcc tgctggcaca gaacttgccg ttaacatcta cggttgcaac
1260


atggacaaaa acgtttggga aaatccagag gaatggaacc cagaaagatt catgaaagag
1320


aatgagacaa ttgattttca aaagacgatg gccttcggtg gtggtaagag agtttgtgct
1380


ggttccttgc aagccatttt aactgcatct attgggattg ggagaatggt tcaagagttc
1440


gaatggaaac tgaaggatat gactcaagag gaagtgaaca cgataggcct aactacacaa
1500


atgttaagac cattgagagc tattatcaaa cctaggatct aa
1542










SEQ ID NO: 5



A. thaliana ATR2 (codon optimized)









atgtcttcct cttcctcttc cagtacctct atgattgatt tgatggctgc tattattaaa
60


ggtgaaccag ttatcgtctc cgacccagca aatgcctctg cttatgaatc agttgctgca
120


gaattgtctt caatgttgat cgaaaacaga caattcgcca tgatcgtaac tacatcaatc
180


gctgttttga tcggttgtat tgtcatattg gtatggagaa gatccggtag tggtaattct
240


aaaagagtcg aacctttgaa accattagta attaagccaa gagaagaaga aatagatgac
300


ggtagaaaga aagttacaat atttttcggt acccaaactg gtacagctga aggttttgca
360


aaagccttag gtgaagaagc taaggcaaga tacgaaaaga ctagattcaa gatagtcgat
420


ttggatgact atgccgctga tgacgatgaa tacgaagaaa agttgaagaa agaagatgtt
480


gcatttttct ttttggcaac ctatggtgac ggtgaaccaa ctgacaatgc agccagattc
540


tacaaatggt ttacagaggg taatgatcgt ggtgaatggt tgaaaaactt aaagtacggt
600


gttttcggtt tgggtaacag acaatacgaa catttcaaca aagttgcaaa ggttgtcgac
660


gatattttgg tcgaacaagg tgctcaaaaa ttagtccaag taggtttggg tgacgatgac
720


caatgtatag aagatgactt tactgcctgg agagaagctt tgtggcctga attagacaca
780


atcttgagag aagaaggtga caccgccgtt gctaccccat atactgctgc agtattagaa
840


tacagagttt ccatccatga tagtgaagac gcaaagttta atgatatcac tttggccaat
900


ggtaacggtt atacagtttt cgatgcacaa cacccttaca aagctaacgt tgcagtcaag
960


agagaattac atacaccaga atccgacaga agttgtatac acttggaatt tgatatcgct
1020


ggttccggtt taaccatgaa gttgggtgac catgtaggtg ttttatgcga caatttgtct
1080


gaaactgttg atgaagcatt gagattgttg gatatgtccc ctgacactta ttttagtttg
1140


cacgctgaaa aagaagatgg tacaccaatt tccagttctt taccacctcc attccctcca
1200


tgtaacttaa gaacagcctt gaccagatac gcttgattgt tatcatcccc taaaaagtcc
1260


gccttgattg ctttagccgc tcatgctagt gatcctactg aagcagaaag attgaaacac
1320


ttagcatctc cagccggtaa agatgaatat tcaaagtggg tagttgaatc tcaaagatca
1380


ttgttagaag ttatggcaga atttccatct gccaagcctc cattaggtgt cttctttgct
1440


ggtgtagcac ctagattgca accaagattc tactcaatca gttcttcacc taagatcgct
1500


gaaactagaa ttcatgttac atgtgcatta gtctacgaaa agatgccaac cggtagaatt
1560


cacaagggtg tatgctctac ttggatgaaa aatgctgttc cttacgaaaa atcagaaaag
1620


ttgttcttag gtagaccaat cttcgtaaga caatcaaact tcaagttgcc ttctgattca
1680


aaggttccaa taatcatgat aggtcctggt acaggtttag ccccattcag aggtttcttg
1740


caagaaagat tggctttagt tgaatctggt gtcgaattag gtccttcagt tttgttcttt
1800


ggttgtagaa acagaagaat ggatttcatc tatgaagaag aattgcaaag attcgtcgaa
1860


tctggtgcat tggccgaatt atctgtagct ttttcaagag aaggtccaac taaggaatac
1920


gttcaacata agatgatgga taaggcatcc gacatatgga acatgatcag tcaaggtgct
1980


tatttgtacg tttgcggtga cgcaaagggt atggccagag atgtccatag atctttgcac
2040


acaattgctc aagaacaagg ttccatggat agtaccaaag ctgaaggttt cgtaaagaac
2100


ttacaaactt ccggtagata cttgagagat gtctggtga
2139










SEQ ID NO: 6



Stevia rebaudiana KAHel (codon-optimized)









atggaagcct cttacctata catttctatt ttgcttttac tggcatcata cctgttcacc
60


actcaactta gaaggaagag cgctaatcta ccaccaaccg tgtttccatc aataccaatc
120


attggacact tatacttact caaaaagcct ctttatagaa ctttagcaaa aattgccgct
180


aagtacggac caatactgca attacaactc ggctacagac gtgttctggt gatttcctca
240


ccatcagcag cagaagagtg ctttaccaat aacgatgtaa tcttcgcaaa tagacctaag
300


acattgtttg gcaaaatagt gggtggaaca tcccttggca gtttatccta cggcgatcaa
360


tggcgtaatc taaggagagt agcttctatc gaaatcctat cagttcatag gttgaacgaa
420


tttcatgata tcagagtgga tgagaacaga ttgttaatta gaaaacttag aagttcatct
480


tctcctgtta ctcttataac agtcttttat gctctaacat tgaacgtcat tatgagaatg
540


atctctggca aaagatattt cgacagtggg gatagagaat tggaggagga aggtaagaga
600


tttcgagaaa tcttagacga aacgttgctt ctagccggtg cttctaatgt tggcgactac
660


ttaccaatat tgaactggtt gggagttaag tctcttgaaa agaaattgat cgctttgcag
720


aaaaagagag atgacttttt ccagggtttg attgaacagg ttagaaaatc tcgtggtgct
780


aaagtaggca aaggtagaaa aacgatgatc gaactcttat tatctttgca agagtcagaa
840


cctgagtact atacagatgc tatgataaga tcttttgtcc taggtctgct ggctgcaggt
900


agtgatactt cagcgggcac tatggaatgg gccatgagct tactggtcaa tcacccacat
960


gtattgaaga aagctcaagc tgaaatcgat agagttatcg gtaataacag attgattgac
1020


gagtcagaca ttggaaatat cccttacatc qggtgtatta tcaatgaaac tctaagactc
1080


tatccagcag ggccattgtt gttcccacat gaaagttctg ccgactgcgt tatttccggt
1140


tacaatatac ctagaggtac aatgttaatc gtaaaccaat gggcgattca tcacgatcct
1200


aaagtctggg atgatcctga aacctttaaa cctgaaagat ttcaaggatt agaaggaact
1260


agagatggtt tcaaacttat gccattcggt tctgggagaa gaggatgtcc aggtgaaggt
1320


ttggcaataa ggctgttagg gatgacacta ggctcagtga tccaatgttt tgattgggag
1380


agagtaggag atgagatggt tgacatgaca gaaggtttgg gtgtcacact tcctaaggcc
1440


gttccattag ttgccaaatg taagccacgt tccgaaatga ctaatctcct atccgaactt
1500


taa
1503










SEQ ID NO: 7



Stevia rebaudiana CPR8



ATGCAATCTAACTCCGTGAAGATTTCGCCGCTTGATCTGGTAACTGCGCTGTTTAGCGGCAAGGTTTT


GGACACATCGAACGCATCGGAATCGGGAGAATCTGCTATGCTGCCGACTATAGCGATGATTATGGAGA


ATCGTGAGCTGTTGATGATACTCACAACGTCGGTTGCTGTATTGATCGGATGCGTTGTCGTTTTGGTG


TGGCGGAGATCGTCTACGAAGAAGTCGGCGTTGGAGCCACCGGTGATTGTGGTTCCGAAGAGAGTGCA


AGAGGAGGAAGTTGATGATGGTAAGAAGAAAGTTACGGTTTTCTTCGGCACCCAAACTGGAACAGCTG


AAGGCTTCGCTAAGGCACTTGTTGAGGAAGCTAAAGCTCGATATGAAAAGGCTGTCTTTAAAGTAATT


GATTTGGATGATTATGCTGCTGATGACGATGAGTATGAGGAGAAACTAAAGAAAGAATCTTTGGCCTT


TTTCTTTTTGGCTACGTATGGAGATGGTGAGCCAACAGATAATGCTGCCAGATTTTATAAATGGTTTA


CTGAGGGAGATGCGAAAGGAGAATGGCTTAATAAGCTTCAATATGGAGTATTTGGTTTGGGTAACAGA


CAATATGAACATTTTAACAAGATCGCAAAAGTGGTTGATGATGGTCTTGTAGAACAGGGTGCAAAGCG


TCTTGTTCCTGTTGGACTTGGAGATGATGATCAATGTATTGAAGATGACTTCACCGCATGGAAAGAGT


TAGTATGGCCGGAGTTGGATCAATTACTTCGTGATGAGGATGACACAACTGTTGCTACTCCATACACA


GCTGCTGTTGCAGAATATCGCGTTGTTTTTCATGAAAAACCAGACGCGCTTTCTGAAGATTATAGTTA


TACAAATGGCCATGCTGTTCATGATGCTCAACATCCATGCAGATCCAACGTGGCTGTCAAAAAGGAAC


TTCATAGTCCTGAATCTGACCGGTCTTGCACTCATCTTGAATTTGACATCTCGAACACCGGACTATCA


TATGAAACTGGGGACCATGTTGGAGTTTACTGTGAAAACTTGAGTGAAGTTGTGAATGATGCTGAAAG


ATTAGTAGGATTACCACCAGACACTTACTCCTCCATCCACACTGATAGTGAAGACGGGTCGCCACTTG


GCGGAGCCTCATTGCCGCCTCCTTTCCCGCCATGCACTTTAAGGAAAGCATTGACGTGTTATGCTGAT


GTTTTGAGTTCTCCCAAGAAGTCGGCTTTGCTTGCACTAGCTGCTCATGCCACCGATCCCAGTGAAGC


TGATAGATTGAAATTTCTTGOATCCCCCGCCGGAAAGGATGAATATTCTCAATGGATAGTTGCAAGCC


AAAGAAGTCTCCTTGAAGTCATGGAAGCATTCCCGTCAGCTAAGCCTTCACTTGGTGTTTTCTTTGCA


TCTGTTGCCCCGCGCTTACAACCAAGATACTACTCTATTTOTTCCTCACCCAAGATGGCACCGGATAG


GATTCATGTTACATGTGCATTAGTCTATGAGAAAACACCTGCAGGCCGCATCCACAAAGGAGTTTGTT


CAACTTGGATGAAGAACGCAGTGCCTATGACCGAGAGTCAAGATTGCAGTTGGGCCCCAATATACGTC


CGAACATCCAATTTCAGACTACCATCTGACCCTAAGGTCCCGGTTATCATGATTGGACCTGGCACTGG


TTTGGCTCCTTTTAGAGGTTTCCTTCAAGAGCGGTTAGCTTTAAAGGAAGCCGGAACTGACCTCGGTT


TATCCATTTTATTCTTCGGATGTAGGAATCGCAAAGTGGATTTCATATATGAAAACGAGCTTAACAAC


TTTGTGGAGACTGGTGCTOTTTCTGAGCTTATTGTTGCTTTCTCCCGTGAAGGCCCGACTAAGGAATA


TGTGCAACACAAGATGAGTGAGAAGGCTTCGGATATCTGGAACTTGCTTTCTGAAGGAGCATATTTAT


ACGTATGTGGTGATGCCAAAGGCATGGCCAAAGATGTACATCGAACCCTCCACACAATTGTGCAAGAA


CAGGGATCTCTTGACTCGTCAAAGGCAGAACTCTACGTGAAGAATCTACAAATGTCAGGAAGATACCT


CCGTGACGTTTGGTAA





SEQ ID NO: 8



Stevia rebaudiana UGT85C2 (codon optimized)









atggatgcaa tggcaactac tgagaaaaag cctcatgtga tcttcattcc atttcctgca
60


caatctcaca taaaggcaat gctaaagtta gcacaactat tacaccataa gggattacag
120


ataactttcg tgaataccga cttcatccat aatcaatttc tggaatctag tggccctcat
180


tgtttggacg gagccccagg gtttagattc gaaacaattc ctgacggtgt ttcacattcc
240


ccagaggcct ccatcccaat aagagagagt ttactgaggt caatagaaac caactttttg
300


gatcgtttca ttgacttggt cacaaaactt ccagacccac caacttgcat aatctctgat
360


ggctttctgt cagtgtttac tatcgacgct gccaaaaagt tgggtatccc agttatgatg
420


tactggactc ttgctgcatg cggtttcatg ggtttctatc acatccattc tcttatcgaa
480


aagggttttg ctccactgaa agatgcatca tacttaacca acggctacct ggatactgtt
540


attgactggg taccaggtat ggaaggtata agacttaaag attttccttt ggattggtct
600


acagacctta atgataaagt attgatgttt actacagaag ctccacaaag atctcataag
660


gtttcacatc atatctttca cacctttgat gaattggaac catcaatcat caaaaccttg
720


tctctaagat acaatcatat ctacactatt ggtccattac aattacttct agatcaaatt
780


cctgaagaga aaaagcaaac tggtattaca tccttacacg gctactcttt agtgaaagag
840


gaaccagaat gttttcaatg gctacaaagt aaagagccta attctgtggt ctacgtcaac
900


ttcggaagta caacagtcat gtccttggaa gatatgactg aatttggttg gggccttgct
960


aattcaaatc attactttct atggattatc aggtccaatt tggtaatagg ggaaaacgcc
1020


gtattacctc cagaattgga ggaacacatc aaaaagagag gtttcattgc ttcctggtgt
1080


tctcaggaaa aggtattgaa acatccttct gttggtggtt tccttactca ttgcggttgg
1140


ggctctacaa tcgaatcact aagtgcagga gttccaatga tttgttggcc atattcatgg
1200


gaccaactta caaattgtag gtatatctgt aaagagtggg aagttggatt agaaatggga
1260


acaaaggtta aacgtgatga agtgaaaaga ttggttcagg agttgatggg ggaaggtggc
1320


cacaagatga gaaacaaggc caaagattgg aaggaaaaag ccagaattgc tattgctcct
1380


aacgggtcat cctctctaaa cattgataag atggtcaaag agattacagt cttagccaga
1440


aactaa
1446










SEQ ID NO: 9



S. rebaudiana UGT74G1 (GenBank AAR06920.1)









atggcggaac aacaaaagat caagaaatca ccacacgttc tactcatccc attcccttta
60


caaggccata taaacccttt catccagttt ggcaaacgat taatctccaa aggtgtcaaa
120


acaacacttg ttaccaccat ccacacctta aactcaaccc taaaccacag taacaccacc
180


accacctcca tcgaaatcca agcaatttcc gatggttgtg atgaaggcgg ttttatgagt
240


gcaggagaat catatttgga aacattcaaa caagttgggt ctaaatcact agctgactta
300


atcaagaagc ttcaaagtga aggaaccaca attgatgcaa tcatttatga ttctatgact
360


gaatgggttt tagatgttgc aattgagttt ggaatcgatg gtggttcgtt tttcactcaa
420


gcttgtgttg taaacagctt atattatcat gttcataagg gtttgatttc tttgccattg
480


ggtgaaactg tttcggttcc tggatttcca gtgcltcaac ggtgggagao accgttaatt
540


ttgcagaatc atgagcaaat acagagccct tggtctcaga tgttgtttgg tcagtttgct
600


aatattgatc aagcacgttg ggtcttcaca aatagttttt acaagctcga ggaagaggta
660


atagagtgga cgagaaagat atggaacttg aaggtaatcg ggccaacact tccatccatg
720


taccttgaca aacgacttga tgatgataaa gataacggat ttaatctcta caaagcaaac
780


catcatgagt gcatgaactg gttagacgat aagccaaagg aatcagttgt ttacgtagca
840


tttggtagcc tggtgaaaca tggacccgaa caagtggaag aaatcacacg ggctttaata
900


gatagtgatg tcaacttctt gtgggttatc aaacataaag aagagggaaa gctcccagaa
960


aatctttcgg aagtaataaa aaccggaaag ggtttgattg tagcatggtg caaacaattg
1020


gatgtgttag cacacgaatc agtaggatgc tttgttacac attgtgggtt caactcaact
1080


cttgaagcaa taagtcttgg agtccccgtt gttgcaatgc ctcaattttc ggatcaaact
1140


acaaatgcca agcttctaga tgaaattttg ggtgttggag ttagagttaa ggctgatgag
1200


aatgggatag tgagaagagg aaatcttgcg tcatgtatta agatgattat ggaggaggaa
1260


agaggagtaa taatccgaaa gaatgcggta aaatggaagg atttggctaa agtagccgtt
1320


catgaaggtg gtagctcaga caatgatatt gtcgaatttg taagtgagct aattaaggct
1380


taaatttttg ttgctttgta ttttatgtgt tatggttttt tgatttagat gtattcaatt
1440


aatattgaat cataactaaa ttcaagatta ttgtttgtaa tattctttgt cctaaaattt
1500


tgcgacttaa aacctttagt ttataaaaag aaattagaaa atactattgc acgga
1555










SEQ ID NO: 10



S. rebaudiana UGT76G1 (codon optimized)









atggaaaaca agaccgaaac aacagttaga cgtaggcgta gaatcattct gtttccagta
60


ccttttcaag ggcacatcaa tccaatacta caactagcca acgttttgta ctctaaaggt
120


ttttctatta caatctttca caccaatttc aacaaaccaa aaacatccaa ttacccacat
180


ttcacattca gattcatact tgataatgat ccacaagatg aacgtatttc aaacttacct
240


acccacggtc ctttagctgg aatgagaatt ccaatcatca atgaacatgg tgccgatgag
300


cttagaagag aattagagtt acttatgttg gcatccgaag aggacgagga agtctcttgt
360


ctgattactg acgctctatg gtactttgcc caatctgtgg ctgatagttt gaatttgagg
420


agattggtac taatgacatc cagtctgttt aactttcacg ctcatgttag tttaccacaa
480


tttgacgaat tgggatactt ggaccctgat gacaagacta ggttagagga acaggcctct
540


ggttttccta tgttgaaagt caaagatatc aagtctgcct attctaattg gcaaatcttg
600


aaagagatct taggaaagat gatcaaacag acaaaggctt catctggagt gatttggaac
660


agtttcaaag agttagaaga gtctgaattg gagactgtaa tcagagaaat tccagcacct
720


tcattcctga taccattacc aaaacatttg actgcttcct cttcctcttt gttggatcat
780


gacagaacag tttttcaatg gttggaccaa caaccaccta gttctgtttt gtacgtgtca
840


tttggtagta cttctgaagt cgatgaaaag gacttccttg aaatcgcaag aggcttagtc
900


gatagtaagc agtcattcct ttgggtcgtg cgtccaggtt tcgtgaaagg ctcaacatgg
960


gtcgaaccac ttccagatgg ttttctaggc gaaagaggta gaatagtcaa atgggttcct
1020


caacaggaag ttttagctca tggcgctatt ggggcattct ggactcattc cggatggaat
1080


tcaactttag aatcagtatg cgaaggggta cctatgatct tttcagattt tggtcttgat
1140


caaccactga acgcaagata catgtctgat gttttgaaag tgggtgtata tctagaaaat
1200


ggctgggaaa ggggtgaaat agctaatgca ataagacgtg ttatggttaa tgaagagggg
1260


gagtatatca gacaaaacgc aagagtgctg aagcaaaagg ccgacgtttc tctaatgaag
1320


ggaggctctt catacgaatc cttagaatct cttgtttcct acatttcatc actgtaa
1377










SEQ ID NO: 11



S. rebaudiana UGT91D2e-b (codon optimized)









atggctactt ctgattccat cgttgacgat agaaagcaat tgcatgttgc tacttttcoa
60


tggttggctt tcggtcatat tttgccatac ttgcaattgt ccaagttgat tgctgaaaag
120


ggtcacaagg tttcattctt gtctaccacc agaaacatcc aaagattgtc ctctcatatc
180


tccccattga tcaacgttgt tcaattgact ttgccaagag tccaagaatt gccagaagat
240


gctgaagcta ctactgatgt tcatccagaa gatatccctt acttgaaaaa ggcttccgat
300


ggtttacaac cagaagttac tagattcttg gaacaacatt ccccagattg gatcatctac
360


gattatactc attactggtt gccatccatt gctgcttcat tgggtatttc tagagcccat
420


ttctctgtta ctactccatg ggctattgct tatatgggtc catctgctga tgctatgatt
480


aacggttctg atggtagaac taccgttgaa gatttgacta ctccaccaaa gtggtttcca
540


tttccaacaa aagtctgttg gagaaaacac gatttggcta gattggttcc atacaaagct
600


ccaggtattt ctgatggtta cagaatgggt atggttttga aaggttccga ttgcttgttg
660


tctaagtgct atcatgaatt cggtactcaa tggttgcctt tgttggaaac attgcatcaa
720


gttccagttg ttccagtagg tttgttgcca ccagaaattc caggtgacga aaaagacgaa
780


acttgggttt ccatcaaaaa gtggttggat ggtaagcaaa agggttctgt tgtttatgtt
840


gctttgggtt ccgaagcttt ggtttctcaa accgaagttg ttgaattggc tttgggtttg
900


gaattgtctg gtttgccatt tgtttgggct tacagaaaac ctaaaggtcc agctaagtct
960


gattctgttg aattgccaga tggtttcgtt gaaagaacta gaaatagagg tttggtttgg
1020


acttcttggg ctccacaatt gagaattttg tctcatgaat ccgtctgtgg tttcttgact
1080


cattgtggtt ctggttctat cgttgaaggt ttgatgtttg gtcacccatt gattatgttg
1140


ccaatctttg gtgaccaacc attgaacgct agattattgg aagataagca agtcggtatc
1200


gaaatcccaa gaaatgaaga agatggttgc ttgaccaaag aatctgttgc tagatctttg
1260


agatccgttg tcgttgaaaa agaaggtgaa atctacaagg ctaacgctag agaattgtcc
1320


aagatctaca acgataccaa ggtcgaaaaa gaataggitt cccaattcgt tgactacttg
1380


gaaaagaatg ctagagctgt tgccattgat catgaatctt ga
1422










SEQ ID NO: 12



Oryza sativa sequence encoding EUGT11 (codon optimized)









atggatagtg gctactcctc atcttatgct gctgccgctg gtatgcacgt tgtgatctgc
60


ccttggttgg cctttggtca cctgttacca tgtctggatt tagcccaaag actggcctca
120


agaggccata gagtatcatt tgtgtctact cctagaaata tctctcgttt accaccagtc
180


agacctgctc tagctcctct agttgcattc gttgctcttc cacttccaag agtagaagga
240


ttgccagacg gcgctgaatc tactaatgac gtaccacatg atagacctga catggtcgaa
300


ttgcatagaa gagcctttga tggattggca gctccatttt ctgagttcct gggcacagca
360


tgtgcagact gggttatagt cgatgtattt catcactggg ctgctgcagc cgcattggaa
420


cataaggtgc cttgtgctat gatgttgtta gggtcagcac acatgatcgc atccatagct
480


gatagaagat tggaaagagc tgaaacagaa tccccagccg cagcaggaca aggtaggcca
540


gctgccgccc caacctttga agtggctaga atgaaattga ttcgtactaa aggtagttca
600


gggatgagtc ttgctgaaag gttttctctg acattatcta gatcatcatt agttgtaggt
660


agatcctgcg tcgagttcga acctgaaaca gtacctttac tatctacttt gagaggcaaa
720


cctattactt tccttggtct aatgcctcca ttacatgaag gaaggagaga agatggtgaa
780


gatgctactg ttaggtggtt agatgcccaa cctgctaagt ctgttgttta cgttgcattg
840


ggttctgagg taccactagg ggtggaaaag gtgcatgaat tagcattagg acttgagctg
900


gccggaacaa gattcctttg ggctttgaga aaaccaaccg gtgtttctga cgccgacttg
960


ctaccagctg ggttcgaaga gagaacaaga ggccgtggtg tcgttgctac tagatgggtc
1020


ccacaaatga gtattctagc tcatgcagct gtaggggcct ttctaaccca ttgcggttgg
1080


aactcaacaa tagaaggact gatgtttggt catccactta ttatgttacc aatctttggc
1140


gatcagggac craacgcaag attgattgag gcaaagaacg caggtctgca ggttgcacgt
1200


aatgatggtg atggttcctt tgatagagaa ggcgttgcag ctgccatcag agcagtcgcc
1260


gttgaggaag agtcatctaa agttttccaa gctaaggcca aaaaattaca agagattgtg
1320


gctgacatgg cttgtcacga aagatacatc gatggtttca tccaacaatt gagaagttat
1380


aaagactaa
1389










SEQ ID NO: 13


YBR180W


>sp|P38125|DTR1_YEAST Dityrosine transporter 1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = DTR1 PE = 1 SV = 1



MGSEPFQKKNLGLQINSQESGTTRSTFHSLEDLGDDVINESWDQVNQKRANIDHDVFHEH


PDSSPSLSAQKAKTKEEEVAVKSSNSQSRDPSPDTQAHIPYTYFSKDQRLIIFGIIIFIG


FLGPMSGNIYIPALPLLQREYDVSATTINATVSVFMAVFSVGPLFWGALADFGGRKFLYM


VSLSLMLIVNILLAAVPVNIAALFVLRIFQAFASSSVISLGAGTVTDVVPPKHRGKAIAY


FMMGPNMGPIIAPIVAGLILMKGNYWRWLFGFTSIMTGIALILVTALLPETLRCIVGNGD


PKWGDKKDERENNESPFFEGNKISHRRLFPDIGIRKPVNNDAFFQENFPKPPKAGLTLYW


KMIKCPPIIITSVSTALLFSSYYAFSVTFSYYLEHDYRFTMLEIGAAYVCPGVAMLLGSQ


SGGHLSDYLRSRWIKSHPKKKFPAEFRLLLNLIGILLTICGTIGYGWAIFFHYHFVVLLV


FSALTAFGMTWCSNISMTYLTELFPKRAAGTVAVSSFFRNVGAAISSAIILQLCNAMGIG


WCFTGLGLCSSISLIGILYLLIFQRKYTAKEF





SEQ ID NO: 14


YAL067C 


>sp|P39709|SEO1_YEAST Probable transporter SEO1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = SEO1 PE = 1 SV = 1



MYSIVKEIIVDPYKRLKWGFIPVKRQVEDLPDDLNSTEIVTISNSIQSHETAENFITTTS


EKDQLHFETSSYSEHKDNVNVTRSYEYRDEADRPWWRFFDEQEYRINEKERSHNKWYSWF


KQGTSFKEKKLLIKLDVLLAFYSCIAYWVKYLDTVNINNAYVSGMKEDLGFQGNDLVHTQ


VMYTVGNIIFQLPFLIYLNKLPLNYVLPSLDLCWSLLTVGAAYVNSVPHLKAIRFFIGAF


EAPSYLAYQYLFGSFYKHDEMVRRSAFYYLGQYIGILSAGGIQSAVYSSLNGVNGLEGWR


WNFIIDAIVSVVVGLIGFYSLPGDPYNCYSIFLTDDEIRLARKRLKENQTGKSDFETKVF


DIKLWKTIFSDWKIYILTLWNIFCWNDSNVSSGAYLLWLKSLKRYSIPKLNQLSMITPGL


GMVYLMLTGIIADKLHSRWFAIIFTQVFNIIGNSILAAWDVAEGAKWFAFMLQCFGWAMA


PVLYSWQNDICRRDAQTRAITLVTMNIMAQSSTAWISVLVWKTEEAPRYLKGFTFTACSA


FCLSIWTFVVLYFYKRDERNNAKKNGIVLYNSKHGVEKPISKDVETLSVSDEK





SEQ ID NO: 15


YBL089W 


>sp|P38176|AVT5_YEAST Vacuolar amino acid transporter 5


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = AVT5


PE = 3 SV = 2


MPSNVRSGVLTLLHTACGAGVLAMPFAFKPFGLMPGLITLTFCGICSLCGLLLQTRIAKY


VPKSENASFAKLTQLINPSISVVFDFAIAVKCFGVGVSYLIIVGDLVPQIVQSIFYRNDD


NMSGSQEHHMFLDRRLYITLIIVFVISPLCFKRSLNSLRYASMIAIVSVAYLSGLIIYHF


VNRHQLERGQVYFMVPHGDSQSHSPLTTLPIFVFAYTCHHNMFSVINEQVDKSFKVIRRI


PIFAIVLAYFLYIIIGGTGYMTFGENIVGNILTLYPNSISTTIGRLAMLLLVMLAFPLQC


HPCRSSVKNIIIFIENFRKGKLYDNRASFIPLDNFNSEDPQEAPTQQNNEEPNLRSESLR


HINIITLCILLFSYLLAISITSLAKVLAIVGATGSTSISFILPGLEGYKLIGSEFTGTNE


RVPTSIKIFKYLSLSLFIWGIAVMVASLSAIVFLGTSSH





SEQ ID NO: 16


YBL099W


>sp|P07251|ATPA_YEAST ATP synthase subunit alpha, mitochondrial


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = ATP1


PE = 1 SV = 5


MLARTAAIRSLSRTLINSTKAARPAAAALASTRRLASTKAQPTEVSSILEERIKGVSDEA


NLNETGRVLAVGDGIARVFGLNNIQAEELVEFSSGVKGMALNLEPGQVGIVLEGSDRLVK


EGELVKRTGNIVDVPVGPGLLGRVVDALGNPIDGKGPIDAAGRSRAQVKAPGILPRRSVH


EPVQTGLKAVDALVPIGRGQRELIIGDRQTGKTAVALDTILNQKRWNNGSDESKKLYCVY


VAVGQKRSTVAQLVQTLEQHDAMKYSIIVAATASEAAPLQYLAPFTAASIGEWFRDNGKH


ALIVYDDLSKQAVAYRQLSLLLRRPPGREAYPGDVFYLHSRLLERAAKLSEKEGSGSLTA


LPVIETQGGDVSAYIPTNVISITDGQIFLEAELFYKGIRPAINVGLSVSRVGSAAQVKAL


KQVAGSLKLFLAQYREVAAFAQFGSDLDASTKQTLVRGERLTQLLKQNQYSPLATEEQVP


LIYAGVNGHLDGIELSRIGEFESSFLSYLKSNHNELLTEIREKGELSKELLASLKSATES


FVATF





SEQ ID NO: 17


YBR241C


>sp|P38142|YB91_YEAST Probable metabolite transport protein YBR241C


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YBR241C


PE = 1 SV = 1


MAETERLMPNGGSRETKPLITGHLILGTIVACLGSIQYGYHIAELNAPQEFLSCSRFEAP


DENISYDDTWVGQHGLKQCIALTDSQYGAITSIFSIGGLFGSYYAGNWANRYGRKYVSMG


ASAMCMVSSLLLFFSNSYLQLLFGRFLVGMSCGTAIVITPLFINEIAPVEWRGAMGSMNQ


VSINLGILLTQTLALKYADSYNWRWLLFSGSVIAVANILAWLKVDESPRWLVSHGFVSEA


ETALFKLRPGTYQQAKQEIQDWQRSHGHNRDPESSEETHSGPTLWQYVTDPSYKKPRTVI


LAILSCQQFCGINSIIFYGVKVIGKILPDYSIQVNFAISILNVVVILAASAIIDHVGRRP


LLLASTTVMTAMSLLISVGLTLSVSFLLVTATFVYIAAFAIGLGPIPFLIIGELSYPQDA


ATAQSFGTVCNWLATFIVGYLFPIGHGLMGGYVFAIFAAIAAMFATYVYKRVPETKGKIT


YSEVWAGY





SEQ ID NO: 18


YBR294W


>sp|P38359|SUL1_YEAST Sulfate permease 1 OS = Saccharomyces cerevisiae


(strain ATCC 204508/S288c) GN = SUL1 PE = 1 SV = 2


MSRKSSTEYVHNQEDADIEVFESEYRTYRESEAAENRDGLHNGDEENWKVNSSKQKFGVT


KNELSDVLYDSIPAYEESTVTLKEYYDHSIKNNLTAKSAGSYLVSLFPIIKWFPHYNFTW


GYADLVAGITVGCVLVPQSMSYAQIASLSPEYGLYSSFIGAFIYSLFATSKDVCIGPVAV


MSLQTAKVIAEVLKKYPEDQTEVTAPIIATTLCLLCGIVATGLGILRLGFLVELISLNAV


AGFMTGSAFNIIWGQIPALMGYNSLVNTREATYKVVINTLKHLPNTKLDAVFGLIPLVIL


YVWKWWCGTFGITLADRYYRNQPKVANRLKSFYFYAQAMRNAVVIVVFTAISWSITRNKS


SKDRPISILGTVPSGLNEVGVMKIPDGLLSNMSSEIPASIIVLVLEHIAISKSFGRINDY


KVVPDQELIAIGVTNLIGTFFHSYTATGSFSRSALKAKCNVRTPFSGVFTGGCVLLALYC


LTDAFFFIPKATLSAVIIHAVSDLLTSYKTTWTFWKTNPLDCISFIVTVFITVFSSIENG


IYFAMCWSCAMLLLKQAFPAGKFLGRVEVAEVLNPTVQEDIDAVISSNELPNELNKQVKS


TVEVLPAPEYKFSVKWVPFDRGYSRELNINTTVRPPPPGVIVYRLGDSFTYVNCSRHYDI


IFDRIKEETRRGQLITLRKKSDRPWNDPGEWKMPDSLKSLFKFKRHSATTNSDLPISNGS


SNGETYEKPLLKVVCLDFSQVAQVDSTAVQSLVDLRKAVNRYADRQVEFHFAGIISPWIK


RSLLSVKFGTTNEEYSDDSIIAGHSSFHVAKVLKDDVDYTDEDSRISTSYSNYETLCAAT


GTNLPFFHIDIPDFSKWDV





SEQ ID NO: 19


YCL069W


>sp|P25594|VBA3_YEAST Vacuolar basic amino acid transporter 3


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = VBA3


PE = 1 SV = 1


MNMLIVGRVVASVGGSGLQTLCFVIGCTMVGERSRPLVISILSCAFAVAAIVGPIIGGAF


TTHVTWRWCFYINLPIGGLAIIMFLLTYKAENKGILQQIKDAIGTISSFTFSKFRHQVNF


KRLMNGIIFKFDFFGFALCSAGLVLFLLGLTFGGNKYSWNSGQVIAYLVLGVLLFIFSLV


YDFFLFDKFNPEPDNISYRPLLLRRLVAKPAIIIINMVTFLLCTGYNGQMIYSVQFFQLI


FASSAWKAGLHLIPIVITNVIAAIASGVITKKLGLVKPLLIFGGVLGVIGAGLMTLMTNT


STKSTQIGVLLLPGFSLGFALQASLMSAQLQITKDRPEAAMDFIEVTAFNTFMKSLGTTL


GGVLSTTVFSASFHNKVSRAHLEPYEGKTVDDMILYRLQNYDGSHSTIGNILSDSIKNVF


WMDLGFYALGFLFCSFSSNKKLIIPKKDETPEDNLEDK





SEQ ID NO: 20


YCR028C 


>sp|P25621|FEN2_YEAST Pantothenate transporter FEN2 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = FEN2 PE = 1 SV = 1



MMKESKSITQHEVERESVSSKRAIKKRLLLFKIDLFVLSFVCLQYWINYVDRVGFTNAYI


SGMKEDLKMVGNDLTVSNTVFMIGYIVGMVPNNLMLLCVPPRIWLSFCTFAWGLLTLGMY


KVTSFKHICAIRFFQALFESCTFSGTHFVLGSWYKEDELPIRSAIFTGSGLVGSMFSGFM


QTSIFTHLNGRNGLAGWRWLFIIDFCITLPIAIYGFIFFPGLPDQTSAVSKFSMTRYIFN


EQELHYARRRLPARDESTRLDWSTIPRVLKRWHWWMFSLVWVLGGENLGFASNSTFALWL


QNQKYTLAQRNNYPSGIFAVGIVSTLCSAVYMSKIPRARHWHVSVFISLVMVIVAVLIRA


DPLNPKVVFSAQYLGGVAYAGQAVFFSWANIICHADLQERAIVLASMNMFSGAVNAWWSI


LFFASDMVPKFERGCYALLATAISSGIVSVVIRSLQIKENLSKKQVPYIDANDMPGEDDD


DDNQDNENDGDDESMEVELHNEEMAEISNPFR





SEQ ID NO: 21


YCR075C 


>sp|P17261|ERS1_YEAST Cystine transporter OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = ERS1 PE = 1 SV = 1



MVSLDDILGIVYVTSWSISMYPPIITNWRHKSASAISMDFVMLNTAGYSYLVISIFLQLY


CWKMTGDESDLGRPKLTQFDFWYCLHGCLMNVVLLTQVVAGARIWRFPGKGHRKMNPWYL


RILLASLAIFSLLTVQFMYSNYWYDWHNSRTLAYCNNLFLLKISMSLIKYIPQVTHNSTR


KSMDCFPIQGVFLDVTGGIASLLQLIWQLSNDQGFSLDTFVTNFGKVGLSMVTLIFNFIF


IMQWFVYRSRGHDLASEYPL





SEQ ID NO: 22


YDL128W


>sp|Q99385|VCX1_YEAST Vacuolar calcium ion transporter


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = VCX1


PE = 1 SV = 1


MDATTPLLTVANSHPARNPKHTAWRAAVYDLQYILKASPLNFLLVFVPLGLIWGHFQLSH


TLTFLFNFLAIIPLAAILANATEELADKAGNTIGGLLNATFGNAVELIVSIIALKKGQVR


IVQASMLGSLLSNLLLVLGLCFIFGGYNRVQQTFNQTAAQTMSSLLAIACASLLIPAAFR


ATLPHGKEDHFIDGKILELSRGTSIVILIVYVLFLYFQLGSHHALFEQQEEETDEVMSTI


SRNPHHSLSVKSSLVILLGTTVIISFCADFLVGTIDNVVESTGLSKTFIGLIVIPIVGNA


AEHVTSVLVAMKDKMDLALGVAIGSSLQVALFVTPFMVLVGWMIDVPMTLNFSTFETATL


FIAVFLSNYLILDGESNWLEGVMSLAMYILIAMAFFYYPDEKTLDSIGNSL





SEQ ID NO: 23


YDL185W


>sp|P17255|VATA_YEAST V-type proton ATPase catalytic subunit A


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = VMA1


PE = 1 SV = 3


MAGAIENARKEIKRISLEDHAESEYGAIYSVSGPVVIAENMIGCAMYELVKVGHDNLVGE


VIRIDGDKATIQVTEETAGLTVGDPVLRTGKPLSVELGPGLMETIYDGIQRPLKAIKEES


QSIYIPRGIDTPALDRTIKWQFTPGKFQVGDHISGGDIYGSVFENSLISSHKILLPPRSR


GTITWIAPAGEYTLDEKILEVEFDGKKSDFTLYHTWPVRVPRPVTEKLSADYPLLTGQRV


LDALFPCVQGGTTCIPGAFGCGKTVISQSLSKYSNSDAIIYVGCFAKGTNVLMADGSIEC


IENIEVGNKVMGKDGRPREVIKLPRGRETMYSVVQKSQHRAHKSDSSREVPELLKFTCNA


THELVVRTPRSVRRLSRTIKGVEYFEVITFEMGQKKAPDGRIVELVKEVSKSYPISEGPE


RANELVESYRKASNKAYFEWTIEARDLSLLGSHVRKATYQTYAPILYENDHFFDYMQKSK


FHLTIEGPKVLAYLLGLWIGDGLSDRATFSVDSRDTSLMERVTEYAEKLNLCAEYKDRKE


PQVAKTVNLYSKVVRGNGIRNNLNTENPLWDAIVGLGFLKDGVKNIPSFLSTDNIGTRET


FLAGLIDSDGYVTDEHGIKATIKTIHTSVRDGLVSLARSLGLVVSVNAEPAKVDMNGTKH


KISYAIYMSGGDVLLNVLSKCAGSKKFRPAPAAAFARECRGFYFELQELKEDDYYGITLS


DDSDHQFLLANQVVVHNCGERGNEMAEVLMEFPELYTEMSGTKEPIMKRTTLVANTSNMP


VAAREASIYTGITLAEYFRDQGKNVSMIADSSSRWAEALREISGRLGEMPADQGFPAYLG


AKLASFYERAGKAVALGSPDRTGSVSIVAAVSPAGGDFSDPVTTATLGITQVFWGLDKKL


AQRKHFPSINTSVSYSKYTNVLNKFYDSNYPEFPVLRDRMKEILSNAEELEQVVQLVGKS


ALSDSDKITLDVATLIKEDFLQQNGYSTYDAFCPIWKTFDMMRAFISYHDEAQKAVANGA


NWSKLADSTGDVKHAVSSSKFFEPSRGEKEVHGEFEKLLSTKERFAESTD





SEQ ID NO: 24


YDL194W


>sp|P10870|SNF3_YEAST High-affinity glucose transporter SNF3


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = SNF3


PE = 1 SV = 3


MDPNSNSSSETLRQEKQGFLDKALQRVKGIALRRNNSNKDHTTDDTTGSIRTPTSLQRQN


SDRQSNMTSVFTDDISTIDDNSILFSEPPQKQSMMMSICVGVFVAVGGFLFGYDTGLINS


ITSMNYVKSHVAPNHDSFTAQQMSILVSFLSLGTFFGALTAFFISDSYGRKPTIIFSTIF


IFSIGNSLQVGAGGITLLIVGRVISGIGIGAISAVVPLYQAEATHKSLRGAIISTYQWAI


TWGLLVSSAVSQGTHARNDASSYRIPIGLQYVWSSFLAIGMFFLPESPRYYVLKDKLDEA


AKSLSFLRGVPVHDSGLLEELVEIKATYDYEASFGSSNFIDCFISSKSRPKQTLRMFTGI


ALQAFQQFSGINFIFYYGVNFFNKTGVSNSYLVSFITYAVNVVFNVPGLFFVEFFGRRKV


LVVGGVIMTIANFIVAIVGCSLKTVAAAKVMIAFICLFIAAFSATWGGVVWVISAELYPL


GVRSKCTAICAAANWLVNFICALITPYIVDTGSHTSSLGAKIFFIWGSLNAMGVIVVYLT


VYETKGLTLEEIDELYIKSSTGVVSPKFNKDIRERALKFQYDFLQRLEDGKNTFVAKRNN


FDDETPRNDFRNTISGEIDHSPNQKEVHSIPERVDIPTSTEILESPNKSSGMTVPVSPSL


QDVPIPQTTEPAEIRTKYVDLGNGLGLNTYNRGPPSLSSDSSEDYTEDEIGGPSSQGDQS


NRSTMNDINDYMARLIHSTSTASNTTDKFSGNQSTLRYHTASSHSDTTEEDSNLMDLGNG


LALNAYNRGPPSILMNSSDEEANGGETSDNLNTAQDLAGMKERMAQFAQSYIDKRGGLEP


ETQSNILSTSLSVMADTNEHNNEILHSSEENATNQFVNENNDLK





SEQ ID NO: 25


YDL210W


>sp|P32837|UGA4_YEAST GABA-specific permease OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = UGA4 PE = 1 SV = 1



MSMSSKNENKISVEQRISTDIGQAYQLQGLGSNLRSIRSKTGAGEVNYIDAAKSVNDNQL


LAEIGYKQELKRQFSTLQVFGIAFSIMGLLPSIASVMGGGLGGGPATLVWGWFVAAFFIL


LVGITMAEHASSIPTAGGLYYWTYYYAPEGYKEIISFIIGCSNSLALAAGVCSIDYGLAE


EIAAAVTLIKDGNFEVTSGKLYGIFAGAVVVMCICTCVASGAIARLQTLSIFANLFIIVL


LFIALPIGTKHRMGGFNDGDFIFGKYENLSDWNNGWQFCLAGFMPAVWTIGSFDSCVHQS


EEAKDAKKSVPIGIISSIAVCWILGWLIIICLMACINPDIDSVLDSKYGFALAQIIYDSL


GKKWAIAFMSLIAFCQFLMGASITTAVSRQVWAFSRDNGLPLSKYIKRVDSKYSVPFFAI


LAACVGSLILGLLCLIDDAATDALFSLAVAGNNLAWSTPTVFRLTSGRDLFRPGPFYLGK


IWSPIVAWTGVAFQLFIIILVMFPSQQHGITKSTMNYACVIGPGIWILAGIYYKVYKKKY


YHGPATNLSDDDYTEAVGADVIDTIMSKQEP





SEQ ID NO: 26


YDR061W


>sp|Q12298|YD061_YEAST Uncharacterized ABC transporter ATP-binding


protein YDR061W OS = Saccharomyces cerevisiae (strain ATCC


204508/S288c) GN = YDR061W PE = 1 SV = 1


MSTNKFVVRITNALFKSSLASNSPPVYPKRIRHFEILPNEKWVIWGPGKGKFLDVLNNKY


ICEPPLSLRFGFLKESSNILPRIEQVAFKGVMPTAHLSARYEYFKDDYDQTCKQFIFDKA


SGSNAVSYKVETNNRQINMELYNALVENLNLSSLQDRWVMGLSNGQMRRARLARSILKEP


DLLLIDDPFLGLDPAAIATISQFLAKYDSIEVSGGCPIVIGLRYQDTIPAWCTHICCVDE


KNGILFEGPIEKLQSKMDETRSRALKELEQLKKASNSKEDISINDLICIHPMYGKKEHEI


IKMPHLIELDGLSVSYKGEAVLENLHWKVQPGSKWHIRGDNGSGKSTLLSLLTAEHPQSW


NSRVIDNGVPRRTGKTNYFDLNSKIGMSSPELHAIFLKNAGGRLNIRESVATGYHEASSN


NYLPIWKRLDKNSQEIVNMYLKYFGLDKDADSVLFEQLSVSDQKLVLFVRSLIKMPQILI


LDEAFSGMEVEPMMRCHEFLEEWPGTVLVVAHVAEETPKCAHYLRLISPGEYEIGDMEN





SEQ ID NO: 27


YDR093W


>sp|Q12675|ATC4_YEAST Phospholipid-transporting ATPase DNF2


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = DNF2


PE = 1 SV = 1


MSSPSKPTSPFVDDIEHESGSASNGLSSMSPFDDSFQFEKPSSAHGNIEVAKTGGSVLKR


QSKPMKDISTPDLSKVTFDGIDDYSNDNDINDDDELNGKKTEIHEHENEVDDDLHSFQAT


PMPNTGGFEDVELDNNEGSNNDSQADHKLKRVRFGTRRNKSGRIDINRSKTLKWAKKNFH


NAIDEFSTKEDSLENSALQNRSDELRTVYYNLPLPEDMLDEDGLPLAVYPRNKIRTTKYT


PLTFFPKNILFQFHNFANIYFLILLILGAFQIFGVTNPGFASVPLIVIVIITAIKDGIED


SRRTVLDLEVNNTRTHILSGVKNENVAVDNVSLWRRFKKANTRALIKIFEYFSENLTAAG


REKKLQKKREELRRKRNSRSFGPRGSLDSIGSYRMSADFGRPSLDYENLNQTMSQANRYN


DGENLVDRTLQPNPECRFAKDYWKNVKVGDIVRVHNNDEIPADMILLSTSDVDGACYVET


KNLDGETNLKVRQSLKCSKIIKSSRDITRTKFWVESEGPHANLYSYQGNFKWQDTQNGNI


RNEPVNINNLLLRGCTLRNTKWAMGMVIFTGDDTKIMINAGVTPTKKSRISRELNFSVIL


NFVLLFILCFTAGIVNGVYYKQKPRSRDYFEFGTIGGSASTNGFVSFWVAVILYQSLVPI


SLYISVEIIKTAQAIFIYTDVLLYNAKLDYPCTPKSWNISDDLGQIEYIFSDKTGTLTQN


VMEFKKCTINGVSYGRAYTEALAGLRKRQGVDVESEGRREKEEIAKDRETMIDELRSMSD


NTQFCPEDLTFVSKEIVEDLKGSSGDHQQKCCEHFLLALALCHSVLVEPNKDDPKKLDIK


AQSPDESALVSTARQLGYSFVGSSKSGLIVEIQGVQKEFQVLNVLEFNSSRKRMSCIIKI


PGSTPKDEPKALLICKGADSVIYSRLDRTQNDATLLEKTALHLEEYATEGLRTLCLAQRE


LTWSEYERWVKTYDVAAASVTNREEELDKVTDVIERELILLGGTAIEDRLQDGVPDSIAL


LAEAGIKLWVLTGDKVETAINIGFSCNVLNNDMELLVVKASGEDVEEFGSDPIQVVNNLV


TKYLREKFGMSGSEEELKEAKREHGLPQGNFAVIIDGDALKVALNGEEMRRKFLLLCKNC


KAVLCCRVSPAQKAAVVKLVKKTLDVMTLAIGDGSNDVAMIQSADVGVGIAGEEGRQAVM


CSDYAIGQFRYVTRLVLVHGKWCYKRLAEMIPQFFYKNVIFTLSLFWYGIYNNFDGSYLF


EYTYLTFYNLAFTSVPVILLAVLDQDVSDTVSMLVPQLYRVGILRKEWNQTKFLWYMLDG


VYQSVICFFFPYLAYRKNMVVTENGLGLDHRYFVGVFVTAIAVTSCNFYVFMEQYRWDWF


CGLFICLSLAVFYGWTGIWTSSSSSNEFYKGAARVFAQPAYWAVLFVGVLFCLLPRFTID


CIRKIFYPKDIEIVREMWLRGDFDLYPQGYDPTDPSRPRINEIRPLTDFKEPISLDTHFD


GVSHSQETIVTEEIPMSILNGEQGSRKGYRVSTTLERRDQLSPVTTTNNLPRRSMASARG


NKLRTSLDRTREEMLANHQLDTRYSVERARASLDLPGINHAETLLSQRSRDR





SEQ ID NO: 28


YDR338C


>sp|Q05497|YD338_YEAST Uncharacterized transporter YDR338C


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YDR338C


PE = 1 SV = 1


MAGILSKTLSEVHPSLRTNGMGIGNTHRRISLGFLPPNKKNPLVRKFRARTRNIDQRSFR


SLTDDFGSNVHEPNPYLGNIDEEPDLYYHDEEDGELSRTISLPSRVSETPELSPQDVDWI


LHEHERRYSSVCNSDNEEASQSNTPDRIQEYSGRELEYDEFMNRLQAQKQKLTRSAVTDA


KGTSHHRRPSFVSVTSRGSVPTIYQEIDENDSEALAELAHSHVTFKSEARVLASYSFPLI


FTFLLEQIFPMVCSLTVGHLGKNELAAVSLASMTSNITLAIFEGIATSLDTLCPQAYGSG


RFYSVGVHLQRCIAFSLVIYIPFAVMWWYSEPLLSYIIPEKELINLTSRFLRVLILGAPA


YIFFENLKRFLQAQGIFDAGIYVLTICAPLNVLVSYTLVWNKYIGVGFIGAAIAVVLNFW


LMFFLLLFYALYIDGRKCWGGFSRKAFTHWNDLGHLAFSGIIMLEAEELSYELLTLFSAY


YGVSYLAAQSAVSTMAALLYMIPFAIGISTSTRIANFIGAKRTDFAHISSQVGLSFSFIA


GFINCCILVFGRNLIANIYSKDPEVIKLIAQVLPLVGIVQNFDSLNAVAGSCLRGQGMQS


LGSIVNLMAYYLFGIPLALILSWFFDMKLYGLWIGIGSAMLLIGLVEAYYVLFPDWDKIM


TYAEILKETEDDEVDSDEYLTDSDDPDENTALLGA





SEQ ID NO: 29


YDR406W


>sp|Q04182|PDR15_YEAST ATP-dependent permease PDR15 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = PDR15 PE = 1 SV = 1



MSSDIRDVEERNSRSSSSSSSSNSAAQSIGQHPYRGFDSEAAERVHELARTLTSQSLLYT


ANSNNSSSSNHNAHNADSRSVFSTDMEGVNPVFTNPDTPGYNPKLDPNSDQFSSTAWVQN


MANICTSDPDFYKPYSLGCVWKNLSASGDSADVSYQSTFANIVPKLLTKGLRLLKPSKEE


DTFQILKPMDGCLNPGELLVVLGRPGSGCTTLLKSISSNSHGFKIAKDSIVSYNGLSSSD


IRKHYRGEVVYNAESDIHLPHLTVYQTLFTVARMKTPQNRIKGVDREAYANHVTEVAMAT


YGLSHTRDTKVGNDLVRGVSGGERKRVSIAEVAICGARFQCWDNATRGLDSATALEFIRA


LKTQADIGKTAATVAIYQCSQDAYDLFDKVCVLDDGYQLYFGPAKDAKKYFQDMGYYCPP


RQTTADFLTSITSPTERIISKEFIEKGTRVPQTPKDMAEYWLQSESYKNLIKDIDSTLEK


NTDEARNIIRDAHHAKQAKRAPPSSPYVVNYGMQVKYLLIRNFWRMKQSASVTLWQVIGN


SVMAFILGSMFYKVMKKNDTSTFYFRGAAMFFAILFNAFSCLLEIFSLYETRPITEKHRT


YSLYHPSADAFASVLSEMPPKLITAVCFNIIFYFLVDFRRNGGVFFFYFLINVIATFTLS


HLFRCVGSLTKTLQEAMVPASMLLLAISMYTGFAIPKTKILGWSIWIWYINPLAYLFESL


MINEFHDRRFPCAQYIPAGPAYQNITGTQRVCSAVGAYPGNDYVLGDDFLKESYDYEHKH


KWRGFGIGMAYVVFFFFVYLILCEYNEGAKQKGEMVVFLRSKIKQLKKEGKLQEKHRPGD


IENNAGSSPDSATTEKKILDDSSEGSDSSSDNAGLGLSKSEAIFHWRDLCYDVPIKGGQR


RILNNVDGWVKPGTLTALMGASGAGKTTLLDCLAERVTMGVITGNIFVDGRLRDESFPRS


IGYCQQQDLHLKTATVRESLRFSAYLRQPSSVSIEEKNRYVEEVIKILEMQQYSDAVVGV


AGEGLNVEQRKRLTIGVELAARPKLLVFLDEPTSGLDSQTAWDTCQLMRKLATHGQAILC


TIHQPSAILMQQFDRLLFLQKGGQTVYFGDLGEGCKTMIDYFESKGAHKCPPDANPAEWM


LEVVGAAPGSHATQDYNEVWRNSDEYKAVQEELDWMEKNLPGRSKEPTAEEHKPFAASLY


YQFKMVTIRLFQQYWRSPDYLWSKFILTIFNQVFIGFTFFKADRSLQGLQNQMLSIFMYT


VIFNPILQQYLPSFVQQRDLYEARERPSRTFSWLAFFLSQIIVEIPWNILAGTIAYCIYY


YAVGFYANASAAGQLHERGALFWLFSIAFYVYIGSMGLLMISFNEVAETAAHMGTLLFTM


ALSFCGVMATPKVMPRFWIFMYRVSPLTYMIDALLALGVANVDVKCSNYEMVKFTPPSGT


TCGDYMASYIKLAGTGYLSDPSATDICSFCAVSTTNAFLATFSSHYYRRWRNYGIFICYI


AFDYIAATFLYWLSRVPKKNGKISEKPKK





SEQ ID NO: 30


YDR536W


>sp|P39932|STL1_YEAST Sugar transporter STL1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = STL1 PE = 1 SV = 2



MKDLKLSNFKGKFISRTSHWGLTGKKLRYFITIASMTGFSLFGYDQGLMASLITGKQFNY


EFPATKENGDHDRHATVVQGATTSCYELGCFAGSLFVMFCGERIGRKPLILMGSVITIIG


AVISTCAFRGYWALGQFIIGRVVTGVGIGLNTSTIPVWQSEMSKAENRGLLVNLEGSTIA


FGTMIAYWIDFGLSYTNSSVQWRFPVSMQIVFALFLLAFMIKLPESPRWLISQSRTEEAR


YLVGTLDDADPNDEEVITEVAMLHDAVNRTKHEKHSLSSLFSRGRSQNLQRALIAASTQF


FQQFTGCNAAIYYSTVLFNKTIKLDYRLSMIIGGVFATIYALSTIGSFFLIEKLGRRKLF


LLGATGQAVSFTITFACLVKENKENARGAAVGLFLFITFFGLSLLSLPWIYPPEIASMKV


RASTNAFSTCTNWLCNFAVVMFTPIFIGQSGWGCYLFFAVMNYLYIPVIFFFYPETAGRS


LEEIDIIFAKAYEDGTQPWRVANHLPKLSLQEVEDHANALGSYDDEMEKEDFGEDRVEDT


YNQINGDNSSSSSNIKNEDTVNDKANFEG





SEQ ID NO: 31


YEL031W


>sp|P39986|ATC6_YEAST Manganese-transporting ATPase 1


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = SPF1


PE = 1 SV = 1


MTKKSFVSSPIVRDSTLLVPKSLIAKPYVLPFFPLYATFAQLYFQQYDRYIKGPEWTFVY


LGTLVSLNILVMLMPAWNVKIKAKFNYSTTKNVNEATHILIYTTPNNGSDGIVEIQRVTE


AGSLQTFFQFQKKRFLWHENEQVFSSPKFLVDESPKIGDFQKCKGHSGDLTHLKRLYGEN


SFDIPIPTFMELFKEHAVAPLFVFQVFCVALWLLDEFWYYSLFNLFMIISMEAAAVFQRL


TALKEFRTMGIKPYTINVFRNKKWVALQTNELLPMDLVSITRTAEESAIPCDLILLDGSA


IVNEAMLSGESTPLLKESIKLRPSEDNLQLDGVDKIAVLHGGTKALQVTPPERKSDIPPP


PDGGALAIVTKTGFETSQGSLVRVMIYSAERVSVDNKEALMFILFLLIFAVIASWYVWVE


GTKMGRIQSKLILDCILIITSVVPPELPMELTMAVNSSLAALAKFYVYCTEPFRIPFAGR


IDVCCFDKTGTLTGEDLVFEGLAGISADSENIRHLYSAAEAPESTILVIGAAHALVKLED


GDIVGDPMEKATLKAVGWAVERKNSNYREGTGKLDIIRRFQFSSALKRSASIASHNDALF


AAVKGAPETIRERLSDIPKNYDEIYKSFTRSGSRVLALASKSLPKMSQSKIDDLNRDDVE


SELTFNGFLIFHCPLKDDAIETIKMLNESSHRSIMITGDNPLTAVHVAKEVGIVFGETLI


LDRAGKSDDNQLLFRDVEETVSIPFDPSKDTFDHSKLFDRYDIAVTGYALNALEGHSQLR


DLLRHTWVYARVSPSQKEFLLNTLKDMGYQTLMCGDGTNDVGALKQAHVGIALLNGTEEG


LKKLGEQRRLEGMKMMYIKQTEFMARWNQPQPPVPEPIAHLFPPGPKNPHYLKALESKGT


VITPEIRKAVEEANSKPVEVIKPNGLSEKKPADLASLLLNSAGDAQGDEAPALKLGDASC


AAPFTSKLANVSAVTNIIRQGRCALVNTIQMYKILALNCLISAYSLSIIYMAGVKFGDGQ


ATVSGLLLSVCFLSISRGKPLEKLSKQRPQSGIFNVYIMGSILSQFAVHIATLVYITTEI


YKLEPREPQVDLEKEFAPSLLNTGIFIIQLVQQVSTFAVNYQGEPFRENIRSNKGMYYGL


LGVTGLALASATEFLPELNEAMKFVPMTDDFKIKLTLTLLLDFFGSWGVEHFFKFFFMDD


KPSDISVQQVKIASK





SEQ ID NO: 32


YER166W 


>sp|P32660|ATC5_YEAST Phospholipid-transporting ATPase DNF1


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = DNF1


PE = 1 SV = 2


MSGTFHGDGHAPMSPFEDTFQFEDNSSNEDTHIAPTHFDDGATSNKYSRPQVSFNDETPK


NKREDAEEFTFNDDTEYDNHSFQPTPKLNNGSGTFDDVELDNDSGEPHTNYDGMKRFRMG


TKRNKKGNPIMGRSKTLKWARKNIPNPFEDFTKDDIDPGAINRAQELRTVYYNMPLPKDM


IDEEGNPIMQYPRNKIRTTKYTPLTFLPKNILFQFHNFANVYFLVLIILGAFQIFGVTNP


GLSAVPLVVIVIITAIKDAIEDSRRTVLDLEVNNTKTHILEGVENENVSTDNISLWRRFK


KANSRLLFKFIQYCKEHLTEEGKKKRMQRKRHELRVQKTVGTSGPRSSLDSIDSYRVSAD


YGRPSLDYDNLEQGAGEANIVDRSLPPRTDCKFAKNYWKGVKVGDIVRIHNNDEIPADII


LLSTSDTDGACYVETKNLDGETNLKVRQSLKCTNTIRTSKDIARTKFWIESEGPHSNLYT


YQGNMKWRNLADGEIRNEPITINNVLLRGCTLRNTKWAMGVVMFTGGDTKIMLNSGITPT


KKSRISRELNFSVVINFVLLFILCFVSGIANGVYYDKKGRSRFSYEFGTIAGSAATNGFV


SFWVAVILYQSLVPISLYISVEIIKTAQAAFIYGDVLLYNAKLDYPCTPKSWNISDDLGQ


VEYIFSDKTGTLTQNVMEFKKCTINGVSYGRAYTEALAGLRKRQGIDVETEGRREKAEIA


KDRDTMIDELRALSGNSQFYPEEVTFVSKEFVRDLKGASGEVQQRCCEHEMLALALCHSV


LVEANPDNPKKLDLKAQSPDEAALVATARDVGFSFVGKTKKGLIIEMQGIQKEFEILNIL


EFNSSRKRMSCIVKIPGLNPGDEPRALLICKGADSIIYSRLSRQSGSNSEAILEKTALHL


EQYATEGLRTLCIAQRELSWSEYEKWNEKYDIAAASLANREDELEVVADSIERELILLGG


TAIEDRLQDGVPDCIELLAEAGIKLWVLTGDKVETAINIGFSCNLLNNEMELLVIKTTGD


DVKEFGSEPSEIVDALLSKYLKEYFNLTGSEEEIFEAKKDHEFPKGNYAIVIDGDALKLA


LYGEDIRRKFLLLCKNCRAVLCCRVSPSQKAAVVKLVKDSLDVMTLAIGDGSNDVAMIQS


ADVGIGIAGEEGRQAVMCSDYAIGQFRYLARLVLVHGRWSYKRLAEMIPEFFYKNMIFAL


ALFWYGIYNDFDGSYLYEYTYMMFYNLAFTSLPVIFLGILDQDVNDTISLVVPQLYRVGI


LRKEWNQRKFLWYMLDGLYQSIICFFFPYLVYHKNMIVTSNGLGLDHRYFVGVYVTTIAV


ISCNTYVLLHQYRWDWFSGLFIALSCLVVFAWTGIWSSAIASREFFKAAARIYGAPSFWA


VFFVAVLFCLLPRFTYDSFQKFFYPTDVEIVREMWQHGHFDHYPPGYDPTDPNRPKVTKA


GQHGEKIIEGIALSDNLGGSNYSRDSVVTEEIPMTFMHGEDGSPSGYQKQETWMTSPKET


QDLLQSPQFQQAQTFGRGPSTNVRSSLDRTREQMIATNQLDNRYSVERARTSLDLPGVTN


AASLIGTQQNN





SEQ ID NO: 33


YFL011W


>sp|P43581|HXT10_YEAST Hexose transporter HXT10 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = HXT10 PE = 1 SV = 1



MVSSSVSILGTSAKASTSLSRKDEIKLTPETREASLDIPYKPIIAYWTVMGLCLMIAFGG


FIFGWDTGTISGFINQTDFKRRFGELQRDGSFQLSDVRTGLIVGIFNIGCALGGLTLGRL


GDIYGRKIGLMCVILVYVVGIVIQIASSDKWYQYFIGRIVSGMGVGGVAVLSPTLISEIS


PKHLRGTCVSFYQLMITLGIFLGYCTNYGTKKYSNSIQWRVPLGLCFAWAIFMVIGMVMV


PESPRYLVEKGKYEEARRSLAKSNKVTVTDPGVVFEFDTIVANMELERAVGNASWHELFS


NKGAILPRVIMGIVIQSLQQLTGCNYFFYYGTTIFNAVGMQDSFETSIVLGAVNFASTEV


ALYIVDKFGRRKCLLWGSASMAICFVIFATVGVTRLWPQGKDQPSSQSAGNVMIVFTCFF


IFSFAITWAPIAYVIVAETYPLRVKNRAMAIAVGANWMWGFLIGFFTPFITRSIGFSYGY


VFMGCLIFSYFYVFFFVCETKGLTLEEVNEMYEERIKPWKSGGWIPSSRRTPQPTSSTPL


VIVDSK





SEQ ID NO: 34


YGL006W


>sp|P38929|ATC2_YEAST Calcium-transporting ATPase 2 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = PMC1 PE = 1 SV = 1



MSRQDENSALLANNENNKPSYTGNENGVYDNFKLSKSQLSDLHNPKSIRSFVRLFGYESN


SLFKYLKTDKNAGISLPEISNYRKTNRYKNYGDNSLPERIPKSFLQLVWAAFNDKTMQLL


TVAAVVSFVLGLYELWMQPPQYDPEGNKIKQVDWIEGVAIMIAVFVVVLVSAANDYQKEL


QFAKLNKKKENRKIIVIRNDQEILISIHHVLVGDVISLQTGDVVPADCVMISGKCEADES


SITGESNTIQKFPVDNSLRDFKKFNSIDSHNHSKPLDIGDVNEDGNKIADCMLISGSRIL


SGLGRGVITSVGINSVYGQTMTSLNAEPESTPLQLHLSQLADNISVYGCVSAIILFLVLF


TRYLFYIIPEDGRFHDLDPAQKGSKFMNIFITSITVIVVAVPEGLPLAVTLALAFATTRM


TKDGNLVRVLRSCETMGSATAVCSDKTGILTENVMTVVRGFPGNSKFDDSKSLPVSEQRK


LNSKKVFEENCSSSLRNDLLANIVLNSTAFENRDYKKNDKNTNGSKNMSKNLSFLDKCKS


RLSFFKKGNREDDEDQLFKNVNKGRQEPFIGSKTETALLSLARLSLGLQPGELQYLRDQP


MEKFNIEKVVQTIPFESSRKWAGLVVKYKEGKNKKPFYRFFIKGAAEIVSKNCSYKRNSD


DTLEEINEDNKKETDDEIKNLASDALRAISVAHKDFCECDSWPPEQLRDKDSPNIAALDL


LFNSQKGLILDGLLGIQDPLRAGVRESVQQCQRAGVTVRMVTGDNILTAKAIARNCAILS


TDISSEAYSAMEGTEFRKLTKNERIRILPNLRVLARSSPEDKRLLVETLKGMGDVVAVTG


DGTNDAPALKLADVGFSMGISGTEVAREASDIILMTDDFSAIVNAIKWGRCVSVSIKKFI


QFQLIVNITAVILTFVSSVASSDETSVLTAVQLLWINLIMDTLAALALATDKPDPNIMDR


KPRGRSTSLISVSTWKMILSQATLQLIVTFILHFYGPELFFKKHEDEITSHQQQQLNAMT


FNTFVWLQFFTMLVSRKLDEGDGISNWRGRISAANLNFFQDLGRNYYFLTIMAIIGSCQV


LIMFFGGAPFSIARQTKSMWITAVLCGMLSLIMGVLVRICPDEVAVKVFPAAFVQRFKYV


FGLEFLRKNHTGKHDDEEALLEESDSPESTAFY





SEQ ID NO: 35


YGL013C


>sp|P12383|PDR1_YEAST Transcription factor PDR1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = PDR1 PE = 1 SV = 2



MRGLTPKNGVHIETGPTTESSADSSNFSTGFSGKIRKPRSKVSKACDNCRKRKIKCNGKF


PCASCEIYSCECTFSTRQGGARIKNLHKTSLEGTTVQVKEETDSSSTSFSNPQRCTDGPC


AVEQPTKFFENFKLGGRSSGDNSGSDGKNDDDVNRNGFYEDDSESQATLTSLQTTLKNLK


EMAHLGTHVTSAIESIELQISDLLKRWEPKVRTKELATTKFYPNKSIETQLMKNKYCDVV


HLTRYAAWSNNKKDQDTSSQPLIDEIFGLYSPFQFLSLQGIGKCFQNYRSKSKCEIFPRT


AKETIYIMLRFFDVCFHHINQGCVSIANPLENYLQKMNLLPSTPSSISSAGSPNTAHTKS


HVALVINHLPQPFVRNITGISNSELLSEMNNDISMFGILLKMLDMHKNSYQNFLMEITSN


PSVAKNTQSIDVLQEFIHYCQAGEALIALCYSYYNSTLYNYVDFTCDITHLEQLLYFLDL


LFWLSEIYGFEKVLNVAVHFVSRVGLSRWEFYVGLDENFAERRRNLWWKAFYFEKTLASK


LGYPSNIDDSKINCLLPKNFRDVGFLDNRDFIENVHLVRRSEAFDNMCISDLKYYGELAV


LQIVSHFSSSVLFNEKFTSIRNTSKPSVVREKLLFEVLEIFNETEMKYDAIKEQTGKLFD


IAFSKDSTELKVSREDKIMASKFVLFYEHHFCRMVNESDNIVARLCVHRRPSILIENLKI


YLHKIYKSWTDMNKILLDFDNDYSVYRSFAHYSISCIILVSQAFSVAEFIKVNDVVNMIR


VFKRFLDIKIFSENETNEHVFNSQSFKDYTRAFSFLTIVTRIMLLAYGESSSTNLDVISK


YIDENAPDLKGIIELVLDTNSCAYRFLLEPVQKSGFHLTVSQMLKNRKFQEPLMSNEDNK


QMKHNSGKNLNPDLPSLKTGTSCLLNGIESPQLPFNGRSAPSPVRNNSLPEFAQLPSFRS


LSVSDMINPDYAQPTNGQNNTQVQSNKPINAQQQIPTSVQVPFMNTNEINNNNNNNNNNK


NNINNINNNNSNNFSATSFNLGTLDEFVNNGDLEDLYSILWSDVYPDS





SEQ ID NO: 36


YGL255W


>sp|P32804|ZRT1_YEAST Zinc-regulated transporter 1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = ZRT1 PE = 1 SV = 1



MSNVTTPWWKQWDPSEVTLADKTPDDVWKTCVLQGVYFGGNEYNGNLGARISSVFVILFV


STFFTMFPLISTKVKRLRIPLYVYLFAKYFGSGVIVATAFIHLMDPAYGAIGGTTCVGQT


GNWGLYSWCPAIMLTSLTFTFLTDLFSSVWVERKYGLSHDHTHDEIKDTVVRNTAAVSSE


NDNENGTANGSHDTKNGVEYYEDSDATSMDVVQSFQAQFYAFLILEFGVIFHSVMIGLNL


GSVGDEFSSLYPVLVFHQSFEGLGIGARLSAIEFPRSKRWWPWALCVAYGLTTPICVAIG


LGVRTRYVSGSYTALVISGVLDAISAGILLYTGLVELLARDFIFNPQRTKDLRELSFNVI


CTLFGAGIMALIGKWA





SEQ ID NO: 37


YGR125W


>sp|P53273|YG35_YEAST Uncharacterized vacuolar membrane protein


YGR125W OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c)


GN = YGR125W PE = 1 SV = 1


MGRTIRRRRSNSSLSEAISVSLGINQDSSVNKMHRASVSAMSPPLCRSYMSGFFTGGNSP


MINNLSDSKLPISNKQHPKVIHGSENLHRQTAQLSNEFCSSSVEENSPTIKDYMDIIGNG


DRKDDQSMRTIEENIDEEYSDEYSRLLLSPASSNVDDDRNRGLQNSSLPELEDGYAGGYQ


SLRPSHNLRFRPRNLWHMCTSFPSKFAHYLPAAVLGLLLNILDALSYGMIIFPITEPVFS


HLGPTGISMFYISTIISQAVYSGGWSSFPSGIGSEMIEITPFYHTMALAIKEALAGNDDE


IITTTIFCYVISSMLTGVVFYALGKLRLGKIVGFFPRHILIGCIGGVGYFLIITGIEVTT


RVAKFEYSWPFFSGLFTDYDTLAKWLLPVLLTVVLIGTQRYFKNSLVLPSFYILTLVLFH


FIVAIIPTLSLDALRQAGWIFPIANSDSKWYDHYRLFNVHKVHWSLVLQQIPTMMALTFF


GILHVPINVPALAMSLQMDKYDVDRELIAHGYSNFFSGLLGSVQNYLVYTNSVLFIRAGA


DSPFAGFLLIALTICIMIIGPVIISFIPICIVGSLIFLLGYELLVEALVDTWNKLNRFEY


LTVVIIVFTMGIFDFVLGIIVGILIACFSFLVDSTKLQTINGEYNGNVARSTVYRDYVQT


KFLDGIGEQIYVLKLQNLLFFGTIISIEEKIERLLQISNKDATKRRIKYLILDFKNINAD


NIDYSAAEGFNRIKRFTETKRIKLIISSIKERDRIYNAFNNVGLLNDVELFADLNSALEW


CENEFLFQYKQLRKKAKERLEEGKQNNVVSAVIAATKNKKIDTIGNGLNRGSNGDTARNL


MSLPTNTPRNYQILSVAQNVFVNDEQAVKNFKKEYKDDEPVLPILLFALKQYRPDIISEV


QKVREKEIKFWAQLCPYFTRRRLASQSHLLHADNIFFLVETGMLKATYELPQGTLYEIFS


NGTCFGKIIAPGNAMPREQKLTIETETDSVLWVIDSSSLNKLKEDNLALYVEVALMVMCI


KDTRFKELLGYTLVSA





SEQ ID NO: 38


YGR181W


>sp|P53299|TIM13_YEAST Mitochondrial import inner membrane


translocase subunit TIM13 OS = Saccharomyces cerevisiae (strain ATCC 


204508/S288c) GN = TIM13 PE = 1 SV = 1


MGLSSIFGGGAPSQQKEAATTAKTTPNPIAKELKNQIAQELAVANATELVNKISENCFEK


CLTSPYATRNDACIDQCLAKYMRSWNVISKAYISRIQNASASGEI





SEQ ID NO: 39


YGR217W


>sp|P50077|CCH1_YEAST Calcium-channel protein CCH1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = CCH1 PE = 1 SV = 1



MQGRKRTLTEPFEPNTNPFGDNAAVMTENVEDNSETDGNRLESKPQALVPPALNIVPPES


SIHSTEEKKGDEYNGNDKDSSLISNIFRTRVGRSSHENLSRPKLSLKTASFGAAESSRRN


VSPSTKSAKSSSQYIDLNDERLRRRSFSSYSRSSSRRVSNSPSSTDRPPRSAKVLSLIAA


DDMDDFEDLQKGFKSAIDEEGLTWLPQLKSEKSRPVSDVGEDRGEGEQESIPDVHTPNVG


ASATPGSIHLTPEPAQNGSVSEGLEGSINNSRKKPSPKFFHHLSPQKEDKDQTEVIEYAE


DILDFETLQRKLESRPFVLYGHSLGVFSPTNPLRIKIARFLLHRRYSLLYNTLLTFYAIL


LAIRTYNPHNVVFLYRFSNWTDYFIFILSACFTGNDIAKIIAFGFWDDSEMFKAYGREYK


SILQRSGIMKLYIYLREKYGRKLIDFIIPFRIISPGEETKYQRSSLSTSLTKPYGAKENQ


RPFGTPRAFARSSWNRIDLVSSVSFWLGMFLSIKSYDTKIGIRIFKPLAILRILRLVNVD


TGMPSILRGLKYGIPQLVNVSSMLVYFWIFFGILGVQIFQGSFRRQCVWFNPEDPTDTYQ


YDMQFCGGYLDPVTKRKQNYIYEDGSEGSVSKGFLCPQYSKCVSNANPYNGRISFDNIVN


SMELVFVIMSANTFTDLMYYTMDSDEMAACLFFIVCIFVLTIWLLNLLIAVLVSSFEIAN


EEYKKKKFIYGSRKTGYVARIVTGYWKYFKLKANQTKFPNWSQKGLAIYSHVEFIFVILI


ICDIGMRASVKVSTSANCNNILLKTDRGISIVLFIESLARLVLYLPNMWKFLTKPSYVYD


FIISIITLVISCLAVEGVLGHMYAWLSIFHISRFYRVIISFNLTKKLWKQILSNGVMIWN


LSSFYFFFTFLVAIIMAVYFEGVIPPEEMADQPFGMYSLPNSFLSLFIIGSTENWTDILY


ALQKHSPNISSTFFCSVFFIIWFLLSNSVILNIFIALISESMEVKEEEKRPQQIKHYLKF


VYPQKIQEYTHASLVARIRKKFFGGHRNEDTRDFKQFLMRGTAIMNIAQNMGELADEFKE


PPSENLFKKGLSKLTIGVPSLKRLRMFANNPFYKNSDVVFTETNDINGRTYILELNEYED


EKLDYLKKYPLFNYSYYFFSPQHRFRRFCQRLVPPSTGKRTDGSRFFEDSTDLYNKRSYF


HHIERDVFVFIFALATILLIVCSCYVTPLYRMHHKMGTWNWSSALDCAFIGAFSIEFIVK


TVADGFIYSPNAYLRNPWNFIDFCVLISMWINLIAYLKNNGNLSRIFKGLTALRALRCLT


ISNTARQTFNLVMFDGLNKIFEAGLISLSLLFPFTVWGLSIFKGRLGTCNDGSLGRADCY


NEYSNSVFQWDIMSPRVYQQPYLHLDSFASAFSSLYQIISLEGWVDLLENMMNSSGIGTP


ATVMGSAGNALFLVLFNFLSMVFILNLFVSFIVNNQARTTGSAYFTIEEKAWLESQKLLS


QAKPKAIPNLIELSRVRQFFYQLAVEKKNFYYASFLQVVLYLHIIMLLSRSYNPGNLIGY


QGVYFMFSTSVFLIQEALHMCGEGPRLYFRQKWNSIRLSIIIIAFIMNAVAFHVPASHYW


FHNIKGFFLLVIFLFIIPQNDTLTELLETAMASLPPILSLTYTWGVLFLVYAIALNQIFG


LTRLGSNTTDNINFRTVIKSMIVLFRCSFGEGWNYIMADLTVSEPYCSSDDNSTYTDCGS


ETYAYLLLMSWNIISMYIFVNMFVSLIIGNFSYVYRSGGSRSGINRSEIKKYIEAWSKFD


TDGTGELELSYLPRIMHSFDGPLSFKIWEGRLTIKSLVENYMEVNPDDPYDVKIDLIGLN


KELNTIDKAKIIQRKLQYRRFVQSIHYTNAYNGCIRFSDLLLQIPLYTAYSARECLGIDQ


YVHHLYILGKVDKYLENQRNFDVLEMVVTRWKFHCRMKRTIEPEWDVKDPTVSSHISNIN


VNLEPAPGILEREPIATPRMDYGVNNFMWSPRMNQDSTMEPPEEPIDNNDDSANDLIDR





SEQ ID NO: 40


YGR224W


>sp|P50080|AZR1_YEAST Azole resistance protein 1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = AZR1 PE = 1 SV = 1



MKGEPKTYSMSDLSYYGEKAQQQNEKQQKQYVVRRNSTQSTSKQNVSVVLEDNASESNEL


PKGFILYASLIALALSLFLAALDIMIVSTIIEEVAKQFGSYSEIGWLFTGYSLPNALLAL


IWGRIATPIGFKETMLFAIVIFEIGSLISALANSMSMLIGGRVIAGVGGCGIQSLSFVIG


STLVEESQRGILIAVLSCSFAIASVVGPFLGGVFTSSVTWRWCFYVNLPIGGLAFFLFLF


FYNPGLSTFQETMDNIRKFPSQFIEIVRNVAYHLLKIKGFSKLNGWRKPFMELIFMYDII


EFVFCSAGFTCILLAFTFGGNRYAWNSASIIILFIIGIVLVVLAGIYDFLVFAKFNIVKA


TPHYQPLMSWTNIKKPGIFTVNIALFLTCAGYISQFTYIVQYFQLIYNDSAWRAAVHLVA


CIISTVVTAILCGAITDKTRQIKPIIVISSIFGVVGAGILTLLNNNANNSAHIGLLILPG


VAFGGLAQSSMLASQIQLDKKSPTFRSDFVSITTFNTFCKNLGQALGGVISNTVFSAAAI


KKLTKANIQLPDGTTVDNLVIYRQTNFDGSHSKLGNIISESLTDVFYMALGFYALSLIFA


VFASNKKVTASLR





SEQ ID NO: 41


YGR281W


>sp|P53049|YOR1_YEAST Oligomycin resistance ATP-dependent permease


YOR1 OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c)


GN = YOR1 PE = 1 SV = 1


MTITVGDAVSETELENKSQNVVLSPKASASSDISTDVDKDTSSSWDDKSLLPTGEYIVDR


NKPQTYLNSDDIEKVTESDIFPQKRLFSFLHSKKIPEVPQTDDERKIYPLFHTNIISNMF


FWWVLPILRVGYKRTIQPNDLFKMDPRMSIETLYDDFEKNMIYYFEKTRKKYRKRHPEAT


EEEVMENAKLPKHTVLRALLFTFKKQYFMSIVFAILANCTSGFNPMITKRLIEFVEEKAI


FHSMHVNKGIGYAIGACLMMFVNGLTFNHFFHTSQLTGVQAKSILTKAAMKKMFNASNYA


RHCFPNGKVTSFVTTDLARIEFALSFQPFLAGFPAILAICIVLLIVNLGPIALVGIGIFF


GGFFISLFAFKLILGFRIAANIFTDARVTMMREVLNNIKMIKYYTWEDAYEKNIQDIRTK


EISKVRKMQLSRNFLIAMAMSLPSIASLVTFLAMYKVNKGGRQPGNIFASLSLFQVLSLQ


MFFLPIAIGTGIDMIIGLGRLQSLLEAPEDDPNQMIEMKPSPGFDPKLALKMTHCSFEWE


DYELNDAIEEAKGEAKDEGKKNKKKRKDTWGRPSASTNKAKRLDNMLKDRDGPEDLEKTS


FRGFKDLNFDIKKGEFIMITGPIGTGKSSLLNAMAGSMRKTDGKVEVNGDLLMCGYPWIQ


NASVRDNIIFGSPFNKEKYDEVVRVCSLKADLDILPAGDMTEIGERGITLSGGQKARINL


ARSVYKKKDIYLFDDVLSAVDSRVGKHIMDECLTGMLANKTRILATHQLSLIERASRVIV


LGTDGQVDIGTVDELKARNQTLINLLQFSSQNSEKEDEEQEAVVAGELGQLKYESEVKEL


TELKKKATEMSQTANSGKIVADGHTSSKEERAVNSISLKIYREYIKAAVGKWGFIALPLY


AILVVGTTFCSLFSSVWLSYWTENKFKNRPPSFYMGLYSFFVFAAFIFMNGQFTILCAMG


IMASKWLNLRAVKRILHTPMSYIDTTPLGRILNRFTKDTDSLDNELTESLRLMTSQFANI


VGVCVMCIVYLPWFAIAIPFLLVIFVLIADHYQSSGREIKRLEAVQRSFVYNNLNEVLGG


MDTIKAYRSQERFLAKSDFLINKMNEAGYLVVVLQRWVGIFLDMVAIAFALIITLLCVTR


AFPISAASVGVLLTYVLQLPGLLNTILRAMTQTENDMNSAERLVTYATELPLEASYRKPE


MTPPESWPSMGEIIFENVDFAYRPGLPIVLKNLNLNIKSGEKIGICGRTGAGKSTIMSAL


YRLNELTAGKILIDNVDISQLGLFDLRRKLAIIPQDPVLFRGTIRKNLDPFNERTDDELW


DALVRGGAIAKDDLPEVKLQKPDENGTHGKMHKFHLDQAVEEEGSNFSLGERQLLALTRA


LVRQSKILILDEATSSVDYETDGKIQTRIVEEFGDCTILCIAHRLKTIVNYDRILVLEKG


EVAEFDTPWTLFSQEDSIFRSMCSRSGIVENDFENRS





SEQ ID NO: 42


YHL016C


>sp|P33413|DUR3_YEAST Urea active transporter OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = DUR3 PE = 1 SV = 2



MGEFKPPLPQGAGYAIVLGLGAVFAGMMVLTTYLLKRYQKEIITAEEFTTAGRSVKTGLV


AAAVVSSWIWCSTLLTSSTKEYADGIFGGYAYAAGACFQIIAFAILAIKTKQMAPNAHTY


LELVRTRYGKIGHGCYLFYAIATNILVTSMLLTSGSAVFSDLTGMNTIASCFLLPVGVVV


YTLFGGIKATFLTDYMHTCVIIIIVLVFAFKVYATSDVLGSPGKVYDLVREAAKRHPVDG


NYQGEYMTMTSKSAGILLIINLIGNFGTVFLDNGYWNKAISASPAASLKAYAIGGLAWFA


VPSLISLTMGLACLAVETSPNFPTYPDPLTSFQANSGLVLPAAAIAIMGKGGAVASLLMI


FMAVTSAMSAELIAVSSVFTYDIYREYIDPRASGKKLIYTSHVACIFFGLAMSGFSVGLY


YGGISMGYIYEMMGIIISSAVLPVVLTLCSKDMNLVAAVVSPILGTGLAIMSWLVCTKSL


YKELTVDTTFMDYPMLTGNLVALLSPAIFIPILTYVFKPQNFDWEKMKDITRVDETAELV


QADPDIQLYDAEANDKEQEEETNSLVSDSEKNDVRVNNEKLIEPNLGVVISNAIFQEDDT


QLQNELDEEQRELARGLKIAYFLCVFFALAFLVVWPMPMYGSKYIFSKKFFTGWVVVMII


WLFFSAFAVCIYPLWEGRHGIYTTLRGLYWDLSGQTYKLREWQNSNPQDLHVVTSQISAR


AHRQSSHFGQVDEII





SEQ ID NO: 43


YIL088C


>sp|P40501|AVT7_yEAST Vacuolar amino acid transporter 7


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = AVT7


PE = 1 SV = 1


MEATSSALSSTANLVKTIVGAGTLAIPYSFKSDGVLVGVILTLLAAVTSGLGLFVLSKCS


KTLINPRNSSFFTLCMLTYPTLAPIFDLAMIVQCFGVGLSYLVLIGDLFPGLFGGERNYW


IIASAVIIIPLCLVKKLDQLKYSSILGLFALAYISILVFSHFVFELGKGELTNILRNDIC


WWKIHDFKGLLSTFSIIIFAFTGSMNLFPMINELKDNSMENITFVINNSISLSTALFLIV


GLSGYLTFGNETLGNLMLNYDPNSIWIVIGKFCLGSMLILSFPLLFHPLRIAVNNVIIWI


EITYGGANPEEDPQVSEYTRASNLRPISMTVEDPAQPSDALDATSYNEQECLLPNGNFDN


GSIESQENNNDERGTMAVAGDNEHHAPFVKSRFYWITALLLISMYTLALSVQSFALVLSF


VGATGSTSISFTLPGLLGYKLIGLDSLAIGKMIPPKDRFYKRCSLLLVFYGLSVMFLSLY


VTVFNRSDEA





SEQ ID NO: 44


YJL093C


>sp|P40310|TOK1_YEAST Outward-rectifier potassium channel TOK1


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = TOK1


PE = 1 SV = 1


MTRFMNSFAKQTLGYGNMATVEQESSAQAVDSHSNNTPKQAKGVLAEELKDALRFRDERV


SIINAEPSSTLFVFWFVVSCYFPVITACLGPVANTISIACVVEKWRSLKNNSVVTNPRSN


DTDVLMNQVKTVFDPPGIFAVNIISLVLGFTSNIILMLHFSKKLTYLKSQLINITGWTIA


GGMLLVDVIVCSLNDMPSIYSKTIGFWFACISSGLYLVCTIILTIHFIGYKLGKYPPTFN


LLPNERSIMAYTVLLSLWLIWGAGMFSGLLHITYGNALYFCTVSLLTVGLGDILPKSVGA


KIMVLIFSLSGVVLMGLIVFMTRSIIQKSSGPIFFFHRVEKGRSKSWKHYMDSSKNLSER


EAFDLMKCIRQTASRKQHWFSLSVTIAIFMAFWLLGALVFKFAENWSYFNCIYFCFLCLL


TIGYGDYAPRTGAGRAFFVIWALGAVPLMGAILSTVGDLLFDISTSLDIKIGESFNNKVK


SIVFNGRQRALSFMVNTGEIFEESDTADGDLEENTTSSQSSQISEFNDNNSEENDSGVTS


PPASLQESFSSLSKASSPEGILPLEYVSSAEYALQDSGTCNLRNLQELLKAVKKLHRICL


ADKDYTLSFSDWSYIHKLHLRNITDIEEYTRGPEFWISPDTPLKFPLNEPHFAFMMLFKN


IEELVGNLVEDEELYKVISKRKFLGEHRKTL





SEQ ID NO: 45


YJL094C


>sp|P40309|KHA1_YEAST K(+)/H(+) antiporter 1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = KHA1 PE = 1 SV = 1



MANTVGGILSGVNPFHYNSSSPLTLFLFQACLILLVCNLIHIPFSMMRQPKVISEVISGV


ILGPTIFGQIPNYINTIFPTSSIPGLNLVANLGIILFMFFLGLEVDIAFIKKHLKKALVI


GIVTLAVPFGFGCLLAIPLFHTYANKTEGERHIKFSVFMVFIAVSISVTAFPVLCRILNE


LRLIKDRAGIVVLAAGIINDIMGWILLALSIILSSAEGSPVNTVYILLITFAWFLIYFFP


LKYLLRWVLIRTHELDRSKPSPLATMCILFIMFISAYFTDIIGVHPIFGAFIAGLVVPRD


DHYVVKLTERMEDIPNIVFIPIYFAVAGLNVDLTLLNEGRDWGYVFATIGIAIFTKIISG


TLTAKLTGLFWREATAAGVLMSCKGIVEIVVLTVGLNAGIISRKIFGMFVLMALVSTFVT


TPLTQLVYPDSYRDGVRKSLSTPAEDDGAADGLDSEGVDKTEINTQLNSLADVSKYRIGE


LTTVINTTEAISPSLKLLNYLSLGVSPKPKNNKHKNETSLSRMITATDSTLKSNIFKIKK


MVHIWSKSVDDVDTNLSVIDEKLTPFEGVGALRAIHLRLLTERTTDLLQSSSLYNDDPHF


TANTDSLLQIFDIFSNLSKIPFSSEVIFSTMREKAANIATMKMDSTDLILLPLKGASYEY


RGSPVFIDEKYANFDHIYSHLLGLNELSSTFFKSIFQSLKANFAVQISNTYGRLNADRFK


RKRFNLLLPKPYLTQSDYLGLYLLLLICYRDGYNNDNASCSIFINSKNIDFAKDLSTAFA


EHDWLNESTIKIVDIPFETKVPEEAIEKPSFIETVLDVGLSDTALADIEETTFIIGEDLP


DESEPFSEEVRTVIFEGSNRRFDTLIVHHFSSE





SEQ ID NO: 46


YJL108C


>sp|P42946|PRM10_YEAST Pheromone-regulated membrane protein 10


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = PRM10


PE = 1 SV = 1


MIVSFGDATTRTSEVQLVRCTQGLNLWKLHQVHAVYKRVVHDTLGADEGNALLDQILADT


NLYPPWMCVLLYAFCSAMVTPYAFGGDWVNLAISFFMGLCVGSLQFILSQKSYMYSNVFE


ISASIVVSFCGRAFGSIPRSHICFGAVTQGSLALILPGYIILCGALELQSRSLVAGAVRM


FYAIIYSLFLGFGITLGSALFGWMYHNATNEISCPQLISPWFRFLFVPAFTISISLLNQA


HISQLPVMVFISCTGYVVTYWAGKHFANSTEFTAALAAFVIGVLGNLYSRIWKGLAVSAM


LPAIFVQVPSGIASQNSLLSGLQSANTIVNANETITTSTSDPSSSMSFGMTMIQVCVGIS


VGLFASSLFVYPFGKKKTGLFSL





SEQ ID NO: 47


YJL212C


>sp|P40897|OPT1_YEAST Oligopeptide transporter 1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = OPT1 PE = 1 SV = 1



MSTIYRESDSLESEPSPTPTTIPIQINMEEEKKDAFVKNIDEDVNNLTATTDEEDRDPES


QKFDRHSIQEEGLVWKGDPTYLPNSPYPEVRSAVSIEDDPTIRLNHWRTWFLTIVFVVVF


AGVNQFFSLRYPSLEINFLVAQVVCYPIGRILALLPDWKCSKVPFFDLNPGPFTKKEHAV


VTIAVALTSSTAYAMYILNAQGSFYNMKLNVGYQFLLVWTSQMIGYGAAGLTRRWVVNPA


SSIWPQTLISVSLFDSLHSRKVEKTVANGWTMPRYRFFLIVLIGSFIWYWVPGFLFTGLS


YFNVILWGSKTRHNFIANTIFGTQSGLGALPITFDYTQVSQAMSGSVFATPFYVSANTYA


SVLIFFVIVLPCLYFTNTWYAKYMPVISGSTYDNTQNKYNVIKILNEDYSINLEKYKEYS


PVFVPFSYLLSYALNFAAVIAVFVHCILYHGKDIVAKFKDRKNGGTDIHMRIYSKNYKDC


PDWWYLLLQIVMIGLGFVAVCCFDTKFPAWAFVIAILISLVNFIPQGILEAMTNQHVGLN


IITELICGYMLPLRPMANLLFKLYGFIVMRQGLNLSRDLKLAMYNKVSPRLIFAVQIYAT


IISGMVNVGVQEWMMHNIDGLCTTDQPNGFTCANGRTVFNASIIWSLPKYLFSSGRIYNP


LMWFFLIGLLFPLAVYAVQWKFPKFKFAKHIHTPVFFTGPGNIPPSTPYNYSLFFAMSFC


LNLIRKRWRAWFNKYNFVMGAGVEAGVAISVVIIFLCVQYPGGKLSWWGNNVWKRTYDND


YKKFYTLKKGETFGYDKWW





SEQ ID NO: 48


YJR106W


>sp|P47144|ECM27_YEAST Protein ECM27 OS = Saccharomyces cerevisiae


(strain ATCC 204508/S288c) GN = ECM27 PE = 1 SV = 2


MDWAINVAHPRLLYKDPKLSVTFIVPSLFHIIIAFVLLGICASDFLCPNVAHISDPNSLR


SNGSLVSKTASHASHTGALMAVLLSWCNSSPDLFSNLMSWATSTRETRSTSVSLSIGEVL


GACGIILCIVEGSIFIIMSRTHIEISQIQKLSIMRDLLFSLAAMCVMSYVSLMNQVTVLN


CLLMAFLYAFYLVVKLTFKLNHSAETPDETAADTSLRENSVSPFLDDSLMASGLLPPIQP


GFDISNSITHGIKPSLLSAMDFNSFLSMLENSSLEEDDSRNEMAELNTLRSMTPGQHWSA


SATVAGEATSAGRPFSEPTNAFTEYRDSERAINSSPAVFAPYRDNPDDEESQEQVLLETT


THGHFGAQEMRRFSKRSLGWIIKIFIFHLSNFSQKSISDAIFSIITVPFFIIFKLSCPQP


PSDILSYDPTLNRYSLTTLPIILLFIQSITAPFLLCSILSVLLTYHLGYLVYLFPLILAM


ALILLLTAFITKVNLHNKFTLSLDSSNILQEKLQKRKLLERLNTSIQIIFLAIGIINIII


WISLLANSLIEMMEIYQKILGLSKAILGLTIFAWGNSVGDLISNISMCRLYKTQTHYQDR


VRLATKFFMISCASCLGGVMLNSMGGIGFSGLVSMLFIGAFNDNEWWFLRKVKLQETSQL


DNTLNYKFIVSCVFIILQIILLLLFFGGPNNIKRRLTKEMKLVGISMCGLWALATLINIL


LELFS





SEQ ID NO: 49


YJR160C


>sp|P0CE00|MPH3_YEAST Alpha-glucosides permease MPH3


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = MPH3


PE = 1 SV = 1


MKNLSFLINRRKENTSDSNVYPGKAKSHEPSWIEMDDQTKKDGLDIVHVEFSPDTRAPSD


SNKVITEIFDATEDAKEADESERGMPLATALNTYPKAAAWSLLVSTTLIMEGYDTAILGA


FYALPIFQRKFGSQNDKTGEWEISASWQIGLTLCYMAGEIVGLQLTGPSVDLVGNRYTLI


IALFFLAAFTFILYFCNSLGMIAVGQALCGMPWGCFQCLTVSYASEICPLALRYYLTTYS


NLCWLFGQLFAAGIMKNSQKKYADSELGYKLPFALQWILPVPLALGIFFAPESPWWLVKK


GRFDEARRSLRRTLSGKGPEKEILVTLEVDKIKVTIDKEKRLTSKEGSYSDCFEDKINRR


RTRITCLCWAGQATCGSILIGYSTYFYEKAGVSTEMSFTFSIIQYCLGICATFLSWWASK


YFGRYDLYAFGLAFQTIVFFIIGGLGCSSTHGSKMGSGSLLMAVAFFYNLGIAPVVFCLV


SEMPSSRLRTKTIILARNTYNVVSIICSVLILYQLNSKKWNWGAKSGFFWGVLCFCTLIW


AVVDLPETAGKTFVEINELFKLGVSARKFKSTKVDPFVVKTPPKDVSHNDPKGDIEASIA


EE





SEQ ID NO: 50


YKL064W


>sp|P35724|MNR2_YEAST Manganese resistance protein MNR2


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = MNR2


PE = 1 SV = 1


MSTDNSQKDEGVPLLSPYSSSPQLRKKKRNQKRRKDKFVGHLKSDSRRPTQLLHDNLQHN


HGQITDFDQIDSWGMLHESDSTSNDIIKSEDPSLKGAFIDHRPSMSQPREGPQSVSSTVQ


PQPIMKFSTPSYKKPAGLRPSDQNRSLVSDLSPSELESWLKRRKSVHKSFVDENSPTDRR


QSNANNDVVIDVDALMNHVNNNASTGVNDNSKRRKKKRGSDDSSNKNSKSTSSDSNDEED


EYNSRPSSSLSSNNSSLDDVCLVLDDEGSEVPKAWPDCTVLEEFSKEETERLRSQAIQDA


EAFHFQYDEDEEDGTSNEDGILFSKPIVTNIDVPELGNRRVNETENLKNGRLRPKRIAPW


HLIQRPMVLGSNSTKDSKSRIQSGLQDNLLVGRNIQYPPHIISNNPEHERFTYFRVDLDS


TVHSPTISGLLQPGQKFQDLFVASIYSQDNSAGHIKTHPNSPTPGIKAETVSQLQGLTAK


NPSTLSSMSVANIEDVFPFWLDVSNPTEEEMKILSKAFGIHPLTTEDIFLGEVREKVELF


RDYYLICFRSEDIVAEKHVRRRRKEKQESATLDHESISRRKSQAYGATMSNESNANNNNS


TSNASRSKWLPSILRARRRSSANRTTNTSSSSYKRRVKSEKKKMEENEKFKRKSGDRHKP


REGELEPLNVYIIVFRTGVLTFHFAPTPHPINVRRRARLLKDYLNVTSDWIAYALIDDIT


DAFAPMIELIEDEVYEIEDAILKMHQSDDSSDSDSSDSDSDSGASDEDAFPFDVYSKKTS


YSSAKSSVSSRSMSTSEASFNANLIGWKRKGDMLRRIGECRKRVMSILRLLGSKADVIKG


FAKRYNEQWEASPQSEIAMYLGDIQDHIVTMVSSLNHYEKLLSRSHSNYLAQINIDMTKV


NNDMNDVLGKITILGTIVLPMNVITGLWGMNVIVPGQYRDSLTWFIGIVLFMCMLACSAY


MYTKRRFGF





SEQ ID NO: 51


YKR050W


>sp|P28584|TRK2_YEAST Low-affinity potassium transport protein


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = TRK2


PE = 1 SV = 1


MPTAKRTSSRASLALPFQLRLVHKKSWGHRLRDFISGELKSCRPIAKYVFPNFIVVHYTY


LITLSIIGSILLYPCKNTAFIDVLFLAAGASTQGGLATKSTNDFNLYQQIVVYVITLLST


PILIHGFLAFVRLYWFERYFDNIRDISKQNFKLRRTMTLQQRELSGSSGNAARSRSFKDN


LFRGKFVSREDPRQSASDVPMDSPDTSALSSISPLNVSSSKEESSDTQSSPPNFSSKRQP


SDVDPRDIYKSIMMLQKQQEKSNANSTDSFSSETNGPAFIVQERHERRAPHCSLKRHSVL


PSSQELNKLAQTKSFQKLLGLRRDEGDHDYFDGAPHKYMVTKKKKISRTQSCNIPTYTAS


PSPKTSGQVVENHRNLAKSAPSSFVDEEMSFSPQESLNLQFQAHPPKPKRREGDIGHPFT


RTMSTNYLSWQPTFGRNSVFIGLTKQQKEELGGVEYRALRLLCCILMVYYIGFNILAFVT


IVPWACTRHHYSEIIRRNGVSFTWWGFFTAMSAFSNLGLSLTADSMVSFDTAPYPLIFMM


FFIIIGNTGFPIMLRFIIWIMFKTSRDLSQFKESLGFLLDHPRRCFTLLFPSGPTWWLFT


TLVVLNATDWILFIILDFNSAVVRQVAKGYRALMGLFQSVCTRTAGFNVVDLSKLHPSIQ


VSYMLMMYVSVLPLAISIRRTNVYEEQSLGLYDSGQDDENITHEDDIKETDHDGESEERD


TVSTKSKPKKQSPKSFVGAHLRRQLSFDLVYLFLGLFIICICEGRKIEDVNKPDFNVFAI


LFEVVSAYGTVGLSLGYTNTNTSLSAQFTVLSKLVIIAMLIRGRNRGLPYTLDRAIMLPS


DKLEQIDRLQDMKAKGKLLAKVGEDPMTTYVKKRSHKLKKIATKFWGKH





SEQ ID NO: 52


YKR105C


>sp|P36172|VBA5_YEAST Vacuolar basic amino acid transporter 5


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = VBA5


PE = 3 SV = 1


MEETKYSSQQEIEGACGSDASLNARGSNDSPMGLSLYLCLASLTLVLFITALDILIVGTI


IDVVAEQFGNYSKTGWLVTGYSLPNAILSLIWGRFASIIGFQHSLILAILIFEAGSLIAA


LASSMNMLIFGRVVAGVGGSGLQTLCFVIGCTMVGERSRPLVISILSCAFAVAAIVGPII


GGAFTTHVTWRWCFYINLPIGGLAIIMFLLTYKAENKGILQQIKDAIGTISSFTFSKFRH


QVNFKRLMNGIIFKFDFFGFALCSAGLVLFLLGLTFGGNKYSWNSGQVITYLVLGVLLFI


FSLVYDFFLFDKFNPEPDNISYRPLLLRRLVAKPAIIIVNMVTFLLCTGYNGQMIYSVQF


FQLIFASSAWKAGLHLIPIVITNVIAAIASGVITKKLGLVKPLLIFGGVLGVIGAGLMTL


MTNTSTKSTQIGVLLLPGFSLGFALQASLMSAQLQITKDRPEAAMDFIEVTAFNTFMKSL


GTTLGGVLSTTVFSASFHNKVSRAHLEPYEGKTVDDMILYRLQNYDGSHSTIGNILSDSI


KNVFWMDLGFYALGFLFCSFSSNKKLIIPKKDDTPEDNLEDK





SEQ ID NO: 53


YKR106W


>sp|P36173|GEX2_YEAST Glutathione exchanger 2 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = GEX2 PE = 1 SV = 1



MSSSVVGASSNKKSGIRQSCEIIERERHSNDDTYSMTSTFFKLKENEIMSAQFDSLKYKI


LLISTAFVCGFGISLDYTLRSTYTGYATNSYSEHSLLSTVQVINAVVSVGSQVVYSRLSD


HFGRLRLFLVATIFYIMGTIIQSQATRLTMYAAGSVFYNCGYVGTNLLLTLILSDFSSLK


WRMFYQYASYWPYIIIPWISGNIITAANPQKNWSWNIAMWAFIYPLSTLPIIFLILYMKY


KSSKTAEWRSLKEQARKERTGGLFENLVFLFWKLDIVGILLITVSLGCILVPLTLANETS


QKWHNSKIIATLVSGGCLFFIFLYWEAKFAKSPLLPFKLLSDRGIWAPLGVTFFNFFTFF


ISCDYLYPVLLVSMKESSTSAARIVNLPDFVAATASPFYSLLVAKTRKLKLSVIGGCAAW


MVCMGLFYKYRGGSGSHEGVIAASVIMGLSGLLCSNSVIVILQAMTTHSRMAVITGIQYT


FSKLGAAIGASVSGAIWTQTMPNQLYKNLGNDTLAEIAYASPYTFISDYPWGSPERDAVV


ESYRYVQRIIMTVGLACTVPFFTFTMFMRNPELIDKATHEEFTEDGLVVLPDEENIFSQI


KALFRHNRSNKKSGC





SEQ ID NO: 54


YLR447C


>sp|P32366|VA0D_YEAST V-type proton ATPase subunit d


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = VMA6


PE = 1 SV = 2


MEGVYFNIDNGFIEGVVRGYRNGLLSNNQYINLTQCDTLEDLKLQLSSTDYGNFLSSVSS


ESLTTSLIQEYASSKLYHEFNYIRDQSSGSTRKFMDYITYGYMIDNVALMITGTIHDRDK


GEILQRCHPLGWFDTLPILSVATDLESLYETVLVDTPLAPYFKNCFDTAEELDDMNIEII


RNKLYKAYLEDFYNFVTEEIPEPAKECMQTLLGFEADRRSINIALNSLQSSDIDPDLKSD


LLPNIGKLYPLATFHLAQAQDFEGVRAALANVYEYRGFLETGNLEDHFYQLEMELCRDAF


TQQFAISTVWAWMKSKEQEVRNITWIAECIAQNQRERINNYISVY





SEQ ID NO: 55


YML116W


>sp|P13090|ATR1_YEAST Aminotriazole resistance protein


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = ATR1


PE = 1 SV = 2


MGNQSLVVLTESKGEYENETELPVKKSSRDNNIGESLTATAFTQSEDEMVDSNQKWQNPN


YFKYAWQEYLFIFTCMISQLLNQAGTTQTLSIMNILSDSFGSEGNSKSWLMASFPLVSGS


FILISGRLGDIYGLKKMLLVGYVLVIIWSLICGITKYSGSDTFFIISRAFQGLGIAFVLP


NVLGIIGNIYVGGTFRKNIVISFVGAMAPIGATLGCLFAGLIGTEDPKQWPWAFYAYSIA


AFINFVLSIYAIPSTIPTNIHHFSMDWIGSVLGVIGLILLNFVWNQAPISGWNQAYIIVI


LIISVIFLVVFIIYEIRFAKTPLLPRAVIKDRHMIQIMLALFFGWGSFGIFTFYYFQFQL


NIRQYTALWAGGTYFMFLIWGIIAALLVGFTIKNVSPSVFLFFSMVAFNVGSIMASVTPV


HETYFRTQLGTMIILSFGMDLSFPASSIIFSDNLPMEYQGMAGSLVNTVVNYSMSLCLGM


GATVETQVNSDGKHLLKGYRGAQYLGIGLASLACMISGLYMVESFIKGRRARAAAEYDCT


VA





SEQ ID NO: 56


YMR034C


>sp|Q05131|YMS4_YEAST Uncharacterized membrane protein YMR034C


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YMR034C


PE = 1 SV = 1


MKTQYSLIRKIWAHSVTEFLKSQWFFICLAILIVIARFAPNFARDGGLIKGQYSIGYGCV


AWIFLQSGLGMKSRSLMANMLNWRAHATILVLSFLITSSIVYGFCCAVKAANDPKIDDWV


LIGLILTATCPTTVASNVIMTTNAGGNSLLCVCEVFIGNLLGAFITPALVQMFTNRAPFA


YGNPATGNGIGALYGRVMKQVGLSVFVPLFVGQVIQNCFPKGTAYYLGFLKKYHIKIGSY


MLLLIMFSSFSTAFYQDAFTSVSHVCIIFLCFFNLGIYIFFTGLSYLCARPWFILKLFPH


EPIEGKSTRLYRYSYNIFRPFYYSKEDAICIMFCGPAKTAALGVSLITSQYGDKKEHLGK


LLVPLVLYQVEQVMTANFFVSLFKRWIQKDAQADGSESSCANENEEVDLEKIISIGTGEN


QSVLSNNVPYTQPR





SEQ ID NO: 57


YMR056C


>sp|P04710|ADT1_YEAST ADP, ATP carrier protein 1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = AAC1 PE = 1 SV = 1



MSHTETQTQQSHFGVDFLMGGVSAAIAKTGAAPIERVKLLMQNQEEMLKQGSLDTRYKGI


LDCFKRTATHEGIVSFWRGNTANVLRYFPTQALNFAFKDKIKSLLSYDRERDGYAKWFAG


NLFSGGAAGGLSLLFVYSLDYARTRLAADARGSKSTSQRQFNGLLDVYKKTLKTDGLLGL


YRGFVPSVLGIIVYRGLYFGLYDSFKPVLLTGALEGSFVASFLLGWVITMGASTASYPLD


TVRRRMMMTSGQTIKYDGALDCLRKIVQKEGAYSLFKGCGANIFRGVAAAGVISLYDQLQ


LIMFGKKFK





SEQ ID NO: 58


YMR253C


>sp|Q04835|YM87_YEAST Uncharacterized membrane protein YMR253C


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YMR253C


PE = 1 SV = 1


MNPSVPKVMKRENNTHLLVSKEMNDTSLQLPSTTRSLSPKESNSNEDFNVDGNETTLQRI


SKDYLKPNIGLVLLTVSYFFNSAMVVSTKVLENDPDDIANDRQIKPLQILLVRMVITYIG


TLIYMYINKSTISDVPFGKPEVRKWLVLRGCTGFFGVFGMYYSLMYLTISDAVLITFLAP


SLTIFLSWVILRERFTKVEALGSLISLLGVVLIVRPSFLFGTPELTDSSSQIVESSDPKS


RLIATLVGLWGVLGMSCVYIIIRYIGKRAHAIMSVSYFSLITAIVSFIGINTIPSMKFQI


PHSKKQWILFGNLGVSGFIFQLLLTMGIQRERAGRGSLMTYTQLLYAVFWDVALYKHWPN


IWSWIGMIIIISATLWVIRIRAANNETTAKDLTPIIDDEENSIPLTEFDLSDSK





SEQ ID NO: 59


YNL065W


>sp|P53943|AQR1_YEAST Probable transporter AQR1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = AQR1 PE = 1 SV = 1



MSRSNSIYTEDIEMYPTHNEQHLTREYTKPDGQTKSEKLNFEGAYINSHGTLSKTTTREI


EGDLDSETSSHSSDDKVDPTQQITAETKAPYTLLSYGQKWGMVAILTMCGFWSSLGSPIY


YPALRQLEKQFNVDENMVNVTVVVYLLFQGISPTVSGGLADCFGRRPIILAGMLIYVIAS


IGLACAPSYGVIIFLRCIQSIGISPTIAISSGVVGDFTLKHERGTFVGATSGFVLLGQCF


GSLIGAVLTARWDWRAIFWFLTIGCGSCFLIAFLILPETKRTIAGNLSIKPKRFINRAPI


FLLGPVRRRFKYDNPDYETLDPTIPKLDLSSAGKILVLPEIILSLFPSGLLFAMWTLMLS


SISSGLSVAPYNYHLVIIGVCYLPGGIGGLMGSFFTGRIIDMYFKRKIKKFEQDKANGLI


PQDAEINMFKVRLVCLLPQNFLAVVAYLLFGWSIDKGWRIESILITSFVCSYCAMSTLST


STTLLVDLYPTKSSTASSCFNFVRCSLSTIFMGCFAKMKAAMTVGGTFTFLCALVFFFNF


LMFIPMKYGMKWREDRLLKQQRQSWLNTLAVKAKKGTKRDQNDNHN





SEQ ID NO: 60


YNL070W


>sp|P53507|TOM7_YEAST Mitochondrial import receptor subunit TOM7


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = TOM7


PE = 1 SV = 2


MSFLPSFILSDESKERISKILTLTHNVAHYGWIPFVLYLGWAHTSNRPNFLNLLSPLPSV





SEQ ID NO: 61


YNL083W 


>sp|D6W196|CMC1_YEAST Truncated non-functional calcium-binding


mitochondrial carrier SAL1-1 OS = Saccharomyces cerevisiae (strain


ATCC 204508/S288c) GN = SAL1 PE = 1 SV = 2


MLLKNCETDKQRDIRYACLFKELDVKGNGQVTLDNLISAFEKNDHPLKGNDEAIKMLFTA


MDVNKDSVVDLSDFKKYASNAESQIWNGFQRIDLDHDGKIGINEINRYLSDLDNQSICNN


ELNHELSNEKVNKFSRFFEWAFPKRKANIALRGQASHKKNTDNDRSKKTTDSDLYVTYDQ


WRDFLLLVPRKQGSRLHTAYSYFYLFNEDVDLSSEGDVTLINDFIRGFGFFIAGGISGVI


SRTCTAPFDRLKVFLIARTDLSSILLNSKTDLLAKNPNADINKISSPLAKAVKSLYRQGG


IKAFYVGNGLNVIKVFPESSIKFGSFEVTKKIMTKLEGCRDTKDLSKFSTYIAGGLAGMA


AQFSVYPIDTLKFRVQCAPLDTKLKGNNLLFQTAKDMFREGGGQIILQRCHSRYSGHISL


CCIRFGDFFCLKKMVYCQTGKDPEPTTRSGHSKQPGCTSNGCIQWNCRSFCCLSNQSFKN


KTTSPRNICTSLCV





SEQ ID NO: 62


YNL095C


>sp|P53932|YNJ5_YEAST Uncharacterized transporter YNL095C


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YNL095C


PE = 1 SV = 1


MVHITLGQAIWVSVKPIIKIYLIIGVGFLMAKMGILTVEATRIISDIVLTVLLPSLSFNK


IVANIEDKDIKSVGIICLSALLIFGSGFFFAYVVRLFLPVPKQWYGGILAGGMFPNISDL


PIAYLQSMDQGLVFSEEEGNKGVANVIIFLTMFLICIFNLGGFRLIESDFEYNDDESAVR


VSETTKTQPAVSANTTNTDTSERFFSNEQQLFNNKYTARDSLTEAIGTKGENADVPPISR


RSTNSIAPLSLPDTSSNSKITKPVQVKARNTIACTQSEESQATRGSNPLDSQSSASTIHS


YNTSESYESSIDTMRARRTASQPRAYNTTTLLEENCLDEKCPKNMSMAALEPIRSIDMRA


LPSQNIHHLIREYSNVDQYGHQRRNSSLRGADMNDVHSISSNSTLQTIKTANLTRILTSD


ATVSKKDIETSGESLPQWMRKFSLTPLLVFFLKNCLRPCSMAVIIALTVAFIPWVKALFV


TTANTPHISQAPDNAPPLSFFMDFTGYVGAACVPFGLILLGATLGRLKIGNLYPGFWKAA


VTLVILRQCVMPIFGVLWCDRLVKAGWVNWQDDRMLLFVIAISWNLPTMTTLIYFTASFT


PPETTAPIQMECVSFFLMLQYPLMVVSLPFLVSYFLKVQMNL





SEQ ID NO: 63


YNL121C


>sp|P07213|TOM70_YEAST Mitochondrial import receptor subunit TOM70


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = TOM70


PE = 1 SV = 2


MKSFITRNKTAILATVAATGTAIGAYYTYNQLQQQQQRGKKNTINKDEKKDTKDSQKETE


GAKKSTAPSNPPIYPVSSNGEPDFSNKANFTAEEKDKYALALKDKGNQFFRNKKYDDAIK


YYNWALELKEDPVFYSNLSACYVSVGDLKKVVEMSTKALELKPDYSKVLLRRASANEGLG


KFADAMFDLSVLSLNGDFNDASIEPMLERNLNKQAMSKLKEKFGDIDTATATPTELSTQP


AKERKDKQENLPSVTSMASFFGIFKPELTFANYDESNEADKELMNGLSNLYKRSPESYDK


ADESFTKAARLFEEQLDKNNEDEKLKEKLAISLEHTGIFKFLKNDPLGAHEDIKKAIELF


PRVNSYIYMALIMADRNDSTEYYNYFDKALKLDSNNSSVYYHRGQMNFILQNYDQAGKDF


DKAKELDPENIFPYIQLACLAYRENKFDDCETLFSEAKRKFPEAPEVPNFFAEILTDKND


FDKALKQYDLAIELENKLDGIYVGIAPLVGKATLLTRNPTVENFIEATNLLEKASKLDPR


SEQAKIGLAQMKLQQEDIDEAITLFEESADLARTMEEKLQAITFAEAAKVQQRIRSDPVL


AKKIQETLAKLREQGLM





SEQ ID NO: 64


YNL142W


>sp|P41948|MEP2_YEAST Ammonium transporter MEP2 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = MEP2 PE = 1 SV = 1



MSYNFTGTPTGEGTGGNSLTTDLNTQFDLANMGWIGVASAGVWIMVPGIGLLYSGLSRKK


HALSLLWASMMASAVCIFQWFFWGYSLAFSHNTRGNGFIGTLEFFGFRNVLGAPSSVSSL


PDILFAVYQGMFAAVTGALMLGGACERARLFPMMVFLFLWMTIVYCPIACWVWNAEGWLV


KLGSLDYAGGLCVHLTSGHGGLVYALILGKRNDPVTRKGMPKYKPHSVTSVVLGTVFLWF


GWMFFNGGSAGNATIRAWYSIMSTNLAAACGGLTWMVIDYFRCGRKWTTVGLCSGIIAGL


VGITPAAGFVPIWSAVVIGVVTGAGCNLAVDLKSLLRIDDGLDCYSIHGVGGCIGSVLTG


IFAADYVNATAGSYISPIDGGWINHHYKQVGYQLAGICAALAWTVTVTSILLLTMNAIPF


LKLRLSADEEELGTDAAQIGEFTYEESTAYIPEPIRSKTSAQMPPPHENIDDKIVGNTDA


EKNSTPSDASSTKNTDHIV





SEQ ID NO: 65


YOL020W


>sp|P38967|TAT2_YEAST Tryptophan permease OS = Saccharomyces


cerevisiae (strain ATCC 204508/S288c) GN = TAT2 PE = 1 SV = 1


MTEDFISSVKRSNEELKERKSNFGFVEYKSKQLTSSSSHNSNSSHHDDDNQHGKRNIFQR


CVDSFKSPLDGSFDTSNLKRTLKPRHLIMIAIGGSIGTGLFVGSGKAIAEGGPLGVVIGW


AIAGSQIIGTIHGLGEITVRFPVVGAFANYGTRFLDPSISFVVSTIYVLQWFFVLPLEII


AAAMTVQYWNSSIDPVIWVAIFYAVIVSINLFGVRGFGEAEFAFSTIKAITVCGFIILCV


VLICGGGPDHEFIGAKYWHDPGCLANGFPGVLSVLVVASYSLGGIEMTCLASGETDPKGL


PSAIKQVFWRILFFFLISLTLVGFLVPYTNQNLLGGSSVDNSPFVIAIKLHHIKALPSIV


NAVILISVLSVGNSCIFASSRTLCSMAHQGLIPWWFGYIDRAGRPLVGIMANSLFGLLAF


LVKSGSMSEVFNWLMAIAGLATCIVWLSINLSHIRFRLAMKAQGKSLDELEFVSAVGIWG


SAYSALINCLILIAQFYCSLWPIGGWTSGKERAKIFFQNYLCALIMLFIFIVHKIYYKCQ


TGKWWGVKALKDIDLETDRKDIDIEIVKQEIAEKKMYLDSRPWYVRQFHFWC





SEQ ID NO: 66


YOL075C


>sp|Q08234|Y0075_YEAST Uncharacterized ABC transporter ATP-binding


protein/permease YOL075C OS = Saccharomyces cerevisiae (strain ATCC


204508/S288c) GN = YOL075C PE = 1 SV = 3


MSQQENGDVATELIENRLSFSRIPRISLHVRDLSIVASKTNTTLVNTFSMDLPSGSVMAV


MGGSGSGKTTLLNVLASKISGGLTHNGSIRYVLEDTGSEPNETEPKRAHLDGQDHPIQKH


VIMAYLPQQDVLSPRLTCRETLKFAADLKLNSSERTKKLMVEQLIEELGLKDCADTLVGD


NSHRGLSGGEKRRLSIGTQMISNPSIMFLDEPTTGLDAYSAFLVIKTLKKLAKEDGRTFI


MSIHQPRSDILFLLDQVCILSKGNVVYCDKMDNTIPYFESIGYHVPQLVNPADYFIDLSS


VDSRSDKEEAATQSRLNSLIDHWHDYERTHLQLQAESYISNATEIQIQNMTTRLPFWKQV


TVLTRRNFKLNFSDYVTLISTFAEPLIIGTVCGWIYYKPDKSSIGGLRTTTACLYASTIL


QCYLYLLFDTYRLCEQDIALYDRERAEGSVTPLAFIVARKISLFLSDDFAMTMIFVSITY


FMFGLEADARKFFYQFAVVFLCQLSCSGLSMLSVAVSRDFSKASLVGNMTFTVLSMGCGF


FVNAKVMPVYVRWIKYIAFTWYSFGTLMSSTFTNSYCTTDNLDECLGNQILEVYGFPRNW


ITVPAVVLLCWSVGYFVVGAIILYLHKIDITLQNEVKSKQKKIKKKSPTGMKPEIQLLDD


VYHQKDLEAEKGKNIHITIKLEDIDLRVIFSAPFSNWKEGNFHHETKEILQSVNAIFKPG


MINAIMGPSGSGKSSLLNLISGRLKSSVFAKFDTSGSIMFNDIQVSELMFKNVCSYVSQD


DDHLLAALTVKETLKYAAALRLHHLTEAERMERTDNLIRSLGLKHCENNIIGNEFVKGIS


GGEKRRVTMGVQLLNDPPILLLDEPTSGLDSFTSATILEILEKLCREQGKTIIITIHQPR


SELFKRFGNVLLLAKSGRTAFNGSPDEMIAYFTELGYNCPSFTNVADFFLDLISVNTQNE


QNEISSRARVEKILSAWKANMDNESLSPTPISEKQQYSQESFFTEYSEFVRKPANLVLAY


IVNVKRQFTTTRRSFDSLMARIAQIPGLGVIFALFFAPVKHNYTSISNRLGLAQESTALY


FVGMLGNLACYPTERDYFYEEYNDNVYGIAPFFLAYMTLELPLSALASVLYAVFTVLACG


LPRTAGNFFATVYCSFIVTCCGEALGIMTNTFFERPGFVVNCISIILSIGTQMSGLMSLG


MSRVLKGFNYLNPVGYTSMIIINFAFPGNLKLTCEDGGKNSDGTCEFANGHDVLVSYGLV


RNTQKYLGIIVCVAIIYRLIAFFILKAKLEWIKW





SEQ ID NO: 67


YOL077W-A


>sp|P81451|ATP19_YEAST ATP synthase subunit K, mitochondrial


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = ATP19


PE = 1 SV = 1


MGAAYHFMGKAIPPHQLAIGTLGLLGLLVVPNPFKSAKPKTVDIKTDNKDEEKFIENYLK


KHSEKQDA





SEQ ID NO: 68


YOL122C


>sp|P38925|SMF1_YEAST Manganese transporter SMF1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = SMF1 PE = 1 SV = 2



MVNVGPSHAAVAVDASEARKRNISEEVFELRDKKDSTVVIEGEAPVRTFTSSSSNHERED


TYVSKRQVMRDIFAKYLKFIGPGLMVSVAYIDPGNYSTAVDAGASNQFSLLCIILLSNFI


AIFLQCLCIKLGSVTGLDLSRACREYLPRWLNWTLYFFAECAVIATDIAEVIGTAIALNI


LIKVPLPAGVAITVVDVFLIMFTYKPGASSIRFIRIFECFVAVLVVGVCICFAIELAYIP


KSTSVKQVFRGFVPSAQMFDHNGIYTAISILGATVMPHSLFLGSALVQPRLLDYDVKHGN


YTVSEEQDKVKKSKSTEEIMEEKYFNYRPTNAAIKYCMKYSMVELSITLFTLALFVNCAI


LVVAGSTLYNSPEADGADLFTIHELLSRNLAPAAGTIFMLALLLSGQSAGVVCTMSGQIV


SEGHINWKLQPWQRRLATRCISIIPCLVISICIGREALSKALNASQVVLSIVLPFLVAPL


IFFTCKKSIMKTEITVDHTEEDSHNHQNNNDRSAGSVIEQDGSSGMEIENGKDVKIVYMA


NNWIITVIAIIVWLFLSLLNTLAIVQLGMSHGDIS





SEQ ID NO: 69


YOR079C


>sp|Q12067|ATX2_YEAST Metal homeostasis factor ATX2 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = ATX2 PE = 1 SV = 1



MKFLGVILLASFLLIATFLIGLIPLYYIDKQKSSIVTNQEGADSISDFTTNADTQTINDD


VSSYRVKIAVLSQFGIGMLLGTSFMLVIPEGIKACVEHDGNVGVNLLIGFLGVYVLDRLV


TLWVSRKQTVYTHDAVKFQSWKDIINHPRQIWMNLIQNNVVFALFIHGLSDGIALGTTTN


NDSLLIVVLIAIVIHKIPAVLSLTSLMVSRQNLMKWEVICNVELFASSTPIGYIVLSLLN


LSHSPTMDWISGNLLLMSGGSLLYASFTAFVGGDSHDHDLSVEQEVVLPHDESVYVLIGV


CIPLVISYCISEE





SEQ ID NO: 70


YOR087W


>sp|Q12324|YVC1_YEAST Calcium channel YVC1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = YVC1 PE = 1 SV = 2



MVSANGDLHLPISNEQCMPENNGSLGFEAPTPRQILRVTLNLKYLIDKVVPIVYDPNDIV


CDHSEILSPKVVKLAYEACGGNPKDKANKRKYQSVIIFSLLKVCEWYSILATMEVHNAKL


YETRNLASQQLCKLLIEREETRDLQFLFMQLLIRRYVINENDEDQEPLNALELATDMHCT


TVIGSSGFQRCLKWIWRGWIVQNGLDPTTFIKDDSLAEVSLISHFNPVRLKAPVYQNYLQ


MIFSFLFLGLYTLVVNGKDSERVQSFDLLESIFYVFNTGFILDELTKLYYIGYAHLSFWN


LFNDTTYLIITFAMGFRAMSVTPLNAKYSSEDWDKISYRVLSCAAPFVWSRLLLYLESQR


FIGIMLVILKHMMKESIVFFFLLFLIMIGFTQGFLGLDSADGKRDITGPILGNLTITVLG


LGSFDVFEEFAPPYAAILYYGYYFIVSVILLNILIALYSTAYQKVIDNADDEYMALMSQK


TLRYIRAPDEDVYVSPLNLIEVFMTPIFRILPPKRAKDLSYTVMTIVYSPFLLLISVKET


REARRIKYNRMKRLNDDANEYDTPWDLTDGYLDDDDGLFSDNRNSGMRATQLKNSRSLKL


QRTAEQEDVHFKVPKKWYKNVKKCSPSFEQYDNDDTEDDAGEDKDEVKELTKKVENLTAV


ITDLLEKLDIKDKKE





SEQ ID NO: 71


YOR092W


>sp|Q99252|ECM3_YEAST Protein ECM3 OS = Saccharomyces cerevisiae


(strain ATCC 204508/S288c) GN = ECM3 PE = 1 SV = 1


MTHITLGQAIWASVRPIIKIYLIIGVGFGLCKMNILTVQATRSISDIVLTILLPCLSFNK


IVANIEDNDIKDVGIICLTSVILFATGLGFAFIVRSVLPVPKRWRGGILAGGMFPNISDL


PIAYLQSMDQGFIFTEAEGEKGVANVIIFLAMFLICVFNLGGFRLIENDFHYKGDDDEEN


TLTNDDSAQQPTQPIEGNSSSSSNQDILKEPNESTVPNSSQASYISEKNKKEKTELSVPK


PTHTAPPAIDDRSSNSSAVVSIDSITHSLRTNHVDAQSVSELNDPTYRTRSQPIAYTTES


RTSHVHNNRRNSITGSLRSIDMRELPAEGMSDLIREYSNVDQYGRRRKSSISSQGAPSVL


QADGTISPNLTRTSTLQRVKTSNLTRIITSDATVSKKDIETSGSSLPKWLQKFPLTKFFV


FFLKNCLRPCSMAVILALIIAFIPWVKALFVTTSNTPKIKQAPDNAPALTFIMDFTSYVG


AASVPFGLILLGATLGRLKIGKLYPGFWKSAVVLVFLRQCIMPIEGVLWCDRLVKAGWLN


WENDKMLLFVTAITWNLPTMTTLIYFTASYTPEDETEPVQMECTSFFLMLQYPLMVVSLP


FLVSYFIKVQMKL





SEQ ID NO: 72


YOR130C


>sp|Q12375|ORT1_YEAST Mitochondrial ornithine transporter 1


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = ORT1


PE = 1 SV = 2


MEDSKKKGLIEGAILDIINGSIAGACGKVIEFPFDTVKVRLQTQASNVFPTTWSCIKFTY


QNEGIARGFFQGIASPLVGACLENATLFVSYNQCSKFLEKHTNVSPLGQILISGGVAGSC


ASLVLTPVELVKCKLQVANLQVASAKTKHTKVLPTIKAIITERGLAGLWQGQSGTFIRES


FGGVAWFATYEIVKKSLKDRHSLDDPKRDESKIWELLISGGSAGLAFNASIFPADTVKSV


MQTEHISLTNAVKKIFGKFGLKGFYRGLGITLFRAVPANAAVFYIFETLSAL





SEQ ID NO: 73


YOR222W


>sp|Q99297|ODC2_YEAST Mitochondrial 2-oxodicarboxylate carrier 2


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = ODC2


PE = 1 SV = 1


MSSDSNAKPLPFIYQFISGAVAGISELTVMYPLDVVKTRFQLEVTTPTAAAVGKQVERYN


GVIDCLKKIVKKEGFSRLYRGISSPMLMEAPKRATKFACNDQYQKIFKNLFNTNETTQKI


SIAAGASAGMTEAAVIVPFELIKIRMQDVKSSYLGPMDCLKKTIKNEGIMGLYKGIESTM


WRNALWNGGYFGVIYQVRNSMPVAKTKGQKTRNDLIAGAIGGTVGTMLNTPFDVVKSRIQ


SVDAVSSAVKKYNWCLPSLLVIYREEGFRALYKGFVPKVCRLAPGGSLMLVVFTGMMNFF


RDLKYGH





SEQ ID NO: 74


YOR291W 


>sp|Q12697|YPK9_YEAST Vacuolar cation-transporting ATPase YPK9


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YPK9


PE = 1 SV = 1


MDIPSSNQIQHGQRSERNRRMPRASFSSTATTSTAATLTSAMVLDQNNSEPYAGATFEAV


PSSIVSFHHPHSFQSSNLPSPHSSGNLEQRGRRLTESEPLVLSSAEQSRSSSRNPSHFRF


FTQEQISNAEGASTLENTDYDMAWDATPAYEQDRIYGTGLSSRRSSIRSFSRASSLSNAK


SYGSFSKRGRSGSRAPQRLGENSDTGFVYHSATHSSSSLSRYTTRERIPIELESQTDEIL


EDESSTHSLESSDSRRSASENNRGSFSGHDDVHNQHSEYLKPDYHEKFYPQYAPNLHYQR


FYIAEEDLVIGIAAYQTSKFWYIIYNLCCFLTFGLVYLLTRWLPHLKVKLYGVKVPLAKA


EWVVIENEFGEFVIQPIDRQWYNRPLSTVLPFENYPNPSYEPNDINLSHHHANEINPNVP


ILITFEYRYIKFIYSPLDDLFKTNNNWIDPDWVDLSTVSNGLTKGVQEDRELAFGKNQIN


LRMKTTSEILFNEVLHPFYVFQVFSIILWGIDEYYYYAACIFLISVLSIFDSLNEQKKVS


RNLAEMSHFHCDVRVLRDKFWTTISSSELVPGDIYEVSDPNITILPCDSILLSSDCIVNE


SMLTGESVPVSKFPATEETMYQLCDDFQSTQISSFVSKSFLYNGTNIIRARIAPGQTAAL


AMVVRTGFSTTKGSLVRSMVFPKPTGFKFYRDSFKYIGFMSLIAIFGFCVSCVQFIKLGL


DKKTMILRALDIITIVVPPALPATLTIGTNFALSRLKEKGIFCISPTRLNISGKIDVMCF


DKTGTLTEDGLDVLGVQISEPNGVRGQKFGELLSDIRQVFPKFSLNDCSSPLDFKSRNFF


MSLLTCHSLRSVDGNLLGDPLDFKMFQFTGWSFEEDFQKRAFHSLYEGRHEDDVFPENSE


IIPAVVHPDSNNRENTFTDNDPHNFLGVVRSFEFLSELRRMSVIVKTNNDDVYWSFTKGA


PEVISEICNKSTLPADFEEVLRCYTHNGYRVIACAGKTLPKRTWLYSQKVSREEVESNLE


FLGFIIFQNKLKKETSETLKSLQDANIRTIMCTGDNILTAISVGREAGLIQCSRVYVPSI


NDTPLHGEPVIVWRDVNEPDKILDTKTLKPVKLGNNSVESLRECNYTLAVSGDVFRLLFR


DENEIPEEYLNEILLNSSIYARMSPDEKHELMIQLQKLDYTVGFCGDGANDCGALKAADV


GISLSEAEASVAAPFTSKIFNISCVLDVIREGRAALVTSFACFQYMSLYSAIQFITITIL


YSRGSNLGDFQFLYIDLLLIVPIAICMSWSKSYEKIDKKRPSANLVSPKILVPLLISVFL


VFLFQFIPWIIVQKMSWYIKPIVGGDDAVQSSDNIVLFFVSNFQYILTAIVLSVGPPYRE


PMSKNFEFIVDITVSIGASLLLMTLDTESYLGKMLQLTPISNSFTMFIIVWVILNYYAQL


YIPPSIKGWLKKKKSSKKYKLLIQEEMKLKEV





SEQ ID NO: 75


YOR306C


>sp|Q08777|MCH5_YEAST Riboflavin transporter MCH5 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = MCH5 PE = 1 SV = 2



MSSDSLTPKDTIVPEEQTNQLRQPDLDEDSIHYDPEADDLESLETTASYASTSVSAKVYT


KKEVNKGTDIESQPHWGENTSSTHDSDKEEDSNEEIESFPEGGFKAWVVTFGCFLGLIAC


FGLLNSTGVIESHLQDNQLSSESVSTIGWLFSLFLFVCSASCIISGTYFDRNGFRTIMIV


GTVFHVAGLFATANSTKYWHFILSFAIVCGFGNGIVLSPLVSVPAHYFFKRRGTALAMAT


IGGSVGGVVFPIMLRSFFSMKSDTDPTYGFVWGIRTLGFLDLALLTLSIILVKERLPHVI


ENSKDGESRWRYILRVYILQCFDAKAFLDMKYLFCVLGTVFSELSINSALTYYGSYATSH


GISANDAYTLIMIINVCGIPGRWVPGYLSDKFGRFNVAIATLLTLFIVMFVGWLPFGTNL


TNMYVISALYGFCSGSVFSLLPVCCGQISKTEEFGKRYSTMYFVVGFGTLVGIPITGAII


SIKTTADYQHYIIFCGLATFVSAVCYIISRAYCVGFKWVRF





SEQ ID NO: 76


YOR316C


>sp|P32798|COT1_YEAST Cobalt uptake protein COT1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = COT1 PE = 1 SV = 2



MKLGSKQVKIISLLLLDTVFFGIEITTGYLSHSLALIADSFHMLNDIISLVVALWAVNVA


KNRNPDSTYTYGWKRAEILGALINAVFLIALCVSILIEALQRIIAPPVIENPKFVLYVGV


AGLISNTVGLFLFHDNDQEHGHGHGHSHGGIFADHEMHMPSSHTHTHAHVDGIENTTPMD


STDNISEIMPNAIVDSFMNENTRLLTPENASKTPSYSTSSHTIASGGNYTEHNKRKRSLN


MHGVFLHVLGDALGNIGVMLSAFFIWKTDYSWKYYTDPLVSLIITGIIFSSALPLSCKAS


KILLQATPSTLSGDQVEGDLLKIPGIIAIHDFHIWNLTESIFIASLHIQLDISPEQFTDL


AKIVRSKLHRYGIHSATLQPEFITREVTSTERAGDSQGDHLQNDPLSLRPKTYGTGISGS


TCLIDDAANCNTADCLEDH





SEQ ID NO: 77


YOR334W


>sp|Q01926|MRS2_YEAST Magnesium transporter MRS2, mitochondrial


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = MRS2


PE = 1 SV = 2


MNRRLLVRSISCFPLSRITFGRPNTLPFLRKYADTSTAANTNSTILRKQLLSLKPISASD


SLFISCTVFNSKGNIISMSEKFPKWSFLTEHSLFPRDLRKIDNSSIDIIPTIMCKPNCIV


INLLHIKALIERDKVYVFDTTNPSAAAKLSVLMYDLESKLSSTKNNSQFYEHRALESIFI


NVMSALETDFKLHSQICIQILNDLENEVNRLKLRHLLIKSKDLTLFYQKTLLIRDLLDEL


LENDDDLANMYLTVKKSPKDNFSDLEMLIETYYTQCDEYVQQSESLIQDIKSTEEIVNII


LDANRNSLMLLELKVTIYTLGFTVASVLPAFYGMNLKNFIEESEWGFTSVAVFSIVSALY


ITKKNFNSLRSVTKMTMYPNSPANSSVYTKTSASIALTNKLKRRRKWWKSTKQRLGVLLY


GSSYTNKANLSNNKINKGFSKVKKFNMENDIKNKQNRDMIWKWLIEDKKN





SEQ ID NO: 78


YPL078C


>sp|P05626|ATPF_YEAST ATP synthase subunit 4, mitochondrial


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = ATP4


PE = 1 SV = 2


MSMSMGVRGLALRSVSKTLFSQGVRCPSMVIGARYMSSTETKQTDPKAKANSIINAIPGN


NILTKTGVLGTSAAAVIYAISNELYVINDESILLLTFLGFTGLVAKYLAPAYKDFADARM


KKVSDVLNASRNKHVEAVKDRIDSVSQLQNVAETTKVLFDVSKETVELESEAFELKQKVE


LAHEAKAVLDSWVRYEASLRQLEQRQLAKSVISRVQSELGNPKFQEKVLQQSISEIEQLL


SKLK





SEQ ID NO: 79


YPL270W


>sp|P33311|MDL2_YEAST ATP-dependent permease MDL2, mitochondrial


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = MDL2


PE = 1 SV = 3


MLNGRLPLLRLGICRNMLSRPRLAKLPSIRFRSLVTPSSSQLIPLSRLCLRSPAVGKSLI


LQSFRCNSSKTVPETSLPSASPISKGSARSAHAKEQSKTDDYKDIIRLFMLAKRDWKLLL


TAILLLTISCSIGMSIPKVIGIVLDTLKTSSGSDFFDLKIPIFSLPLYEFLSFFTVALLI


GCAANFGRFILLRILSERVVARLRANVIKKTLHQDAEFFDNHKVGDLISRLGSDAYVVSR


SMTQKVSDGVKALICGVVGVGMMCSLSPQLSILLLFFTPPVLFSASVEGKQIRNTSKDLQ


EATGQLTRVAEEQLSGIKTVQSFVAEGNELSRYNVAIRDIFQVGKTAAFTNAKFFTTTSL


LGDLSFLTVLAYGSYLVLQSQLSIGDLTAFMLYTEYTGNAVFGLSTFYSEIMQGAGAASR


LFELTDRKPSISPTVGHKYKPDRGVIEFKDVSFSYPTRPSVQIFKNLNFKIAPGSSVCIV


GPSGRGKSTIALLLLRYYNPTTGTITIDNQDISKLNCKSLRRHIGIVQQEPVLMSGTIRD


NITYGLTYTPTKEEIRSVAKQCFCHNFITKFPNTYDTVIGPHGTLLSGGQKQRIAIARAL


IKKPTILILDEATSALDVESEGAINYTFGQLMKSKSMTIVSIAHRLSTIRRSENVIVLGH


DGSVVEMGKFKELYANPTSALSQLLNEKAAPGPSDQQLQIEKVIEKEDLNESKEHDDQKK


DDNDDNDNNHDNDSNNQSPETKDNNSDDIEKSVEHLLKDAAKEANPIKITPQP





SEQ ID NO: 80


YPL274W


>sp|Q08986|SAM3_YEAST S-adenosylmethionine permease SAM3


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = SAM3


PE = 1 SV = 1


MDILKRGNESDKFTKIETESTTIPNDSDRSGSLIRRMKDSFKQSNLHVIPEDLENSEQTE


QEKIQWKLASQPYQKVLSQRHLTMIAIGGTLGTGLFIGLGYSLASGPAALLIGFLLVGTS


MFCVVQSAAELSCQFPVSGSYATHVSRFIDESVGFTVATNYALAWLISFPSELIGCALTI


SYWNQTVNPAVWVAIFYVFIMVLNLFGVRGFAETEFALSIIKVIAIFIFIIIGIVLIAGG


GPNSTGYIGAKYWHDPGAFAKPVFKNLCNTFVSAAFSFGGSELVLLTSTESKNISAISRA


ARGTFWRIAIFYITTVVIIGCLVPYNDPRLLSGSNSEDVSASPFVIALSNTGSMGAKVSN


FMNVVILVAVVSVCNSCVYASSRLIQALGASGQLPSVCSYMDRKGRPLVGIGISGAFGLL


GFLVASKKEDEVFTWLFALCSISSFFTWFCICMSQIRFRMALKAQGRSNDEIAYKSILGV


YGGILGCVLNALLIAGEIYVSAAPVGSPSSAEAFFEYCLSIPIMIVVYFAHRFYRRDWKH


FYIKRSEIDLDTGCSVENLELFKAQKEAEEQLIASKPFYYKIYRFWC





SEQ ID NO: 81


YPR003C


>sp|P53394|SULX_YEAST Putative sulfate transporter YPR003C


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YPR003C


PE = 1 SV = 1


MTSNNSLLGRGRMSYSSTAPPRFKRSVDQRDTFSDNFDYDKDSSNRGRTYIAASNSTTGV


PPPNNSRSGCTNNTNNTNNTSNTSNTNNNDSVDENTVFETLPYYLPCFSWLPEYTFNKLW


GDVIAGISVASFQIPLALSYTTSIAHVPPLCGLYSLAISPFVYGILGSVPQMIVGPESAI


SLVVGQAVESITLHKENVSLIDISTVITFVSGTILLFSGISRFGFLGNVLSKALLRGFIS


SVGLVMIINSLISELKLDKFLVSLPQHYHTPFEKILFLIDYAPAQYHIPTAIFSGCCLIV


LFLTRLLKRKLMKYHKSAIFFPDILLVVIVTILISMKFNLKHRYGISIIGDFSMDNFDEL


KNPLTRPRRKLIPDLFSASLIVAMLGFFESTTASKSLGTTYNLTVSSNRELVALGFMNIV


ISLFGALPAFGGYGRSKINALSGAQSVMSGVFMGVITLITMNLLLQFVHYIPNCVLSVIT


TIIGISLLEEVPGDIKFHLRCGGFSELFVFAVTFCTTIFYSIEAGICIGCVYSIINIIKH


SAKSRIQILARVAGTSNFTNLDDYMMNMKRNSLDVEGTEEIEGCMIVRIPEPLTFTNSED


LKQRLDRIERYGSSKIHPGRKSLRSKDSIKYVIFDLGGMTSIDSSAAQVLEEIITSYKRR


NVFIYLVNVSINDKVRRRLFKAGVAASVERAQANNNENNTSNTFSDAGETYSPYFDSIDA


ALYEIEKMKIKGNNVPNNDSESFMSNTLENSSLV





SEQ ID NO: 82


YPR011C


>sp|Q12251|YP011_YEAST Uncharacterized mitochondrial carrier YPR011C


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YPR011C


PE = 1 SV = 1


MAEVLTVLEQPNSIKDFLKQDSNIAFLAGGVAGAVSRTVVSPFERVKILLQVQSSTTSYN


RGIFSSIRQVYHEEGTKGLFRGNGLNCIRIFPYSAVQFVVYEACKKKLFHVNGNNGQEQL


TNTQRLFSGALCGGCSVVATYPLDLIKTRLSIQTANLSSLNRSKAKSISKPPGIWQLLSE


TYRLEGGLRGLYRGVWPTSLGVVPYVALNFAVYEQLREFGVNSSDAQPSWKSNLYKLTIG


AISGGVAQTITYPFDLLRRRFQVLAMGGNELGFRYTSVWDALVTIGRAEGVSGYYKGLAA


NLFKVVPSTAVSWLVYEVVCDSVRNW





SEQ ID NO: 83


YPR058W


>sp|P32331|YMC1_YEAST Carrier protein YMC1, mitochondrial


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YMC1


PE = 1 SV = 2


MSEEFFSPQLIDDLEEHPQHDNARVVKDLLAGTAGGIAQVLVGQPFDTTKVRLQTSSTPT


TAMEVVRKLLANEGFRGFYKGTLTPLIGVGACVSLQFGVNEAMKRFFHHRNADMSSTLSL


PQYYACGVTGGIVNSFLASPIEHVRIRLQTQTGSGTNAEFKGPLECIKKLRHNKALLRGL


TPTILREGHGCGTYFLVYEALIANQMNKRRGLERKDIPAWKLCIFGALSGTALWLMVYPL


DVIKSVMQTDNLQKPKFGNSISSVAKTLYANGGIGAFFKGFGPTMLRAAPANGATFATFE


LAMRLLG





SEQ ID NO: 84


YPR128C


>sp|Q06497|ANT1_YEAST Peroxisomal adenine nucleotide transporter 1


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = ANT1


PE = 1 SV = 1


MLTLESALTGAVASAMANIAVYPLDLSKTIIQSQVSPSSSEDSNEGKVLPNRRYKNVVDC


MINIFKEKGILGLYQGMTVTTVATFVQNFVYFFWYTFIRKSYMKHKLLGLQSLKNRDGPI


TPSTIEELVLGVAAASISQLFTSPMAVVATRQQTVHSAESAKFTNVIKDIYRENNGDITA


FWKGLRTGLALTINPSITYASFQRLKEVFFHDHSNDAGSLSAVQNFILGVLSKMISTLVT


QPLIVAKAMLQSAGSKFTTFQEALLYLYKNEGLKSLWKGVLPQLTKGVIVQGLLFAFRGE


LTKSLKRLIFLYSSFFLKHNGQRKLAST





SEQ ID NO: 85


YPR201W


>sp|Q06598|ARR3_YEAST Arsenical-resistance protein 3


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = ARR3


PE = 1 SV = 1


MSEDQKSENSVPSKVNMVNRTDILITIKSLSWLDLMLPFTIILSIIIAVIISVYVPSSRH


TFDAEGHPNLMGVSIPLTVGMIVMMIPPICKVSWESIHKYFYRSYIRKQLALSLFLNWVI


GPLLMTALAWMALFDYKEYRQGIIMIGVARCIAMVLIWNQIAGGDNDLCVVLVITNSLLQ


MVLYAPLQIFYCYVISHDHLNTSNRVLFEEVAKSVGVFLGIPLGIGIIIRLGSLTIAGKS


NYEKYILRFISPWAMIGFHYTLFVIFISRGYQFIHEIGSAILCFVPLVLYFFIAWFLTFA


LMRYLSISRSDTQRECSCDQELLLKRVWGRKSCEASFSITMTQCFTMASNNFELSLAIAI


SLYGNNSKQAIAATFGPLLEVPILLILAIVARILKPYYIWNNRN





SEQ ID NO: 86


YBR008C


>sp|P38124|FLR1_YEAST Fluconazole resistance protein 1


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = FLR1


PE = 1 SV = 1


MVYTSTYRHTIVVDLLEYLGIVSNLETLQSAREDETRKPENTDKKECKPDYDIECGPNRS


CSESSTDSDSSGSQIEKNDPFRVDWNGPSDPENPQNWPLLKKSLVVFQIMLLTCVTYMGS


SIYTPGQEYIQEEFHVGHVVATLNLSLYVLGYGLGPIIFSPLSETARYGRLNLYMVTLFF


FMIFQVGCATVHNIGGLIVMRFISGILCSPSLATGGGTVADIISPEMVPLVLGMWSAGAV


AAPVLAPLLGAAMVDAKNWRFIFWLLMWLSAATFILLAFFFPETQHHNILYRRALKLRKE


TGDDRYYTEQDKLDREVDARTFLINTLYRPLKMIIKEPAILAFDLYIAVAYGCFYLFFEA


FPIVFVGIYHFSLVEVGLAYMGFCVGCVLAYGLFGILNMRIIVPRFRNGTFTPEAFLIVA


MCVCWCLPLSLFLFGWTARVHWILPVISEVFFVLAVFNIFQATFAYLATCYPKYVASVFA


GNGFCRASFACAFPLFGRAMYDNLATKNYPVAWGSSLVGFLTLGLAIIPFILYKYGPSLR


TRSSYTEE





SEQ ID NO: 87


YBR021W


>sp|P05316|FUR4_YEAST Uracil permease OS = Saccharomyces cerevisiae


(strain ATCC 204508/S288c) GN = FUR4 PE = 3 SV = 2


MPDNLSLHLSGSSKRLNSRQLMESSNETFAPNNVDLEKEYKSSQSNITTEVYEASSFEEK


VSSEKPQYSSFWKKIYYEYVVVDKSILGVSILDSFMYNQDLKPVEKERRVWSWYNYCYFW


LAECFNINTWQIAATGLQLGLNWWQCWITIWIGYGFVGAFVVLASRVGSAYHLSFPISSR


ASFGIFFSLWPVINRVVMAIVWYSVQAYIAATPVSLMLKSIFGKDLQDKIPDHFGSPNAT


TYEFMCFFIFWAASLPFLLVPPHKIRHLFTVKAVLVPFASFGFLIWAIRRAHGRIALGSL


TDVQPHGSAFSWAFLRSLMGCMANFSTMVINAPDFSRFSKNPNSALWSQLVCIPFLFSIT


CLIGILVTAAGYEIYGINYWSPLDVLEKFLQTTYNKGTRAGVFLISFVFAVAQLGTNISA


NSLSCGTDMSAIETKFINIKRGSLFCAAMALCICPWNLMATSSKFTMALSAYAIFLSSIA


GVVCSDYFVVRRGYIKLTHIYSHQKGSFYMYGNRFGINWRALAAYLCGVAPCLPGFIAEV


GAPAIKVSDGAMKLYYLSYWVGYGLSFSSYTALCYFFPVPGCPVNNIIKDKGWFQRWANV


DDFEEEWKDTIERDDLVDDNISVYEHEHEKTFI





SEQ ID NO: 88


YBR043C


>sp|P38227|QDR3_YEAST Quinidine resistance protein 3


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = QDR3


PE = 1 SV = 2


MQAQGSQSNVGSLRSNCSDNSLPNNHVMMHCDESSGSPHSEHNDYSYEKTNLESTASNSR


EHRDNQLSRLKSEEYVVPKNQRRGLLPQLAIIPEFKDARDYPPMMKKMIVFLIAFSSMMG


PMGTSIIFPAINSITTEFKTSVIMVNVSIGVYLLSLGVFPLWWSSLSELEGARTTYITSF


ALLFAFNIGSALAPDINSFIALRMLCGAASASVQSVGAGTVADLYISEDRGKNLSYYYLG


PLLAPLLSPIFGSLLVNRWPWRSTQWFMVILSGCNVILLTVLLPETLRKQDSKGAIAQIL


AERRIQVDNNERGEIQEDYQRGEDETDRIENQVAILSTEKHNYVGEVRDQDSLDLESHSS


PNTYDGRAGETQLQRIYTEASRSLYEYQLDDSGIDATTAQVTRIRSTDPKLARSIRENSL


RKLQTNLEEQVKKVLSSNGGEIAPKQVSAVRKVWDTFFVYFIKPLKSLHFLEYPPVALAI


TFSAISFSTVYFVNMTVEYKYSRPPYNFKPLYIGLLYIPNSVTYFFASIYGGRWVDMLLK


RYKEKYGILAPEARISWNVVTSVISFPIALLIFGWCLDKKCHWVTPLIGTALFGYAAMMT


IGATLSYLVDSLPGKGATGVALNNLIRQILAATAVFVTTPMLNGMGTGWAFTMLAFIVLG


ASSVLIILKKHGDYWRENYDLQKLYDKID





SEQ ID NO: 89


YBR287W


>sp|P38355|YB8B_YEAST Uncharacterized transporter YBR287W


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YBR287W


PE = 1 SV = 1


MVETFSFAHLAYLVFESVLQVVIIALAGFWSASSGLLPKQSQKIISLLNVDLFTPCLIFS


KLAKSLSMAKIFEIAIIPIFFGLITGISFISGKIMSRILDLDKDETNFVVANSVFGNSNS


LPVSLTLSLAYTLPNLTWDQIPNDNRDNVASRGILYLLIFQQIGQMLRWSWGYNKLMKWS


GENTQHMPPSQVQSLLERTPNIDNEELVNEEQEEQELLEEENNRMNSSFLSSSSIGDKIW


QKSCTVFERIRANLNPPLYSMIFAVVVAAIGPLQRELFMEDGFINNTFAEAVTQLGSVSI


PLILVVLGSNLYPSAEVFPKTVHHSKLLIGSIIGRMILPSCFLLPIIAIAVKYINVSILD


DPIFLVVGFLLTVSPPAIQLTQITQLNEFFEAEMADILFWGYAVLSLPVSIIVVSGAIYV


LQWANPT





SEQ ID NO: 90


YBR295W


>sp|P38360|ATU1_YEAST P-type cation-transporting ATPase


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = PCA1


PE = 1 SV = 2


MKPEKLFSGLGTSDGEYGVVNSENISIDAMQDNRGECHRRSIEMHANDNLGLVSQRDCTN


RPKITPQECLSETEQICHHGENRTKAGLDVDDAETGGDHTNESRVDECCAEKVNDTETGL


DVDSCCGDAQTGGDHTNESCVDGCCVRDSSVMVEEVTGSCEAVSSKEQLLTSFEVVPSKS


EGLQSIHDIRETTRCNTNSNQHTGKGRLCIESSDSTLKKRSCKVSRQKIEVSSKPECCNI


SCVERIASRSCEKRTFKGSTNVGISGSSSTDSLSEKFFSEQYSRMYNRYSSILKNLGCIC


NYLRTLGKESCCLPKVRFCSGEGASKKTKYSYRNSSGCLTKKKTHGDKERLSNDNGHADF


VCSKSCCTKMKDCAVTSTISGHSSSEISRIVSMEPIENHLNLEAGSTGTEHIVLSVSGMS


CTGCESKLKKSFGALKCVHGLKTSLILSQAEFNLDLAQGSVKDVIKHLSKTTEFKYEQIS


NHGSTIDVVVPYAAKDFINEEWPQGVTELKIVERNIIRIYFDPKVIGARDLVNEGWSVPV


SIAPFSCHPTIEVGRKHLVRVGCTTALSIILTIPILVMAWAPQLREKISTISASMVLATI


IQFVIAGPFYLNALKSLIFSRLIEMDLLIVLSTSAAYIFSIVSFGYFVVGRPLSTEQFFE


TSSLLVTLIMVGRFVSELARHRAVKSISVRSLQASSAILVDKTGKETEINIRLLQYGDIF


KVLPDSRIPTDGTVISGSSEVDEALITGESMPVPKKCQSIVVAGSVNGTGTLFVKLSKLP


GNNTISTIATMVDEAKLTKPKIQNIADKIASYFVPTIIGITVVTFCVWIAVGIRVEKQSR


SDAVIQAIIYAITVLIVSCPCVIGLAVPIVFVIASGVAAKRGVIFKSAESIEVAHNTSHV


VFDKIGTLTEGKLTVVHETVRGDRHNSQSLLLGLTEGIKHPVSMAIASYLKEKGVSAQNV


SNTKAVTGKRVEGTSYSGLKLQGGNCRWLGHNNDPDVRKALEQGYSVFCFSVNGSVTAVY


ALEDSLRADAVSTINLLRQRGISLHILSGDDDGAVRSMAARLGIESSNIRSHATPAEKSE


YIKDIVEGRNCDSSSQSKRPVVVFCGDGTNDAIGLTQATIGVHINEGSEVAKLAADVVML


KPKLNNILTMITVSQKAMFRVKLNFLWSFTYNLFAILLAAGAFVDFHIPPEYAGLGELVS


ILPVIFVAILLRYAKI





SEQ ID NO: 91


YBR296C


>sp|P38361|PH089_yEAST Phosphate permease PH089 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = PH089 PE = 1 SV = 1



MALHQFDYIFAIAMLFAFLDAFNIGANDVANSFASSISSRSLKYWQAMVLAGLCEFLGAV


LAGARVSGTIKNNIIDSSIFTNDPAVLMLTMTSALIGSSCWLTFATAIGMPVSTTHSIVG


GTIGAGIAAGGANGVVWGWSGVSQIIASWFIAPILAGAIAAIVFSISRFSVLEVKSLERS


IKNALLLVGVLVFATFSILTMLIVWKGSPNLHLDDLSETETAVSIVLTGAIASIVYFIFF


YPFYRRKVLDQDWTLKLIDIFRGPSFYFKSTDDIPPMPEGHQLTIDYYEGRRNLGTTVSV


EDEENKAASNSNDSVKNKEDIQEVDLVRTETEPETKLSTKQYWWSLLKQGPKKWPLLFWL


VISHGWTQDVIHAQVNDRDMLSGDLKGMYERSKFYDNRVEYIYSVLQAITAATMSFAHGA


NDVANATGPLSAVYVIWKTNTIGAKSEVPVWVLAYGGVALVIGCWTYGYNIIKNLGNKMI


LQSPSRGFSIELAVAITTVMATQLGIPTSTTQIAVGGIVAVGLCNKDLKSVNWRMVAWCY


SGWFLTLPIAGLIAGIINGIILNAPRFGVEYQMT





SEQ ID NO: 92


YCL038C


>sp|P25568|ATG22_YEAST Autophagy-related protein 22 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = ATG22 PE = 1 SV = 1



MSYGTINDMNESVTNYRIKKAQNNIKGWYAYSFSSEPFVVSAVSTYIPLLLQQFASINGV


KVHDHSIPCLSETGSDSDKCVLGLFNNRIFVDTSSFALYVFSLSVLFQTIIVISVSGIVD


LWGSVKFKGRILVWFGIVGALSTVAISKLNDTQIYSLAGLYIVANGCFGVINVVGNSLLP


IFVKDSLKCQSQGAYEPDKVDSLTTVISGRGASLGYSSALIVQIVSMFLVASKKGSKQDV


QVAVLFVGIWWFVWQLPMIWLIDDVTIPIRVDDSTLASARSPYPGEQDALGQLNWKNYLS


YGWVSLFESFKHARLLKDVMIFLIAWFIISDSITTINSTAVLFSKAELHMSTLNLIMISV


LTVVNAMLGAFMIPQFLATKFRWTSSQTLMYIIIWASFIPFYGILGFFFNAFGLKHKFEM


FLLAIWYGLSLGGLSAVSRSVFSLIVPPGKESTFFSMFSITDKGSSILGPFLVGLLTDKT


HNIRYSFYFFFLLLMLSLPVLNCLDVKRGRREAEELSQVLPESERRLD





SEQ ID NO: 93


YCR011C


>sp|P25371|ADP1_YEAST Probable ATP-dependent permease


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = ADP1


PE = 1 SV = 2


MGSHRRYLYYSILSFLLLSCSVVLAKQDKTPFFEGTSSKNSRLTAQDKGNDTCPPCFNCM


LPIFECKQFSECNSYTGRCECIEGFAGDDCSLPLCGGLSPDESGNKDRPIRAQNDTCHCD


NGWGGINCDVCQEDFVCDAFMPDPSIKGTCYKNGMIVDKVFSGCNVTNEKILQILNGKIP


QITFACDKPNQECNFQFWIDQLESFYCGLSDCAFEYDLEQNTSHYKCNDVQCKCVPDTVL


CGAKGSIDISDFLTETIKGPGDFSCDLETRQCKFSEPSMNDLILTVFGDPYITLKCESGE


CVHYSEIPGYKSPSKDPTVSWQGKLVLALTAVMVLALFTFATFYISKSPLFRNGLGSSKS


PIRLPDEDAVNNFLQNEDDTLATLSFENITYSVPSINSDGVEETVLNEISGIVKPGQILA


IMGGSGAGKTTLLDILAMKRKTGHVSGSIKVNGISMDRKSFSKIIGFVDQDDFLLPTLTV


FETVLNSALLRLPKALSFEAKKARVYKVLEELRIIDIKDRIIGNEFDRGISGGEKRAVSI


ACELVTSPLVLFLDEPTSGLDASNANNVIECLVRLSSDYNRTLVLSIHQPRSNIFYLFDK


LVLLSKGEMVYSGNAKKVSEFLRNEGYICPDNYNIADYLIDITFEAGPQGKRRRIRNISD


LEAGTDTNDIDNTIHQTTFTSSDGTTQREWAHLAAHRDEIRSLLRDEEDVEGTDGRRGAT


EIDLNTKLLHDKYKDSVYYAELSQEIEEVLSEGDEESNVLNGDLPTGQQSAGFLQQLSIL


NSRSFKNMYRNPKLLLGNYLLTILLSLFLGTLYYNVSNDISGFQNRMGLFFFILTYFGFV


TFTGLSSFALERIIFIKERSNNYYSPLAYYISKIMSEVVPLRVVPPILLSLIVYPMTGLN


MKDNAFFKCIGILILFNLGISLEILTIGIIFEDLNNSIILSVLVLLGSLLFSGLFINTKN


ITNVAFKYLKNFSVFYYAYESLLINEVKTLMLKERKYGLNIEVPGATILSTFGFVVQNLV


FDIKILALFNVVFLIMGYLALKWIVVEQK





SEQ ID NO: 94


YDL054C


>sp|Q07376|MCH1_YEAST Probable transporter MCH1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = MCH1 PE = 1 SV = 1



MPLSKVEHYLSYHTRLLLPHVLSLQSSHRVAYIFSLLSAVSTGFITLISLYSQPWQKHLN


YSSWQINTIASMTNLGMYLTPPILGMIADSHGPITLSLLAIIGFIPSYSYLAYVFNHPEL


SLGGNGDSSFNLSIICFVFIGISTSALYFSALLTCTKLYPHTKLLSISLPITCYGISSVV


GSQLLRIKWFWSSNASSSSSNSDLNLGRVFQTFALVYVVIGLLAWIATSVVSLLHFNEEQ


DNQKRLDDQTDVEQSPLLERSNHVQEKFTQTMLRIFSDPVTYILAVSILLSLGPLEMFIA


NMGSLTNLLVQLDAPTLSTKLLSTYALSSTFTRLLTGIVADFFAKKKISIKWILLTFLSL


GVCAQLFLLKMTSSASPMGLVPTGSLVGIVYGGLFTVYPTLVLLVWGERSFGTVYGSLLI


APAIGSMIFCMLYAKFYDSRCMSGGGDLRNPSCISAVYKYSSIAFVVSAVLSAVVFWKLK


SRKLRI





SEQ ID NO: 95


YDL100C


>sp|Q12154|GET3_YEAST ATPase GET3 OS = Saccharomyces cerevisiae


(strain ATCC 204508/S288c) GN = GET3 PE = 1 SV = 1


MDLTVEPNLHSLITSTTHKWIFVGGKGGVGKTTSSCSIAIQMALSQPNKQFLLISTDPAH


NLSDAFGEKFGKDARKVTGMNNLSCMEIDPSAALKDMNDMAVSRANNNGSDGQGDDLGSL


LQGGALADLTGSIPGIDEALSFMEVMKHIKRQEQGEGETFDTVIFDTAPTGHTLRFLQLP


NTLSKLLEKFGEITNKLGPMLNSFMGAGNVDISGKLNELKANVETIRQQFTDPDLTTFVC


VCISEFLSLYETERLIQELISYDMDVNSIIVNQLLFAENDQEHNCKRCQARWKMQKKYLD


QIDELYEDFHVVKMPLCAGEIRGLNNLTKFSQFLNKEYNPITDGKVIYELEDKE





SEQ ID NO: 96


YDL245C


>sp|P54854|HXT15_YEAST Hexose transporter HXT15 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = HXT15 PE = 1 SV = 1



MASEQSSPEINADNLNSSAADVHVQPPGEKEWSDGFYDKEVINGNTPDAPKRGFLGYLII


YLLCYPVSFGGFLPGWDSGITAGFINMDNFKMNFGSYKHSTGEYYLSNVRMGLLVAMFSV


GCSIGGVAFARLADTLGRRLAIVIVVLVYMVGAIIQISSNHKWYQYFVGKIIYGLGAGGC


SVLCPMLLSEIAPTDLRGGLVSLYQLNMTFGIFLGYCSVYGTRKYSNTAQWRIPVGLCFL


WALIIIVGMLLVPESPRYLIECERHEEACVSIAKINKVSPEDPWVLKQADEINAGVLAQR


ELGEASWKELFSVKTKVLQRLITGILVQTFLQLTGENYFFFYGTTIFKSVGLTDGFETSI


VLGTVNFFSTIIAVMVVDKIGRRKCLLFGAASMMACMVIFASIGVKCLYPHGQDGPSSKG


AGNAMIVFTCFYIFCFATTWAPVAYIVVAESFPSKVKSKAMSISTAFNWLWQFLIGFFTP


FITGSIHFYYGYVFVGCLVAMFLYVFFFLPETIGLSLEEIQLLYEEGIKPWKSASWVPPS


RRGASSRETEAKKKSWKEVLKFPKSFN





SEQ ID NO: 97


YDL247W


>sp|P0CD99|MPH2_YEAST Alpha-glucosides permease MPH2


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = MPH2


PE = 2 SV = 1


MKNLSFLINRRKENTSDSNVYPGKAKSHEPSWIEMDDQTKKDGLDIVHVEFSPDTRAPSD


SNKVITEIFDATEDAKEADESERGMPLATALNTYPKAAAWSLLVSTTLIMEGYDTAILGA


FYALPIFQRKFGSQNDKTGEWEISASWQIGLTLCYMAGEIVGLQLTGPSVDLVGNRYTLI


IALFFLAAFTFILYFCNSLGMIAVGQALCGMPWGCFQCLTVSYASEICPLALRYYLTTYS


NLCWLFGQLFAAGIMKNSQKKYADSELGYKLPFALQWILPVPLALGIFFAPESPWWLVKK


GRFDEARRSLRRTLSGKGPEKEILVTLEVDKIKVTIDKEKRLTSKEGSYSDCFEDKINRR


RTRITCLCWAGQATCGSILIGYSTYFYEKAGVSTEMSFTFSIIQYCLGICATFLSWWASK


YFGRYDLYAFGLAFQTIVFFIIGGLGCSSTHGSKMGSGSLLMAVAFFYNLGIAPVVFCLV


SEMPSSRLRTKTIILARNTYNVVSIICSVLILYQLNSKKWNWGAKSGFFWGVLCFCTLIW


AVVDLPETAGKTFVEINELFKLGVSARKFKSTKVDPFVVKTPLKTSLITTPREISKLPLQ


RNSNVSHHL





SEQ ID NO: 98


YDR011W


>sp|P32568|SNQ2_YEAST Protein SNQ2 OS = Saccharomyces cerevisiae


(strain ATCC 204508/S288c) GN = SNQ2 PE = 1 SV = 2


MSNIKSTQDSSHNAVARSSSASFAASEESFTGITHDKDEQSDTPADKLTKMLTGPARDTA


SQISATVSEMAPDVVSKVESFADALSRHTTRSGAFNMDSDSDDGFDAHAIFESFVRDADE


QGIHIRKAGVTIEDVSAKGVDASALEGATFGNILCLPLTIFKGIKAKRHQKMRQIISNVN


ALAEAGEMILVLGRPGAGCSSFLKVTAGEIDQFAGGVSGEVAYDGIPQEEMMKRYKADVI


YNGELDVHFPYLTVKQTLDFAIACKTPALRVNNVSKKEYIASRRDLYATIFGLRHTYNTK


VGNDFVRGVSGGERKRVSIAEALAAKGSIYCWDNATRGLDASTALEYAKAIRIMTNLLKS


TAFVTIYQASENIYETFDKVTVLYSGKQIYFGLIHEAKPYFAKMGYLCPPRQATAEFLTA


LTDPNGFHLIKPGYENKVPRTAEEFETYWLNSPEFAQMKKDIAAYKEKVNTEKTKEVYDE


SMAQEKSKYTRKKSYYTVSYWEQVKLCTQRGFQRIYGNKSYTVINVCSAIIQSFITGSLF


YNTPSSTSGAFSRGGVLYFALLYYSLMGLANISFEHRPILQKHKGYSLYHPSAEAIGSTL


ASFPFRMIGLTCFFIILFFLSGLHRTAGSFFTIYLFLTMCSEAINGLFEMVSSVCDTLSQ


ANSISGILMMSISMYSTYMIQLPSMHPWFKWISYVLPIRYAFESMLNAEFHGRHMDCANT


LVPSGGDYDNLSDDYKVCAFVGSKPGQSYVLGDDYLKNQFQYVYKHTWRNFGILWCFLLG


YVVLKVIFTEYKRPVKGGGDALIFKKGSKRFIAHADEESPDNVNDIDAKEQFSSESSGAN


DEVFDDLEAKGVFIWKDVCFTIPYEGGKRMLLDNVSGYCIPGTMTALMGESGAGKTTLLN


TLAQRNVGIITGDMLVNGRPIDASFERRTGYVQQQDIHIAELTVRESLQFSARMRRPQHL


PDSEKMDYVEKIIRVLGMEEYAEALVGEVGCGLNVEQRKKLSIGVELVAKPDLLLFLDEP


TSGLDSQSSWAIIQLLRKLSKAGQSILCTIHQPSATLFEEFDRLLLLRKGGQTVYFGDIG


KNSATILNYFERNGARKCDSSENPAEYILEAIGAGATASVKEDWHEKWLNSVEFEQTKEK


VQDLINDLSKQETKSEVGDKPSKYATSYAYQFRYVLIRTSTSFWRSLNYIMSKMMLMLVG


GLYIGFTFFNVGKSYVGLQNAMFAAFISIILSAPAMNQIQGRAIASRELFEVRESQSNMF


HWSLVLITQYLSELPYHLFFSTIFFVSSYFPLRIFFEASRSAVYFLNYCIMFQLYYVGLG


LMILYMSPNLPSANVILGLCLSFMLSFCGVTQPVSLMPGFWTFMWKASPYTYFVQNLVGI


MLHKKPVVCKKKELNYFNPPNGSTCGEYMKPFLEKATGYIENPDATSDCAYCIYEVGDNY


LTHISSKYSYLWRNFGIFWIYIFFNIIAMVCVYYLFHVRQSSFLSPVSILNKIKNIRKKK


Q





SEQ ID NO: 99


YDR292C


>sp|P32916|SRPR_YEAST Signal recognition particle receptor subunit


alpha homolog OS = Saccharomyces cerevisiae (strain ATCC 204508/


S288c) GN = SRP101 PE = 1 SV = 2


MFDQLAVFTPQGQVLYQYNCLGKKFSEIQINSFISQLITSPVTRKESVANANTDGFDFNL


LTINSEHKNSPSFNALFYLNKQPELYFVVTFAEQTLELNQETQQTLALVLKLWNSLHLSE


SILKNRQGQNEKNKHNYVDILQGIEDDLKKFEQYFRIKYEESIKQDHINPDNFTKNGSVP


QSHNKNTKKKLRDTKGKKQSTGNVGSGRKWGRDGGMLDEMNHEDAAKLDFSSSNSHNSSQ


VALDSTINKDSFGDRTEGGDFLIKEIDDLLSSHKDEITSGNEAKNSGYVSTAFGFLQKHV


LGNKTINESDLKSVLEKLTQQLITKNVAPEAADYLTQQVSHDLVGSKTANWTSVENTARE


SLTKALTQILTPGVSVDLLREIQSKRSKKDEEGKCDPYVFSIVGVNGVGKSTNLSKLAFW


LLQNNFKVLIVACDTFRSGAVEQLRVHVENLAQLMDDSHVRGSKNKRGKTGNDYVELFEA


GYGGSDLVTKIAKQAIKYSRDQNFDIVLMDTAGRRHNDPTLMSPLKSFADQAKPDKIIMV


GEALVGTDSVQQAKNFNDAFGKGRNLDFFIISKCDTVGEMLGTMVNMVYATGIPILFVGV


GQTYTDLRTLSVKWAVNTLMS





SEQ ID NO: 100


YDR497C


>sp|P30605|ITR1_YEAST Myo-inositol transporter 1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = ITR1 PE = 1 SV = 2



MGIHIPYLTSKTSQSNVGDAVGNADSVEFNSEHDSPSKRGKITLESHEIQRAPASDDEDR


IQIKPVNDEDDTSVMITFNQSLSPFIITLTFVASISGFMFGYDTGYISSALISIGTDLDH


KVLTYGEKEIVTAATSLGALITSIFAGTAADIFGRKRCLMGSNLMFVIGAILQVSAHTFW


QMAVGRLIMGFGVGIGSLIAPLFISEIAPKMIRGRLTVINSLWLTGGQLVAYGCGAGLNY


VNNGWRILVGLSLIPTAVQFTCLCFLPDTPRYYVMKGDLARATEVLKRSYTDTSEEIIER


KVEELVTLNQSIPGKNVPEKVWNTIKELHTVPSNLRALIIGCGLQAIQQFTGWNSLMYFS


GTIFETVGFKNSSAVSIIVSGTNFIFTLVAFFSIDKIGRRTILLIGLPGMTMALVVCSIA


FHFLGIKFDGAVAVVVSSGFSSWGIVIIVFIIVFAAFYALGIGTVPWQQSELFPQNVRGI


GTSYATATNWAGSLVIASTFLTMLQNITPAGTFAFFAGLSCLSTIFCYFCYPELSGLELE


EVQTILKDGFNIKASKALAKKRKQQVARVHELKYEPTQEIIEDI





SEQ ID NO: 101


YEL006W


>sp|P39953|YEA6_YEAST Mitochondrial nicotinamide adenine


dinucleotide transporter 2 OS = Saccharomyces cerevisiae (strain ATCC


204508/S288c) GN = YEA6 PE = 1 SV = 1


MNNGDNKTTLENSKNASLANGNYAIPTKLNRLKKNADPRVAAISGALSGALSAMLVCPFD


VAKTRLQAQGLQNMTHQSQHYKGFFGTFATIFKDEGAAGLYKGLQPTVLGYIPTLMIYFS


VYDFCRKYSVDIFPHSPFLSNASSAITAGAISTVATNPIWVVKTRLMLQTGIGKYSTHYK


GTIDTFRKIIQQEGAKALYAGLVPALLGMLNVAIQFPLYENLKIRFGYSESTDVSTDVTS


SNFQKLILASMLSKMVASTVTYPHEILRTRMQLKSDLPNTVQRHLLPLIKITYRQEGFAG


FYSGFATNLVRTVPAAVVTLVSFEYSKKYLTTFFQ





SEQ ID NO: 102


YEL027W


>sp|P25515|VATL1_YEAST V-type proton ATPase subunit c


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = VMA3


PE = 1 SV = 1


MTELCPVYAPFFGAIGCASAIIFTSLGAAYGTAKSGVGICATCVLRPDLLFKNIVPVIMA


GIIAIYGLVVSVLVCYSLGQKQALYTGFIQLGAGLSVGLSGLAAGFAIGIVGDAGVRGSS


QQPRLFVGMILILIFAEVLGLYGLIVALLLNSRATQDVVC





SEQ ID NO: 103


YEL065W


>sp|P39980|SIT1_YEAST Siderophore iron transporter 1


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = SIT1


PE = 3 SV = 1


MDPGIANHTLPEEFEEVVVPEMLEKEVGAKVDVKPTLTTSSPAPSYIELIDPGVHNIEIY


AEMYNRPIYRVALFFSLFLIAYAYGLDGNIRYTFQAYATSSYSQHSLLSTVNCIKTVIAA


VGQIFFARLSDIFGRFSIMIVSIIFYSMGTIIESQAVNITRFAVGGCFYQLGLTGIILIL


EVIASDFSNLNWRLLALFIPALPFIINTWISGNVTSAIDANWKWGIGMWAFILPLACIPL


GICMLHMRYLARKHAKDRLKPEFEALNKLKWKSFCIDIAFWKLDIIGMLLITVFFGCVLV


PFTLAGGLKEEWKTAHIIVPEVIGWVVVLPLYMLWEIKYSRHPLTPWDLIQDRGIFFALL


IAFFINFNWYMQGDYMYTVLVVAVHESIKSATRITSLYSFVSVIVGTILGFILIKVRRTK


PFIIFGISCWIVSFGLLVHYRGDSGAHSGIIGSLCLLGFGAGSFTYVTQASIQASAKTHA


RMAVVTSLYLATYNIGSAFGSSVSGAVWTNILPKEISKRISDPILAAQAYGSPFTFITTY


TWGTPERIALVMSYRYVQKILCIIGLVFCFPLLGCAFMLRNHKLTDSIALEGNDHLESKN


TFEIEEKEESFLKNKFFTHFTSSKDRKD





SEQ ID NO: 104


YER019C-A


>sp|P52871|SC6B2_YEAST Protein transport protein SBH2


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = SBH2


PE = 1 SV = 1


MAASVPPGGQRILQKRRQAQSIKEKQAKQTPTSTRQAGYGGSSSSILKLYTDEANGFRVD


SLVVLFLSVGFIFSVIALHLLTKFTHII





SEQ ID NO: 105


YER053C


>sp|P40035|PIC2_YEAST Mitochondrial phosphate carrier protein 2


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = PIC2


PE = 1 SV = 1


MESNKQPRKIQLYTKEFYATCTLGGIIACGPTHSSITPLDLVKCRLQVNPKLYTSNLQGF


RKIIANEGWKKVYTGFGATFVGYSLQGAGKYGGYEYFKHLYSSWLSPGVTVYLMASATAE


FLADIMLCPFEAIKVKQQTTMPPFCNNVVDGWKKMYAESGGMKAFYKGIVPLWCRQIPYT


MCKFTSFEKIVQKIYSVLPKKKEEMNALQQISVSFVGGYLAGILCAAVSHPADVMVSKIN


SERKANESMSVASKRIYQKIGFTGLWNGLMVRIVMIGTLTSFQWLIYDSFKAYVGLPTTG





SEQ ID NO: 106


YER119C


>sp|P40074|AVT6_YEAST Vacuolar amino acid transporter 6


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = AVT6


PE = 1 SV = 1


MVASIRSGVLTLLHTACGAGILAMPYAFKPFGLIPGVIMIVLCGACAMQSLFIQARVAKY


VPQGRASFSALTRLINPNLGIVFDLAIAIKCFGVGVSYMIVVGDLMPQIMSVWTRNAWLL


NRNVQISLIMLFFVAPLSFLKKLNSLRYASMVAISSVAYLCVLVLLHYVAPSDEILRLKG


RISYLLPPQSHDLNVLNTLPIFVFAYTCHHNMFSIINEQRSSRFEHVMKIPLIAISLALI


LYIAIGCAGYLTFGDNIIGNIIMLYPQAVSSTIGRIAIVLLVMLAFPLQCHPARASIHQI


LQHFAEENVSISATSADEPTVATESSPLIRDSSLDLNEVIEEESIYQPKETPLRGKSFIV


ITCSILVASYLVAISVSSLARVLAIVGATGSTSISFILPGLFGYKLIGTEHKTAVPLTTK


IFKYTGLLLFIWGLIIMITCLTAALKLN





SEQ ID NO: 107


YFL028C


>sp|P43569|CAF16_YEAST CCR4-associated factor 16 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = CAF16 PE = 1 SV = 1



MVSQFAIEVRNLTYKFKESSDPSVVDINLQIPWNTRSLVVGANGAGKSTLLKLLSGKHLC


LDGKILVNGLDPFSPLSMNQVDDDESVEDSTNYQTTTYLGTEWCHMSIINRDIGVLELLK


SIGFDHFRERGERLVRILDIDVRWRMHRLSDGQKRRVQLAMGLLKPWRVLLLDEVTVDLD


VIARARLLEFLKWETETRRCSVVYATHIFDGLAKWPNQVYHMKSGKIVDNLDYQKDVEFS


EVVNAKVNGQVAFENDNNKVVISKVNSLHPLALEWLKRDNQIPDKEIGI





SEQ ID NO: 108


YFR045W


>sp|P43617|YFL5_YEAST Uncharacterized mitochondrial carrier YFR045W


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YFR045W


PE = 1 SV = 3


MANQNSDLYKQITAGSVAAVFQTTMTYPFEYLKTGLQLQPKGTAFEIILPQIKSYFVGCS


ALNVAAFGKTILRFVTFDKLCHSLNNNIDNNDNFQRLTGYNLLIAGTLTGIVESLFIIPF


ENIKTTLIQSAMIDHKKLEKNQPVVNAKATFHKVATKSTPVARIEKLLPAVKHMYQTRGP


AAFVQGTTATIFRQIANTSIQFTAYTAFKRLLQARNDKASSVITGLATSFTLVAMTQPID


VVKTRMMSQNAKTEYKNTLNCMYRIFVQEGMATFWKGSIFRFMKVGISGGLIFTVYEQVS


LLLGFSSRS





SEQ ID NO: 109


YGL084C


>sp|P53154|GUP1_YEAST Glycerol uptake protein 1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = GUP1 PE = 1 SV = 1



MSLISILSPLITSEGLDSRIKPSPKKDASTTTKPSLWKTTEFKFYYIAFLVVVPLMFYAG


LQASSPENPNYARYERLLSQGWLFGRKVDNSDSQYRFFRDNFALLSVLMLVHTSIKRIVL


YSTNITKLRFDLIFGLIFLVAAHGVNSIRILAHMLILYAIAHVLKNFRRIATISIWIYGI


STLFINDNFRAYPFGNICSFLSPLDHWYRGIIPRWDVFFNFTLLRVLSYNLDFLERWENL


QKKKSPSYESKEAKSAILLNERARLTAAHPIQDYSLMNYIAYVTYTPLFIAGPIITENDY


VYQSKHTLPSINFKFIFYYAVRFVIALLSMEFILHFLHVVAISKTKAWENDTPFQISMIG


LFNLNIIWLKLLIPWRLFRLWALLDGIDTPENMIRCVDNNYSSLAFWRAWHRSYNKWVVR


YIYIPLGGSKNRVLTSLAVFSFVAIWHDIELKLLLWGWLIVLFLLPEIFATQIFSHYTDA


VWYRHVCAVGAVFNIWVMMIANLFGFCLGSDGTKKLLSDMFCTVSGFKFVILASVSLFIA


VQIMFEIREEEKRHGIYLKC





SEQ ID NO: 110


YGL104C


>sp|P53142|VPS73_YEAST Vacuolar protein sorting-associated protein


73 OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = VPS73


PE = 1 SV = 1


MNRILSSASLLSNVSMPRQNKHKITKALCYAIIVASIGSIQFGYHLSELNAPQQVLSCSE


FDIPMEGYPYDRTWLGKRGYKQCIPLNDEQIGIVTSVFCIGGILGSYFATSLANIYGRKF


SSLINCTLNIVGSLIIFNSNSYRGLIIGRILVGISCGSLIVIIPLFIKEVAPSGWEGLLG


SMTQICIRLGVLLTQGIALPLTDSYRWRWILFGSFLIAVLNFFMWFIVDESPKWLLAHGR


VTDAKLSLCKLRGVTFDEAAQEIQDWQLQIESGDPLIEPTITNSISGSNSLWKYLRDRTN


VKSRHVITVLLFGQQFCGINSIVLYGTKIISQLYPQHAIRINFFISMVNVLVTILVSLLI


HSLPRKPLLMTSTVLVSVTAFIMGIAMNHNKMNLLIVFSFIYMGVFTMGLNPLPFIIMRE


VSKPQDMVLAQRYGTICNWVGTFIIAYTFPIIHDVLSGYVFIIFAIIACSISAFIWKKVP


ETKRSG





SEQ ID NO: 111


YGL114W


>sp|P53134|YGL4_YEAST Putative oligopeptide transporter YGL114W


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YGL114W


PE = 1 SV = 1


MPQSTPSQEVQRVPWDNKPALKQITLRATIAGIAIGSLVLTSNFQFGLQTGWVSMMSLPS


ALLACAFFKNIWPLIFPNDRPFSDVENVYVQSMAVAVGTGPLAFGFVGVIPAIEKFLTND


ESGGLREQGQSFTFRELLIWSTALAFFGIFFAVPLRKQVIVREKLPFPSGSATATLISVL


NGTEILQEVSKSELLEMRQRRLNECPEVLQPNRDPEEADYLMNSSHSELGDYTATSQDGS


SILSTGSENYRANIIILLKTFVVSSLYTMVSYFVPVIRSIPVFGKYLSNNYLWNFQPSPA


YIGQGIIMGLPTVSYMLIGCFLGWGVLAPLARYKRWVPPDADVHDWEEGVQGWILWSSLS


IMVADSVVAFIVVTVKSIVKFILIDDKAALLNNIIDDTFQSMLLEEERAINSSRRNTYVD


GRQDTVRLVSRDNEIEVDSKHLVRYTTVISGCLVSSIICIVSIIYLEGIQVIPLYAIITA


LILALFLSILGIRALGETDLNPVSGIGKISQLIFAFIIPRDRPGSVLMNVVSGGIAEASA


QQAGDLMQDLKTGHLLGASPRAQFCAQLIGACWSIILSSFMYLCYNKVYSIPSEQFRIPT


AVVWIDCARLVTGKGLPDKALECSMILGVIFAVLSLIRNTYRDYGYGWILYIPSGVAVGV


GIFNSPSFTIARFIGGWASHFWLKNHRGDLNAKTKMIVESSGLVLGEGIFSVINMLFICL


NVPHY





SEQ ID NO: 112


YGL167C


>sp|P13586|ATC1_YEAST Calcium-transporting ATPase 1 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = PMR1 PE = I SV = 1



MSDNPFNASLLDEDSNREREILDATAEALSKPSPSLEYCTLSVDEALEKLDTDKNGGLRS


SNEANNRRSLYGPNEITVEDDESLFKKFLSNFIEDRMILLLIGSAVVSLFMGNIDDAVSI


TLAIFIVVTVGFVQEYRSEKSLEALNKLVPAECHLMRCGQESHVLASTLVPGDLVHFRIG


DRIPADIRIIEAIDLSIDESNLIGENEPVHKTSQTIEKSSFNDQPNSIVPISERSCIAYM


GTLVKEGHGKGIVVGTGTNTSFGAVFEMMNNIEKPKTPLQLTMDKLGKDLSLVSFIVIGM


ICLVGIIQGRSWLEMFQISVSLAVAAIPEGLPIIVTVTLALGVLRMAKRKAIVRRLPSVE


TLGSVNVICSDKTGTLTSNHMTVSKLWCLDSMSNKLNVLSLDKNKKTKNSNGNLKNYLTE


DVRETLTIGNLCNNASFSQEHAIFLGNPTDVALLEQLANFEMPDIRNTVQKVQELPFNSK


RKLMATKILNPVDNKCTVYVKGAFERILEYSTSYLKSKGKKTEKLTEAQKATINECANSM


ASEGLRVFGFAKLTLSDSSTPLTEDLIKDLTFTGLIGMNDPPRPNVKFAIEQLLQGGVHI


IMITGDSENTAVNIAKQIGIPVIDPKLSVLSGDKLDEMSDDQLANVIDHVNIFARATPEH


KLNIVRALRKRGDVVAMTGDGVNDAPALKLSDIGVSMGRIGTDVAKEASDMVLTDDDFST


ILTAIEEGKGIFNNIQNFLTFQLSTSVAALSLVALSTAFKLPNPLNAMQILWINILMDGP


PAQSLGVEPTDHEVMKKPPRKRTDKILTHDVMKRLLTTAACIIVGTVYIFVKEMAEDGKV


TARDTTMTFTCFVFFDMFNALACRHNTKSIFEIGFFTNKMFNYAVGLSLLGQMCAIYIPF


FQSIFKTEKLGISDILLLLLISSSVFIVDELRKLWTRKKNEEDSTYFSNV





SEQ ID NO: 113


YGR257C


>sp|P53320|MTM1_YEAST Mitochondrial carrier protein MT41


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = MTM1


PE = 1 SV = 1


MSDRNTSNSLTLKERMLSAGAGSVLTSLILTPMDVVRIRLQQQQMIPDCSCDGAAEVPNA


VSSGSKMKTFTNVGGQNLNNAKIFWESACFQELHCKNSSLKFNGTLEAFTKIASVEGITS


LWRGISLTLLMAIPANMVYFSGYEYIRDVSPIASTYPTLNPLFCGAIARVFAATSIAPLE


LVKTKLQSIPRSSKSTKTWMMVKDLLNETRQEMKMVGPSRALFKGLEITLWRDVPFSAIY


WSSYELCKERLWLDSTRFASKDANWVHFINSFASGCISGMIAAICTHPFDVGKTRWQISM


MNNSDPKGGNRSRNMFKFLETIWRTEGLAALYTGLAARVIKIRPSCAIMISSYEISKKVF


GNKLHQ





SEQ ID NO: 114


YHL035C


>sp|P38735|VMR1_YEAST ABC transporter ATP-binding protein/permease


VMR1 OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c)


GN = VMR1 PE = 2 SV = 1


MGTDPLIIRNNGSFWEVDDFTRLGRTQLLSYYLPLAIIASIGIFALCRSGLSRYVRSAEC


DLVNEYLFGAQEERKEDNSIERLLRNSNTQANYVNVKKQGRILKLRHFDITTIDVKQIDA


KNHGGLTFSRPSTSDHLRKSSEIVLMSLQIIGLSFLRVTKINIELTNRDVTTLLLFWLIL


LSLSILRVYKRSTNLWAICFTAHTTIWISTWIPIRSVYIGNIDDVPSQIFYIFEFVITST


LQPIKLTSPIKDNSSIIYVRDDHTSPSREHISSILSCITWSWITNFIWEAQKNTIKLKDI


WGLSMEDYSIFILKGFTRRNKHINNLTLALFESFKTYLLIGMLWVLVNSIVNLLPTILMK


RFLEIVDNPNRSSSCMNLAWLYIIGMFICRLTLAICNSQGQFVSDKICLRIRAILIGEIY


AKGLRRRLFTSPKTSSDSDSISANLGTIINLISIDSFKVSELANYLYVTVQAVIMIIVVV


GLLFNFLGVSAFAGISIILVMFPLNFLLANLLGKFQKQTLKCTDQRISKLNECLQNIRIV


KYFAWERNIINEIKSIRQKELRSLLKKSLVWSVTSFLWFVTPTLVTGVTFAICTFVQHED


LNAPLAFTTLSLFTLLKTPLDQLSNMLSFINQSKVSLKRISDFLRMDDTEKYNQLTISPD


KNKIEFKNATLTWNENDSDMNAFKLCGLNIKFQIGKLNLILGSTGSGKSALLLGLLGELN


LISGSIIVPSLEPKHDLIPDCEGLTNSFAYCSQSAWLLNDTVKNNIIFDNFYNEDRYNKV


IDACGLKRDLEILPAGDLTEIGEKGITLSGGQKQRISLARAVYSSAKHVLLDDCLSAVDS


HTAVWIYENCITGPLMKNRTCILVTHNVSLTLRNAHFAIVLENGKVKNQGTITELQSKGL


FKEKYVQLSSRDSINEKNANRLKAPRKNDSQKIEPVTENINFDANFVNDGQLIEEEEKSN


GAISPDVYKWYLKFFGGFKALTALFALYITAQILFISQSWWIRHWVNDTNVRINAPGFAM


DTLPLKGMTDSSKNKHNAFYYLTVYFLIGIIQAMLGGFKTMMTFLSGMRASRKIFNNLLD


LVLHAQIRFFDVTPVGRIMNRFSKDIEGVDQELIPYLEVTIFCLIQCASIIFLITVITPR


FLTVAVIVFVLYFFVGKWYLTASRELKRLDSITKSPIFQHFSETLVGVCTIRAFGDERRF


ILENMNKIDQNNRAFFYLSVTVKWFSFRVDMIGAFIVLASGSFILLNIANIDSGLAGISL


TYAILFTDGALWLVRLYSTFEMNMNSVERLKEYSSIEQENYLGHDEGRILLLNEPSWPKD


GEIEIENLSLRYAPNLPPVIRNVSFKVDPQSKIGIVGRTGAGKSTIITALFRLLEPITGC


IKIDGQDISKIDLVTLRRSITIIPQDPILFAGTIKSNVDPYDEYDEKKIFKALSQVNLIS


SHEFEEVLNSEERFNSTHNKFLNLHTEIAEGGLNLSQGERQLLFIARSLLREPKIILLDE


ATSSIDYDSDHLIQGIIRSEFNKSTILTIAHRLRSVIDYDRIIVMDAGEVKEYDRPSELL


KDERGIFYSMCRDSGGLELLKQIAKQSSKMMK





SEQ ID NO: 115


YHL036W


>sp|P38734|MUP3_YEAST Low-affinity methionine permease


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = MUP3


PE = 1 SV = 1


MEPLLFNSGKANFSQDVFIDVEVGDITTKYGSTNTGSFSSMDTVEAQAIKAETARFMEVP


QGRHLGVFSTVVLFVSRIMGSGIFAVPSVILLNTGGNKLIYFAIWVFSAAIAFAGLYLFL


EFGSWIPKSGGRKNFLERSFERPRLLISVVFSCYSVLTGYALTGSIVFGKYVLSAFGVTD


DSWSKYVSISFIIFAVLIHGVSVRHGVFIQNALGGLKLIMIVLMCFAGLYTLFFYKSTGQ


VAWDLPVTQVEKDSLLSVSSIATAFISSFFCFSGWDTVHTVTSEIKNPVKTLKVSGPLSL


IICFVCYTMMNVAYLKVLTYEEIVSAGPLVGSVLFTKLFGPRVGGKFIAFSIAISAASNI


LVVIYSISRVNQEIFKEGYLPFSIHMSKNWPFDAPLPSISLCGFITIAWILILPKEGESF


NYLVSMDGYGNQFFLLLVAIGLFIWRFKHKNEVPEIRASTFGVLAIITLSLYMLMAPFFA


DPSLNRVGFLPPYQIMSLLVIVACFFFWLVKFVLLPKFFHYKLLPKITYLHDGLIVTEWV


KKPCLC





SEQ ID NO: 116


YHR002W


>sp|P38702|LEU5_YEAST Mitochondrial carrier protein LEU5


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = LEU5


PE = 3 SV = 1


MTRDSPDSNDSYKHINKNTTQKTSFDRNSFDYIVRSGLAGGISGSCAKTLIAPLDRIKIL


FQTSNPHYTKYTGSLIGLVEAAKHIWINDGVRGFFQGHSATLLRIFPYAAVKFVAYEQIR


NTLIPSKEFESHWRRLVSGSLAGLCSVFITYPLDLVRVRLAYETEHKRVKLGRIIKKIYK


EPASATLIKNDYIPNWFCHWCNFYRGYVPTVLGMIPYAGVSFFAHDLLHDVLKSPFFAPY


SVLELSEDDELERVQKKQRRPLRTWAELISGGLAGMASQTAAYPFEIIRRRLQVSALSPK


TMYDHKFQSISEIAHIIFKERGVRGFFVGLSIGYIKVTPMVACSFFVYERMKWNFGI





SEQ ID NO: 117


YHR096C


>sp|P38695|HXT5_YEAST Probable glucose transporter HXT5


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = HXT5


PE = 1 SV = 1


MSELENAHQGPLEGSATVSTNSNSYNEKSGNSTAPGTAGYNDNLAQAKPVSSYISHEGPP


KDELEELQKEVDKQLEKKSKSDLLFVSVCCLMVAFGGFVFGWDTGTISGFVRQTDFIRRF


GSTRANGTTYLSDVRTGLMVSIFNIGCAIGGIVLSKLGDMYGRKIGLMTVVVIYSIGIII


QIASIDKWYQYFIGRIISGLGVGGITVLAPMLISEVSPKQLRGTLVSCYQLMITFGIFLG


YCTNFGTKNYSNSVQWRVPLGLCFAWSIFMIVGMTFVPESPRYLVEVGKIEEAKRSLARA


NKTTEDSPLVTLEMENYQSSIEAERLAGSASWGELVTGKPQMFRRTLMGMMIQSLQQLTG


DNYFFYYGTTIFQAVGLEDSFETAIVLGVVNFVSTFFSLYTVDRFGRRNCLLWGCVGMIC


CYVVYASVGVTRLWPNGQDQPSSKGAGNCMIVFACFYIFCFATTWAPVAYVLISESYPLR


VRGKAMSIASACNWIWGFLISFFTPFITSAINFYYGYVFMGCMVFAYFYVFFFVPETKGL


TLEEVNEMYEENVLPWKSTKWIPPSRRTTDYDLDATRNDPRPFYKRMFTKEK





SEQ ID NO: 118


YIL006W


>sp|P40556|YIA6_YEAST Mitochondrial nicotinamide adenine


dinucleotide transporter 1 OS = Saccharomyces cerevisiae (strain ATCC


204508/S288c) GN = YIA6 PE = 1 SV = 1


MTQTDNPVPNCGLLPEQQYCSADHEEPLLLHEEQLIFPDHSSQLSSADIIEPIKMNSSTE


SIIGTTLRKKWVPLSSTQITALSGAFAGFLSGVAVCPLDVAKTRLQAQGLQTRFENPYYR


GIMGTLSTIVRDEGPRGLYKGLVPIVLGYFPTWMIYFSVYEFSKKFFHGIFPQFDFVAQS


CAAITAGAASTTLTNPIWVVKTRLMLQSNLGEHPTHYKGTFDAFRKLFYQEGFKALYAGL


VPSLLGLFHVAIHFPIYEDLKVRFHCYSRENNTNSINLQRLIMASSVSKMIASAVTYPHE


ILRTRMQLKSDIPDSIQRRLFPLIKATYAQEGLKGFYSGFTTNLVRTIPASAITLVSFEY


FRNRLENISTMVI





SEQ ID NO: 119


YIL120W


>sp|P40475|QDR1_YEAST Quinidine resistance protein 1


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = QDR1


PE = 1 SV = 1


MTKQQTSVMRNASIAKEEREGSDNNNVDRSSSDAISDNDAERSNSHSEIDNESNFDMVPY


SRFSHKQKMLLVVQCAFTGFFSTVAGSIYYPVLTIIERKFNITEELANVTIVVYFIFQGV


APSIMGGLADTFGRRPIVLWAILAYFCACIGLACAHNYAQILALRCLQAAGISPVIAINS


GIMGDVTTKVERGGYVGLVAGFQVVGTAFGALIGAGLSSKWGWRAIFWFLAIGSGICLVF


STLLMPETKRTLVGNGSVTPRSFLNRSLILHVGSVKKTLHLDDPDPETLEPRTSVDFLAP


LKILHIREIDILLSIAGLQFSTWTTHQTALTIVLSKKYNLSVAKIGLCFLPAGISTLTSI


ISAGRYLNWSYRTRKVKYNRWIKEQELQLMEKYKGDKNKVAELIHSNSHYAFNLVEARLH


PAFVTLLLSSIGFTAFGWCISVKTPLAAVLCTSAFASLFSNCILTFSTTLIVDLFPSKAS


TATGCLNLFRCLLSAIFIAALTKMVEKMRYGGVFTFLSAITSSSSLLLFYLLKNGKQLSF


DRIRANDKSAGRSVGKNSEKVST





SEQ ID NO: 120


YIL121W


>sp|P40474|QDR2_YEAST Quinidine resistance protein 2


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = QDR2


PE = 1 SV = 1


MAGATSSIIRENDFEDELAESMQSYNRETADKLALTRTESVKPEPEITAPPHSRFSRSFK


TVLIAQCAFTGFFSTIAGAIYYPVLSVIERKFDIDEELVNVTVVVYFVFQGLAPTFMGGF


ADSLGRRPVVLVAIVIYFGACIGLACAQTYAQIIVLRCLQAAGISPVIAINSGIMGDVTT


RAERGGYVGYVAGFQVLGSAFGALIGAGLSSRWGWRAIFWFLAIGSGICFLASFLILPET


KRNISGNGSVTPKSYLNRAPILVLPTVRKSLHLDNPDYETLELPTQLNLLAPFKILKAYE


ICILMLVAGLQFAMYTTHLTALSTALSKQYHLTVAKVGLCYLPSGICTLCSIVIAGRYLN


WNYRRRLKYYQNWLGKKRSKLLEEHDNDLNLVQRIIENDPKYTFNIFKARLQPAFVTLLL


SSSGFCAYGWCITVKAPLAAVLCMSGFASLFSNCILTFSTTLIVDLFPTKTSTATGCLNL


FRCILSAVFIAALSKMVEKMKFGGVFTFLGALTSSSSILLFILLRKGKELAFKRKKQELG


VN





SEQ ID NO: 121


YIL166C


>sp|P40445|YIQ6_YEAST Uncharacterized transporter YIL166C


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YIL166C


PE = 1 SV = 1


MSVQKEEYDIVEKAQLSVSAESLTSDSESISHNPFDDFHKAERWRKVYESSGYEGLSKFD


PEFTWTKDEEKKLVRKMDLKIFLWVFIMFAFLDLIRKNIARAVSDNFIVDLKMNTNDYNL


GQTVYLVIFLASELPGNLLSKRFGPERVIPVQIVLWSVICITQAGLKNRGQFIATRCLLG


MVQGGFIPDNILYISYYYTGAELTFRLSFFWCAIPLFQILGSLLASGIIEMRGIHNLAGW


QYLFIIEGFLSLSVGVASFYLMRRGPTQTGESAFHKGKSLFTEYEEKIMVNRILRDDPSK


GDMSNRQPVTFKEILYTLTEFDLWPLFIQGITAFISLQTVGSYLSLILKSLNYSTFLSNI


LAIPGQALLLINLPLAALLSRKLKEKSLCVGIANVWVLPFIVSLVALPTDTNPWIKYILL


TGILGLPYTHSILAGWVSEISNSVRSRTVGTALYNMSAQVGAIIASNMYRNDDKPYYTRG


NKILLGFTCFNICMAVATKFYYISRNKYKDRKWNSMTKEEQINYLDTTKDKGMKRLDYRF


IH





SEQ ID NO: 122


YJL133W


>sp|P10566|MRS3_YEAST Mitochondrial RNA-splicing protein MRS3


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = MRS3


PE = 1 SV = 4


MVENSSSNNSTRPIPAIPMDLPDYEALPTHAPLYHQLIAGAFAGIMEHSVMFPIDALKTR


IQSANAKSLSAKNMLSQISHISTSEGTLALWKGVQSVILGAGPAHAVYFGTYEFCKKNLI


DSSDTQTHHPFKTAISGACATTASDALMNPFDTIKQRIQLNTSASVWQTTKQIYQSEGLA


AFYYSYPTTLVMNIPFAAFNFVIYESSTKFLNPSNEYNPLIHCLCGSISGSTCAAITTPL


DCIKTVLQIRGSQTVSLEIMRKADTFSKAASAIYQVYGWKGFWRGWKPRIVANMPATAIS


WTAYECAKHFLMTY





SEQ ID NO: 123


YJL219W


>sp|P40885|HXT9_YEAST Hexose transporter HXT9 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = HXT9 PE = 1 SV = 1



MSGVNNTSANDLSTTESNSNSVANAPSVKTEHNDSKNSLNLDATEPPIDLPQKPLSAYTT


VAILCLMIAFGGFIFGWDTGTISGFVNLSDFIRRFGQKNDKGTYYLSKVRMGLIVSIFNI


GCAIGGIVLSKVGDIYGRRIGLITVTAIYVVGILIQITSINKWYQYFIGRIISGLGVGGI


AVLSPMLISEVAPKQIRGTLVQLYQLMCTMGIFLGYCTNYGTKNYHNATQWRVGLGLCFA


WTTFMVSGMMFVPESPRYLIEVGKDEEAKRSLSKSNKVSVDDPALLAEYDTIKAGIELEK


LAGNASWSELLSTKTKVFQRVLMGVMIQSLQQLTGDNYFFYYGTTIFKSVGLKDSFQTSI


IIGVVNFFSSFIAVYTIERFGRRTCLLWGAASMLCCFAVFASVGVTKLWPQGSSHQDITS


QGAGNCMIVFTMFFIFSFATTWAGGCYVIVSETFPLRVKSRGMAIATAANWMWGFLISFF


TPFITGAINFYYGYVFLGCLVFAYFYVFFFVPETKGLTLEEVNTMWLEGVPAWKSASWVP


PERRTADYDADAIDHDDRPIYKRFFSS





SEQ ID NO: 124


YKL016C


>sp|P30902|ATP7_YEAST ATP synthase subunit d, mitochondrial


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = ATP7


PE = 1 SV = 2


MSLAKSAANKLDWAKVISSLRITGSTATQLSSFKKRNDEARRQLLELQSQPTEVDFSHYR


SVLKNTSVIDKIESYVKQYKPVKIDASKQLQVIESFEKHAMTNAKETESLVSKELKDLQS


TLDNIQSARPFDELTVDDLTKIKPEIDAKVEEMVKKGKWDVIDGYKDREGNLNVM





SEQ ID NO: 125


YKL050C


>sp|P35736|YKF0_YEAST Uncharacterized protein YKL050C


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YKL050C


PE = 1 SV = 1


MSLISALQTTDVESVQTSPEQITERKAVRVSTLQESLHSSEMHRAAPETPRSISNSVHKL


KTIYSTYQQSGQPLSKEAIFRAKQKYGILNTPANYKTLGLGDSKSESVDLAARLASKRTK


VSPDDCVETAIEQKARGEAFKVTFSKIPLTPPEDVPITVNLGLKGRRDFLTRLAAQKALA


FSPSLDNSMKGTSDSSSVKKKRFSGAPIGNEFDANLVNPQHFAGFKSLDLSKVLDGAERR


AISRVNDRLYPQKVNFKNGLQSSDQSGVSKANKEVFKKGTLEKLEHSAEQFLESHAGNER


QRLSDQQYMCAKGAADAVKDLDPKTLEDPDFAAREAQKKLYIKQVASPVVLNEAQKLANR


KLQDIDSRDTYMLLFGNQAYNKLAVNIALQHYSVKQEEKKKIYLGGGLWMTPEEVNAVAK


KLISPVVNEIDERASRQRDVDKDIERRSRVLDQEYEDGNSMERAKEQNDGQLLLAMASKQ


QQEKEAKKAEEGQRYDQFVQKMNIKLQQKEKELENARENRENLRNELQERLSKNLSGEND


ELNDWNDACERDLKNSSIEHYYAVRSHFDNLGNSERGYDELLEERSKIQVEIERLVASIA


EHKTAIHGFGETADAGGAIPAVQKQKIPTRKDLLDATVNDPLVISAEMAKEEAEMATEEC


MLKELQVDEMIIIRNIMLRECEKKLEEEKETAKRSRRGTEESKNNSNFSRDVIMSTPDNN


EKVTPIGKSASPKDVVKSRFLSTYNTGKDIDSSASARSITGVSGVLDDGPKTPTSNKENE


LIDDEVKSYKVHQAVDGTGEDSIANKRDKSSRPAANSGGSITIEQFLFNKNADKQGLSKT


ESVTMKREPVVDQMDSKKGHDFTHCNDNGRRSFSGFSQGSIENDYSNEVTDDQDDQEGSE


IRVRDSNDSNTSPKESFFKEVI





SEQ ID NO: 126


YKL120W


>sp|P32332|OAC1_YEAST Mitochondrial oxaloacetate transport protein


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = OAC1


PE = 1 SV = 1


MSSDNSKQDKQIEKTAAQKISKFGSFVAGGLAACIAVTVTNPIELIKIRMQLQGEMSASA


AKVYKNPIQGMAVIFKNEGIKGLQKGLNAAYIYQIGLNGSRLGFYEPIRSSLNQLFFPDQ


EPHKVQSVGVNVFSGAASGIIGAVIGSPLFLVKTRLQSYSEFIKIGEQTHYTGVWNGLVT


IFKTEGVKGLFRGIDAAILRTGAGSSVQLPIYNTAKNILVKNDLMKDGPALHLTASTISG


LGVAVVMNPWDVILTRIYNQKGDLYKGPIDCLVKTVRIEGVTALYKGFAAQVFRIAPHTI


MCLTFMEQTMKLVYSIESRVLGHN





SEQ ID NO: 127


YKL146W 


>sp|P36062|AVT3_YEAST Vacuolar amino acid transporter 3


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = AVT3


PE = 1 SV = 1


MNGKEVSSGSGRTQSNNNKKNNNGGSTGISHASGSPLTDGNGGNSNGNSRSRSRSRKSSG


TTGGLLKKPPLLVNNEAVHASVPDASHTSCNNGTLEVSINNPEPHVVDAVARHLIRNPSN


SLQLQGGDITRDLYKWTNDHPSSPSQYQYPSQPALSTSIPSQAPSFSNRKRSMSFSAASI


ASSSHLNNNSEANGNPLAAIGLAPAPMTHEEIRAPGGFRRSFIIQKRRKHNVDAPIPNFF


TRNFIEFLTLYGHFAGEDLSEEEEEEEETEEEPEEEALETESTQLVSREHGRHPHKSSTV


KAVLLLLKSFVGTGVLFLPKAFHNGGWGFSALCLLSCALISYGCFVSLITTKDKVGVDGY


GDMGRILYGPKMKFAILSSIALSQIGFSAAYTVFTATNLQVFSENFFHLKPGSISLATYI


FAQVLIFVPLSLTRNIAKLSGTALIADLFILLGLVYVYVYSIYYIAVNGVASDTMLMFNK


ADWSLFIGTAIFTFEGIGLLIPIQESMKHPKHFRPSLSAVMCIVAVIFISCGLLCYAAFG


SDVKTVVLLNFPQDTSYTLTVQLLYALAILLSTPLQLFPAIRILENWTFPSNASGKYNPK


VKWLKNYFRCAIVVLTSILAWVGANDLDKFVSLVGSFACIPLIYIYPPLLHYKASILSGT


SRARLLLDLIVIVFGVAVMAYTSWQTIKMWSQ





SEQ ID NO: 128


YKL209C


>sp|P12866|STE6_YEAST Alpha-factor-transporting ATPase


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = STE6


PE = 1 SV = 1


MNFLSFKTTKHYHIFRYVNIRNDYRLLMIMIIGTVATGLVPAITSILTGRVFDLLSVFVA


NGSHQGLYSQLVQRSMAVMALGAASVPVMWLSLTSWMHIGERQGFRIRSQILEAYLEEKP


MEWYDNNEKLLGDFTQINRCVEELRSSSAEASAITFQNLVAICALLGTSFYYSWSLTLII


LCSSPIITFFAVVFSRMIHVYSEKENSETSKAAQLLTWSMNAAQLVRLYCTQRLERKKFK


EIILNCNTFFIKSCFFVAANAGILRFLTLTMFVQGFWFGSAMIKKGKLNINDVITCFHSC


IMLGSTLNNTLHQIVVLQKGGVAMEKIMTLLKDGSKRNPLNKTVAHQFPLDYATSDLTFA


NVSFSYPSRPSEAVLKNVSLNFSAGQFTFIVGKSGSGKSTLSNLLLRFYDGYNGSISING


HNIQTIDQKLLIENITVVEQRCTLFNDTLRKNILLGSTDSVRNADCSTNENRHLIKDACQ


MALLDRFILDLPDGLETLIGTGGVTLSGGQQQRVAIARAFIRDTPILFLDEAVSALDIVH


RNLLMKAIRHWRKGKTTIILTHELSQIESDDYLYLMKEGEVVESGTQSELLADPTTTFST


WYHLQNDYSDAKTIVDTETEEKSIHTVESFNSQLETPKLGSCLSNLGYDETDQLSFYEAI


YQKRSNVRTRRVKVEEENIGYALKQQKNTESSTGPQLLSIIQIIKRMIKSIRYKKILILG


LLCSLIAGATNPVFSYTFSFLLEGIVPSTDGKTGSSHYLAKWSLLVLGVAAADGIFNFAK


GFLLDCCSEYWVMDLRNEVMEKLTRKNMDWFSGENNKASEISALVLNDLRDLRSLVSEFL


SAMTSFVTVSTIGLIWALVSGWKLSLVCISMFPLIIIFSAIYGGILQKCETDYKTSVAQL


ENCLYQIVTNIKTIKCLQAEFHFQLTYHDLKIKMQQIASKRAIATGFGISMTNMIVMCIQ


AIIYYYGLKLVMIHEYTSKEMFTTFTLLLFTIMSCTSLVSQIPDISRGQRAASWIYRILD


EKHNTLEVENNNARTVGIAGHTYHGKEKKPIVSIQNLTFAYPSAPTAFVYKNMNFDMFCG


QTLGIIGESGTGKSTLVLLLTKLYNCEVGKIKIDGTDVNDWNLTSLRKEISVVEQKPLLF


NGTIRDNLTYGLQDEILEIEMYDALKYVGIHDFVISSPQGLDTRIDTTLLSGGQAQRLCI


ARALLRKSKILILDECTSALDSVSSSIINEIVKKGPPALLTMVITHSEQMMRSCNSIAVL


KDGKVVERGNFDTLYNNRGELFQIVSNQSS





SEQ ID NO: 129


YKR039W


>sp|P19145|GAP1_YEAST General amino-acid permease GAP1


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = GAP1


PE = 1 SV = 2


MSNTSSYEKNNPDNLKHNGITIDSEFLTQEPITIPSNGSAVSIDETGSGSKWQDFKDSFK


RVKPIEVDPNLSEAEKVAIITAQTPLKHHLKNRHLQMIAIGGAIGTGLLVGSGTALRTGG


PASLLIGWGSTGTMIYAMVMALGELAVIFPISGGFTTYATRFIDESFGYANNFNYMLQWL


VVLPLEIVSASITVNFWGTDPKYRDGFVALFWLAIVIINMFGVKGYGEAEFVFSFIKVIT


VVGFIILGIILNCGGGPTGGYIGGKYWHDPGAFAGDTPGAKFKGVCSVFVTAAFSFAGSE


LVGLAASESVEPRKSVPKAAKQVFWRITLFYILSLLMIGLLVPYNDKSLIGASSVDAAAS


PFVIAIKTHGIKGLPSVVNVVILIAVLSVGNSAIYACSRTMVALAEQRFLPEIFSYVDRK


GRPLVGIAVTSAFGLIAFVAASKKEGEVFNWLLALSGLSSLFTWGGICICHIRFRKALAA


QGRGLDELSFKSPTGVWGSYWGLFMVIIMFIAQFYVAVFPVGDSPSAEGFFEAYLSFPLV


MVMYIGHKIYKRNWKLFIPAEKMDIDTGRREVDLDLLKQEIAEEKAIMATKPRWYRIWNF


WC





SEQ ID NO: 130


YLR411W


>sp|Q06686|CTR3_YEAST Copper transport protein CTR3 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = CTR3 PE = 1 SV = 1



MNMGGSSSTAAKKATCKISMLWNWYTIDTCFIARSWRNDTKGKFAGSCIGCFALVVVAQW


LTRFSRQFDVELLKRQKIKHLASYSPEEYVVKCGEEDAKSDIEELQGFYNEPSWKTTLIS


LQKSFIYSFYVWGFRRLNEPEDDLLKKVLSCCTLITPVDLYPTFLDHMIRVTIFVLQWGL


SYIIMLLFMYYNGYIIISCLIGAIVGRFIFCYEPLGSLGANGSAQGTVSYDKESDDRKCC


L





SEQ ID NO: 131


YML038C


>sp|Q03697|YMD8_YEAST Putative nucleotide-sugar transporter YMD8


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YMD8


PE = 1 SV = 1


MNRTVFLAFVFGWYFCSIALSIYNRWMFDPKDGLGIGYPVLVTTFHQATLWLLSGIYIKL


RHKPVKNVLRKNNGFNWSFFLKFLLPTAVASAGDIGLSNVSFQYVPLTIYTIIKSSSIAF


VLLFGCIFKLEKFHWKLALSVIIMFVGVALMVFKPSDSTSTKNDQALVIFGSFLVLASSC


LSGLRWVYTQLMLRNNPIQTNTAAAVEESDGALFTENEDNVDNEPVVNLANNKMLENFGE


SKPHPIHTIHQLAPIMGITLLLTSLLVEKPFPGIFSSSIFRLDTSNGGVGTETTVLSIVR


GIVLLILPGFAVFLLTICEFSILEQTPVLTVSIVGIVKELLTVIFGIIILSERLSGFYNW


LGMLIIMADVCYYNYFRYKQDLLQKYHSVSTQDNRNELKGFQDFEQLGSKKIAPYSISVD


LTNQEYELDMIAQNVSRSSQQV





SEQ ID NO: 132


YMR166C


>sp|Q03829|YM39_YEAST Uncharacterized mitochondrial carrier YMR166C


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YMR166C


PE = 1 SV = 1


MNSWNLSSSIPIIHTPHDHPPTSEGTPDQPNNNRKDDKLHKKRGDSDEDLSPIWHCVVSG


GIGGKIGDSAMHSLDTVKTRQQGAPNVKKYRNMISAYRTIWLEEGVRRGLYGGYMAAMLG


SFPSAAIFFGTYEYTKRTMIEDWQINDTITHLSAGFLGDFISSFVYVPSEVLKTRLQLQG


RFNNPFFQSGYNYSNLRNAIKTVIKEEGFRSLFFGYKATLARDLPFSALQFAFYEKFRQL


AFKIEQKDGRDGELSIPNEILTGACAGGLAGIITTPMDVVKTRVQTQQPPSQSNKSYSVT


HPHVTNGRPAALSNSISLSLRTVYQSEGVLGFFSGVGPRFVWTSVQSSIMLLLYQMTLRG


LSNAFPTD





SEQ ID NO: 133


YMR279C


>sp|Q03263|YM8M_YEAST Uncharacterized transporter YMR279C


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = YMR279C


PE = 1 SV = 1


MFSIFKKKTSVQGTDSEIDEKITVKAKDKVVVSTEDEEVTTIVSSTKSTQVTNDSPWQDP


TYFSSFGKELMFIATCMLAQLLNQAGQTHALCIMNVLSKSFNSEANNQAWLMASFPLAAG


SFILISGRLGDIYGLKKMLIVGYVIVIVWSIISGLSKYSNSDAFFITSRAFQGVGIAFIL


PNIMGLVGHVYKVGSFRKNIVISFIGACAPTGGMFGGLFGGLIVTEDPNQWPWVFYAFGI


ATFLSLLMAWYSIPNNVPTNIHGLSMDWTGSALAIIGLILFNFVWNQAPIVGWDKPYIIV


LLIISVIFLVAFFVYESKYAEVPLLPRAMTKNRHMIMILLAVFLGWGSFGIWTFYYVSFQ


LNLRHYSPVWTGGTYFVFVIFGSMAAFFVAFSIKRLGPALLLCFSLMAFDAGSIMFSVLP


VEQSYWKLNFAMQAILCFGMDLSFPASSIILSDGLPMQYQGMAGSLVNTVINYSASLCLG


MGGTVEHQINKSGNDLLKGYRAAVYLGVGLASLGVVISVTYMLENLWNRHRKSEDRSLEA





SEQ ID NO: 134


YNL003C


>sp|P38921|PET8_YEAST Putative mitochondrial carrier protein PET8


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = PET8


PE = 1 SV = 1


MNTFFLSLLSGAAAGTSTDLVFFPIDTIKTRLQAKGGFFANGGYKGIYRGLGSAVVASAP


GASLFFISYDYMKVKSRPYISKLYSQGSEQLIDTTTHMLSSSIGEICACLVRVPAEVVKQ


RTQVHSTNSSWQTLQSILRNDNKEGLRKNLYRGWSTTIMREIPFTCIQFPLYEYLKKTWA


KANGQSQVEPWKGAICGSIAGGIAAATTTPLDFLKTRLMLNKTTASLGSVIIRIYREEGP


AVFFSGVGPRTMWISAGGAIFLGMYETVHSLLSKSFPTAGEMRA





SEQ ID NO: 135


YNL268W


>sp|P32487|LYP1_YEAST Lysine-specific permease OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = LYP1 PE = 1 SV = 2



MGRFSNIITSNKWDEKQNNIGEQSMQELPEDQIEHEMEAIDPSNKTTPYSIDEKQYNTKK


KHGSLQGGAIADVNSITNSLTRLQVVSHETDINEDEEEAHYEDKHVKRALKQRHIGMIAL


GGTIGTGLFVGISTPLSNAGPVGSLIAYIFMGTIVYFVTQSLGEMATFIPVTSSITVFSK


RFLSPAFGVSNGYMYWFNWAITYAVEVSVIGQVIEYWTDKVPLAAWIAIFWVIITLMNFF


PVKVYGEFEFWVASVKVLAIMGYLIYALIIVCGGSHQGPIGFRYWRNPGAWGPGIISSDK


SEGRFLGWVSSLINAAFTYQGTELVGITAGEAANPRKTVPRAINKVVFRIVLFYIMSLFF


IGLLVPYNDSRLSASSAVIASSPFVISIQNAGTYALPDIFNAVVLITVVSAANSNVYVGS


RVLYSLARTGNAPKQFGYVTRQGVPYLGVVCTAALGLLAFLVVNNNANTAFNWLINISTL


AGLCAWLFISLAHIRFMQALKHRGISRDDLPFKAKLMPYGAYYAAFFVTVIIFIQGFQAF


CPFKVSEFFTSYISLILLAVVFIGCQIYYKCRFIWKLEDIDIDSDRREIEAIIWEDDEPK


NLWEKFWAAVA





SEQ ID NO: 136


YNR055C


>sp|P53389|HOL1_YEAST Protein HOL1 OS = Saccharomyces cerevisiae


(strain ATCC 204508/S288c) GN = HOL1 PE = 1 SV = 1


MDKYTNRDHPDYIPGTFNIYSSQNLENGIIYESKLKKTSSGVVLIPQPSYSPNDPLNWSS


WRKLAHFGLMAFITAFTAATSNDAGAAQDSLNEIYGISYDSMNTGAGVLFLGIGWSTLFL


APFANLYGRKITYIVCTTLGLFGALWFALAKRTSDTIWSQLFVGISESCAEAQVQLSLSD


IFFQHQLGSVLTVYIMCTSIGTFLGPLIAGYISAFTNFRWVGWVAVIISGGLLITIIFGC


EETYFDRGQYMTPLTSCQSGYEDGTTLQNSDNTAVSRRKRHLDAKLSTPGAMGEKGVDLS


ETAEFEVNNEEEVTIPETRELIDGSKEHLKPYPKRVAILTKATNLKGYGFKQYFKYLKIN


LRMFLFPPVWLSGMFWGIQDVFLTFYLTTQESAYYEPPWNYSDFGVAIMNVPTLIGAVIG


CICAGIVSDYFVLWMARHNRGILEAEFRLYFSIATAIIGPAGLLMFGIGTARQWPWQAIY


VGLGFVGFAWGCSGDIAMAYLMDCYPDMVLEGMVCTAIINNTISCIFTFTCSDWLAASGT


ENTYIALAVINFGITAFALPMYYYGKRIRLWTKRWYLQSVNLRDGV





SEQ ID NO: 137


YOL158C


>sp|Q08299|ENB1_YEAST Siderophore iron transporter ENB1


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = ENB1


PE = 1 SV = 1


MLETDHSRNDNLDDKSTVCYSEKTDSNVEKSTTSGLRRIDAVNKVLSDYSSFTAFGVTFS


SLKTALLVALFLQGITTGLGGQISQSIQTYAANSFGKHSQVGSINTVKSIVASVVAVPYA


RISDRFGRIECWIFALVLYTIGEIISAATPTFSGLFAGIVIQQFGYSGFRLLATALTGDL


SGLRDRTFAMNIFLIPVIINTWVSGNIVSSVAGNVAPYKWRWGYGIFCIIVPISTLILVL


PYVYAQYISWRSGKLPPLKLKEKGQTLRQTLWKFADDINLIGVILFTAFLVLVLLPLTIA


GGATSKWREGHIIAMIVVGGCLGFIFLIWELKFAKNPFIPRVYLGDPTIYVALLMEFVWR


LGLQIELEYLVTVLMVAFGESTLSAQRIAQLYNFLQSCTNIVVGIMLHFYPHPKVFVVAG


SLLGVIGMGLLYKYRVVYDGISGLIGAEIVVGIAGGMIRFPMWTLVHASTTHNEMATVTG


LLMSVYQIGDAVGASIAGAIWTQRLAKELIQRLGSSLGMAIYKSPLNYLKKYPIGSEVRV


QMIESYSKIQRLLIIVSISFAAFNAVLCFFLRGFTVNKKQSLSAEEREKEKLKIKQQSWL


RRVIGY





SEQ ID NO: 138


YOR100C


>sp|Q12289|CRC1_yEAST Mitochondrial carnitine carrier


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = CRC1


PE = 1 SV = 1


MSSDTSLSESSLLKEESGSLTKSRPPIKSNPVRENIKSFVAGGVGGVCAVFTGHPFDLIK


VRCQNGQANSTVHAITNIIKEAKTQVKGTLFTNSVKGFYKGVIPPLLGVTPIFAVSFWGY


DVGKKLVTFNNKQGGSNELTMGQMAAAGFISAIPTTLVTAPTERVKVVLQTSSKGSFIQA


AKTIVKEGGIASLFKGSLATLARDGPGSALYFASYEISKNYLNSRQPRQDAGKDEPVNIL


NVCLAGGIAGMSMWLAVFPIDTIKTKLQASSTRQNMLSATKEIYLQRGGIKGFFPGLGPA


LLRSFPANAATFLGVEMTHSLFKKYGI





SEQ ID NO: 139


YOR153W


>sp|P33302|PDR5_YEAST Pleiotropic ABC efflux transporter of multiple


drugs OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c)


GN = PDR5 PE = 1 SV = 1


MPEAKLNNNVNDVTSYSSASSSTENAADLHNYNGFDEHTEARIQKLARTLTAQSMQNSTQ


SAPNKSDAQSIFSSGVEGVNPIFSDPEAPGYDPKLDPNSENFSSAAWVKNMAHLSAADPD


FYKPYSLGCAWKNLSASGASADVAYQSTVVNIPYKILKSGLRKFQRSKETNTFQILKPMD


GCLNPGELLVVLGRPGSGCTTLLKSISSNTHGFDLGADTKISYSGYSGDDIKKHFRGEVV


YNAEADVHLPHLTVFETLVTVARLKTPQNRIKGVDRESYANHLAEVAMATYGLSHTRNTK


VGNDIVRGVSGGERKRVSIAEVSICGSKFQCWDNATRGLDSATALEFIRALKTQADISNT


SATVAIYQCSQDAYDLFNKVCVLDDGYQIYYGPADKAKKYFEDMGYVCPSRQTTADFLTS


VTSPSERTLNKDMLKKGIHIPQTPKEMNDYWVKSPNYKELMKEVDQRLLNDDEASREAIK


EAHIAKQSKRARPSSPYTVSYMMQVKYLLIRNMWRLRNNIGFTLFMILGNCSMALILGSM


FFKIMKKGDTSTFYFRGSAMFFAILFNAFSSLLEIFSLYEARPITEKHRTYSLYHPSADA


FASVLSEIPSKLIIAVCFNIIFYFLVDFRRNGGVFFFYLLINIVAVFSMSHLFRCVGSLT


KTLSEAMVPASMLLLALSMYTGFAIPKKKILRWSKWIWYINPLAYLFESLLINEFHGIKF


PCAEYVPRGPAYANISSTESVCTVVGAVPGQDYVLGDDFIRGTYQYYHKDKWRGFGIGMA


YVVFFFFVYLFLCEYNEGAKQKGEILVFPRSIVKRMKKRGVLTEKNANDPENVGERSDLS


SDRKMLQESSEEESDTYGEIGLSKSEAIFHWRNLCYEVQIKAETRRILNNVDGWVKPGTL


TALMGASGAGKTTLLDCLAERVTMGVITGDILVNGIPRDKSFPRSIGYCQQQDLHLKTAT


VRESLRFSAYLRQPAEVSIEEKNRYVEEVIKILEMEKYADAVVGVAGEGLNVEQRKRLTI


GVELTAKPKLLVFLDEPTSGLDSQTAWSICQLMKKLANHGQAILCTIHQPSAILMQEFDR


LLFMQRGGKTVYFGDLGEGCKTMIDYFESHGAHKCPADANPAEWMLEVVGAAPGSHANQD


YYEVWRNSEEYRAVQSELDWMERELPKKGSITAAEDKHEFSQSIIYQTKLVSIRLFQQYW


RSPDYLWSKFILTIFNQLFIGFTFFKAGTSLQGLQNQMLAVFMFTVIFNPILQQYLPSFV


QQRDLYEARERPSRTFSWISFIFAQIFVEVPWNILAGTIAYFIYYYPIGFYSNASAAGQL


HERGALFWLFSCAFYVYVGSMGLLVISFNQVAESAANLASLLFTMSLSFCGVMTTPSAMP


RFWIFMYRVSPLTYFIQALLAVGVANVDVKCADYELLEFTPPSGMTCGQYMEPYLQLAKT


GYLTDENATDTCSFCQISTTNDYLANVNSFYSERWRNYGIFICYIAFNYIAGVFFYWLAR


VPKKNGKLSKK





SEQ ID NO: 140


YOR271C


>sp|Q12029|FSF1_YEAST Probable mitochondrial transport protein FSF1


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = FSF1


PE = 1 SV = 1


MASSVPGPIDLPESRYDLSTYWGRIRHCAEISDPTMLLTTEKDLAHAREIISAYRHGELK


ETTPEFWRAKKQLDSTVHPDTGKTVLLPFRMSSNVLSNLVVTVGMLTPGLGTAGTVFWQW


ANQSLNVAVNSANANKSHPMSTSQLLTNYAAAVTASCGVALGLNNLVPRLKNISPHSKLI


LGRLVPFAAVVSAGIVNVFLMRGNEIRKGISVFDSNGDEVGKSKKAAFMAVGETALSRVI


NATPTMVIPPLILVRLQRGVLKGKSLGVQTLANLGLISVTMFSALPFALGIFPQRQAIHL


NKLEPELHGKKDKDGKPIEKVYFNRGI





SEQ ID NO: 141


YOR273C


>sp|Q12256|TPO4_YEAST Polyamine transporter 4 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = TPO4 PE = 1 SV = 1



MPSSLTKTESNSDPRTNIQQVPKALDKNVTNSGNLDSTSSSTGSITEDEKRSEPNADSNN


MTGGEPIDPRDLDWDGPDDPDNPHNWSSLKKWYTTMTSAFLCLVVTMGSSLYVSSVPELV


ERYHVSQTLALAGLTFYLLGLSTVIGAPLSEVFGRKPVYLFSLPVSMLFTMGVGLSNGHM


RIILPLRFLSGVFASPALSVGSGTILDIFDVDQVSVAMTYFVLSPFLGPVLSPIMAGFAT


EAKGWRWSEWIQLIAGGLILPFIALMPETHKGIILRKRAKKRNIALKKFSREAQKEFLKT


TVTITILRPLKMLVVEPIVFVFSVYVAFIFAILFGFFEAYAVIYRGVYHMSMGISGLPFI


GIGVGLWIGAFFYLYIDRKYLFPKPPAGTQPLTEKERTSKRTTPYRGARDAETGELLPVV


PEKFLIACKFGSVALPIGLFWQAWTARSDVHWMAPVAAGVPFGFGLILIFFSVLMYFSTC


YPPLTVASCLAANNLLRYVMSSVFPLFTIQMYTKMKIKWASTLFALVCVVMIPIPWVFEK


WGSKLRHKSQFGYAAMEKEAETEGGIDDVNAVDGELNLTRMTTLRTMETDPSTREKPGER


LSLRRTHTQPVPASFDREDGQHAQNRNEPISNSLYSAIKDNEDGYSYTEMATDASARMV





SEQ ID NO: 142


YOR307C


>sp|P22215|SLY41_YEAST Uncharacterized transporter SLY41


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = SLY41


PE = 1 SV = 2


MIQTQSTAIKRRNSVHKNLFDPSLYQIPEPPRGGFQHQKKEYSKETFSNQVEGYDITSLK


KRFTQLFPSNIQGYLPEVDLRITIICSIWYVTSSISSNLSKAILRTFNHPIALTELQFLV


SAVLCVGFASIVNLFRLFRLKHTKFSKALNSFPDGILPEYLDGNFRSSILHKFLVPSKLV


LMTTFPMGIFQFIGHITSHKAVSMIPVSLVHSVKALSPIITVGYYKFFEHRYYNSMTYYT


LLLLIFGVMTTCWSTHGSKRASDNKSGSSLIGLLFAFISMIIFVAQNIFAKNILTIRRKV


GILPSSSTDDVTSKEGQPSLDKTRFSPLQVDKITILFYCSCIGFSLTLLPFLTGELMHGG


SVINDLTLETVALVAIHGIAHFFQAMLAFQLIGLLSSINYSVANIMKRIVVISVALFWET


KLNFFQVFGVILTIAGLYGYDKWGLSKKDGRQA





SEQ ID NO: 143


YOR332W


>sp|P22203|VATE_YEAST V-type proton ATPase subunit E


OS = Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN = VMA4


PE = 1 SV = 4


MSSAITALTPNQVNDELNKMQAFIRKEAEEKAKEIQLKADQEYEIEKTNIVRNETNNIDG


NFKSKLKKAMLSQQITKSTIANKMRLKVLSAREQSLDGIFEETKEKLSGIANNRDEYKPI


LQSLIVEALLKLLEPKAIVKALERDVDLIESMKDDIMREYGEKAQRAPLEEIVISNDYLN


KDLVSGGVVVSNASDKIEINNTLEERLKLLSEEALPAIRLELYGPSKTRKFFD 





SEQ ID NO: 144


YOR348C


>sp|P15380|PDT4_YEAST Proline-specific permease OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = PUT4 PE = 1 SV = 2



MVNILPFHKNNRHSAGVVTCADDVSGDGSGGDTKKEEDVVQVTESPSSGSRNNHRSDNEK


DDAIRMEKISKNQSASSNGTIREDLIMDVDLEKSPSVDGDSEPHKLKQGLQSRHVQLIAL


GGAIGTGLLVGTSSTLHTCGPAGLFISYIIISAVIYPIMCALGEMVCFLPGDGSDSAGST


ANLVTRYVDPSLGFATGWNYFYCYVILVAAECTAASGVVEYWTTAVPKGVWITIFLCVVV


ILNESAVKVYGESEFWFASIKILCIVGLIILSFILFWGGGPNHDRLGFRYWQHPGAFAHH


LTGGSLGNFTDIYTGIIKGAFAFILGPELVCMTSAECADQRRNIAKASRRFVWRLIFFYV


LGTLAISVIVPYNDPTLVNALAQGKPGAGSSPFVIGIQNAGIKVLPHIINGCILTSAWSA


ANAFMFASTRSLLTMAQTGQAPKCLGRINKWGVPYVAVGVSFLCSCLAYLNVSSSTADVF


NWFSNISTISGFLGWMCGCIAYLRFRKAIFYNGLYDRLPFKTWGQPYTVWFSLIVIGIIT


ITNGYAIFIPKYWRVADFIAAYITLPIFLVLWFGHKLYTRTWRQWWLPVSEIDVTTGLVE


IEEKSREIEEMRLPPTGFKDKFLDALL





SEQ ID NO: 145


YPL036W 


>sp|P19657|PMA2_YEAST Plasma membrane ATPase 2 OS = Saccharomyces



cerevisiae (strain ATCC 204508/S288c) GN = PMA2 PE = 1 SV = 3



MSSTEAKQYKEMDSKEYLHASDGDDPANNSAASSSSSSSTSTSASSSAAAVPRKAAAASA


ADDSDSDEDIDQLIDELQSNYGEGDESGEEEVRTDGVHAGQRVVPEKDLSTDPAYGLTSD


EVARRRKKYGLNQMAEENESLIVKFLMFFVGPIQFVMEAAAILAAGLSDWVDVGVICALL


LLNASVGFIQEFQAGSIVDELKKTLANTATVIRDGQLIEIPANEVVPGEILQLESGTIAP


ADGRIVTEDCFLQIDQSAITGESLAAEKHYGDEVESSSTVKTGEAFMVVTATGDNTFVGR


AAALVGQASGVEGHFTEVLNGIGIILLVLVIATLLLVWTACFYRTVGIVSILRYTLGITI


IGVPVGLPAVVTTTMAVGAAYLAKKQAIVQKLSAIESLAGVEILCSDKTGTLTKNKLSLH


EPYTVEGVSPDDLMLTACLAASRKKKGLDAIDKAFLKSLIEYPKAKDALTKYKVLEFHPF


DPVSKKVTAVVESPEGERIVCVKGAPLFVLKTVEEDHPIPEDVHENYENKVAELASRGER


ALGVARKRGEGHWEILGVMPCMDPPRDDTAQTINEARNLGLRIKMLTGDAVGIAKETCRQ


LGLGTNIYNAERLGLGGGGDMPGSELADFVENADGFAEVFPQHKYRVVEILQNRGYLVAM


TGDGVNDAPSLKKADTGIAVEGATDAARSAADIVFLAPGLSAIIDALKTSRQIFHRMYSY


VVYRIALSLHLEIFLGLWIAILNNSLDINLIVFIAIFADVATLTIAYDNAPYAPEPVKWN


LPRLWGMSIILGIVLAIGSWITLTTMFLPNGGIIQNFGAMNGVMFLQISLTENWLIFVTR


AAGPFWSSIPSWQLAGAVFAVDIIATMFTLFGWWSENWTDIVSVVRVWIWSIGIFCVLGG


FYYIMSTSQAFDRLMNGKSLKEKKSTRSVEDFMAAMQRVSTQHEKSS





SEQ ID NO: 146


YDL198C


MPHTDKKQSG LARLLGSASA GIMEIAVFHP VDTISKRLMS NHTKITSGQE LNRVIFRDHF


SEPLGKRLFT LFPGLGYAAS YKVLQRVYKY GGQPFANEFL NKHYKKDFDN LFGEKTGKAM


RSAAAGSLIG IGEIVLLPLD VLKIKRQTNP ESFKGRGFIK ILRDEGLFNL YRGWGWTAAR


NAPGSFALFG GNAFAKEYIL GLKDYSQATW SQNFISSIVG ACSSLIVSAP LDVIKTRIQN


RNFDNPESGL RIVKNTLKNE GVTAFFKGLT PKLLTTGPKL VFSFALAQSL IPRFDNLLSK





SEQ ID NO: 147


YFL054C 


MSYESGRSSS SSESTRPPTL KEEPNGKIAW EESVKKSREN NENDSTLLRR KLGETRKAIE


TGGSSRNKLS ALTPLKKVVD ERKDSVQPQV PSMGFTYSLP NLKTLNSFSD AEQARIMQDY


LSRGVNQGNS NNYVDPLYRQ LNPTMGSSRN RPVWSLNQPL PHVLDRGLAA KMIQKNMDAR


SRASSRRGST DISRGGSTTS VKDWKRLLRG AAPGKKLGDI EAQTQRDNTV GADVKPTKLE


PENPQKPSNT HIENVSRKKK RTSHNVNFSL GDESYASSIA DAESRKLKNM QTLDGSTPVY


TKLPEELIEE ENKSTSALDG NEIGASEDED ADIMTFPNFW AKIRYHMREP FAEFLGTLVL


VIFGVGGNLQ ATVTKGSGGS YESLSFAWGF GCMLGVYVAG GISGGHINPA VTISMAIFRK


FPWKKVPVYI VAQIIGAYFG GAMAYGYFWS SITEFEGGPH IRTTATGACL FTDPKSYVTW


RNAFFDEFIG ASILVGCLMA LLDDSNAPPG NGMTALIIGF LVAAIGMALG YQTSFTINPA


RDLGPRIFAS MIGYGPHAFH LTHWWWTWGA WGGPIAGGIA GALIYDIFIF TGCESPVNYP


DNGYIENRVG KLLHAEFHQN DGTVSDESGV NSNSNTGSKK SVPTSS





SEQ ID NO: 148



Oryza sativa sequence encoding EUGT11



MDSGYSSSYA AAAGMHVVIC PWLAFGHLLP CLDLAQRLAS RGHRVSFVST PRNISRLPPV 


RPALAPLVAF VALPLPRVEG LPDGAESTND VPHDRPDMVE LHRRAFDGLA APFSEFLGTA 


CADWVIVDVF HHWAAAAALE HKVPCAMMLL GSAHMIASIA DRRLERAETE SPAAAGQGRP 


AAAPTFEVAR MKLIRTKGSS GMSLAERFSL TLSRSSLVVG RSCVEFEPET VPLLSTLRGK 


PITFLGLMPP LHEGRREDGE DATVRWLDAQ PAKSVVYVAL GSEVPLGVEK VHELALGLEL 


AGTRFLWALR KPTGVSDADL LPAGFEERTR GRGVVATRWV PQMSILAHAA VGAFLTHCGW 


NSTIEGLMFG HPLIMLPIFG DQGPNARLIE AKNAGLQVAR NDGDGSFDRE GVAAAIRAVA 


VEEESSKVFQ AKAKKLQEIV ADMACHERYI DGFIQQLRSY KD





SEQ ID NO: 149 



Synechococcus sp. GGPPS



MVAQTFNLDT YLSQRQQQVE EALSAALVPA YPERIYEAMR YSLLAGGKRL RPILCLAACE


LAGGSVEQAM PTACALEMIH TMSLIHDDLP AMDNDDFRRG KPTNHKVFGE DIAILAGDAL


LAYAFEHIAS QTRGVPPQLV LQVIARIGHA VAATGLVGGQ VVDLESEGKA ISLETLEYIH


SHKTGALLEA SVVSGGILAG ADEELLARLS HYARDIGLAF QIVDDILDVT ATSEQLGKTA


GKDQAAAKAT YPSLLGLEAS RQKAEELIQS AKEALRPYGS QAEPLLALAD FITRRQH





SEQ ID NO: 150



Zea mays truncated CDPS



MAQHTSESAA VAKGSSLTPI VRTDAESRRT RWPTDDDDAE PLVDEIRAML TSMSDGDISV


SAYDTAWVGL VPRLDGGEGP QFPAAVRWIR NNQLPDGSWG DAALFSAYDR LINTLACVVT


LTRWSLEPEM RGRGLSFLGR NMWKLATEDE ESMPIGFELA FPSLIELAKS LGVHDFPYDH


QALQGIYSSR EIKMKRIPKE VMHTVPTSIL HSLEGMPGLD WAKLLKLQSS DGSFLFSPAA


TAYALMNTGD DRCFSYIDRT VKKFNGGVPN VYPVDLFEHI WAVDRLERLG ISRYFQKEIE


QCMDYVNRHW TEDGICWARN SDVKEVDDTA MAFRLLRLHG YSVSPDVFKN FEKDGEFFAF


VGQSNQAVTG MYNLNRASQI SFPGEDVLHR AGAFSYEFLR RKEAEGALRD KWIISKDLPG


EVVYTLDFPW YGNLPRVEAR DYLEQYGGGD DVWIGKTLYR MPLVNNDVYL ELARMDFNHC


QALHQLEWQG LKRWYTENRL MDFGVAQEDA LRAYFLAAAS VYEPCRAAER LAWARAAILA


NAVSTHLRNS PSFRERLEHS LRCRPSEETD GSWFNSSSGS DAVLVKAVLR LTDSLAREAQ


PIHGGDPEDI IHKLLRSAWA EWVREKADAA DSVCNGSSAV EQEGSRMVHD KQTCLLLARM


IEISAGRAAG EAASEDGDRR IIQLTGSICD SLKQKMLVSQ DPEKNEEMMS HVDDELKLRI


REFVQYLLRL GEKKTGSSET RQTFLSIVKS CYYAAHCPPH VVDRHISRVI FEPVSAAK





SEQ ID NO: 151



Arabidopsis thaliana KS (similar to GenBank AEE36246.1)



MSINLRSSGC SSPISATLER GLDSEVQTRA NNVSFEQTKE KIRKMLEKVE LSVSAYDTSW


VAMVPSPSSQ NAPLFPQCVK WLLDNQHEDG SWGLDNHDHQ SLKKDVLSST LASILALKKW


GIGERQINKG LQFIELNSAL VTDETIQKPT GFDIIFPGMI KYARDLNLTI PLGSEVVDDM


IRKRDLDLKC DSEKFSKGRE AYLAYVLEGT RNLKDWDLIV KYQRKNGSLF DSPATTAAAF


TQFGNDGCLR YLCSLLQKFE AAVPSVYPFD QYARLSIIVT LESLGIDRDF KTEIKSILDE


TYRYWLRGDE EICLDLATCA LAFRLLLAHG YDVSYDPLKP FAEESGFSDT LEGYVKNTFS


VLELFKAAQS YPHESALKKQ CCWTKQYLEM ELSSWVKTSV RDKYLKKEVE DALAFPSYAS


LERSDHRRKI LNGSAVENTR VTKTSYRLHN ICTSDILKLA VDDFNFCQSI HREEMERLDR


WIVENRLQEL KFARQKLAYC YFSGAATLFS PELSDARISW AKGGVLTTVV DDFFDVGGSK


EELENLIHLV EKWDLNGVPE YSSEHVEIIF SVLRDTILET GDKAFTYQGR NVTHHIVKIW


LDLLKSMLRE AEWSSDKSTP SLEDYMENAY ISFALGPIVL PATYLIGPPL PEKTVDSHQY


NQLYKLVSTM GRLLNDIQGF KRESAEGKLN AVSLHMKHER DNRSKEVIIE SMKGLAERKR


EELHKLVLEE KGSVVPRECK EAFLKMSKVL NLFYRKDDGF TSNDLMSLVK SVIYEPVSLQ


KESLT





SEQ ID NO: 152



S. rebaudiana KO1



MDAVTGLLTV PATAITIGGT AVALAVALIF WYLKSYTSAR RSQSNHLPRV PEVPGVPLLG


NLLQLKEKKP YMTFTRWAAT YGPIYSIKTG ATSMVVVSSN EIAKEALVTR FQSISTRNLS


KALKVLTADK TMVAMSDYDD YHKTVKRHIL TAVLGPNAQK KHRIHRDIMM DNISTQLHEF


VKNNPEQEEV DLRKIFQSEL FGLAMRQALG KDVESLYVED LKITMNRDEI FQVLVVDPMM


GAIDVDWRDF FPYLKWVPNK KFENTIQQMY IRREAVMKSL IKEHKKRIAS GEKLNSYIDY


LLSEAQTLTD QQLLMSLWEP IIESSDTTMV TTEWAMYELA KNPKLQDRLY RDIKSVCGSE


KITEEHLSQL PYITAIFHET LRRHSPVPII PLRHVHEDTV LGGYHVPAGT ELAVNIYGCN


MDKNVWENPE EWNPERFMKE NETIDFQKTM AFGGGKRVCA GSLQALLTAS IGIGRMVQEF


EWKLKDMTQE EVNTIGLTTQ MLRPLRAIIK PRI





SEQ ID NO: 153



A. thaliana ATR2 



MSSSSSSSTS MIDLMAAIIK GEPVIVSDPA NASAYESVAA ELSSMLIENR QFAMIVTTSI


AVLIGCIVML VWRRSGSGNS KRVEPLKPLV IKPREEEIDD GRKKVTIFFG TQTGTAEGFA


KALGEEAKAR YEKTRFKIVD LDDYAADDDE YEEKLKKEDV AFFFLATYGD GEPTDNAARF


YKWFTEGNDR GEWLKNLKYG VFGLGNRQYE HFNKVAKVVD DILVEQGAQR LVQVGLGDDD


QCIEDDFTAW REALWPELDT ILREEGDTAV ATPYTAAVLE YRVSIHDSED AKFNDITLAN


GNGYTVFDAQ HPYKANVAVK RELHTPESDR SCIHLEFDIA GSGLTMKLGD HVGVLCDNLS


ETVDEALRLL DMSPDTYFSL HAEKEDGTPI SSSLPPPFPP CNLRTALTRY ACLLSSPKKS


ALVALAAHAS DPTEAERLKH LASPAGKDEY SKWVVESQRS LLEVMAEFPS AKPPLGVFFA


GVAPRLQPRF YSISSSPKIA ETRIHVTCAL VYEKMPTGRI HKGVCSTWMK NAVPYEKSEK


LFLGRPIFVR QSNFKLPSDS KVPIIMIGPG TGLAPFRGFL QERLALVESG VELGPSVLFF


GCRNRRMDFI YEEELQRFVE SGALAELSVA FSREGPTKEY VQHKMMDKAS DIWNMISQGA


YLYVCGDAKG MARDVHRSLH TIAQEQGSMD STKAEGFVKN LQTSGRYLRD VW





SEQ ID NO: 154



Stevia rebaudiana KAHe1



MEASYLYISI LLLLASYLFT TQLRRKSANL PPTVFPSIPI IGHLYLLKKP LYRTLAKIAA


KYGPILQLQL GYRRVLVISS PSAAEECFTN NDVIFANRPK TLFGKIVGGT SLGSLSYGDQ


WRNLRRVASI EILSVHRLNE FHDIRVDENR LLIRKLRSSS SPVTLITVFY ALTLNVIMRM


ISGKRYFDSG DRELEEEGKR FREILDETLL LAGASNVGDY LPILNWLGVK SLEKKLIALQ


KKRDDFFQGL IEQVRKSRGA KVGKGRKTMI ELLLSLQESE PEYYTDAMIR SFVLGLLAAG


SDTSAGTMEW AMSLLVNHPH VLKKAQAEID RVIGNNRLID ESDIGNIPYI GCIINETLRL


YPAGPLLFPH ESSADCVISG YNIPRGTMLI VNQWAIHHDP KVWDDPETFK PERFQGLEGT


RDGFKLMPFG SGRRGCPGEG LAIRLLGMTL GSVIQCFDWE RVGDEMVDMT EGLGVTLPKA


VPLVAKCKPR SEMTNLLSEL





SEQ ID NO: 155



Stevia rebaudiana CPR8



MQSNSVKISP LDLVTALFSG KVLDTSNASE SGESAMLPTI AMIMENRELL MILTTSVAVL


IGCVVVLVWR RSSTKKSALE PPVIVVPKRV QEEEVDDGKK KVTVFEGTQT GTAEGFAKAL


VEEAKARYEK AVFKVIDLDD YAADDDEYEE KLKKESLAFF FLATYGDGEP TDNAARFYKW


FTEGDAKGEW LNKLQYGVFG LGNRQYEHFN KIAKVVDDGL VEQGAKRLVP VGLGDDDQCI


EDDFTAWKEL VWPELDQLLR DEDDTTVATP YTAAVAEYRV VFHEKPDALS EDYSYTNGHA


VHDAQHPCRS NVAVKKELHS PESDRSCTHL EFDISNTGLS YETGDHVGVY CENLSEVVND


AERLVGLPPD TYSSIHTDSE DGSPLGGASL PPPFPPCTLR KALTCYADVL SSPKKSALLA


LAAHATDPSE ADRLKFLASP AGKDEYSQWI VASQRSLLEV MEAFPSAKPS LGVFFASVAP


RLQPRYYSIS SSPKMAPDRI HVTCALVYEK TPAGRIHKGV CSTWMKNAVP MTESQDCSWA


PIYVRTSNFR LPSDPKVPVI MIGPGTGLAP FRGFLQERLA LKEAGTDLGL SILFFGCRNR


KVDFIYENEL NNFVETGALS ELIVAFSREG PTKEYVQHKM SEKASDIWNL LSEGAYLYVC


GDAKGMAKDV HRTLHTIVQE QGSLDSSKAE LYVKNLQMSG RYLRDVW





SEQ ID NO: 156



Stevia rebaudiana UGT85C2



MDAMATTEKK PHVIFIPFPA QSHIKAMLKL AQLLHHKGLQ ITFVNTDFIH NQFLESSGPH


CLDGAPGFRF ETIPDGVSHS PEASIPIRES LLRSIETNFL DRFIDLVTKL PDPPTCIISD


GFLSVFTIDA AKKLGIPVMM YWTLAACGFM GFYHIHSLIE KGFAPLKDAS YLTNGYLDTV


IDWVPGMEGI RLKDFPLDWS TDLNDKVLMF TTEAPQRSHK VSHHIFHTFD ELEPSIIKTL


SLRYNHIYTI GPLQLLLDQI PEEKKQTGIT SLHGYSLVKE EPECFQWLQS KEPNSVVYVN


FGSTTVMSLE DMTEFGWGLA NSNHYFLWII RSNLVIGENA VLPPELEEHI KKRGFIASWC


SQEKVLKHPS VGGFLTHCGW GSTIESLSAG VPMICWPYSW DQLTNCRYIC KEWEVGLEMG


TKVKRDEVKR LVQELMGEGG HKMRNKAKDW KEKARIAIAP NGSSSLNIDK MVKEITVLAR


N





SEQ ID NO: 157



S. rebaudiana UGT74G1 (GenBank AAR06920.1)



MAEQQKIKKS PHVLLIPFPL QGHINPFIQF GKRLISKGVK TTLVTTIHTL NSTLNHSNTT


TTSIEIQAIS DGCDEGGFMS AGESYLETFK QVGSKSLADL IKKLQSEGTT IDAIIYDSMT


EWVLDVAIEF GIDGGSFFTQ ACVVNSLYYH VHKGLISLPL GETVSVPGFP VLQRWETPLI


LQNHEQIQSP WSQMLFGQFA NIDQARWVFT NSFYKLEEEV IEWTRKIWNL KVIGPTLPSM


YLDKRLDDDK DNGFNLYKAN HHECMNWLDD KPKESVVYVA FGSLVKHGPE QVEEITRALI


DSDVNFLWVI KHKEEGKLPE NLSEVIKTGK GLIVAWCKQL DVLAHESVGC FVTHCGFNST


LEAISLGVPV VAMPQFSDQT TNAKLLDEIL GVGVRVKADE NGIVRRGNLA SCIKMIMEEE


RGVIIRKNAV KWKDLAKVAV HEGGSSDNDI VEFVSELIKA





SEQ ID NO: 158



S. rebaudiana UGT76G1



MENKTETTVR RRRRIILFPV PFQGHINPIL QLANVLYSKG FSITIFHTNF NKPKTSNYPH


FTFRFILDND PQDERISNLP THGPLAGMRI PIINEHGADE LRRELELLML ASEEDEEVSC


LITDALWYFA QSVADSLNLR RLVLMTSSLF NFHAHVSLPQ FDELGYLDPD DKTRLEEQAS


GFPMLKVKDI KSAYSNWQIL KEILGKMIKQ TKASSGVIWN SFKELEESEL ETVIREIPAP


SFLIPLPKHL TASSSSLLDH DRTVFQWLDQ QPPSSVLYVS FGSTSEVDEK DFLEIARGLV


DSKQSFLWVV RPGFVKGSTW VEPLPDGFLG ERGRIVKWVP QQEVLAHGAI GAFWTHSGWN


STLESVCEGV PMIFSDFGLD QPLNARYMSD VLKVGVYLEN GWERGEIANA IRRVMVDEEG


EYIRQNARVL KQKADVSLMK GGSSYESLES LVSYISSL





SEQ ID NO: 159



S. rebaudiana UGT91D2e-b



MATSDSIVDD RKQLHVATFP WLAFGHILPY LQLSKLIAEK GHKVSFLSTT RNIQRLSSHI


SPLINVVQLT LPRVQELPED AEATTDVHPE DIPYLKKASD GLQPEVTRFL EQHSPDWIIY


DYTHYWLPSI AASLGISRAH FSVTTPWAIA YMGPSADAMI NGSDGRTTVE DLTTPPKWFP


FPTKVCWRKH DLARLVPYKA PGISDGYRMG MVLKGSDCLL SKCYHEFGTQ WLPLLETLHQ


VPVVPVGLLP PEIPGDEKDE TWVSIKKWLD GKQKGSVVYV ALGSEALVSQ TEVVELALGL


ELSGLPFVWA YRKPKGPAKS DSVELPDGFV ERTRDRGLVW TSWAPQLRIL SHESVCGFLT


HCGSGSIVEG LMFGHPLIML PIFGDQPLNA RLLEDKQVGI EIPRNEEDGC LTKESVARSL


RSVVVEKEGE IYKANARELS KIYNDTKVEK EYVSQFVDYL EKNARAVAID HES





SEQ ID NO: 160


atggctacct tgttggaaca ttttcaagct atgccattcg ctattccaat tgctttggct


gctttgtctt ggttgttttt gttctacatc aaggtttctt tcttctccaa caaatccgct


caagctaaat tgccaccagt tccagttgtt ccaggtttgc cagttattgg taatttgttg


caattgaaag aaaagaagcc ataccaaacc ttcactagat gggctgaaga atatggtcca


atctactcta ttagaactgg tgcttctact atggttgtct tgaacactac tcaagttgcc


aaagaagcta tggttaccag atacttgtct atctctacca gaaagttgtc caacgccttg


aaaattttga ccgctgataa gtgcatggtt gccatttctg attacaacga tttccacaag


atgatcaaga gatatatctt gtctaacgtt ttgggtccat ctgcccaaaa aagacataga


tctaacagag ataccttgag agccaacgtt tgttctagat tgcattccca agttaagaac


tctccaagag aagctgtcaa ctttagaaga gttttcgaat gggaattatt cggtatcgct


ttgaaacaag ccttcggtaa ggatattgaa aagccaatct acgtcgaaga attgggtact


actttgtcca gagatgaaat cttcaaggtt ttggtcttgg acattatgga aggtgccatt


gaagttgatt ggagagattt tttcccatac ttgcgttgga ttccaaacac cagaatggaa


actaagatcc aaagattata ctttagaaga aaggccgtta tgaccgcctt gattaacgaa


caaaagaaaa gaattgcctc cggtgaagaa atcaactgct acatcgattt cttgttgaaa


gaaggtaaga ccttgaccat ggaccaaatc tctatgttgt tgtgggaaac cgttattgaa


actgctgata ccacaatggt tactactgaa tgggctatgt acgaagttgc taaggattct


aaaagacaag acagattata ccaagaaatc caaaaggtct gcggttctga aatggttaca


gaagaatact tgtcccaatt gccatacttg aatgctgttt tccacgaaac tttgagaaaa


cattctccag ctgctttggt tccattgaga tatgctcatg aagatactca attgggtggt


tattacattc cagccggtac tgaaattgcc attaacatct acggttgcaa catggacaaa


caccaatggg aatctccaga agaatggaag ccagaaagat ttttggatcc taagtttgac


ccaatggact tgtacaaaac tatggctttt ggtgctggta aaagagtttg cgctggttct


ttacaagcta tgttgattgc ttgtccaacc atcggtagat tggttcaaga atttgaatgg


aagttgagag atggtgaaga agaaaacgtt gatactgttg gtttgaccac ccataagaga


tatccaatgc atgctatttt gaagccaaga tcttaa





SEQ ID NO: 161


MATLLEHFQA MPFAIPIALA ALSWLFLFYI KVSFFSNKSA QAKLPPVPVV PGLPVIGNLL


QLKEKKPYQT FTRWAEEYGP IYSIRTGAST MVVLNTTQVA KEAMVTRYLS ISTRKLSNAL


KILTADKCMV AISDYNDFHK MIKRYILSNV LGPSAQKRHR SNRDTLRANV CSRLHSQVKN


SPREAVNFRR VFEWELFGIA LKQAFGKDIE KPIYVEELGT TLSRDEIFKV LVLDIMEGAI


EVDWRDFFPY LRWIPNTRME TKIQRLYFRR KAVMTALINE QKKRIASGEE INCYIDFLLK


EGKTLTMDQI SMLLWETVIE TADTTMVTTE WAMYEVAKDS KRQDRLYQEI QKVCGSEMVT


EEYLSQLPYL NAVFHETLRK HSPAALVPLR YAHEDTQLGG YYIPAGTEIA INIYGCNMDK


HQWESPEEWK PERFLDPKFD PMDLYKTMAF GAGKRVCAGS LQAMLIACPT IGRLVQEFEW


KLRDGEEENV DTVGLTTHKR YPMHAILKPR S









Having described the invention in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims. More specifically, although some aspects of the present invention are identified herein as particularly advantageous, it is contemplated that the present invention is not necessarily limited to these particular aspects of the invention.

Claims
  • 1. A recombinant host cell producing a steviol glycoside in a cell culture, wherein the recombinant host cell has a modified expression of an endogenous transporter gene encoding a transporter polypeptide, wherein the modified expression comprises increasing expression or activity of the endogenous transporter gene encoding the transporter polypeptide by at least 5% above the level of expression or activity observed in a corresponding unmodified recombinant host cell; wherein the transporter polypeptide comprises a voltage-gated ion channel (VIC) family transporter or a major facilitator superfamily (MFS) transporter;wherein at least a portion of the steviol glycoside is transported from the recombinant host into the cell culture medium; andwherein the host cell is a plant cell, a fungal cell, or a bacterial cell.
  • 2. The recombinant host cell of claim 1, wherein the VIC transporter polypeptide comprises a polypeptide having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO:44 and the MFS transporter polypeptide comprises a polypeptide having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO:88.
  • 3. The recombinant host cell of claim 1, further comprising: (a) one or more genes encoding a sucrose transporter (SUC1) polypeptide and a sucrose synthase (SUS1) polypeptide;(b) a gene encoding a polypeptide capable of synthesizing geranylgeranyl pyrophosphate (GGPP) from farnesyl diphosphate (FPP) and isopentenyl diphosphate (IPP); wherein the polypeptide comprises a polypeptide having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO:149;(c) a gene encoding a polypeptide capable of synthesizing ent-copalyl diphosphate from GGPP; wherein the polypeptide comprises a polypeptide having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO:150;(d) a gene encoding a polypeptide capable of synthesizing ent-kaurene from ent-copalyl pyrophosphate; wherein the polypeptide comprises a polypeptide having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO:152;(e) a gene encoding a polypeptide capable of synthesizing ent-kaurenoic acid from ent-kaurene; wherein the polypeptide comprises a polypeptide having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO:151;(f) a gene encoding a polypeptide capable of synthesizing steviol from ent-kaurenoic acid; wherein the polypeptide comprises a polypeptide having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO:154;(g) a gene encoding a polypeptide capable of reducing cytochrome P450 complex; wherein the polypeptide comprises a polypeptide having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO:153 or 155;(h) a gene encoding a polypeptide capable of glycosylating steviol or a steviol glycoside at its C-13 hydroxyl group; wherein the polypeptide comprises a polypeptide having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO:156;(i) a gene encoding a polypeptide capable of beta 1,3 glycosylation of the C3′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside; wherein the polypeptide comprises a polypeptide having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO:158;(j) a gene encoding a polypeptide capable of glycosylating steviol or a steviol glycoside at its C-19 carboxyl group; wherein the polypeptide comprises a polypeptide having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO:157; and/or(k) a gene encoding a polypeptide capable of beta 1,2 glycosylation of the C2′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside; wherein the polypeptide comprises a polypeptide having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO:159 or 148;wherein at least one of the genes in items (a)-(k) is a recombinant gene; andwherein the steviol glycoside is Rebaudioside A, Rebaudioside B, Rebaudioside D and/or Rebaudioside M or an isomer thereof.
  • 4. The recombinant host cell of claim 3, wherein at least one of the genes in items (a)-(k) is codon optimized for expression in the recombinant host cell.
  • 5. The recombinant host cell of claim 4, wherein at least one of the genes in items (a)-(k) is codon optimized for expression in Saccharomyces cerevisiae.
  • 6. The recombinant host cell of claim 1, wherein the bacterial cell comprises Escherichia bacteria cells, Lactobacillus bacteria cells, Lactococcus bacteria cells, Corynebacterium bacteria cells, Acetobacter bacteria cells, Acinetobacter bacteria cells, or Pseudomonas bacterial cells.
  • 7. The recombinant host cell of claim 1, wherein the fungal cell is a yeast cell.
  • 8. The recombinant host cell of claim 7, wherein the yeast cell is a cell from Saccharomyces cerevisiae, Schizosaccharomyces pombe, Yarrowia lipolytica, Candida glabrata, Ashbya gossypii, Cyberlindnera jadinii, Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, Candida boidinii, Arxula adeninivorans, Xanthophyllomyces dendrorhous, or Candida albicans species.
  • 9. The recombinant host cell of claim 1, wherein the recombinant host cell is a Yarrowia lipolytica cell.
  • 10. The recombinant host cell of claim 1, wherein: (a) RebD and/or RebM transport into the culture medium is increased by at least 2-fold relative to the corresponding unmodified recombinant host cell;(b) the amount of RebD and/or RebM in the supernatant is increased by at least 2-fold relative to the corresponding unmodified recombinant host cell;(c) the ratio of RebD transported into the culture medium is increased by at least 2-fold compared to the total RebD produced by the recombinant host cell; and/or(d) the ratio of RebM transported into the culture medium is increased by at least 2-fold compared to the total RebD produced by the recombinant host cell.
  • 11. A method of producing a steviol glycoside in a cell culture, comprising culturing the recombinant host cell of claim 1 in a culture medium, under conditions in which one or more of the genes are expressed; wherein the at least one endogenous transporter gene is expressed;wherein culturing includes inducing expression of one or more of the genes or constitutively expressing one or more of the genes; andwherein the steviol glycoside is produced by the recombinant host cell.
  • 12. The method of claim 11, wherein: (a) Rebaudioside A is produced in the recombinant host cell expressing the polypeptide capable of glycosylating steviol or a steviol glycoside at its C-13 hydroxyl group; the polypeptide capable of beta 1,3 glycosylation of the C3′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside; the polypeptide capable of glycosylating steviol or a steviol glycoside at its C-19 carboxyl group; and the polypeptide capable of beta 1,2 glycosylation of the C2′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside;(b) Rebaudioside B is produced in the recombinant host cell expressing the polypeptide capable of glycosylating steviol or a steviol glycoside at its C-13 hydroxyl group; the polypeptide capable of beta 1,3 glycosylation of the C3′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside; and the polypeptide capable of beta 1,2 glycosylation of the C2′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside;(c) Rebaudioside D is produced in the recombinant host cell expressing the polypeptide capable of glycosylating steviol or the steviol glycoside at its C-13 hydroxyl group; the polypeptide capable of beta 1,3 glycosylation of the C3′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside; the polypeptide capable of glycosylating steviol or a steviol glycoside at its C-19 carboxyl group; and the polypeptide capable of beta 1,2 glycosylation of the C2′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside; and/or(d) Rebaudioside M is produced in the recombinant host cell expressing the polypeptide capable of glycosylation of the 13-OH of steviol; the polypeptide capable of beta 1,3 glycosylation of the C3′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside; the polypeptide capable of glycosylating steviol or a steviol glycoside at its C-19 carboxyl group; and the polypeptide capable of beta 1,2 glycosylation of the C2′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside.
  • 13. The method of claim 11, wherein the steviol glycoside is produced at a concentration of at least 500 mg/L of the cell culture.
  • 14. A steviol glycoside produced by the method of claim 13.
  • 15. A sweetener composition, comprising the steviol glycoside of claim 14.
  • 16. A food product, comprising the sweetener composition of claim 15.
  • 17. A beverage or a beverage concentrate, comprising the sweetener composition of claim 15.
  • 18. The method of claim 11, that further comprises isolating the Rebaudioside M, alone or together with at least one other steviol glycoside from the cell culture.
  • 19. The method of claim 11, wherein the isolating step comprises separating a liquid phase of the cell culture from a solid phase of the cell culture to obtain a supernatant comprising Rebaudioside M, alone or together with at least one other steviol glycoside, and: (a) contacting the supernatant with one or more adsorbent resins in order to obtain at least a portion of Rebaudioside M, alone or together with at least one other steviol glycoside; or(b) contacting the supernatant with one or more ion exchange or reversed-phase chromatography columns in order to obtain at least a portion of Rebaudioside M, alone or together with at least one other steviol glycoside; or(c) crystallizing or extracting Rebaudioside M, alone or together with at least one other steviol glycoside;thereby isolating Rebaudioside M, alone or together with at least one other steviol glycoside.
  • 20. The method of claim 11, that further comprises recovering a steviol glycoside composition comprising Rebaudioside M, alone or together with at least one other steviol glycoside from the cell culture.
  • 21. The method of claim 20, wherein the recovered steviol glycoside composition is enriched for Rebaudioside M relative to a steviol glycoside composition of Stevia plant and has a reduced level of Stevia plant-derived components relative to a steviol glycoside composition obtained from a plant-derived Stevia extract.
  • 22. The method of claim 11, wherein the cell culture comprises: (a) the steviol glycoside produced by the recombinant host cell;(b) glucose, fructose, sucrose, xylose, rhamnose, uridine diphosphate (UDP)-glucose, UDP-rhamnose, UDP-xylose, and/or N-acetyl-glucosamine; and/or(c) supplemental nutrients comprising trace metals, vitamins, salts, yeast nitrogen base (YNB) and/or amino acids.
  • 23. The method of claim 11, wherein the recombinant host cell is grown in a fermentor at a temperature for a period of time, wherein the temperature and the period of time facilitate the production of the steviol glycoside composition.
  • 24. The method of claim 11, wherein the recombinant host cell is a Yarrowia lipolytica cell.
  • 25. The method of claim 11, wherein Rebaudioside A is produced in the recombinant host cell expressing the polypeptide capable of glycosylating steviol or a steviol glycoside at its C-13 hydroxyl group; the polypeptide capable of beta 1,3 glycosylation of the C3′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside; the polypeptide capable of glycosylating steviol or a steviol glycoside at its C-19 carboxyl group; and the polypeptide capable of beta 1,2 glycosylation of the C2′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside.
  • 26. The method of claim 11, wherein Rebaudioside D is produced in the recombinant host cell expressing the polypeptide capable of glycosylating steviol or the steviol glycoside at its C-13 hydroxyl group; the polypeptide capable of beta 1,3 glycosylation of the C3′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside; the polypeptide capable of glycosylating steviol or a steviol glycoside at its C-19 carboxyl group; and the polypeptide capable of beta 1,2 glycosylation of the C2′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside.
  • 27. The method of claim 11, wherein Rebaudioside M is produced in the recombinant host cell expressing the polypeptide capable of glycosylation of the 13-OH of steviol; the polypeptide capable of beta 1,3 glycosylation of the C3′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside; the polypeptide capable of glycosylating steviol or a steviol glycoside at its C-19 carboxyl group; and the polypeptide capable of beta 1,2 glycosylation of the C2′ of the 13-O-glucose, 19-O-glucose, or both 13-O-glucose and 19-O-glucose of a steviol glycoside.
  • 28. A method of increasing production or transport of a steviol glycoside into a culture medium, comprising culturing the recombinant host cell of claim 1 in a culture medium, under conditions in which one or more of the genes are expressed; wherein at the least one endogenous transporter gene encoding the transporter polypeptide, the at least one endogenous transcription factor gene encoding the transcription factor polypeptide that regulates expression of the at least one endogenous transporter gene, or both are expressed;wherein culturing includes inducing expression of one or more of the genes or constitutively expressing one or more of the genes wherein the steviol glycoside is produced by the recombinant host cell; andwherein the steviol glycoside is RebA, RebB, RebD or RebM or an isomer thereof.
  • 29. The method of claim 28, wherein the steviol glycoside is Rebaudioside A (Reb A), Rebaudioside B (Reb B), Rebaudioside D (Reb D), and/or Rebaudioside M (Reb M) or an isomer thereof.
  • 30. A cell culture, comprising the recombinant host cell of claim 1, the cell culture further comprising: (a) the steviol glycoside produced by the recombinant host cell;(b) glucose, fructose, sucrose, xylose, rhamnose, uridine diphosphate (UDP)-glucose, UDP-rhamnose, UDP-xylose, and/or N-acetyl-glucosamine; and(c) supplemental nutrients comprising trace metals, vitamins, salts, YNB, and/or amino acids;wherein the steviol glycoside is present at a concentration of at least 1 mg/liter of the cell culture.
  • 31. An in vitro method for producing a steviol glycoside, comprising: (a) adding at least one endogenous transporter gene encoding a transporter polypeptide having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO:38;and plant-derived- or synthetic steviol or steviol glycosides to a reaction mixture; wherein at least one of the polypeptides is a recombinant polypeptide; and(b) synthesizing steviol glycoside, glycosylated ent-kaurenol compound, and/or the glycosylated ent-kaurenoic acid compound in the reaction mixture.
  • 32. The method of claim 1, further comprising: (c) recovering the steviol glycoside, glycosylated ent-kaurenol compound, and/or a glycosylated ent-kaurenoic acid compound alone or a composition comprising the steviol glycoside, glycosylated ent-kaurenol compound, and/or the glycosylated ent-kaurenoic acid compound from the reaction mixture.
  • 33. The method of claim 1, wherein the reaction mixture comprises: (a) one or more steviol glycosides, glycosylated ent-kaurenol compounds, and/or a glycosylated ent-kaurenoic acid compounds produced in the reaction mixture;(b) a UGT polypeptide;(c) UDP-glucose, UDP-rhamnose, UDP-xylose, and/or N-acetyl-glucosamine; and/or(d) reaction buffer and/or salts.
  • 34. The method of claim 31, wherein the reaction mixture comprises: (a) one or more steviol glycosides, glycosylated ent-kaurenol compounds, and/or a glycosylated ent-kaurenoic acid compounds produced in the reaction mixture;(b) a UGT polypeptide;(c) UDP-glucose, UDP-rhamnose, UDP-xylose, and/or N-acetyl-glucosamine; and(d) reaction buffer and/or salts.
Provisional Applications (1)
Number Date Country
62035902 Aug 2014 US
Divisions (1)
Number Date Country
Parent 15328365 Jan 2017 US
Child 16533295 US
Continuations (1)
Number Date Country
Parent 16533295 Aug 2019 US
Child 17464144 US