Productivity and Bioproduct Formation in Phototropin Knock/Out Mutants in Microalgae

Information

  • Patent Application
  • 20230123612
  • Publication Number
    20230123612
  • Date Filed
    February 23, 2022
    2 years ago
  • Date Published
    April 20, 2023
    a year ago
Abstract
Phototropin is a blue light receptor, which mediates a variety of blue-light elicited physiological processes in plants and algae. In higher plants these processes include phototropism, chloroplast movement and stomatal opening. In the green alga Chlamydomonasreinhardtii, phototropin plays a vital role in progression of the sexual life cycle and in the control of the eye spot size and light sensitivity Phototropin is also involved in blue-light mediated changes in the synthesis of chlorophylls, carotenoids, chlorophyll binding proteins. We compared the transcriptome of phototropin knock out (PHOT KO) mutant and wild-type parent to analyze differences in gene expression in high light grown cultures (500 µmol photons m-2s-1). Our results indicate the up-regulation of genes involved in photosynthetic electron transport chain, carbon fixation pathway, starch, lipid, and cell cycle control genes. With respect to photosynthetic electron transport genes, genes encoding proteins of the cytochrome b6f and ATP synthase complex were up regulated potentially facilitating proton-coupled electron transfer. In addition genes involved in limiting steps in the Calvin cycle Ribulose-1 ,5-bisphosphate carboxylase/oxygenase (RuBisCO), Sidoheptulose 1,7 bisphosphatase (SBPase), Glyceraldehyde-3-phosphate dehydrogenase (3PGDH) and that mediate cell-cycle control (CDK) were also up regulated along with starch synthase and fatty acid biosynthesis genes involved in starch and lipid synthesis. In addition, transmission electron micrographs show increased accumulation of starch granules in PHOT mutant compared to wild type, which is consistent with the higher expression of starch synthase genes. Collectively, the altered patterns of gene expression in the PHOT mutants were associated with a two-fold increase in growth and biomass accumulation compared to wild type when grown in environmental photobioreactors (Phenometrics) that simulate a pond environment. In conclusion, our studies suggest that phototropin may be a master gene regulator that suppresses rapid cell growth and promotes gametogenesis and sexual recombination in wild type strains.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Feb. 13, 2022 is named PHOT_US_Sequences_021222_ST25.txt and is 619 Kbytes in size.


TECHNICAL FIELD

Disclosed embodiments of the present invention are in the field of improved performance of microalgae in the production of biological products such as but not limited to biofuels, biomass, pigments, starch, oils and the like through selection, mutagenesis or engineering to reduce expression or knockout the phototropin gene for example.


BACKGROUND

Phototropin is a blue light receptor, which mediates a variety of blue-light elicited physiological processes in plants and algae. In higher plants these processes include phototropism, chloroplast movement and stomatal opening. In the unicellular green alga Chlamydomonasreinhardtii, phototropin (PHOT) plays a vital role in the progression of the sexual life cycle and in the control of the eye spot size and light sensitivity. Phototropin is also involved in blue-light mediated changes in the synthesis of chlorophylls, carotenoids, and chlorophyll binding proteins. The UV-A/blue light sensing phototropins mediate a variety of light responses and are responsible in higher plants for optimization of photosynthetic yields (Chen, Chory et al. 2004).


Phototropins are commonly composed of two domains, an amine terminal photosensory domain and a carboxy terminal serine/threonine protein kinase domain. The photosensory domain is a flavin mononucleotide binding domain, the LOV domain. Plants and green algae contain two of these domains in the phototropin regulatory sequence, LOV1 and LOV2 (Chen, Chory et al. 2004). LOV domain is a member of PAS domains and are about 110 amino acids. There is a conserved sequence within the LOV domain identified at amino acid position 238-245 of SEQ ID NO: 1 for example (Gly Arg Asn Cys Arg Phe Leu Gln Gly).(Salomon et al. 2000). A diagram of the phototropin protein is:

















LOV

LOV

Jα-helix

Serine/threonine kinase domain






Phototropin knock-out mutants (PHOT K/O) have been made previously in plants (Suetsugu and Wada 2007, Moni, Lee et al. 2015) and algae (Zorin, Lu et al. 2009; Trippens, Greiner et al. 2012). However, all the PHOT K/O mutant prior art that has been located to date did not show improved productivity of the plant or alga.


In plants two phototropins have been reported, phot1 and phot2, these phototropins share sequence homology and have overlapping functions. These blue-light-sensitive receptors consist of two parts: a C-terminal serine-threonine kinase and two LOV domains that bind flavin mononucleotide as chromophores at the N-terminus. Recently, in the unicellular green alga, Chlamydomonasreinhardtii, a phototropin homolog was identified. It exhibits photochemical properties similar to those of higher plant phototropins and is also functional in Arabidopsis. Studies show that the basic mechanism of phototropin action is highly conserved, even though its apparent physiological functions are quite diverse.


Phototropin in Higher Plants

Plants utilize several families of photoreceptors to better react to their environment, allowing them to fine tune pathways controlled by the photoreceptors - phototropin, phytochrome, and cryptochrome (Chen, Chory et al. 2004).


In higher plants phototropin mediates a variety of blue-light elicited physiological processes (Sullivan, Thomson et al. 2008). Phototropins are UV-A/blue light sensing photoreceptors that are known to optimize photosynthetic yields (Chen, Chory et al. 2004). The involvement of phototropin in photomovement in higher plants is well documented (Suetsugu and Wada 2007, Kagawa, Kimura et al. 2009). Studies involving Arabidopsis mutants lacking the phot1 and phot2 genes have revealed that in addition to regulating hypocotyl curvature of seedlings towards blue light, phototropins also regulate a diverse range of responses in flowering plants. These responses include chloroplast movements, nuclear positioning, stomatal opening, leaf expansion, leaf movements and leaf photomorphogenesis.


Phototropin knock-out mutants (PHOT K/O) have been made previously in plants (Suetsugu and Wada 2007, Moni, Lee et al. 2015). For instance in Physcomitrellapatens (a moss) there are three PHOT genes and they have all been knocked out in different mutants (Suetsugu and Wada 2007). The focus of the P.patens study was the effect of PHOT K/O on phototropism (movement toward light) and the phenotypes they observed allowed them to determine which of the genes were necessary for phototropism (Suetsugu and Wada 2007).


PHOT expression was higher in darkness than in light, and phot1 Arabidopsis mutants was shown to increase the number of lateral roots produced (Moni, Lee et al. 2015). phot was also demonstrated to mediate phototropism, chloroplast relocation and leaf expansion (Matsuoka, Iwata et al. 2007). Using phot deficient Arabidopsis mutants, phototropin 2 was linked to palisade parenchyma cell development of leaves (Kozuka, Kong et al. 2011).


Another study looked at the role of phototropin under low photosynthetically active radiation (Takemiya, Inoue et al. 2005). They found that the wild-type and the PHOT1 mutant both showed increased but similar growth in low radiance blue light super imposed on red light. In white light there was no increase in biomass in both phot1 and phot2 mutants as well as in the double phot mutant.


A study by Folta and colleagues investigated the relationship between phot1 and phototropism and growth inhibition in Arabidopsis (Folta, Lieg et al. 2003). They found that the onset of phototropism and the phot1-mediated growth inhibition coincided and postulated that both were due to phot1 expression.


There is a substantial amount of patent literature around phototropin in higher plants. However, the focus has been on the commercial utility of the upstream, light regulated areas rather than on the phototropin gene itself. These light control domains that regulate PHOT expression - the light-oxygen-voltage-sensing (LOV) domains - have been carefully evaluated for potential commercial application in higher plants.


Shu & Tsien application (US20130330718) focused on using the LOV domain for control of proteins that generate singlet oxygen (SOGs). These fusion protein tags could be used for imaging under blue light for research purposes.


Other patents use light switchable regulatory sequences and contemplate the use of the phototropin LOV domain such as Yang and colleagues (EP2682469).


Hahn & Karginov (WO2011133493) focused on allosteric regulation of kinases using the light activated domains for control of expression in engineered fusion proteins (such as the LOV domains).


Hahn and colleagues (US8859232) demonstrated that the LOV domain of phototropin can be used as a light activated switch for the activation or inactivation of fusion proteins of interest. They contemplated using a LOV domain that could contain substantial portions of the phototropin molecule in addition to the LOV domain. They contemplated using the LOV domain isolated from algae and gave the specific example of Vaucheriafrigida, a stramenopile or heterokont alga.


Kinoshita and colleagues (WO2014142334) demonstrated that overexpression of phototropin had no impact of stomatal opening in higher plants.


Bonger and colleagues (US20140249295) used the LOV domain as a fusion with another functional protein wherein the light switching ability of the LOV domain was used to control the stability and/or function of the fusion protein.


Folta and colleagues (WO2014085626) using mutants of phototropin 1 were able to show that the function of phot1 is mediation of the pathway in which green light reverses the effects of red and/or blue light on plant growth.


Schmidt & Boyden (US20130116165) describe a new group of fusion proteins with light regulatory regions derived from Avenasativa phototropin 1. These regulatory domains are used for altering channel function in membranes.


To date there is no disclosure of the use of PHOT knockout or knockdown (suppression) technology to improve or algae plant productivity.


Phototropin in Algae

Phototropin has already been well studied in several different algae including Chlamydomonasreinhardtii (Briggs and Olney 2001). However, there are indications that phototropins have diverged significantly or that the genes that function as phototropin are not very homologous to plant phototropin genes. For instance it was reported that in Thalassiosirapseudonana (a diatom) and Cyanidioschyzonmerolae (unicellular red alga) no genes were found encoding the phototropins (Grossman 2005). However putative genes with photosensory LOV domains, aurechromes, have been reported for these and other photosynthetic stramenopiles (Table 1). Most aureochromes contain a single LOV domain and function as transcription factors that regulate cell division, chloroplast movement, pigment production, and phototropism. (Takahashi. J Plant Res (2016) 129:189-197)


In Chlamydomonasreinhardtii, phototropin plays a vital role in progression of the sexual life cycle (Huang and Beck 2003), control of the eye spot size and light sensitivity (Trippens, Greiner et al. 2012). Phototropin is also involved in blue-light mediated changes in the synthesis of chlorophylls, carotenoids, chlorophyll binding proteins. Phototropin has been localized to the flagella of Chlamydomonasreinhardtii (Huang, Kunkel et al. 2004). Phototropin is also known to be involved in expression of genes encoding chlorophyll and carotenoid biosynthesis and LHC apoproteins in Chlamydomonas reinhardtii (Im, Eberhard et al. 2006). The Chlamydomonasreinhardtii phototropin gene has been cloned and shown to function when expressed in Arabidopsis (Onodera, Kong et al. 2005).



Phototropin has been shown to control multiple steps in the sexual life cycle of Chlamydomonasreinhardtii (Huang and Beck 2003). PHOT knockdowns using RNAi were generated (Huang and Beck 2003). The entire focus of this study was on sexual mating and no mention of improved biomass, starch accumulation or photosynthesis rate was observed. It is also involved in the chemotaxis that is the initial phase of the sexual cycle of Chlamydomonasreinhardtii (Ermilova, Zalutskaya et al. 2004). However, no cell cycle implications of phototropin knockout or knockdowns have been published.


Detailed studies have carefully analyzed the function of the LOV domain in several algal species. An example is the Chlamydomonasreinhardtii mutant LOV2-C250S where careful studies of the light activation and regulation of this domain were carried out to better understand the mechanism of action (Sethi, Prasad et al. 2009).


Phototropin knock-out mutants (PHOT K/O) have been made previously in algae (Zorin, Lu et al. 2009 Trippens, Greiner et al. 2012). PHOT minus strains had larger eyespots than the parental strain (Trippens, Greiner et al. 2012). This study focused on the impact of PHOT on eyespot structure function. These authors used a knock-out mutant of PHOT to reduce expression of phototropin (Trippens, Greiner et al. 2012).


Novel phototropins have been described in the green alga Ostreococcustauri and with a focus on their LOV domain structure/function (Veetil, Mittal et al. 2011).


Abad and colleagues (WO2013056212) provide the sequence for phototropin from a green alga, Auxenochlorella protothecoides, and indicate that the gene would be important for photosynthetic efficiency. However, they do not discuss the impact of deletion or inhibition of this gene on the alga.


DEFINITIONS

Unless otherwise defined, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the exemplary embodiments, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned are incorporated by reference in their entirety. In case of conflict, the present specification and definitions will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting for the practice of this invention.


Unless specifically referred to in the specification singular forms such as “a,” “an,” and “the,” include their plural forms. As an example, “an alga” includes its plural form “algae” and “a plant” includes the plural “plants.”


The term “algae” will refer to all organisms commonly referred to as algae including the prokaryotic cyanophyta (commonly called blue-green algae and cyanobacteria), prochlorophyta, glaucophyta, rhodophyta, heterokontophyta, haptophyte, cryptophyta, dinophyta, euglenophyta, chloroaracniophyta, chlorophyta, and those organisms of indeterminate nomenclature normally referred to as algae. A full description of these is found in the book “Algae An Introduction to Phycology” by Van Den Hoek, Mann & Jahns (1995), which is included by reference.


The term “expression” as used herein refers to transcription and/or translation of a nucleotide sequence within a host cell. The level of expression of a desired product in a host cell may be determined on the basis of either the amount of corresponding mRNA that is present in the cell, or the amount of the desired polypeptide encoded by the selected sequence.


The term “overexpression” as used herein refers to excessive expression of a gene product (RNA or protein) in greater-than-normal amounts.


The term “homologous” refers to the relationship between two proteins that possess a “common evolutionary origin”, including proteins from superfamilies (e.g., the immunoglobulin superfamily) in the same species, as well as homologous proteins from different species.


As used herein, “identity” means the percentage of identical nucleotide or amino acid residues at corresponding positions in two or more sequences when the sequences are aligned to maximize sequence matching, i.e., taking into account gaps and insertions.


The term “sequence similarity” refers to the degree of identity or correspondence between nucleic acid or amino acid sequences that may or may not share a common evolutionary origin (Reeck, de Haen et al. 1987). However, in common usage and in the current invention, the term “homologous”, when modified with an adverb such as “highly”, may refer to sequence similarity and may or may not relate to a common evolutionary origin.


In specific embodiments, two nucleic acid sequences are “substantially homologous” or “substantially similar” when at least about 75%, and more preferably at least 80%, and more preferably at least 85%, and more preferably at least about 90% or at least about 95% of the nucleotides (or any integer value in between) match over a defined length of the nucleic acid sequences, as determined by a sequence comparison algorithm such as BLAST, CLUSTAL, MUSCLE, etc. An example of such a sequence is an allelic or species variant of the specific phototropin gene of the present invention. Sequences that are substantially homologous may also be identified by hybridization, e.g., in a Southern hybridization experiment under stringency conditions as defined for that particular system. The homology may be as high as about 93-95%, 98%, or 99% (or any integer value in between). For example, the sequence to which homology is matched is a wild-type parental line and the length of the sequence is the full length of the sequence from wild-type parental line.


Similarly, in particular embodiments of the invention, two amino acid sequences are “substantially homologous” or “substantially similar” when greater than 75% of the amino acid residues are identical wherein identical contemplates a conservative substitution at a nucleic acid position. In a preferred embodiment there is at least 80%, and more preferably at least 85%, and more preferably at least about 90% and more preferably at least about 90-95% of the amino acid residues are identical (or any integer value in between). Two sequences are functionally identical when greater than about 95% of the amino acid residues are similar. Preferably the similar or homologous polypeptide sequences are identified by alignment using, for example, the GCG (Genetics Computer Group, Version 7, Madison, Wis.) pileup program, or using any of the programs and algorithms described above. Conservative amino acid substitutions are among: acidic (negatively charged) amino acids such as aspartic acid and glutamic acid; basic (positively charged) amino acids such as arginine, histidine, and lysine; neutral polar amino acids such as glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; neutral nonpolar (hydrophobic) amino acids such as alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; amino acids having aliphatic side chains such as glycine, alanine, valine, leucine, and isoleucine; amino acids having aliphatic-hydroxyl side chains such as serine and threonine; amino acids having amide-containing side chains such as asparagine and glutamine; amino acids having aromatic side chains such as phenylalanine, tyrosine, and tryptophan; amino acids having basic side chains such as lysine, arginine, and histidine; amino acids having sulfur-containing side chains such as cysteine and methionine; naturally conservative amino acids such as valine-leucine, valine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, aspartic acid-glutamic acid, and asparagine-glutamine. A further aspect of the homologs encoded by DNA useful in the transgenic plants or algae of the invention are those proteins that differ from a disclosed protein as the result of deletion or insertion of one or more amino acids in a native sequence.


The term “knockout” or “gene knockout” refers herein to any organism and/or its corresponding genome where the gene of interest has been rendered unable to perform its function. This can be accomplished by both classical mutagenesis, natural mutation, specific or random inactivation, targeting in cis or trans, or any method wherein the normal expression of a protein is altered to reduce its effect. For example but not to limit the definition 1) one can use chemical mutagenesis to damage the gene and then select for organisms not expressing the gene, 2) one can target the gene and remove a portion or all of the gene by homologous recombination, 3) one can use RNAi methods to produce an inhibitor molecule for a particular protein and similar methods and 4) one can use genome editing tools (i.e. CRISPR-Cas) to specifically modify the gene.


The practice of the present invention will employ, unless otherwise indicated, conventional techniques of chemistry, molecular biology, microbiology, recombinant DNA and immunology, which are within the capabilities of a person of ordinary skill in the art. Such techniques are explained in the literature (Sambrook, Fritsch et al. 1989, Ausubel, Brent et al. 1997, Green and Sambrook 2012).


The term “transcriptome” refers to the set of RNA molecules present in a population of cells. It often reflects how an organism responds to particular situations and is looking at what genes are regulated under a particular condition. Examples of transcriptome analyses on algae are found in the following references (Hwang, Jung et al. 2008, Rismani-Yazdi, Haznedaroglu et al. 2011, Fu, Wang et al. 2014, Koid, Liu et al. 2014).


The term “biofuel” refers to any fuel made through the application of biological processes not on a geological timescale. Examples include but are not limited to conversion of algal biomass to biocrude through hydrothermal liquefaction, anaerobic digestion of spent algal biomass for conversion to methane, extraction of lipid from algal biomass to convert to biodiesel, and conversion of water to biohydrogen through biological processes.


The term “bioproduct” is any product produced from biological processes either in whole or in part.


The term biomass productivity or production as used herein refers to the rate of generation of biomass in an ecosystem. It is usually expressed in units of mass per unit surface (or volume) per unit time, for instance grams per square metre per day (g m-2 d-1). The mass unit may relate to biologically produced dry matter generated.


The term “sink molecules”, sink compounds”, sink materials” refers to molecules used by an organism to store captured carbon. These can be but are not limited to sugars, starch, glycogen, lipids, fats, waxes, and similar biomolecules.


The publications discussed above are provided solely for their disclosure before the filing date of the present application. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosures by virtue of prior invention.


SUMMARY OF THE INVENTION

This and other unmet needs of the prior art are met by exemplary compositions and methods as described in more detail below.


One embodiment of the present invention provides for a method for increasing a biomass productivity of an algal strain wherein the expression or function of a Chlamydomonasreinhardtii phototropin gene, a gene substantially similar to the Chlamydomonasreinhardtii phototropin gene or a sequence substantially similar to SEQ ID NO 1-14, 51-66 and 69-128 is reduced or eliminated. In a preferred embodiment the gene substantially similar has greater than 75% homology, more preferably greater than 80%, or 85%, or 90% or 95% homology to the Chlamydomonasreinhardtii phototropin gene or the sequence identified in SEQ ID NO 1-14, 51-66 and 69-128.


For example, the biomass productivity of the algal strain is increased by greater than around 2-fold. The biomass production of storage product(s) in the algal strain is increased by greater than around 2-fold, for example the storage product(s) is selected from starch, lipid, pigments and other sink molecules and for example the productivity of biomass is increased by greater than around 2-fold. Further, the biomass productivity may be increased for bioproducts chosen from lipids, waxes, polysaccharides (e.g., starch, glycogen, mannans, glycans, cellulose, hemicellulose), pigments (e.g., xanthophyll). In a preferred embodiment the expression of the Chlamydomonasreinhardtii phototropin gene, the gene substantially similar to the Chlamydomonasreinhardtii phototropin gene or the sequence substantially similar to SEQ ID NO 1-14, 51-66 and 69-128 is reduced by example chemical mutagenesis and selection, genome editing, trans acting elements (e.g., RNAi), and/or an inducible basis through an inducible promoter.


Another embodiment of the present invention provides for an algal strain wherein relative to the wild-type parental line the expression of the phototropin gene or a substantially similar gene is reduced, the photosynthetic pigments making up the antenna complex are reduced, and/or the content of sink molecules is increased. In a preferred embodiment the phototropin gene or a substantially similar gene been rendered to be non-functional. In a preferred embodiment the non-functional gene has been substantially deleted or is rendered to be non-functional on an inducible basis through an inducible promoter. In a preferred embodiment the algal line having the phototropin gene deletion would generate sterile and stable diploid population of polyploid algae to avoid recombination of genetic material during sexual reproduction or in another embodiment would be used to generate stable transgene-stacking traits in polyploid algal strains. In a preferred embodiment the phototropin gene or a substantially similar gene is selected from SEQ ID NO 1-14, 51-66 and 69-128. In another preferred embodiment the gene or the gene substantially similar has greater than 75% homology, or greater than 80%, or 85%, or 90% or 95% homology to the Chlamydomonasreinhardtii phototropin gene or the sequence identified in SEQ ID NO 1-14, 51-66 and 69-128.


In another embodiment a method for increasing a biomass productivity of an algal strain wherein the expression or function of a Chlamydomonas reinhardtii NTR2 or NTRC gene, a gene substantially similar to a Arabidopsis NTR2 or NTRC gene or a sequence substantially similar to SEQ ID NO 35-50 and 67-68 is over expressed in the algal strain is provided. In a preferred embodiment the gene substantially similar has greater than 75% homology, or more than 80%, 85%, 90%, or 95% homology to the Arabidopsis NTR2 or NTRC gene or the sequence identified in SEQ ID NO 35-50 and 67-68.


For example, the biomass productivity of the algal strain is increased by greater than around 2-fold. The biomass production of storage product(s) in the algal strain is increased by greater than around 2-fold, for example the storage product(s) is selected from starch, lipid, pigments and other sink molecules and for example the productivity of biomass is increased by greater than around 2-fold. Further, the biomass productivity may be increased for bioproducts chosen from lipids, waxes, polysaccharides (e.g., starch, glycogen, mannans, glycans, cellulose, hemicellulose), pigments (e.g., xanthophyll).


In yet another embodiment a method for increasing a productivity of an algal strain wherein the expression or function of a Chlamydomonas reinhardtii KIN10 or KIN11 gene, a gene substantially similar to a Arabidopsis KIN10 or KIN11 gene or a sequence substantially similar to SEQ ID NO 15-34 is over expressed in the algal strain is provided. In a preferred embodiment the gene substantially similar has greater than 75% homology, or greater than 80%, 85%, 90%, or 95% homology to the Arabidopsis KIN10 or KIN11 gene or the sequence identified in SEQ ID NO 15-34. For example, the biomass productivity of the algal strain is increased by greater than around 2-fold. The biomass production of storage product(s) in the algal strain is increased by greater than around 2-fold, for example the storage product(s) is selected from starch, lipid, pigments and other sink molecules and for example the productivity of biomass is increased by greater than around 2-fold. Further, the biomass productivity may be increased for bioproducts chosen from lipids, waxes, polysaccharides (e.g., starch, glycogen, mannans, glycans, cellulose, hemicellulose), pigments (e.g., xanthophyll).


Exemplary embodiments of the compositions, systems, and methods disclosed herein wherein algae are treated so as to reduce or eliminate the expression of phototropin or a heterologous gene with the same function such that improved productivity is achieved.


In one aspect, embodiments of the present invention provide an organism and the method to use such organism where the phototropin gene is knocked out and the photosynthetic rate is improved and the biomass productivity improves.


In a further aspect, the mutant is produced from Chlamydomonasreinhardtii and the biomass productivity is doubled.


Another embodiment of the present invention provides an organism with reduced PHOT expression wherein the sexual cycle is arrested and the genetic stability of the algal cell culture line is improved.


In a further embodiment the organism is derived from Chlamydomonasreinhardtii and has reduced promiscuity resulting in a more stable genotype and phenotype.


In one aspect, embodiments of the present invention provide an organism with reduced phototropin gene expression and the method to use such organism which as improved non-photochemical quenching providing the ability for better response to high light levels.


In one aspect, embodiments of the present invention provide an organism with reduced phototropin expression and the method to use such organism that results in higher levels of sink molecules, such as but not limited to lipid and starch.


In a further embodiment the organism has enhanced cell division compared to wild-type.


In a further embodiment the organism is derived from Chlamydomonasreinhardtii.


In another embodiment of the method wherein the expression of the Chlamydomonasreinhardtii phototropin gene is reduced by genome editing (i.e. CRISPR/Cas).


In another embodiment of the method wherein the expression of the Chlamydomonasreinhardtii phototropin gene is reduced by trans acting elements (e.g., RNAi).


In a further embodiment the gene downstream of PHOT has substantial homology to the Arabidopsis KIN10 or KIN11 genes or a portion thereof (Snf1 related kinases, SNRK) and can be overexpressed to increase the productivity of an algal strain.


In yet a further embodiment the KIN10 and KIN11 genes or a portion thereof are chosen from genes substantially homologous to a nucleic acid sequence identified in SEQ ID NO 15 to 34 or a nucleic acid sequence encoding for an amino acid sequence identified in SEQ ID NO15 to 34.


In a further embodiment the gene downstream of phot has substantial homology to the Arabidopsis NTRC and NTR2 gene(s) or a portion thereof and can be overexpressed to increase the productivity of an algal strain.


In yet a further embodiment the NTRC and NTR2 genes or a portion thereof are chosen from genes substantially homologous to a nucleic acid sequence identified in SEQ ID NO 35 to 50 or a nucleic acid sequence encoding for an amino acid sequence selected in SEQ ID NO 35 to 50.





BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the exemplary embodiments of the invention will be had when reference is made to the accompanying drawings, and wherein:



FIGS. 1 A-D Comparison of chlorophyll a/b ratios and chlorophyll content of PHOT K/O lines (PHOT K/O line G5 and parent cw15) and (PHOT K/O line A4 and parent UVM4): (A) chlorophyll a/b ratios in low light, (B) chlorophyll a/b ratios in low light and high light, (C) chlorophyll content in low light grown cells of cw15 parent and G5 mutant, and (D) chlorophyll content in low light grown cells of UV4 parent and A4 mutant.



FIGS. 2 A-D - Carotenoid pigment comparison of low light (LL) and high light (HL) grown cultures of Chlamydomonasreinhardtii PHOT K/O lines compared to wild-type. LL= Low light, HL = high light, CW15 = Parent for G5 PHOT K/O line, UV4 = parent for A4 PHOT K/O line, Neo = neoxanthin, Lutein = lutein, Viola = violaxanthin, Anthera = antheraxanthin, and Zea = zeaxanthin.



FIGS. 3 A-B - Xanthophyll cycle carotenoid de-epoxidation in Chlamydomonasreinhardtii PHOT K/O (lines G5 and A4) and their corresponding parental lines (CW15 and UVM4) grown at low and high light intensities.



FIGS. 4 A-D - Chlorophyll fluorescence induction kinetics of low-light grown Chlamydomonasreinhardtii PHOT K/O lines and respective wild-type parental strains. Cultures were either dark adapted or pre-illuminated with 715 nm light (photosystem I (PSI) actinic light) prior to measurement. For Chl fluorescence induction measurements, Chl fluorescence was measured under continuous, non-saturating illumination every microsecond.



FIGS. 5 A-B - Photosynthetic rate comparison of Chlamydomonasreinhardtii PHOT K/O lines and parent lines under increasing light intensity. CW15 and UV4 are parental wild-type lines while G5 and A4 are the PHOT K/O lines.



FIG. 6 - KEGG pathway graphical data on photosynthetic electron transport chain related gene expression Chlamydomonasreinhardtii PHOT K/O lines and parent lines. Star indicates fold change in transcript abundance relative to parent line.



FIGS. 7 A-D - Growth and biomass comparison of Chlamydomonasreinhardtii PHOT K/O lines and parent lines in environmental photobioreactors from Phenometric (ePBRs).



FIG. 8 - KEGG pathway graphical data on carbon fixation related gene expression Chlamydomonasreinhardtii PHOT K/O lines and parent lines. Hatched lineand/or star indicates fold change in transcript abundance relative to parent line.



FIG. 9 - Cell cycle pathway diagram. NIMA (Never in mitosis), NEK2, NEK6 (NIMA related kinases), Cyclin and CDK (Cyclin- dependent kinases), RB (retinoblastoma)/mat3 (mating type-linked) genes are up-regulated in cell cycle pathway.



FIG. 10 - Starch synthesis pathway.



FIGS. 11 A-B - Thylakoid membrane structure and starch accumulation comparison of PHOT K/O line with parent line. Inserts are a magnification of the thylakoid grana stacks.



FIG. 12 - KEGG pathway graphical data on terpenoid synthesis related gene expression Chlamydomonasreinhardtii PHOT K/O lines and parent lines. Star indicates up-regulated genes relative to parent line.





DETAILED DESCRIPTION

While there have been numerous studies on algal phototropin (Huang and Beck 2003, Ermilova, Zalutskaya et al. 2004, Huang, Kunkel et al. 2004, Im, Eberhard et al. 2006, Sethi, Prasad et al. 2009, Veetil, Mittal et al. 2011, Trippens, Greiner et al. 2012) to date there has been no correlation of the reduction or knock-out of phototropin to higher levels of biomass production and increased production of sink molecules/products such as starch and lipid.


The transcriptome of a Chlamydomonasreinhardtii phototropin knock out (PHOT K/O) mutant and the wild-type parent were compared to analyze differences in gene expression in high light grown cultures (500 µmol photons m-2 s-1). An up-regulation of genes involved in photosynthetic electron transport chain, carbon fixation pathway, starch, lipid, and cell cycle control genes was observed in the PHOT K/O mutants. Referring now to FIG. 6, with respect to photosynthetic electron transport genes, genes encoding proteins of the cytochrome b6f and ATP synthase complex were up regulated potentially facilitating rate limitations in proton-coupled electron transfer. In addition genes involved in the rate limiting steps in the Calvin cycle, including Ribulose-1 ,5-bisphosphate carboxylase/oxygenase (RuBisCO), sidoheptulose 1,7 bisphosphatase (SBPase), glyceraldehyde-3-phosphate dehydrogenase (3PGDH) and that mediate cell-cycle control (CDK), were also up regulated in the PHOT K/O mutants as well as the starch synthase and fatty acid biosynthesis genes involved in starch and lipid synthesis. In addition, transmission electron micrographs show increased accumulation of starch granules in PHOT K/O mutant compared to wild-type, which is consistent with the higher expression of starch synthase genes. Collectively, the altered patterns of gene expression in the PHOT K/O mutants were associated with a two-fold increase in growth and biomass accumulation compared to wild-type when grown in environmental photobioreactors (PBR101 from Phenometrics, Inc., Lansing, MI) that simulate a pond environment as evidence of increase productivity of algae. These surprising results suggest that phototropin may be a master gene regulator that suppresses rapid cell growth and promotes gametogenesis and sexual recombination in wild-type strains. Therefore, down regulating expression or eliminating the phototropin genes (e.g., PHOTO K/O mutants) provides a valuable means to increase productivity of algae that has commercial applications.


Using a variety of methods exemplary embodiments of the invention are directed at improving the productivity of algal systems based on control of the phototropin gene and genes similar to phototropin in algal systems. This is particularly applicable to improving biomass productivity in algal mass culturing either for production of algal biofuels or bioproducts.


Productivity is a central issue in algae production and a doubling of the productivity could be very attractive to groups who hope to cross the threshold of commercial viability. However, one should note that widespread adoption of transgenic algae as a production system is not yet embraced. Several companies (for example Algenol, Ft. Meyers, Florida) are using transgenic algae (cyanobacteria) in closed tube reactors outdoors and, presumably, have a track to (national) regulatory approval. Use of transgenic algae has been approved in Florida and approvals have recently been granted by the US EPA for GMO field trials for Sapphire Energy Company.


Production of bioproducts using this invention, owing to the observed doubling of productivity in biomass and sink molecules/compounds, could be pivotal in reaching commercial viability. The observed increase in starch production by this invention is especially important as it shows sink molecules/compounds are enhanced by the methods of this invention.


Alternative genome editing technologies such as CRISPR/Cas 9, Talen and Zinc finger nuclease approaches could also be used to inhibit expression of phototropin (Gaj, Gersbach et al. 2013, Sizova, Greiner et al. 2013).


It is possible to make PHOT knockouts using non-GMO approaches such as classical mutagenesis using chemical mutagens such as methylnitronitroso guanidine and ethyl methane sulfonate (Yan, Aruga et al. 2000).


To date, supporting data for this invention have been limited to the green alga, Chlamydomonasreinhardtii. Compared to wild-type C.reinhardtii, PHOT K/O mutants of the invention show:

  • 1. Reduction in chlorophyll and carotenoid pigments (see FIG. 1).
  • 2. Reduced light harvesting antenna size (see FIG. 1).
  • 3. 2-fold increase in photosynthesis rate (see in FIG. 5).
  • 4. Increased expression of genes that control rate limiting steps in photosynthetic electron transfer and Calvin Cycle activity (see FIG. 6 and FIG. 8).
  • 5. 2-fold increase in growth and biomass (see in FIG. 7.)
  • 6. Increased expression of starch synthesis genes (see in FIG. 10.)
  • 7. Increased accumulation of xanthophyll cycle pigments (see in FIG. 12).
  • 8. Higher accumulation of starch grains (see in FIG. 11B).
  • 9. Increased expression of the chloroplast localized MEP terpenoid synthesis pathway but not the cytoplasmic MVA terpenoid synthesis pathway (see in FIG. 12)
  • 10. Increased expression of cell cycle control genes potentially accelerating rates of cell division (see in FIG. 9).
  • 11. Increased expression of glycolysis pathway genes.
  • 12. Increased expression of Kin10/Kin11 (SNRK) genes.
  • 13. Increased expression of NTR2 and NTRC genes.


Additionally, PHOT K/O mutants were unable to undergo sexual mating, which was attributed to an impact of the PHOT K/O on the cell cycle - effectively blocking meiosis while accelerating photosynthetic and cell division rates.


PHOT Knockout (K/O) Mutants of Chlamydomonas Reinhardtii


Chlamydomonas
reinhardtii PHOT knockout lines were generated in different parental backgrounds. PHOT K/O line G5 was made in cw15 parental background and A4 mutant line was made in UV4 background (Zorin, Lu et al. 2009).


Pigment Analysis of Phototropin Knock Out Lines

Chlorophyll (Chl) and carotenoids are the central pigments of the photosynthetic apparatus. These pigments are associated with light-harvesting complexes and reaction-center complexes in photosynthetic organisms. The light environment plays a major role in governing the pigment composition of pigment-protein complexes of the photosynthetic apparatus. Blue light is especially important in modulating the synthesis of Chl and carotenoids, as well as the biogenesis of the photosynthetic apparatus in microalgae and vascular plants. Consistent with phototropin regulation of pigment biosynthetic pathways C.reinhardtii PHOT K/O lines showed: Chlorophyll content: Higher chlorophyll a/b (Chl a/b) ratios compared to their respective wild-types when grown under low light intensities. As shown in FIGS. 1A and 1B, the G5 mutant line has Chl a/b ratios of 2.8 and 3.1 in low and high light, respectively while its parent CW15 has a Chl a/b ratio of 2.2 in low light with no significant increase in high light. Similarly, the mutant A4 line has Chl a/b ratios of 2.9 and 3.4 in low light and high light respectively, and its parent has a Chl a/b ratio of 2 in low light with no significant change in high light. Chl a/b ratios are also higher in PHOT K/O lines under high light grown cultures, which is consistent with a reduction in chlorophyll antenna size at high light. FIG. 1 C and 1 D shows a 50-60% reduced chlorophyll content per gram dry weight in the PHOT mutants compared to parent wild-type.


Carotenoid content: When grown under low light intensities PHOT K/O lines showed a 30-40% reduction in carotenoid content compared to parent wild. The changes in xanthophyll cycle pigments were analyzed since the xanthophyll cycle pigments play an important role as antioxidants and for non-photochemical quenching of excess energy captured by the light harvesting complex. Both PHOT K/O lines show higher accumulation of photoprotective pigments in high light compared to their respective WT parents. Referring now to FIG. 2B, G5 PHOT accumulates 2.5 fold more lutein and 4.1 fold more zeaxanthin compared to the parental line as shown in FIG. 2A. Referring now to FIG. 2D, A4 PHOT K/O accumulates 2.8 lutein and 3.8 fold zeaxanthin as well as 2.8 fold antheraxanthin compared to its respective parent as shown in FIG. 2C. These results are consistent with the better photosynthetic performance of these lines when grown in high light intensities.


De-epoxidation rates: Consistent with the xanthophyll cycle pigment accumulation PHOT K/O lines show higher De-epoxidation in high light conditions as compared to their respective wild-type under high light (FIGS. 3 A-B). These data are consistent with the better performance of PHOT K/O lines in high light intensities as they have more robust photoprotection mechanisms.


Photosynthetic State Transition Analysis in Parent and PHOT K/O Lines

In C.reinhardtii, the peripheral PSII antenna is able to migrate laterally between PSII and PSI, in a process known as state transitions, to balance the excitation energy distribution between the two photosystems and to regulate the ratio of linear and cyclic electron flows. Linear electron transfer produces ATP and NADPH, while cyclic electron transfer driven by PSI produces only ATP. Increasing the antenna size of the PSI complex facilitates cyclic electron transfer and has been shown to enhance ATP production and support the optimal growth of Chlamydomonas. To assess the impact of reduced pigment content on the ability to carry out state transitions, chlorophyll (Chl) fluorescence induction kinetics were measured in low-light grown parent wild-type (FIGS. 4 A and C) and PHOT K/O cells (FIG. B and D), that were either dark adapted (sold line) or pre-illuminated with PSI (715 nm) actinic light (broken line). PSI actinic light pre-illumination promotes light harvesting complex II (LHCII) migration from PSI to PSII. An increase in the PSII antenna size would accelerate Chl fluorescence rise kinetics and increase the maximal Chl fluorescence level at sub-saturating light intensities. Wild-type strains (FIGS. 4 A and C) and PHOT K/O lines (FIGS. 4 B and D) all had faster Chl fluorescence rise kinetics and achieved greater maximum Chl fluorescence levels following pre-illumination with PSI light as compared to dark adapted cells consistent with robust state transitions.


Photosynthetic Rates in WILD-TYPE and PHOT K/O Lines

Referring now to FIG. 5 A and FIG. 5 B, the photosynthetic rates of the PHOT lines were determined under increasing light conditions and PHOT K/O lines (open boxes) show 2 fold higher photosynthetic rates compared to their respective parent strains (filled circles). Rate limiting genes in photosynthetic electron transport genes were up-regulated in high light grown cultures (FIG. 6). Up-regulation of these genes may play a role in higher photosynthetic efficiency of PHOT K/O mutants.


Photosynthetic Electron Transport Pathway Genes

The transcriptomic analysis of the PHOT K/O mutants compared to wild-type parental strains provided information on the different genes impacted by the elimination of phototropin expression (FIG. 6). These data are reported in the KEGG (Kyoto Encyclopedia of Genes and Genome) pathway format (Kanehisa and Goto 2000, Kanehisa, Goto et al. 2014) found on the world wide web at genome.jp/kegg/mapper.html last visited May 25, 2016. Rate limiting genes in photosynthetic electron transport pathway were up-regulated in high light grown cultures. Up-regulation of these genes may play a role in higher photosynthetic efficiency of PHOT K/O mutants.


1. PetC: Is a nuclear gene encoding the Rieske protein of the cytochrome b6/f (cyt b6/f) complex. The cytochrome b6f complex catalyzes the rate-limiting step in photosynthetic electron transport. Increases in its expression levels or stoichiometry relative to the PSI and PSII reaction centers would be predicted to increase rates of electron and proton transfer. A 2-fold increase on petC expression was observed for the PHOT K/O mutants (see FIG. 6).


AtpD: Encodes the delta subunit for ATPase. A 3-fold increase on AtpD expression was observed for the PHOT K/O mutants (see FIG. 6).


F type ATPase genes: The delta and gamma subunits of the F type ATPase gene were evaluated. Increases in expression of the ATPase complex would facilitate proton flux, increase ATP synthesis and reduce feedback inhibition on proton coupled electron transfer by accelerating dissipation of the delta pH gradient across the thylakoid membrane. A 3-fold increase was observed for the PHOT K/O mutants (see FIG. 6).


PGRL1: Is an important gene for efficient cyclic electron flow. A 2.2 fold increase was observed for PHOT K/O mutants


PGR7: Is a gene necessary for efficient photosynthetic electron transport. A 6.4 fold increase was observed for PHOT K/O mutants.


Growth and Biomass Analysis in Parent and PHOT K/O Lines

Most importantly, phototropin knock out lines (open boxes), had twice the cell density (FIGS. 7A and 7C) and accumulated twice the biomass (FIGS. 7B and 7D) of their respective parental wild-type strain (solid boxes) when approaching the stationary phase of growth (after 12 days) (FIG. 7). These results are consistent with higher photosynthetic rates in phototropin knock out lines also impact biomass yield of cells grown under conditions mimicking the pond simulating conditions (ePBRs). These results are in concert with up-regulation of the genes involved in carbon fixation and cell cycle as determined by transcriptomic analysis.


Carbon Fixation Pathway Genes Upregulated

Carbon fixation is the main pathway for storing energy and accumulating biomass in algae and plants. Many rate limiting genes were up-regulated in PHOT K/O lines (FIG. 8). SBPase and RuBisCO are limiting enzymes in the Calvin Cycle and their overexpression would increase carbon flux through the carbon reduction pathways. Carbonic anhydrase (CA), an enzyme active in the interconversion of bicarbonate and CO2 facilitating CO2 fixation.

  • 1. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) A 3-fold increase was observed for the PHOT K/O mutants (see FIG. 8).
  • 2. Sidoheptulose 1,7 bisphosphatase (SBPase): A 3-fold increase was observed for the PHOT K/O mutants (see FIG. 8).
  • 3. Glyceraldehyde-3-phosphate dehydrogenase (3PGDH): A 2-fold increase was observed for the PHOT K/O mutants (see FIG. 8).
  • 4. α carbonic anhydrases: A 2.6 to 5 fold increase was observed for the PHOT K/O mutants.
  • 5. β carbonic anhydrases: A 8 fold to 6 fold increase was observed for the PHOT K/O mutants.


Thioredoxin Reductase Genes Are Up-Regulated in PHOT K/O Lines

Thioredoxins are small ubiquitous redox proteins, which are crucial components of the regulatory redox networks in all living cells. Thioredoxins are reduced by different reductases , depending on their subcellular localization. Among these reductases, NADPH-dependent thioredoxin reductases (NTR) genes are known to regulate multiple gene targets involved in photosynthesis, non-photochemical quenching (NPQ), Calvin-Benson cycle, starch biosynthesis, cold stress tolerance and thermotolerance.

  • 1. NADPH-dependent thioredoxin reductase C (NTRC): A 2.4 fold increase was observed for the PHOT K/O mutants
  • 2. NADPH-dependent thioredoxin reductase 2 (NTR2): A 4 fold increase was observed for the PHOT K/O mutants


Key Growth Regulatory Genes Are Up-Regulated in PHOT K/O Lines

KIN10 or KIN11 ((Snf1 related kinases, SNRK) are one of the very well-studied central regulators of energy and stress metabolism in plants. SNRK1 proteins play central roles in coordinating energy balance and nutrient metabolism in plants. A 10-fold increase was observed for the PHOT K/O mutants.


Cell Cycle Pathway Genes Up Regulated

Cell cycle genes are up regulated in Chlamydomonasreinhardtii PHOT K/O mutants may enhance cell division in these lines contributing to the higher biomass in these lines (FIG. 9).

  • 1. NIMA (Never in mitosis), NEK2, NEK6 (NIMA related kinases): Cell cycle progression (G2/M progression) 15, 5 and 5 fold increase, respectively, was observed for the PHOT K/O mutants.
  • 2. RCC1 (Regulator of chromosome condensation): A16 fold increase was observed for the PHOT K/O mutants.Cyclin and cyclin-dependent kinases (CDK): Cyclin-dependent kinases are involved in overall regulation of cell cycle progression and demonstrated a 2-fold increase for the PHOT K/O mutants.
  • 3. A 3-fold increase in MAT3 a homolog of retinoblastoma protein (MAT3/RB) was observed for the PHOT K/O mutants: These genes regulate the cell cycle at two key points: 1.) early/mid G1 control point, and 2) the size checkpoint for the dividing cell.


Glycolysis Pathway Genes Are Up-Regulated in PHOT K/O Lines

Glycolysis is the first step in the breakdown of glucose to extract energy for cellular metabolism, which converts glucose to pyruvate and generates ATP (energy) and NADH (reducing power). Many important genes of this pathway show higher expression in PHOT K/O mutants.

  • 1. Hexokinase: A 3.4 fold increase was observed for the PHOT K/O mutants.
  • 2. Glyceraldehyde phosphate dehydrogenase: A 6 fold increase was observed for the PHOT K/O mutants
  • 3. Fructose - bisphosphate Aldolase: A 4 fold increase was observed for the PHOT K/O mutants.
  • 4. Pyruvate Kinase: A 16 fold increase was observed for the PHOT K/O mutants.


Thylakoid Membrane Structure and Starch Accumulation in Parent and PHOT K/O Lines

We compared the chloroplast ultrastructure of the parental and PHOT K/O cells to determine whether there were changes in thylakoid membrane structure and starch accumulation. Starch represents the most widespread storage polysaccharide found in the plastids of both photosynthetic and non-photosynthetic cells of plants and algae. PHOT K/O lines exhibited higher accumulation of starch grains compared to their respective parent strains as well as up-regulation of starch synthesis genes (FIGS. 10 and 11B) (discussed below).


Starch Biosynthesis Pathway Genes Upregulated in PHOT K/O Lines


Chlamydomonas
reinhardtii PHOT K/O mutants have higher starch accumulation due to up-regulation of the following genes involved in starch biosynthesis is FIG. 10. These results were consistent with the observed increase in starch content in PHOT K/O chloroplasts by EM.

  • 1. AGPase: ADP glucose pyrophosphorylase catalyzes the rate-limiting step and first-dedicated step for starch biosynthesis. A 2-fold increase was observed for the PHOT K/O mutants.
  • 2. Starch synthase 2, 3 and 4: A 5-fold increase was observed for the PHOT K/O mutants.
  • 3. Starch branching enzyme: A 3-fold increase was observed for the PHOT K/O mutants.


A structural hallmark of thylakoid membranes in plants and microalgae is the stacking of the membranes associated with the localization of the PSII complex. The stromal membranes extending from the stacks are enriched in PSI and ATPase complexes. This arrangement of LHCII complexes provides functional flexibility, enabling their primary light harvesting function as well as ability to participate in multilevel regulatory mechanisms involving highly efficient energy dissipation through pigment interactions such as chlorophyll-xanthophyll interactions. These regulatory processes require a significant reorganization in the membrane, and a substantial degree of structural flexibility in thylakoid membranes to carry out short-term adaptations and long-term acclimations in response to change in light and environmental stimuli.


An electron micrograph illustration showing the thylakoid membrane structure in both parent strain and PHOT K/O line is drastically altered in PHOT K/O lines. These results are in concert with the phototropin involvement in regulation of LHC protein biosynthesis and pigment biosynthesis. When thylakoid membranes are tightly stacked, they are densely packed with proteins and inhibit efficient protein diffusion including diffusions of the electron transport carrier protein plastocyanin. This protein mobility is required for efficient photosynthetic electron transfer, as well as regulation and repair of photodamaged photosynthetic apparatus. In parent cells thylakoid membranes are very tightly stacked giving very little space for the movement of the molecules). In contrast, PHOT K/O lines have parallel grana stacks and wide luminal spacing


Other Important Genes Upregulated in Transcriptomic Analysis
Lipid Biosynthesis Pathway Genes

The following genes involved in lipid metabolism are up regulated in PHOT K/O mutants:

  • 1. Acyl carrier protein (ACP) is an important component in both FA and polyketide biosynthesis with the growing chain bound during synthesis as a thiol ester. A 3-fold increase was observed for the PHOT K/O mutants.
  • 2. ω-3 fatty acid desaturase (FAD) A 4-fold increase was observed for the PHOT K/O mutants.
  • 3. Fatty acid biosynthesis (FAB). A 3-fold increase was observed for the PHOT K/O mutants.


Terpenoid Biosynthesis Pathway Genes

The methyl erythritol 4-phosphate (MEP) pathway is the source of isoprenoid precursors for the chloroplast. The precursors lead to the formation of various isoprenoids having diverse roles in different biological processes. Some isoprenoids have important commercial uses. Isoprene, which is made in surprising abundance by some trees, plays a significant role in atmospheric chemistry. Multiple genes involved in MEP/DOXP pathway were up regulated in PHOT K/O mutants (FIG. 12). In contrast, the mevalonate terpenoid pathway (cytoplasmic) genes were not up regulated in PHOT K/O mutants.


Note that all data so far were generated in cell wall free mutants of Chlamydomonas reinhardtii. Metabolomic analyses in C. reinhardtii clarified the pathways and gene up-regulation in high light in C. reinhardtii PHOT K/O mutants of this invention:


Heterologous Algal Phototropin Genes

The Chlamydomonasreinhardtii phototropin gene has already been sequenced and a provisional version is available publically (GenBank 5718965). Additional algal genes are available that have either been shown to be a phototropin, contain blue light receptors, have some homology to phototropin or are putative blue light receptors similar to phototropin (Table 1). Additional phototropin genes in two other production strains of microalgae are known.



Chlorella sp. Strain1412. Is a strain developed by the National Alliance of Biofuels and Bioproducts (NAABB) consortium and is housed at UTEX Culture Collection Of Algae at the University of Texas at Austin (UTEX). The amino acid sequence is provided as SEQ ID NO. 1 and the nucleotide sequence as SEQ ID NO. 2. The phototropin B gene of Chlorella sorokiniana. Strain 1412 is provided as SEQ ID NO. 3 and nucleotide as SEQ ID NO. 4.



Chlorella sp. sorokiniana strain 1230. Is a UTEX strain. The amino acid sequence of phototropin A is provided as SEQ ID NO. 5 and the nucleotide sequence as SEQ ID NO. 6. The amino acid sequence of phototropin B is provided as SEQ ID NO. 7 and the nucleotide sequence as SEQ ID NO. 8.



Chlorella sp. sorokiniana strain 1228. The amino acid sequence of phototropin A is provided as SEQ ID NO. 9 and the nucleotide sequence as SEQ ID NO. 10. The amino acid sequence of phototropin B is provided as SEQ ID NO. 11 and the nucleotide sequence as SEQ ID NO. 12.



Picochlorum
soloecismus (DOE101). The amino acid sequence is provided as SEQ. ID NO. 13 and the nucleotide sequence as SEQ. ID NO. 14.





TABLE 1







List of publically available sequences that may be phototropins or heterologous to phototropin genes based upon homology or function.


GenBank #
Alga
Description
Aliases




9688782

Micromonas pusila CCMP1545

Phototropin, blue light receptor
MICPUCDRAFT_49739


9617508

Volvox carteri f. nagariensis

Phototropin
VOLCADRAFT_127319


23616146

Auxenochlorella protothecoides

Phototropin 2
F751_4755


23614975

Auxenochlorella protothecoides

Phototropin-1B
F751_3584


19011210

Bathycoccus prasinos

Phototropin
Bathy16g02310


9831018

Ostrecoccus tauri

Putative blue light receptor
Ot16g02900


8249220

Micromonas sp, RCC299

Blue light receptor
MICPUN_105003


16998047

Cyanidioschyzon merolae 10D

Serine/threonine kinase
MICPUT_105003


17089759

Galdieria sulphuraria

Serine/threonine kinase
Gasu_15820


17087623

Galdieria sulphuraria

Serine/threonine kinase
Gasu_38210


17041755

Coccomyxa subellipsoidea C-169

Putative blue light receptor
COCSUDRAFT_63287


17350696

Chlorella variabilis

Hypothetical protein
CHLNCDRAFT_141214


5005771

Ostreococcus lucimarinus CCE9901

Hypothetical protein
OSTLU_40751


17304390

Guillarida theta CCMP2712

Hypothetical protein
GUITHDRAFT_162563


7452793

Thalassiosira pseudonana CCMP1355

Hypothetical protein
THAPSDRAFT_33193


7442442

Thalassiosira pseudonana CCMP1355

Hypothetical protein, PAS domain
THAPSDRAFT_261631


7200921

Phaeodactylum tricornutum CCAP 1055/1

Hypothetical protein; one PAS domain
PHATRDRAFT_51933


CBJ25875

Ectocarpus siliculosus CCAP:1310/4

aureochrome 1
AUR1; Esi_0017_0027


XP_005854445

Nannochloropsis gaditana CCMP526

PAS and BZIP domain containing protein, putative aureochrome
GA_0015702


BAF91488

Vaucheria frigida

aureochrome1
AUREO1






Alternative Targets

Additional PHOT downstream signal transduction targets can be use as alternatives to the knockout or reduction in phot expression to generate the desirable phenotypes of this invention, including but not limited to improved photosynthetic efficiency, higher biomass productivity, increase yield of sink molecules/compounds, and improved genetic stability. An example of this could be the algal gene homologous to the Arabidopsis KIN10 and KIN11 kinases (Baena-Gonzalez, Rolland et al. 2007). Genes substantially homologous to the Chlorella genes in SEQ ID 15 to 27 and the Chlamydomonas genes in SEQ ID 28-34 would be applicable to this current invention.


Additional gene targets can be used as alternatives to the knockout or reduction in phot expression to generate the desirable phenotypes of this invention with desirable phenotypes having but not limited to improved photosynthetic efficiency, higher biomass productivity, increase yield of sink molecules. These genes could include the algal genes homologous to the Arabidopsis NADPH thioredoxin reductase C (NTRC) and NADPH thioredoxin reductase 2 genes (Toivola et al. 2013) Genes substantially homologous to the Chlorella genes in SEQ ID NO 35- 40, 43-44 and 47 to 50 and the Chlamydomonas genes in SEQ ID 67-68 would be applicable to this current invention





TABLE 2





Sequence ID and Type


Sequence No. ()
protein/dna(<212>); Orqanism/Strain(<213>)/protein




1
<212> PRT <213> Chlorella sorokiniana, strain 1412; phototropin A


2
<212> DNA <213> Chlorella sorokiniana, strain 1412; phototropin A


3
<212> PRT <213> Chlorella sorokiniana, strain 1412; phototropin B


4
<212> DNA <213> Chlorella sorokiniana, strain 1412; phototropin B


5
<212> PRT <213> Chlorella sorokiniana, strain 1230; Phototropin A


6
<212> DNA <213> Chlorella sorokiniana, strain 1230; Phototropin A


7
<212> PRT <213> Chlorella sorokiniana, strain 1230; phototropin B


8
<212> DNA <213> Chlorella sorokiniana, strain 1230; phototropin B


9
<212> PRT <213> Chlorella sorokiniana, strain 1228; Phototropin A


10
<212> DNA <213> Chlorella sorokiniana, strain 1228; phototropin A


11
<212> PRT <213> Chlorella sorokiniana, strain 1228; phototropin B


12
<212> DNA <213> Chlorella sorokiniana, strain 1228; phototropin B


13
<212> PRT <213> Picochlorum soloecismus, strain DOE101, phototropin


14
<212> DNA <213> Picochlorum soloecismus, strain DOE101; phototropin


15
<212> PRT <213> Chlorella sorokiniana, strain 1228; KIN11 SNF1-related


16
<212> DNA <213> Chlorella sorokiniana, strain 1228; KIN11 SNF1-related


17
<212> PRT <213> Chlorella sorokiniana, strain 1228; KIN11 SNF1-related protein kinase catalytic subunit alpha


18
<212> DNA <213> Chlorella sorokiniana, strain 1228; KIN11 SNF1-related protein kinase catalytic subunit alpha


19
<212> PRT <213> Chlorella sorokiniana, strain UTEX 1230; KIN11 SNF1-related protein kinase catalytic subunit alpha


20
<212> DNA <213> Chlorella sorokiniana, strain UTEX 1230; KIN11 SNF1-related protein kinase catalytic subunit alpha


21
<212> PRT <213> Chlorella sorokiniana, strain UTEX1230; KIN11 SNF1-related protein kinase catalytic subunit


22
<212> DNA <213> Chlorella sorokiniana, strain UTEX 1230; KIN11 SNF1-related protein kinase atalytic subunit


23
<212> PRT <213> Chlorella sorokiniana, strain 1412; KIN11 SNF1-related protein kinase catalytic subunit


24
<212> DNA <213> Chlorella sorokiniana, strain 1412; KIN11 SNF1-related protein kinase catalytic subunit


25
<212> PRT <213> Chlorella sorokiniana, strain 1412; KIN11 SNF1-related protein kinase catalytic subunit homolog


26
<212> DNA <213> Chlorella sorokiniana, strain 1412; KIN11 SNF1-related protein kinase catalytic subunit homolog


27
<212> PRT <213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


28
<212> DNA <213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


29
<212> PRT <213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


30
<212> DNA <213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


31
<212> PRT <213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


32
<212> DNA <213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


33
<212> PRT <213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


34
<212> DNA <213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


35
<212> DNA <213> Chlorella sorokiniana, strain UTEX 1230; NTR2


36
<212> PRT <213> Chlorella sorokiniana, strain UTEX 1230; NTR2


37
<212> DNA <213> Chlorella sorokiniana, strain 1412; NTR2


38
<212> PRT <213> Chlorella sorokiniana, strain 1412; NTR2


39
<212> DNA <213> Chlorella sorokiniana, strain 1228; NTR2


40
<212> PRT <213> Chlorella sorokiniana, strain 1228; NTR2


41
<212> DNA <213> Picochlorum soloecismus, strain DOE101; NTR2


42
<212> PRT <213> Picochlorum soloecismus, strain DOE101; NTR2


43
<212> DNA <213> Chlorella sorokiniana, strain 1228; NTRC


44
212> PRT <213> Chlorella sorokiniana, strain 1228; NTRC


45
<212> DNA <213> Picochlorum soloecismus, strain DOE101; NTRC


46
<212> PRT <213> Picochlorum soloecismus, strain DOE101; NTRC


47
<212> DNA <213> Chlorella sorokiniana, strain UTEX 1230; NTRC


48
<212> PRT <213> Chlorella sorokiniana, strain UTEX 1230; NTRC


49
<212> DNA <213> Chlorella sorokiniana, strain 1412; NTRC


50
<212> PRT <213> Chlorella sorokiniana, strain 1412; NTRC


51
<212> PRT <213> Chlorella variabilis; phototropin A


52 <
<212> PRT <213> Chlamydomonas reinhardtii, strain CC-503; phototropin


53
<212> PRT <213> Botryococcus terribilis; phototropin A homolog


54
<212> PRT <213> Tetraselmis striata; phototropin A


55
<212> PRT <213> Micromonas pusilla, strain CCMP 1545; phototropin A


56
<212> PRT <213> Dunaliella salina; phototropin A


57
<212> PRT <213> Chlorella variabilis; phototropin B homolog


58
<212> PRT <213> Haematococcus lacustris; phototropin B homolog


59
<212> PRT <213> Tetraselmis striata; phototropin B homolog


60
<212> PRT <213> Coccomyxa subellipsoidea, strain C-169; phototropin B homolog


61
<212> PRT <213> Micromonas pusilla, strain CCMP1545; phototropin B homolog


62
<212> PRT <213> Vaucheria frigida; aureochrome1


63
<212> PRT <213> Fucus distichus; AUREOChrome-like protein


64
<212> PRT <213> Nannochloropsis gaditana; aureochrome1-like protein


65
<212> PRT <213> Nannochloropsis gaditana; aureohrome1-like protein


66
<212> PRT <213> Sargassum fusiforme; putative aurochrome, LOV domain-containing protein


67
<212> PRT <213> Chlamydomonas reinhardtii; NTR2


68
<212> PRT <213> Chlamydomonas reinhardtii; NTRC






Below are SEQ ID NO 69-128


SEQ ID NO: 128









>KT321711.1 Mesotaenium endlicherianum phototropin (PHOT) mRNA full cds


GACCTCAAGGACGTTCTCACAGCTTTCCAACAGACATTTGTGCTGTCTGATGCCGCCAAACCGGATAGTC


CGATTATGTTTGCCAGCGAGGGGTTCTACAACATGACGGGTTACACTCCCAAGGAAGTCATTGGCTACAA


TTGCCGCTTTCTTCAAGGGCCAGACACAGACCGCAACGAGGTGGCGCGGCTGAAGCAGGCCCTGGCTGCA


GGAGAGAGCTACTGCGGCCGCCTGCTCAACTACAAGAAGGACGGCACCCCCTTCTGGAACCTGCTCACAG


TGTCGCCTGTCAAGGACGACAATGGCCGTGTCGTTAAGTTTGTTGGCATGCAAGTGGAGGTGTCCAAGTA


CACGGAGGGCACCAAGGACCAGGACGTGCGCCCCAACAACATGCCCGTCTCCCTCATCAAATACGACGCT


CGGCAGCGCGAGGTGGCGTCCAGCATGGTGGGCGAGCTCGTGGAGACGGTCAAGAAGCCCGGCGCTGAGG


AGAGCGGCGGCGGCCTCGCGCCGCTCTATGCGCTGCCCGTGGCCGAGGGCGGCGCCGGTCAGAGCGGTGC


CGGCGCCGGCTCCTCCTCCATGCCGGCCGCGCTCACGCCCAAGAACGCGCGCCGCACCTCCGGCTTCCGC


TCCCTTCTTGGCATGAAGGGCGGCAAGCCCGACGAGGGCGGCGAGCCTGACCGCGTCGCCGCCGTTCCCG


AGGTGGTGGAGGAGGTGGAGGTGGGCGACGTGGAGCGCAAGGCGCGGCGCGGGATCGACCTGGCCACCAC


GCTGGAGCGTATCCAGAAGAACTTTGTCATCACCGACCCCCGCCTCCCCGAGAATCCCATCATCTTTGCC


TCCGACGACTTCCTGGAGCTCACGGAGTACTCGCGCGAGGACATCCTGGGGAAGAATTGCCGGTTCTTGC


AAGGGCCGGAGACGAACCGCGACACAGTGAAGAAGATCCGCGACGCCATCGACGCGGGCCAGGACATCAC


AGCGCAGCTGCTCAACTACACCAAGAGCGGCAAGAAGTTCTGGAACCTGTTCCATCTGCAGGCCGTGCGC


GACAACAAGGGCGAGCTGCAGTACTTCATCGGAGTGCAGCTGGATGCCAGCCAGTACGTGGACCCCGACG


CGCGCCGCCTGCCCGACGCCAACGTGAACGAGGGCACCAACATGATCGTGGATGCGTCCAACAAGATCGA


CGGCGCCCTCAAGGAGCTGCCTGATGCTGGCGCTACAAAGGAGGACCTGTGGGCCATCCACAGCCTGCCA


GCTGTGCCCAAGCCTCACAAGGTGCAGGACCCCCTGTGGACCGCCATCAACCAGGTGAAGCAGCGGGAGG


GCAAGCTGGGGCTGAAGCACTTCCGGCCCATCAAGCCGCTGGGCTGCGGCGACACGGGCAGAGTGCACCT


GGTGGAGCTGCGCGACACCGGCAAGCTGTTTGCCATGAAGGCCATGGACAAGGAGGTCATGATCAACCGC


AACAAGGTGCACCGCGCGTGTACTGAGCGCGAGATTCTGGGCCGCATCGACCACCCCTTCCTCCCCACCC


TCTACGCCTCCTTCCAGACGGCCACGCACGTGTGCCTCATCACGGACTTCTGCGACGGGGGCGAGCTCTA


CATGCTGCTGGAGCGTCAGAAGGGCAAGCGCTTCGCCGAAGAGGCTGTCCGCTTCTTTGGGTCCGAGATC


CTGCTGGCGCTGGAGTACCTGCACTGCCAGGGCGTAATCTACCGCGACCTCAAGCCCGAGAACATCCTGC


TGACAGCTGGCGGCCACGCGCTGCTCACCGACTTCGACCTCTCGTTCCTCACCACCGCGGAGCCGCGCGT


CATCCGGCCGGAGCCCGCACCCGGCGTGAAGAAGGGCAAGAAGAAGAAGAAGGGCGAGCCCGAGCCGCGC


CCGCAGTTTGTGGCGGAGCCCGTGGCACAGTCCAACTCGTTTGTCGGCACGGAGGAGTACATTGCGCCCG


AGATCATCAGCGGCGCCGGCCACAGCAGCGCCGTCGACTGGTGGGCCTTTGGCATCTTCCTGTACGAGAT


GACGTACGGGCGCACGCCCTTCCGCGGCAAGAACAGGCAGCGCACGTTCACCAACATCCTCATGAAGGAG


CTCGCCTTCCCCACAAACCCACCCGTGAGTGCAAATGCCAAGGCGCTGATGAAGGCTCTGCTGGAGCGCG


ACCCCGCGGTGAGGCTGGGAGGGACACGTGGCGCGTCGGAGATCAAGGAGCACCCCTTCTTCGAGTCCAT


CGACTGGGCCCTCGTCCGCCACAAGGGAGGGCCGAGCCTGGACGTGCCCATCAAGAAGATCGGCACAGAC


CCCGACACGAGCCGCGCTTCCATCAGCAGCGAGGCCACGGAGGACCTCGACTGGGACGACCAGGAGGCGC


TCACGCCCTCCACCAACCGCTCCATGGAGTACGGCTACCAGTAG






SEQ ID NO: 69









>ANC96836.1 phototropin, partial [Mesotaenium endlicherianum]


DLKDVLTAFQQTFVLSDAAKPDSPIMFASEGFYNMTGYTPKEVIGYNCRFLQGPDTDRNEVARLKQALAA


GESYCGRLLNYKKDGTPFWNLLTVSPVKDDNGRVVKFVGMQVEVSKYTEGTKDQDVRPNNMPVSLIKYDA


RQREVASSMVGELVETVKKPGAEESGGGLAPLYALPVAEGGAGQSGAGAGSSSMPAALTPKNARRTSGFR


SLLGMKGGKPDEGGEPDRVAAVPEVVEEVEVGDVERKARRGIDLATTLERIQKNFVITDPRLPENPIIFA


SDDFLELTEYSREDILGKNCRFLQGPETNRDTVKKIRDAIDAGQDITAQLLNYTKSGKKFWNLFHLQAVR


DNKGELQYFIGVQLDASQYVDPDARRLPDANVNEGTNMIVDASNKIDGALKELPDAGATKEDLWAIHSLP


AVPKPHKVQDPLWTAINQVKQREGKLGLKHFRPIKPLGCGDTGRVHLVELRDTGKLFAMKAMDKEVMINR


NKVHRACTEREILGRIDHPFLPTLYASFQTATHVCLITDFCDGGELYMLLERQKGKRFAEEAVRFFGSEI


LLALEYLHCQGVIYRDLKPENILLTAGGHALLTDFDLSFLTTAEPRVIRPEPAPGVKKGKKKKKGEPEPR


PQFVAEPVAQSNSFVGTEEYIAPEIISGAGHSSAVDWWAFGIFLYEMTYGRTPFRGKNRQRTFTNILMKE


LAFPTNPPVSANAKALMKALLERDPAVRLGGTRGASEIKEHPFFESIDWALVRHKGGPSLDVPIKKIGTD


PDTSRASISSEATEDLDWDDQEALTPSTNRSMEYGYQ






SEQ ID NO: 70









>AB206963.1 Mougeotia scalaris PHOTA mRNA for phototropin cds


TTTGACATCTAAACGGGCAGTTACGCTTCACGGTTAAAGAGTTTTCGATACTACGGAGGTAACTTTTCCA


CGACCCAGTTTTCACCTGCTTCACCCGCCTGTATTAAAGAAACGTTGTCTTCTCTTTCGTTCAGAGCATG


GCGGCATTAGTCAACCTTCCTATTTCGAGGTATCCTCAGCCCTTACTTGGAGAAGGGGTTGATGTCATTC


ATAAATCCGAAAAAGTCCTGGGTGAAGCTTCCCAGGGCCTGAAAGATGCCCTCACGGCTTTCCAACAGAC


ATTTGTAATGTGTGATGCCACAAAGCCAAACACTCCCGTCATGTTTGCCAGTGAGGGTTTCTACAGGATG


ACTGGCTACAGTGCTAAAGAGGTTATTGGCAAAAACTGTCGCTTCCTCCAAGGTCCCGAGACTGACCGCA


GTGAGGTGGAGAAGTTGAAGCAAGCACTTTTGGATGGTCAGTCATGGTGTGGCCGACTTCTGAACTACAG


GAAAGATGGTAGCAGTTTCTGGAACCTTCTTACAGTCTCTCCCGTAAAGGATGACAGTGGGAGAGTTGTG


AAATTTATCGGGATGCAGGTGGAGGTGTCTAAGTTTACAGAAGGAAAGAATGATGACATCAAGCGGCCCA


ATCAGCTCCCTGTCTCCCTGATTCGTTATGATGATAGGCAGAAGGATGAAGCAGAAGTCAGAGTGGAGGA


ACTACTGCAGGACATGAAGGAATCAGAATCACCAGCAGAGGTAGAAGCCAAGGTGCAAACAGTTCAGGTT


AGCGTGCCAGCTCAGCCCAGCAAGCTGTCAAAGGAGGCACCTGCAGAGACAAAGAAGACTCGCAGATCTT


CTTACTTTGGGAAGAATGCGGCTCCAAAGGCTGAAGAAGTACCCCCAGTCTTCGAGCCAGGAGTGGAAGT


CAGCCTGCTGATGGAAGACGAGCTGGATACCATGGCGGTAGAAAAGAAGCACAGACATGGTATCGATCTG


GCCACTACTTTGGAACGAATCCAGAAGAACTTTGTCATTACAGATCCGAGGCTTCCTGACAACCCAATCA


TTTTTGCGTCTGACGATTTCTTGGAGCTAACTGAGTACACTCGCGAGGAGATCATTGGTCGGAATTGTCG


ATTTCTGCAAGGAAAGGACACAGACAAAGAGACAGTAGCCAAAATCAGACATGCCATCGATAACCATCAA


GATATCACCGTGCAGCTACTCAATTACACCAAGAGTGGAAAGCCGTTCTGGAACTTATTCCATCTCCAGG


CTGTCAGGGACACCAAGGGTCGGTTGCAATACTTCATTGGAGTGCAGCTGGATGCCAGCACATATGTGGA


GCAGGCTTCAAAGAACATTCCAGATAATCTGAAGAAGATGGGGACAGAGGAGATCCACAACACTGCAAAT


AACGTCGACTTTGGACTGAAAGAGCTCCCGGATACAAACACAGGAAATAAGGACGATATCTGGACTCTAC


ACTCAAAGCAAGTCACTGCACTGCCCCACAAAAGCAACACTGAGAACTGGGATGCCATTCGCAAGGTAAT


TGCTTCAGAGGGGCAGATATCCCTGAAGAACTTCCGGCCGATAAAGCCCCTCGGGTACGGAGACACGGGG


AGTGTCCACCTGGTGGAGCTCCGTGATTCCGGAGTGTTCTTTGCCATGAAGGCCATGGACAAGGAGGTGA


TGGTCAACAGAAATAAGGTCCATCGAGCGTGCACAGAGCGGGAGATTCTGGAGCTTCTGGACCATCCGTT


CCTGCCGACGCTCTACGGATCCTTCCAGACACCCACCCATGTCTGCCTGATCACCGACTTCTGTCCCGGG


GGGGAGCTGTTTGCCCACCTGGAGAATCAGAAACAGAAACGGCTCAAGGAGAATGTGGCCAAGGTGTACG


CTGCGCAGATCCTGATGGCACTCGAGTACCTGCACCTGAAGGGAGTCATCTATCGAGATCTGAAGCCGGA


GAACATCCTCATCTGTGAAGGGGGGCATCTGCTGCTGACCGACTTCGACCTGTCATTCAGGACAGAGACA


GAAGTGAAGGTGGCCATGGTGCCCATTCCTGAGGAGGAGGGGGCACCTGTCGTCGAGAAGAAGAAGAAGA


AGAAAGGGAAGGCCCCTGCAGCTGCTGCCATGGCTCCCAGGTTCATCCCCCAGCTGGTTGCCGAACCGTC


AGGCACCAGCAACTCCTTTGTGGGCACAGAGGAGTACATCGCACCGGAGATTATCAGCGGAGTCGGCCAT


GGCAGCCAGGTGGATTGGTGGGCGTTTGGCATTTTTATCTATGAAATGTTGTACGGGAAGACGCCGTTCC


GAGGGAAGAATCGGAAGCGGACTTTCACAAATGTGCTGACCAAGGAGCTGGCGTATCCCACCGTCCCTGA


AGTGAGCCTGGATGTGAAGCTTCTCATCAAGGATCTTCTGAATCGCGATCCGTCTCAGCGACTGGGTGCC


ACTCGGGGGGCGTCTGAGATCAAGGAGCATCCATGGTTCAATGCCATTCAATGGCCTCTTATTTGCAAGG


ATGTGCCAGAATCAGACGTTCCTGTCAAGTTTATGCAGGTGGAGAATGAGCGCAGGGACTCCACTGCGGA


TGATGATGCTGACTGGGAGTCTAATGATGGTCGCAATTCTCTGTCGCTTGATCTGGGCAGGCAGTAGTTG


GTGGGTAGAGGGTTCGTTTGTTGGAGTTTCGTAGGTTGGTGTATGGACTTGTAGTTGGTTAGAGTCAGGA


ACAAACAAAGTTAGACCTATTGGTTTGAATAGTAACTTTATATGGAATTTTGTATTGTCCGGTTTTGAAT


ATTAGAACCTTTTTAATGGTATTCCAACATTCTGGTTTCAAAAAAAAAAAAAAAAAAA






SEQ ID NO: 71









>BAE20160.1 phototropin [Mougeotia scalaris]


MAALVNLPISRYPQPLLGEGVDVIHKSEKVLGEASQGLKDALTAFQQTFVMCDATKPNTPVMFASEGFYR


MTGYSAKEVIGKNCRFLQGPETDRSEVEKLKQALLDGQSWCGRLLNYRKDGSSFWNLLTVSPVKDDSGRV


VKFIGMQVEVSKFTEGKNDDIKRPNQLPVSLIRYDDRQKDEAEVRVEELLQDMKESESPAEVEAKVQTVQ


VSVPAQPSKLSKEAPAETKKTRRSSYFGKNAAPKAEEVPPVFEPGVEVSLLMEDELDTMAVEKKHRHGID


LATTLERIQKNFVITDPRLPDNPIIFASDDFLELTEYTREEIIGRNCRFLQGKDTDKETVAKIRHAIDNH


QDITVQLLNYTKSGKPFWNLFHLQAVRDTKGRLQYFIGVQLDASTYVEQASKNIPDNLKKMGTEEIHNTA


NNVDFGLKELPDTNTGNKDDIWTLHSKQVTALPHKSNTENWDAIRKVIASEGQISLKNFRPIKPLGYGDT


GSVHLVELRDSGVFFAMKAMDKEVMVNRNKVHRACTEREILELLDHPFLPTLYGSFQTPTHVCLITDFCP


GGELFAHLENQKQKRLKENVAKVYAAQILMALEYLHLKGVIYRDLKPENILICEGGHLLLTDFDLSFRTE


TEVKVAMVPIPEEEGAPVVEKKKKKKGKAPAAAAMAPRFIPQLVAEPSGTSNSFVGTEEYIAPEIISGVG


HGSQVDWWAFGIFIYEMLYGKTPFRGKNRKRTFTNVLTKELAYPTVPEVSLDVKLLIKDLLNRDPSQRLG


ATRGASEIKEHPWFNAIQWPLICKDVPESDVPVKFMQVENERRDSTADDDADWESNDGRNSLSLDLGRQ






SEQ ID NO: 127









>KJ195120.1 Cylindrocystis cushleckae phototropin (PHOTA) mRNA full cds


ATGGCGAGAATACCCCAGTCAAATTATCCTGCGAGGCTGAGTGATGTATCATCCACTCCAGGCGCTGGCA


AGGTGCTTGGTCAGGCCTCTGAAGGACTGAAGGATGTGCTCACTACGTTCCAGCAGACATTTGTTATGTG


TGATGCTACCAAACCTGACATTCCTGTCATGTTTGCCAGTGAGGGATTTTACGAAATGACTGGCTACAAT


GCCAAGGAAGTGATTGGCAAGAATTGCCGTTTCCTCCAAGGTACAGAAACAGACCGTGCTGAGGTGGCAA


AAATGAAGCAGGCCCTCATGGCCGGCGAGGGTTGGTGTGGCCGCCTTCTCAACTACCGAAAAGATGGAAC


TCCCTTCTGGAATCTTCTTACCGTATCGCCCGTGAAGGACGACAATGGGAGGGTGGTCAAGTTCATTGGA


ATGCAGGTGGAGGTTACCAAGTTCACGGAAGGCAAACAGGACGAGAATAAGCGCCCAAACCAGCTTCCGG


TCTCTCTCATTCGCTATGATGCTCGGCAGAAGGAGGAGGCTGAGCTTGGCGTCCAGGAGCTGGTGCACGC


AGTGCAGCGCCCCAAGCAGGGGGGTGGGATGGACAGCCTCATGGCCCTTCCCAAGGCGGGCGAGATGCCA


GCCTCAGAGCTGGAGGCAGAAACCCCCGGAAAGAAGAAGGGCAGGCGTGCATCGGGCATGAAAATGTTTG


GGGGAAAAGACAAGGCCCAGGAGGCAGAGCCGGAGGTGGAAACAGTAGACAGCGACGACGAGATCTCAGA


GAAGAAGCAACGTCACGGAATCGACCTGGCCACTACCCTGGAGCGTATTCAGAAAAATTTCGTCATCACG


GATCCTCGCCTGCCCGACAACCCCATTATCTTTGCATCCGACGACTTTCTGGAGCTTACGGAATACTCTC


GCGAGGAGGTGCTGGGCCGGAATTGTCGGTTCCTGCAAGGCAAGGACACAGACCGTGCCACTGTGGCCCG


CATCAGGGACGCCATCGATAACGCGCAGGACATCACTGTGCAGCTCCTCAATTACACCAAAAGCGGCAAA


CCTTTCTGGAACCTGTTCCACTTGCAAGCTGTGCGGGATAGCAAGGGTCAACTGCAGTACTTCATCGGAG


TTCAGCTGGACGCAAGCACATACGTTGAGCCCGTCACTCACGAGCTTCCCCAGAAGACCAAAACAGAGGG


CACTGAGGAGATCGTGAACACGGCCAACAATATCGATGTGGGGCTCAAGGAACTTCCCGACCCAAACAAT


AAAAAAGATGACATGTGGAACGGCCACTCCCAGGAGGTCTCCCCCCTTCCCCACCGCGTTGGCGACCCCA


GCTGGGAGGCTGTCCAGAAGGTCAAGGCCAGCGATGGTCGCCTGGCTCTGAAACATTTCCGGCCAATCAA


ACCCCTCGGTTGTGGAGACACAGGTAGCGTCCACCTTGTCGAGCTTCGCGATACGGGAAAACTTTTCGCC


ATGAAGGCTATGGACAAGGACGTGATGATCAATCGCAACAAGGTCCACAGAGCGTGCACCGAGCGCCAAA


TCTTGGGCGATCTCGACCATCCGTTCCTCCCCACACTCTACGGATCCTTCCAGACGGCCACCCACGTCTG


CCTCATCACCGACTTCTGTCCGGGCGGCGAACTCTACACCCACCTGGAGCACCAGAAGGGGAAAAGGTTT


CCTGAAGCTGCGGCAAAATTTTACGCTGCCGAGATTCTTCTGAGTTTGGAATACCTCCACTGCAAGGGCG


TGATTTACCGCGATCTCAAGCCAGAGAACATTCTCATCACCTCCTCGGGACACCTGGTGTTGACCGACTT


TGACCTGTCCTTCCTCAGCTCCACTATCCCCCAGCTCCTGAGGCCCAACCCCACAGAGGTGAGCGGCAAG


AAGAAGAAGAAGGGCAAGGGGGCGGCGCAGCCCTTGCCGCAGTTTGTGGCGGAGCCCACAGGGAGCAGCA


ACTCCTTCGTGGGCACAGAGGAGTACATCGCGCCGGAGATTATCAGCGGCACGGGCCACAGCAGCCAGGT


GGACTGGTGGGCTTTTGGCATCTTCGTGTATGAGATGCTGTACGGCAAGACCCCCTTCCGCGGGCGCAAC


CGCCAAAAGACCTTCACCAATGTGCTGATGAAAGAGCTGGCCTTCCCCAACAGCCCCCCCGTAAGTCTGG


AGGCCAAGCTCCTGATCAAGGCGCTGCTCACCCGGGATCCCCAGCAGCGCCTGGGCTCCGCGCGCGGCGC


CAGCGAGATCAAGGACCACCCCTGGTTTGCTGGGGTCAACTGGGCCCTCACCCGCTCCCAGCCCCCCCCC


GAGCTGGAGGTCCCGGTCACCTTCACCAGCGGCGAGCCCGACACGCACCGCCCGTCAACCACAGACGAAG


ACCTGGAGTGGGATAGCAACGAAGCACGGGACTCCAGCTCATCACTCTCATTTGACCAGAGCTAA






SEQ ID NO: 72









>AHZ63921.1 phototropin [Cylindrocystis cushleckae]


MARIPQSNYPARLSDVSSTPGAGKVLGQASEGLKDVLTTFQQTFVMCDATKPDIPVMFASEGFYEMTGYN


AKEVIGKNCRFLQGTETDRAEVAKMKQALMAGEGWCGRLLNYRKDGTPFWNLLTVSPVKDDNGRVVKFIG


MQVEVTKFTEGKQDENKRPNQLPVSLIRYDARQKEEAELGVQELVHAVQRPKQGGGMDSLMALPKAGEMP


ASELEAETPGKKKGRRASGMKMFGGKDKAQEAEPEVETVDSDDEISEKKQRHGIDLATTLERIQKNFVIT


DPRLPDNPIIFASDDFLELTEYSREEVLGRNCRFLQGKDTDRATVARIRDAIDNAQDITVQLLNYTKSGK


PFWNLFHLQAVRDSKGQLQYFIGVQLDASTYVEPVTHELPQKTKTEGTEEIVNTANNIDVGLKELPDPNN


KKDDMWNGHSQEVSPLPHRVGDPSWEAVQKVKASDGRLALKHFRPIKPLGCGDTGSVHLVELRDTGKLFA


MKAMDKDVMINRNKVHRACTERQILGDLDHPFLPTLYGSFQTATHVCLITDFCPGGELYTHLEHQKGKRF


PEAAAKFYAAEILLSLEYLHCKGVIYRDLKPENILITSSGHLVLTDFDLSFLSSTIPQLLRPNPTEVSGK


KKKKGKGAAQPLPQFVAEPTGSSNSFVGTEEYIAPEIISGTGHSSQVDWWAFGIFVYEMLYGKTPFRGRN


RQKTFTNVLMKELAFPNSPPVSLEAKLLIKALLTRDPQQRLGSARGASEIKDHPWFAGVNWALTRSQPPP


ELEVPVTFTSGEPDTHRPSTTDEDLEWDSNEARDSSSSLSFDQS






SEQ ID NO: 73









>KJ195119.1 Zygnemopsis sp. MFZO phototropin (PHOTA) mRNA cds


ATGGCTAGTCTTCCCCCTTCTCGCTATCCTGCCCGGTTAAACAATGAGGCTCCATTGCCGACAGCAAGCA


AAGTGCTGGGACAGGCCTCCGAAGGGCTCAAGGATGTGCTGACCACCTTCCAGCAGACCTTTGTGATGTG


TGATGCGACAAAGCCCGACATACCTGTAATGTTTGCCAGCGAAGGTTTTTACGAGATGACCGGATACACC


GCCAAAGAGGTCATCGGCAAGAACTGTCGGTTTCTGCAGGGGCCGGAAACGGACAAGGCTGAGTTGGGCA


AACTGAAGCAGGCCCTGATGGCCGGCGAGGGGTGGTGCGGCCGGCTGCTCAACTACCGCAAGGACGGCAC


TCCCTTCTGGAACCTGCTCACCATCTCCCCCGTCAAGGACGACAATGGCAGGGTGGTGAAATTCATCGGA


ATGCAAGTGGAGGTGACCAAGTTCACAGAAGGCAAGCAGGATGAGAACAAGCGGCCCAACCAGTTGCCCG


TGTCGCTCATTCGCTATGATGCTCGCCAGAAGGAGGAGGCCGAGCTGGGCGTGCAGGAGCTGGTGGACGC


GGTGCAGAAGCCGGCGATCAAGCAGGGTGGGGGCATGGAGAGCCTGATGGCGCTGCCCAAGGTGGAGGAG


ACCCCCGCGTCTCCCGACACTCCGGGGAGGAAGAAGGGCAAGCGCTCGTCCCTGCTGCTCTCACGCCTCA


GTGTGTCGTCCAGGCAGGCGCCCAAGCCCGAAGACTTGATCACGACTGAGGAGGACAAGCGGGACAGCTT


TGACGACATGTCGGAGAAGAAGCAGCGCCACGGCATCGACCTGGCCACCACTCTGGAGCGCATCCAGAAG


AACTTTGTCATCACAGATCCCAGACTGCCGGATAACCCCATTATTTTCGCCTCCGATGATTTCCTGGAGC


TCACCGAGTACAGCCGAGAGGAGGTCTTGGGCCGCAACTGTCGGTTTCTGCAGGGCAAGGACACCGACCG


CAACACGGTGGCCAAGATCCGGGCAGCCATTGACAGCCAGCAGGATATCACGGTCCAGCTGCTCAACTAC


ACCAAGAGCGGCAAGCCTTTCTGGAATCTCTTTCATCTGCAAGCCGTCCGTGATAGCAAGGGTCAGCTCC


AGTACTTCATTGGAGTGCAGCTGGACGCCAGCACGTACATCGAGCCCAGCTCGAAGCAGCTGCCTGAGCA


AACAGCCCTGCAGGGAACTGAGGAGATTGTGAACACTGCCCACAACGTCGATGTGGGATTGAAGGAGCTG


CCAGATGCGAATGCGCCCAAGGAGGACCTGTGGGCCGCACACTCCAAGCCCGTGTCAGCGCGGCCGCACC


ACCTGCTGGACCCCAACTGGGCGGCCATTGAACAGATCAAGGCCAAGGATGGCCGCCTGGGCCTGAAGCA


TTTCCGACCCATCAAGCCCCTCGGATGCGGAGACACCGGCAGCGTCCATCTTGTGGAGCTGCGCGATTCC


GGCAAGCTGTTTGCCATGAAGGCCATGGACAAAGAAGTGATGATTAACCGCAACAAGGTGCATCGCGCCT


GCACCGAGCGTCAGATCTTGGAAGATCTGGACCATCCGTTCTTGCCCACTCTGTACGGGTCGTTCCAGAC


GGCCACTCACGTCTGCTTGATCACTGATTTCTGCCCTGGGGGGGAGCTCTACGCCCACCTCGAGAACCAG


AAGGGCAAGAGGTTCCCCGAAGAGGTGGCCAAGTTCTACGCCGCAGAGATCCTCCTGAGTCTGGAGTACT


TGCATTGCCGCGGCGTCATCTACCGCGACCTCAAGCCCGAGAACATCCTCATCACAGAGACCGGCCACCT


GCTGTTGACCGATTTCGACCTTTCCTTCCTGAGCACCACCACTCCCAAGCTTCTGAGGCCCAGCCCCGTG


GAAAGCCCCGTGGGGAAGAAGAAGTCGAGGAAGAGCAGCAAGAATAGCGAGCCCCCGCCCCTGCCCCAGT


TTGTGGCTGAACCCTCCGGCAGCAGCAACTCGTTCGTGGGAACGGAGGAGTACATTGCGCCCGAGATCAT


CAGTGGAACCGGCCACAGCAGCCAGGTGGACTGGTGGGCCCTGGGCATCTTCATGTACGAGATGCTCTAT


GGCAAGACCCCCTTCCGAGGCCGCAACCGGCAACGCACCTTCACCAACGTGCTGATGAAGGAGCTGGCCT


TCCCCAACAGCCCCCCCGTGAGCCTGGAGGCCAAGCTGCTGATCAAGGCCCTGCTGGTGCGGGACCCGCA


GCAGCGCCTGGGAGCTGCCCGGGGGGCCAGCGAGATCAAGGACCACCCGTGGTTCGCGGGGCTGCAGTGG


CCCCTCATTCGCTGCAAGAGCCCACCAGGCTGCGAGGTCCCTGTGACCTTCATCAATGCGGAGGCTGAAA


ACCACCGCACATCTGCAACAGACGAGGAGTTGGATTGGGACACCAGCGAATCGCGAGACACCAACTCCAT


GTCGTTATCCTTTGACATGGCCTAG






SEQ ID NO: 74









>AHZ63920.1 phototropin [Zygnemopsis sp. MFZO]


MASLPPSRYPARLNNEAPLPTASKVLGQASEGLKDVLTTFQQTFVMCDATKPDIPVMFASEGFYEMTGYT


AKEVIGKNCRFLQGPETDKAELGKLKQALMAGEGWCGRLLNYRKDGTPFWNLLTISPVKDDNGRVVKFIG


MQVEVTKFTEGKQDENKRPNQLPVSLIRYDARQKEEAELGVQELVDAVQKPAIKQGGGMESLMALPKVEE


TPASPDTPGRKKGKRSSLLLSRLSVSSRQAPKPEDLITTEEDKRDSFDDMSEKKQRHGIDLATTLERIQK


NFVITDPRLPDNPIIFASDDFLELTEYSREEVLGRNCRFLQGKDTDRNTVAKIRAAIDSQQDITVQLLNY


TKSGKPFWNLFHLQAVRDSKGQLQYFIGVQLDASTYIEPSSKQLPEQTALQGTEEIVNTAHNVDVGLKEL


PDANAPKEDLWAAHSKPVSARPHHLLDPNWAAIEQIKAKDGRLGLKHFRPIKPLGCGDTGSVHLVELRDS


GKLFAMKAMDKEVMINRNKVHRACTERQILEDLDHPFLPTLYGSFQTATHVCLITDFCPGGELYAHLENQ


KGKRFPEEVAKFYAAEILLSLEYLHCRGVIYRDLKPENILITETGHLLLTDFDLSFLSTTTPKLLRPSPV


ESPVGKKKSRKSSKNSEPPPLPQFVAEPSGSSNSFVGTEEYIAPEIISGTGHSSQVDWWALGIFMYEMLY


GKTPFRGRNRQRTFTNVLMKELAFPNSPPVSLEAKLLIKALLVRDPQQRLGAARGASEIKDHPWFAGLQW


PLIRCKSPPGCEVPVTFINAEAENHRTSATDEELDWDTSESRDTNSMSLSFDMA






SEQ ID NO: 75









>AB206964.1 Mougeotia scalaris PHOTB mRNA for phototropin, complete cds


CTATTGCCTACACGACACTGTGCGCCATGAATTCGCCGCTATCGCCCTCTCGCGCGATTCAAACATCGGA


AGGAAAGATCTTGGAGCAGAAATCGGAGCTCAAGGATGTTCTCACTTCGTTCCACCAGACATTTGTTATA


TCAGATGCCACTAAGCCAGACATTCCTATAGTCTTTGCTAGTGAGGGTTTTTACGAGATGACCGGATATG


GTCCAGAGGAAGTTATTGGATACAACTGCCGATTCTTACAAGGCGAGGGTACAAGTCGTGACGAGGTCAC


CCGATTGAAGCAATGCCTTGTCGAGGGACAGCCATTTTGTGGTCGATTACTGAATTATCGTAAAGATGGG


ACCCCATTCTGGAATCTCCTCACTGTGTCTCCTGTAAGGAGTGCCACTGGTAAAGTTGTTAAATTTATTG


GTATGCAAACAGAGGTTTCTAAGTTCACAGAAGGAGCCGCGGATGGTATAAAGCGCCCCAATGACCTTCC


TGTTTCCCTCATCCGATATGATGCCCGACAGAAGGACGAGGCCGAAGTCTCAGTGACAGAAATCGTGCAT


GCAGTGGCTCACCCGGAGAAGGCCATAGCCAGACTGAGCACGGCTGTCACAGAGAGCAGTAAGAAGCACC


AACAGCAGTCTGTCAGCCCTGAATTTGGCGCTGAGGGTCTGAAGACGCCATTGATCACCATCAACGAAAA


GGAGGCAGTTGACGAAGTGGAAGTTGAGGAAGAAGGAAGGGACAGTTTTGAAATTACAGGAGAGAAAAAG


ATTCGCAGGGGTCTGGACCTGGCCACTACCCTTGAACGCATTCAGAAGAACTTTGTGATTACTGACCCCA


GACTCCCAGAGAACCCAATTATTTTCGCCTCTGACGACTTCCTAGAGCTGACAGAGTATTCACGAGAGGA


AGTCATTGGTCGTAACTGCAGATTCCTTCAGGGTCCAGATACAGACCAGGACACAGTGCAGAAGATCCGT


GATGCCATCAGAGACTGCAGAGACGTGACTGTTCAGCTCCTTAACTATACAAAGAGTGGGAAGCCATTCT


GGAACATGTTCCACCTACAGGCTGTCAAGAACAGCAAGGGAGAGCTGCAGTACTTTATTGGTGTCCAGCT


GGATGCCAGCACATACATTGAACCTAAACTGCAGCCGCTTTCAGAGAGTGCAGAGAAGGAAGGCACCAAA


CAAGTGAAGACAACGGCTGACAATGTTGACTCCAGCCTGAGGGAGCTGCCAGATCCCAATGTGTCCAAAG


AAGACATCTGGGGCATCCATTCCTCCGTTGCAGAGCCAAAGCCCCATCAGAAGAGAGGATACTCGTCAAA


GTGGGATGCAGTGCTGAAGATCAAAGCCAGAGATGGAAAAATAGGACTGAAGCACTTCCGACCAGTGAAA


CCCTTGGGCTGCGGAGACACTGGAAGCGTCCATTTGGTGGAGTTGAAAGACACGGGCAAGTTCTTTGCCA


TGAAGGCCATGGACAAGGAAGTTATGATCAACAGAAATAAGGTGCACAGGACTTGCACAGAGCGGCAAGT


TTTAGGGCTGGTGGACCATCCCTTCCTGCCTACGCTGTATGCCTCATTTCAGACTACAACACACATCTGT


CTCATCACTGATTTCTGCCCTGGAGGTGAGCTGTACATGCTACTGGACAGACAGCCATCTAAGAGGTTCC


CTGAATATGCAGCCAGGTTCTATGCTGCTGAGATTCTGCTGGCACTTGAGTACCTGCACCTGCAGGGTGT


TGTGTACCGAGACCTGAAGCCAGAGAACATTCTGATTGGCTATGACGGTCACCTGATGCTCACTGACTTT


GACCTCTCCTTTGTGTCAGAAACTGTTCCTGAGTTGGTGTTCCCCCCCAATTACAATAAGGATAAGCCCA


AGAGTAAGAATAAGAAGGACAGGGAAGGAAATCTGCCTGTTCTGGTGGCGCGTCCCTCTGGGACAAGCAA


TTCTTTTGTGGGTACTGAGGAGTACATCTGCCCAGAAATAATAAGTGGAATTGGTCACAACAGCCAAGTG


GATTGGTGGTCGTTTGGTATTTTCCTTTATGAGATGCTGTATGGAAAGACACCTTTTAGAGGTCGCAATC


GGCAGCGAACATTCTCCAACGCCCTCACAAAGCAGCTGGAGTTCCCACCAACACCACATATCAGTCAAGA


GGCCAAGGATCTGATCACTCTCCTCTTAGTGAAGGACCCAAGCAAGCGACTGGGAGCCATTTTTGGTGCC


AATGAAGTCAAGCAACATCCATTTTTCCGTGACTTTGACTGGACCCTCATTCGATGCAGACAACCTCCAT


CCTTAGATGTTCCTGTCAAGTTCAACAACCATTCGCCACAACGGACTTCAGGAGATGAGGAAGAAATGGA


GTGGGATGAAGATGAGAACATAAGTACATCCACAACTGTGTCTTTGGACTTTGACTAGTCGCACATATTT


TTAGCTTATAGCACACACGTATATATAAATAATAGATACATACTTATTACATAGTAGTGTTGTATAGTAA


GCATAATATTTTTGGTAATAATGTTTTGGTTTTGGTTTTGTTTTC






SEQ ID NO: 76









>BAE20161.1 phototropin [Mougeotia scalaris]


MNSPLSPSRAIQTSEGKILEQKSELKDVLTSFHQTFVISDATKPDIPIVFASEGFYEMTGYGPEEVIGYN


CRFLQGEGTSRDEVTRLKQCLVEGQPFCGRLLNYRKDGTPFWNLLTVSPVRSATGKVVKFIGMQTEVSKF


TEGAADGIKRPNDLPVSLIRYDARQKDEAEVSVTEIVHAVAHPEKAIARLSTAVTESSKKHQQQSVSPEF


GAEGLKTPLITINEKEAVDEVEVEEEGRDSFEITGEKKIRRGLDLATTLERIQKNFVITDPRLPENPIIF


ASDDFLELTEYSREEVIGRNCRFLQGPDTDQDTVQKIRDAIRDCRDVTVQLLNYTKSGKPFWNMFHLQAV


KNSKGELQYFIGVQLDASTYIEPKLQPLSESAEKEGTKQVKTTADNVDSSLRELPDPNVSKEDIWGIHSS


VAEPKPHQKRGYSSKWDAVLKIKARDGKIGLKHFRPVKPLGCGDTGSVHLVELKDTGKFFAMKAMDKEVM


INRNKVHRTCTERQVLGLVDHPFLPTLYASFQTTTHICLITDFCPGGELYMLLDRQPSKRFPEYAARFYA


AEILLALEYLHLQGVVYRDLKPENILIGYDGHLMLTDFDLSFVSETVPELVFPPNYNKDKPKSKNKKDRE


GNLPVLVARPSGTSNSFVGTEEYICPEIISGIGHNSQVDWWSFGIFLYEMLYGKTPFRGRNRQRTFSNAL


TKQLEFPPTPHISQEAKDLITLLLVKDPSKRLGAIFGANEVKQHPFFRDFDWTLIRCRQPPSLDVPVKFN


NHSPQRTSGDEEEMEWDEDENISTSTTVSLDFD






SEQ ID NO: 77









>KJ195118.1 Cylindrocystis cushleckae phototropin (PHOTB) mRNA cds


ATGGGACGAGATCCGGACGTGGATCAGCTTGGTCAGAATGTGTCTGGGCTATCAGTAGAGACGAATGGAA


ATAATAGTCAGGTTGCGCGTGGTACAGGCTTGGCCACACCCGACAAAGACAAAATCTTAACACAAACCGA


AGGGCTGACAGATGTGCTCACGACATTTCAACAAACGTTTGTCATGTCTGACGCTACCAAGCCCGATATC


CCAATCACATTCGCTAGTGAGGGATTCTACAAGATGACAGGCTACAGCCCTAAGGAGGTCATCGGGCGAA


ATTGCCGTTTTCTTCAAGGTGAAGGCACCGACCGTGCAGAAGTTGCCCGCCTGAAGCAATGTCTGGTCTC


CGGGGAAAGCTTCTGCGGCCGTCTGCTGAACTACAGAAAAGATGGAACACCTTTTTGGAATCTTCTCACG


GTATCTGCTGTCAAAAATGACGATGGCAAGATCGTGAAGTTTGTCGGAATGCAAGTGGAGGTGACTAAGT


ACACAGAGGGCAAAGCGGACGAGCAGAGGCGTCCCAATGACATGCCTGTTTCTCTCATCCGCTACGACGC


TCGGCAAAAGGAGGAGGCGGAGACTTCAGTGGCAGAAATTCTTCATGCTGTCAAGTTGCCAGAGCAAGCT


AAGGCGCGTCTCAGTATGACACCTGTCCTGGACGAATCTATATCCCAGAGGGAACAGGAGGTGAGCCAAG


AAGATGCGGCCGCAAAACGGAAACGGGAACGGAGGACGTCAGGATTCATGACTCTATTAGGGAACGGGGC


CACAAAGGAGGAGCTGACACCTGTCATTTCGGAGCCTTCCACGCCCCAACCCGTAGAGAAGGAGGAGGTT


CGAGACAGTTTCGAGCTAACCGGAGAGAAAAATGGGCGGCGAGGGCTGGATCTAGCAACGACCCTTGAAC


GTATCCAGAAAAATTTTGTCATCACTGACCCTCGACTTCCCGAAAACCCAATTATTTTCGCGTCAGACGA


CTTTTTGGAGTTGACCGAGTACTCAAGAGAGGAGGTCCTGGGCAGAAACTGCAGATTCCTACAGGGCAAG


GATACTGACCAGAAAACAGTTCAGGAGATCCGGGACGCTATCCGAGAGCAGAGAGACGTCACAGTGCAGC


TGCTCAACTACACCAAGGGCGGTCGTCCCTTCTGGAACCTGTTCCATCTGCAGGCTGTCAAGGACAGCAA


GGGGGACCTGCAGTACTTCATCGGGGTCCAGCTGGACGCCAGCACGTACGTGGAACCAGCCGCCAAACGC


CTCTCCGAAAAAACGGCAGCAGAAGGCAAGCAGCAGGTGGAGAATACTGCGGCCAATGTGGGGTTTGGAC


TCAAGGAGCTCCCAGATCCCAATGCTGCCAAAGAAGATTTGTGGGCTGCCCATTCAGTCCTGGTGGATCC


AAAGCCACATCGGAGGCAGGATTCAAACTGGGAAGCTATCTTAAAGATCCGCAAGCGGGATGGACGCCTG


GGTCTGAAGCACTTTCGGCCCATCAAGCCCCTCGGGTGCGGGGATACGGGCAGCGTGCACCTGGTGGAGC


TCCGGGACAGCGGAAAGCTCTTTGCCATGAAGGCCATGGACAAGGATGTCATGATCAACCGCAACAAGGT


CCATCGTGCGAGCACAGAGAGAGAAATCTTGGGTCTCATAGACCATCCCTTCCTTCCCACCCTGTACGCC


TCTTTCCAGACTGGCACTCACGTGTGCCTCATCACGGACTTTTGTCCGGGCGGTGAGCTCTACCTCCTGC


TGGAGCGGCAGCCACAAAAACGTTTCCCAGAACATGCTGCCAGATTTTTTGGGGCCGAAATTCTTCTTGC


TCTAGAATATCTCCACTGCCAGGGCGTCATCTACCGCGATCTGAAGCCCGAAAACATTTTGATCTCGCGA


AGCGGCCACCTCCTATTGACCGACTTTGACCTCTCTTTCCTCTCCGAAACGACACCCAAGCTTATCTTCC


CCCCCTCGGACAAAAAGAGGAGGCGGAAGAGGGAGGAGGAGGGCGACCATCAGAGGCCTACTTTTGTTGC


GGAGCCCATGGGCAGCAGCAATTCTTTTGTGGGGACCGAGGAGTACATTGCTCCAGAAATTATCAGCGGG


ATGGGGCACACCAGCCAGGTGGACTGGTGGGCCTTCGGTATTTTTCTGTACGAGATGATGTACTCCAAGA


CCCCCTTCCGCGGCCGCAATCGGCAACGCACCTTCACCAACATCCTCATGAAGGACCTCGCCTTCCCATC


CTCTCCCCCGGTGAGCGCGGCCGCCAAGCATCTGATTCGCGGCCTCCTGGAGCGCGACCCCCAGCGGCGG


CTGGGCGCCCAGCGCGGCGTGTCAGAAATTAAGGAGCACGCCTTCTTCCATGGCCTCCAGTGGTCCCTCA


TTCGCTGCCGGCAACCTCCCGAGCTGGAGACCCCGGTGAAGTTTACGAACACGGAGCCGGAACGAGAGGC


CGCAGAACAAGACGAAGAGGATCTTGAATGGGACGACACAGAGGCGAGGAGCGCTTCCACTTCCTTGGAT


TACTGA









SEQ ID NO: 78









>AHZ63919.1 phototropin [Cylindrocystis cushleckae]


MGRDPDVDQLGQNVSGLSVETNGNNSQVARGTGLATPDKDKILTQTEGLTDVLTTFQQTFVMSDATKPDI


PITFASEGFYKMTGYSPKEVIGRNCRFLQGEGTDRAEVARLKQCLVSGESFCGRLLNYRKDGTPFWNLLT


VSAVKNDDGKIVKFVGMQVEVTKYTEGKADEQRRPNDMPVSLIRYDARQKEEAETSVAEILHAVKLPEQA


KARLSMTPVLDESISQREQEVSQEDAAAKRKRERRTSGFMTLLGNGATKEELTPVISEPSTPQPVEKEEV


RDSFELTGEKNGRRGLDLATTLERIQKNFVITDPRLPENPIIFASDDFLELTEYSREEVLGRNCRFLQGK


DTDQKTVQEIRDAIREQRDVTVQLLNYTKGGRPFWNLFHLQAVKDSKGDLQYFIGVQLDASTYVEPAAKR


LSEKTAAEGKQQVENTAANVGFGLKELPDPNAAKEDLWAAHSVLVDPKPHRRQDSNWEAILKIRKRDGRL


GLKHFRPIKPLGCGDTGSVHLVELRDSGKLFAMKAMDKDVMINRNKVHRASTEREILGLIDHPFLPTLYA


SFQTGTHVCLITDFCPGGELYLLLERQPQKRFPEHAARFFGAEILLALEYLHCQGVIYRDLKPENILISR


SGHLLLTDFDLSFLSETTPKLIFPPSDKKRRRKREEEGDHQRPTFVAEPMGSSNSFVGTEEYIAPEIISG


MGHTSQVDWWAFGIFLYEMMYSKTPFRGRNRQRTFTNILMKDLAFPSSPPVSAAAKHLIRGLLERDPQRR


LGAQRGVSEIKEHAFFHGLQWSLIRCRQPPELETPVKFTNTEPEREAAEQDEEDLEWDDTEARSASTSLD


Y






SEQ ID NO: 79









>KJ195114.1 Cylindrocystis brebissonii phototropin (PHOT1) mRNA cds


ATGGATCCGCCTCAAGGAATCAGGAAAATGCCGTTTCAGTCCGACAGCTCTGATGTCTCCCAAGGCGCCA


AGAAGCGCCACAATGGGAGTGGGCGCCCTTCAAGTGCGGACAGCGGAGCGGCCAAGGTGTTGGTGGCGGC


CGGTGGGCTGCGCGACATTCTCTCCACCTTCACACAGACGTTCGTCATGTCCGATGCCACCAAGCCGGAC


GTGCCCATCATGTTTGCAAGCGAAGGCTTCTACAAAATGACCGGCTACGGAGTGGACGAAGTGATTGGAC


GGAACTGCCGCTTCCTCCAGGGGCCGGAGACCGACCGTGCTGAAGTCGCGCGCTTGAGGGAGTGCGTTGC


GCGCGGGGCTCCCTTCTGCGGACGCCTCCTCAACTACCGGAAGGACGGGGCTCCCTTCTGGAACTTGCTC


ACGGTGTCGCCTATCAAGGATGACGACGGGAGAGTGGTGCGCTTTGTGGGCATGCAGGTGGAGGTGACCA


AATCAACTGAGGGCCGTGCAGAGCTGATGAAACGTGCCGATAACGAGGCGTCTGTTTCTCTCATCAATTA


CGAGTCCCGACAGCAGGAGGAGGCCAGTCGGCGTGCGCAGGAGCTGGTGGAGGCCGTTGCCCAGAGCGAG


CAGCCGCAGGCGCAGGCAAGCGGCAGCCCGCGCCCGTCAGGGGATGAGGGCGGAGGCAGCCTGCGCAGCG


CCAGCAGTGCCAGCAGCGGCTTCTTCACCCCGCCGGAAACGGCCACGGCCCGGAACACAACGTCAACTCA


ACGGAGATCGTTTCGCCAAAGCGCGTCCAGCTTGGGGGCCCCAGAGGCGGAGGCGGAGGCGATGGCGGCG


GATGACGAAGGGAAGAAGCGCCTGGGGCGGCGCGGGCTGGACCTGGCCACCACGCTGGAGCGGATCCAGA


AGAACTTTGTGATCACCGACCCTCGCCTGCCGGATAACCCAATTATCTTTGCCTCGGATGACTTTCTCCA


GCTGACGGAGTACTCTCGAGAAGAGGTGCTGGGCCGCAACTGCAGGTTCCTTCAGGGGAAGGACACGGAC


CGAGGGACTGTAAAGCAAATTCACACAGCGATCGAGACGCGAGGCGACATAACGGTTCAACTCCTCAACT


ACACCAAGAGCGGAAAGCCATTCTGGAATCTTTTTCATCTTCAGGCAGTCAAAGATGGCCAGGGTGCGCT


GCAGTACTTCATTGGGGTGCAGCTGGATGCCAGCGAGTACGTAGAGCCCAGGCCCAGCGCAGACGAAAGA


AAGTTGCCAGAAAGCGTGGAGGCCCAGGGCAGCAAAGAGGTTGAGCAAACAGCAAGCAACGTGGGCGCAG


GCTTGAAGGAGCTGCCCGATGCACACCAGCCAAAGGAGGACCTTTGGAAGTTCCACTCCGAACCCGTGGC


ACCCCTGCCGCACGGGCGAATGACAACAAATTGGGGGCCAATTTTGAAGATTCTGGAACGAGATGGGCGG


ATAGGGCTGAAGGATTTTCGCCCAGTGCGACCGCTGGGCTGTGGAGACACGGGCAGCGTGCACCTGGTGG


AGCTCAAGGCGGAAGATGTGCCGGACGATTCTGCCGCTTCTGCTGAGGGGATGGAGGACGGACAGCAACG


ACCTTCTCAGAAGTTCCTGTACGCCATGAAGGCCATGGACAAGGTGGTTATGATCAAGCGCAACAAGGTC


CATCGCGCGTGCATGGAACGCTGCATTCTGGGGCTGACCGACCACCCACTCTTGCCTACTCTCTACGCAT


CCTTTCAGACCAGCACTCACGTGTGCCTCATCACCGACTATGCTCCGGGGGGGGAGCTCTTCCAGCTTCT


CGATGAACAACCCCACAAGCAGTTCCCAGAAGATGTTGCACGGTTTTTTGCGTCCGAAGTTCTCGTGGCA


CTCGAATATCTGCACTTTAAGGGGGTGGTGTATCGGGACTTGAAGCCCGAGAACATCCTGATCAGAGAAT


CCGGGCATCTCATGCTCACCGATTTTGACCTTTCCTTCATGGGAACCACAGTTCCGCAGAGGAGGAAAGG


CAGCGCAGCGCACTTCACCTCATTGCCAGAGTCACTGAAAGAAGGCGAGGAAGAGCTACTGCACGTGTTT


TTTGCTGAGCCGGAGGGCACCAGCAACTCCTTTGTCGGCACGGAAGAGTACATCGCACCGGAGATCATCA


AGGGTGTAGGCCACGGCTTTCAAGTCGACTGGTGGGCATTTGGGATTCTTCTGTATGAGCTCCTCTACGG


GCGCACGCCCTTCCGGGGCAGCTGCCGCACCAAGACCTTTTCCAGCATCCTCAACAAAGAGCTGGTCTTC


CCCAAGCTACCCGAGACGAGCGCTGCCGCCAAGGACCTGATGACGCGCCTCCTCGAACGCGACCCGGATC


TGCGCTTGGGGGGCTCCGGGGGCGTCCACGAGATCAAAGCGCACCCCTTCTTCAGCACCACCCACTGGCC


GCTGGTCCTGTGCCAACCTGTTCCGGATCTTGTCCTCTTGAAGACTTCGCCAAGCGCCGAAGCTGGTCCA


GGCGAAGGAGAGGGGGAAGGCCAAGAAGGGGACGATGCGGAGGATTGGGAGGAAGGTGACGGGAAAAAAA


CTCTCTCGCTGTCCCTGGAAGGCTGA






SEQ ID NO: 80









>AHZ63915.1 phototropin [Cylindrocystis brebissonii]


MDPPQGIRKMPFQSDSSDVSQGAKKRHNGSGRPSSADSGAAKVLVAAGGLRDILSTFTQTFVMSDATKPD


VPIMFASEGFYKMTGYGVDEVIGRNCRFLQGPETDRAEVARLRECVARGAPFCGRLLNYRKDGAPFWNLL


TVSPIKDDDGRVVRFVGMQVEVTKSTEGRAELMKRADNEASVSLINYESRQQEEASRRAQELVEAVAQSE


QPQAQASGSPRPSGDEGGGSLRSASSASSGFFTPPETATARNTTSTQRRSFRQSASSLGAPEAEAEAMAA


DDEGKKRLGRRGLDLATTLERIQKNFVITDPRLPDNPIIFASDDFLQLTEYSREEVLGRNCRFLQGKDTD


RGTVKQIHTAIETRGDITVQLLNYTKSGKPFWNLFHLQAVKDGQGALQYFIGVQLDASEYVEPRPSADER


KLPESVEAQGSKEVEQTASNVGAGLKELPDAHQPKEDLWKFHSEPVAPLPHGRMTTNWGPILKILERDGR


IGLKDFRPVRPLGCGDTGSVHLVELKAEDVPDDSAASAEGMEDGQQRPSQKFLYAMKAMDKVVMIKRNKV


HRACMERCILGLTDHPLLPTLYASFQTSTHVCLITDYAPGGELFQLLDEQPHKQFPEDVARFFASEVLVA


LEYLHFKGVVYRDLKPENILIRESGHLMLTDFDLSFMGTTVPQRRKGSAAHFTSLPESLKEGEEELLHVF


FAEPEGTSNSFVGTEEYIAPEIIKGVGHGFQVDWWAFGILLYELLYGRTPFRGSCRTKTFSSILNKELVF


PKLPETSAAAKDLMTRLLERDPDLRLGGSGGVHEIKAHPFFSTTHWPLVLCQPVPDLVLLKTSPSAEAGP


GEGEGEGQEGDDAEDWEEGDGKKTLSLSLEG






SEQ ID NO: 81









>KJ195118.1 Cylindrocystis cushleckae phototropin (PHOTB) mRNA cds


ATGGGACGAGATCCGGACGTGGATCAGCTTGGTCAGAATGTGTCTGGGCTATCAGTAGAGACGAATGGAA


ATAATAGTCAGGTTGCGCGTGGTACAGGCTTGGCCACACCCGACAAAGACAAAATCTTAACACAAACCGA


AGGGCTGACAGATGTGCTCACGACATTTCAACAAACGTTTGTCATGTCTGACGCTACCAAGCCCGATATC


CCAATCACATTCGCTAGTGAGGGATTCTACAAGATGACAGGCTACAGCCCTAAGGAGGTCATCGGGCGAA


ATTGCCGTTTTCTTCAAGGTGAAGGCACCGACCGTGCAGAAGTTGCCCGCCTGAAGCAATGTCTGGTCTC


CGGGGAAAGCTTCTGCGGCCGTCTGCTGAACTACAGAAAAGATGGAACACCTTTTTGGAATCTTCTCACG


GTATCTGCTGTCAAAAATGACGATGGCAAGATCGTGAAGTTTGTCGGAATGCAAGTGGAGGTGACTAAGT


ACACAGAGGGCAAAGCGGACGAGCAGAGGCGTCCCAATGACATGCCTGTTTCTCTCATCCGCTACGACGC


TCGGCAAAAGGAGGAGGCGGAGACTTCAGTGGCAGAAATTCTTCATGCTGTCAAGTTGCCAGAGCAAGCT


AAGGCGCGTCTCAGTATGACACCTGTCCTGGACGAATCTATATCCCAGAGGGAACAGGAGGTGAGCCAAG


AAGATGCGGCCGCAAAACGGAAACGGGAACGGAGGACGTCAGGATTCATGACTCTATTAGGGAACGGGGC


CACAAAGGAGGAGCTGACACCTGTCATTTCGGAGCCTTCCACGCCCCAACCCGTAGAGAAGGAGGAGGTT


CGAGACAGTTTCGAGCTAACCGGAGAGAAAAATGGGCGGCGAGGGCTGGATCTAGCAACGACCCTTGAAC


GTATCCAGAAAAATTTTGTCATCACTGACCCTCGACTTCCCGAAAACCCAATTATTTTCGCGTCAGACGA


CTTTTTGGAGTTGACCGAGTACTCAAGAGAGGAGGTCCTGGGCAGAAACTGCAGATTCCTACAGGGCAAG


GATACTGACCAGAAAACAGTTCAGGAGATCCGGGACGCTATCCGAGAGCAGAGAGACGTCACAGTGCAGC


TGCTCAACTACACCAAGGGCGGTCGTCCCTTCTGGAACCTGTTCCATCTGCAGGCTGTCAAGGACAGCAA


GGGGGACCTGCAGTACTTCATCGGGGTCCAGCTGGACGCCAGCACGTACGTGGAACCAGCCGCCAAACGC


CTCTCCGAAAAAACGGCAGCAGAAGGCAAGCAGCAGGTGGAGAATACTGCGGCCAATGTGGGGTTTGGAC


TCAAGGAGCTCCCAGATCCCAATGCTGCCAAAGAAGATTTGTGGGCTGCCCATTCAGTCCTGGTGGATCC


AAAGCCACATCGGAGGCAGGATTCAAACTGGGAAGCTATCTTAAAGATCCGCAAGCGGGATGGACGCCTG


GGTCTGAAGCACTTTCGGCCCATCAAGCCCCTCGGGTGCGGGGATACGGGCAGCGTGCACCTGGTGGAGC


TCCGGGACAGCGGAAAGCTCTTTGCCATGAAGGCCATGGACAAGGATGTCATGATCAACCGCAACAAGGT


CCATCGTGCGAGCACAGAGAGAGAAATCTTGGGTCTCATAGACCATCCCTTCCTTCCCACCCTGTACGCC


TCTTTCCAGACTGGCACTCACGTGTGCCTCATCACGGACTTTTGTCCGGGCGGTGAGCTCTACCTCCTGC


TGGAGCGGCAGCCACAAAAACGTTTCCCAGAACATGCTGCCAGATTTTTTGGGGCCGAAATTCTTCTTGC


TCTAGAATATCTCCACTGCCAGGGCGTCATCTACCGCGATCTGAAGCCCGAAAACATTTTGATCTCGCGA


AGCGGCCACCTCCTATTGACCGACTTTGACCTCTCTTTCCTCTCCGAAACGACACCCAAGCTTATCTTCC


CCCCCTCGGACAAAAAGAGGAGGCGGAAGAGGGAGGAGGAGGGCGACCATCAGAGGCCTACTTTTGTTGC


GGAGCCCATGGGCAGCAGCAATTCTTTTGTGGGGACCGAGGAGTACATTGCTCCAGAAATTATCAGCGGG


ATGGGGCACACCAGCCAGGTGGACTGGTGGGCCTTCGGTATTTTTCTGTACGAGATGATGTACTCCAAGA


CCCCCTTCCGCGGCCGCAATCGGCAACGCACCTTCACCAACATCCTCATGAAGGACCTCGCCTTCCCATC


CTCTCCCCCGGTGAGCGCGGCCGCCAAGCATCTGATTCGCGGCCTCCTGGAGCGCGACCCCCAGCGGCGG


CTGGGCGCCCAGCGCGGCGTGTCAGAAATTAAGGAGCACGCCTTCTTCCATGGCCTCCAGTGGTCCCTCA


TTCGCTGCCGGCAACCTCCCGAGCTGGAGACCCCGGTGAAGTTTACGAACACGGAGCCGGAACGAGAGGC


CGCAGAACAAGACGAAGAGGATCTTGAATGGGACGACACAGAGGCGAGGAGCGCTTCCACTTCCTTGGAT


TACTGA






SEQ ID NO: 82









>AHZ63919.1 phototropin [Cylindrocystis cushleckae]


MGRDPDVDQLGQNVSGLSVETNGNNSQVARGTGLATPDKDKILTQTEGLTDVLTTFQQTFVMSDATKPDI


PITFASEGFYKMTGYSPKEVIGRNCRFLQGEGTDRAEVARLKQCLVSGESFCGRLLNYRKDGTPFWNLLT


VSAVKNDDGKIVKFVGMQVEVTKYTEGKADEQRRPNDMPVSLIRYDARQKEEAETSVAEILHAVKLPEQA


KARLSMTPVLDESISQREQEVSQEDAAAKRKRERRTSGFMTLLGNGATKEELTPVISEPSTPQPVEKEEV


RDSFELTGEKNGRRGLDLATTLERIQKNFVITDPRLPENPIIFASDDFLELTEYSREEVLGRNCRFLQGK


DTDQKTVQEIRDAIREQRDVTVQLLNYTKGGRPFWNLFHLQAVKDSKGDLQYFIGVQLDASTYVEPAAKR


LSEKTAAEGKQQVENTAANVGFGLKELPDPNAAKEDLWAAHSVLVDPKPHRRQDSNWEAILKIRKRDGRL


GLKHFRPIKPLGCGDTGSVHLVELRDSGKLFAMKAMDKDVMINRNKVHRASTEREILGLIDHPFLPTLYA


SFQTGTHVCLITDFCPGGELYLLLERQPQKRFPEHAARFFGAEILLALEYLHCQGVIYRDLKPENILISR


SGHLLLTDFDLSFLSETTPKLIFPPSDKKRRRKREEEGDHQRPTFVAEPMGSSNSFVGTEEYIAPEIISG


MGHTSQVDWWAFGIFLYEMMYSKTPFRGRNRQRTFTNILMKDLAFPSSPPVSAAAKHLIRGLLERDPQRR


LGAQRGVSEIKEHAFFHGLQWSLIRCRQPPELETPVKFTNTEPEREAAEQDEEDLEWDDTEARSASTSLD


Y






SEQ ID NO: 83









>KJ195111.1 Planotaenium ohtanii phototropin (PHOT) mRNA cds


ATGAGTACCTTGAAGGACGCCCTCTCATCGGGCACCACCCATGCAGACGTCAGAGGAGGAGGTAGCGTCC


CAACGGCGCGGCGCTACTCGCTCAAGATTGAGCAGACTCCTGCCGGCGGGTCTGGCGCTTCGAAAGTCCT


CAGCTCGAAATCAGAACTCAAAGATGCTCTCAGCGCGTTTCAGCAGACTTTCGTTATGGCCGACGGGACC


AAGCCTGATTTCCCCATCATGTTCGCGAGCGAGGGGTTTTACCAGATGACCGGATATACGCCATTAGAAA


CCATTGGAAAGAACTGTCGCTTCCTCCAGGGCCCTGAAACAGACCGTGCCGAGGTGAAGAAGCTTAAGGA


GGCGCTCGACCAGGGCCGCAGCTTTTGCGGTCGCATTCTGAATTACAAGAAAGATGGCACAAAGTTCTGG


AACCTTCTCACCATCTCTCCCGTCAAGGACGACAACGGAAAGGTCGTCAAGTTCATCGGGATGCTGACGG


AGGTGACCAAGTACACCGAGGGGGCGCACTCCGCCGACGTGCGGTCGAACCAACTCCCCATCTCGCTCAT


CAAATATGACGCGCGTCAGAAGGAGGAGGCCGAGAGCAGCGTCACTGAGCTCCTCGAAGCCGCCAAGGGC


CCGCACCCGCTCCTCGCGCCGCTCGGCCCGGGCAGCGTGTCGGCCGGTGGCGGCGGCATGGAGAAGTTGA


TGCAGCTCCCCAAGGTCGACGAAGGGGGCGCGGAGGACGACGTGGCCGCGAAGCCGAGTCGCAAGTCGGG


GCTCTTCAACATGCTCAGCAAGAAGGAGAGGCAGAGCATGAGCGCCGCGCCCGCAAAGAAGAAAGAGGAG


GATGACGACGACATGATCGACGATGAGTCGAAGAAGAAGGCACGACGGGGGCTCGATCTGGCGACCACTT


TGGAGCGTATCCAAAAGAATTTCGTCATCACGGACCCAAGGCTGCCAGAGAACCCAATTATTTTTGCTTC


TGACGATTTCTTGGAGCTCACCGAATACTCGAGAGAGGAAATCATTGGGAGGAACTGCAGGTTCCTTCAG


GGCAAAGACACCGACGAGAAGACCGTTCAGAAAATCAGGGACGCGATCAAAAACGAAGAAGATATCACTG


TGCAATTGTTGAACTACACCAAGAGCGGGAAGCCATTTTGGAACCTTTTTCATCTTCAGGCCGTGCGCGA


CAACAAGGGTGTGCTTCAATACTTCATCGGGGTCCAATTGGACGCGTCACAATACGTTGACCCTTCCATT


CATGGGCTTGACGCCACAGTCGCCAAGGAGGGCGAGCAGCTGATCATTGAGGCCGCCAATAGCGTAGAAG


GGGCCGTCAAGGAGTTGGCTGATCCAGGAAATTCCTCTCAAGACTTATGGGAGATCCATTCGCGCCCTGC


TGTCGCCAAGCCTCACAAAATGCAAGACGAGTCCTGGAAGTTCATCAAACAGGTCATTGAGAGAGAGGGT


AAGTTGGGGCTAAAGCATTTCAAGCCGATCAAACCTTTGGGGTGCGGTGACACCGGCAGCGTTCACCTGG


TCGAGCTTCGCGACACGGGCAAAATGTTCGCGATGAAGGCCATGGACAAGGAGGTCATGATCAACAGGAA


CAAGGTCCACCGTGCATGTACGGAAAGAGAGATCCTCGGAATGATCGACTTCCCGTTCCTGCCTACGCTG


TATGCTTCCTTTCAGACTGCCACTCACGTGTGTCTCATCACTGAGTTTTGCTCTGGAGGCGAACTATACG


GAGTGCTGGAGAAGCAAAAGGGAAAAAGATTCACGGAGGAAGTGGCCAAGTTCTTCACGGCTGAAGTGCT


CCTCGCTTTGCAGTACCTGCACTGTCACGGAATTGTGTACAGAGACCTGAAACCAGAAAACATCCTTCTC


ACGGGAGACGGGCACGCGATTCTGACGGACTTCGACCTTTCCTTTCTCACGCAATCAGCCACGCCGCAGG


TTCTCATGCCTCCCCCCGAAGCTTCCTCTGGCAAGAAGAAGAAGAAGAAGAAGGGCTCTGCGGACTCCGA


GCCGCGACCCAAATTCGTCTCCGAACCGAACGCGACGTCGAACTCCTTCGTCGGTACGGAAGAGTACATC


GCACCTGAAATCATCAGCGGCGCGGGGCACAGCGCGCCCGTCGACTGGTGGGCTCTTGGTATATTCATTT


ACGAAGTTTTGTACGGAAAGACCCCTTTCCGCGGTAGAAACCGACAGCGCACGTTCACGAACGTGCTGAT


GAAGGAATTGAACTTTGCTGAAAACCCTCCTGTTTCTGCCAACGCTAAGAGCATCATTCGAGCGTTGCTC


GAGAGGGACCCTGCGAAGCGGCTCGGCTCTGCGAGAGGCGCCACGGAGATCATGGACCATCCGTGGTTCT


CGGACATCAATTTCCCCCTCATCAAGAACAGGAAATTGCCGCCCCTGAGTGTAGCCGTGAAGAGCATCAG


TTCCGAACCTGACTCCGCTCGTCAGTCAGTGGCGGATGAAGAGTTGGAGTGGGACGAAAATGATGGAAGA


CCGTCCATTTCCTCTGATTACGGCTACTAG






SEQ ID NO: 84









>AHZ63912.1 phototropin [Planotaenium ohtanii]


MSTLKDALSSGTTHADVRGGGSVPTARRYSLKIEQTPAGGSGASKVLSSKSELKDALSAFQQTFVMADGT


KPDFPIMFASEGFYQMTGYTPLETIGKNCRFLQGPETDRAEVKKLKEALDQGRSFCGRILNYKKDGTKFW


NLLTISPVKDDNGKVVKFIGMLTEVTKYTEGAHSADVRSNQLPISLIKYDARQKEEAESSVTELLEAAKG


PHPLLAPLGPGSVSAGGGGMEKLMQLPKVDEGGAEDDVAAKPSRKSGLFNMLSKKERQSMSAAPAKKKEE


DDDDMIDDESKKKARRGLDLATTLERIQKNFVITDPRLPENPIIFASDDFLELTEYSREEIIGRNCRFLQ


GKDTDEKTVQKIRDAIKNEEDITVQLLNYTKSGKPFWNLFHLQAVRDNKGVLQYFIGVQLDASQYVDPSI


HGLDATVAKEGEQLIIEAANSVEGAVKELADPGNSSQDLWEIHSRPAVAKPHKMQDESWKFIKQVIEREG


KLGLKHFKPIKPLGCGDTGSVHLVELRDTGKMFAMKAMDKEVMINRNKVHRACTEREILGMIDFPFLPTL


YASFQTATHVCLITEFCSGGELYGVLEKQKGKRFTEEVAKFFTAEVLLALQYLHCHGIVYRDLKPENILL


TGDGHAILTDFDLSFLTQSATPQVLMPPPEASSGKKKKKKKGSADSEPRPKFVSEPNATSNSFVGTEEYI


APEIISGAGHSAPVDWWALGIFIYEVLYGKTPFRGRNRQRTFTNVLMKELNFAENPPVSANAKSIIRALL


ERDPAKRLGSARGATEIMDHPWFSDINFPLIKNRKLPPLSVAVKSISSEPDSARQSVADEELEWDENDGR


PSISSDYGY









SEQ ID NO: 85









>KT321719.1 Phymatodocis nordstedtiana phototropin (PHOT) mRNA cds


ATGGGTCCGCCAGGAAGTTCTAGCGTTCCGTCAATGGTCCCGGGCACGACTCACACGCACGTGACGGGCG


GGGGCAGCGTGCCTACAGCCCGGCGCTACTCGCTGGGGCTCACTCCGGAACCTGCGGCCCCGCAGAAGGT


GTTGGGCTCCAAGGCGGAGCTCCGCGACGCCCTCACCGCTTTTCAGCAGACCTTCGTGATGGTGGACGCT


ACGAAGCCCGACTACCCTGTTATGTTCGCCAGCGAGGGATTCTATCAAATGACAGGATACTCGGCCCTGG


AGACCATTGGGAAGAACTGCCGTTTTCTGCAGGGACCCGAAACTGACCGTGCTGAGGTGGCGAAGCTGAA


GCAGGCGATCCTGGCCGGGGAAAGCTGGTGCGGGCGGCTCCTGAACTACAAAAAGGACGGCACGGCCTTC


TGGAACCTCCTCACCGTCTCCCCAGTCAAGGACGATGATGGCACTGTCGTGCGATTCATCGGGATGCAAG


TGGAGGTGACCAAGTACACGGAGGGGTCCAAGGACAAGGAGACGCGTCCCAACGCCCTGCCCGTGTCCCT


CATCAAGTACGACGCACGGCAGAAGGAAGAGGCGGAGAGCACGGTGAGCGAGCTGGTGGTTGAGGCGACA


AAGCATCCGCTGCTGGAGTCTATGGGGGGCGGGGGCACTTTGGGGGGAGGAGGGATGGAGAAGCTGATGC


AGCTGCCCAAGGTTGAGGAAGGCGGGGAGGACGCCGTGGACGACCGCAGGTCTAAGTCGGACCGCCGCAA


GTCCGGCCTGATGACGCTCCTCTCGAAAAAGGAGAAGGCGGCGCCGTCGGAGGGGAAGCTAGCGGAGGCG


CCGAAGGCGGCAGAGACCGCAGAGGAGGACGTCGGGGACGACCGCAAGGCGAGGAAGGGAATGGACCTGG


CCACGACGCTGGAACGTATACAGAAGAATTTTGTCATCACGGATCCCCGCCTCCCCGACAACCCCATTAT


TTTTGCATCGGACGACTTCCTGGAACTCACGGAATACTCTCGAGAAGAAATTATCGGGAGGAATTGCAGG


TTCCTGCAGGGCCCGGACACCAACCCAAAGACGGTGCAGAAAATCCGTGAGGCGATCAACAACCAGGAGG


ATATCACCGTGCAGCTCCTCAACTACACAAAGAGCGGGAAGCCGTTTTGGAACCTCTTCCATCTGCAGGC


CGTGAAGGACAACAAGGGTTTGCTGCAGTACTTTATCGGCGTGCAGCTGGACGCCAGCCAGTATGTGGAC


CCGAACATCCAGGGCCTGGAGGACCGGTTCGCACAGGAGGGGGAGAAGATTGTGCTGGAGACGGCCGCCA


ACATCGATGGTGCTGTGCGCGAGTTGGCCGATCCGGGGGCGGCCCCGCAGGACCTCTGGGCCATCCACTC


CATGCAAGCTGTCCGCAAGCCACATAAGGCCACGGATCCTGCCTGGAAGGCCATCCTTGAGGTGATGGAG


AAGGACGGCAAGCTGGGGCTGAAGCACTTCCGCCCCATCAAGCCCCTGGGCGCGGGGGACACAGGCAGTG


TGCACCTGGTGGAGCTGCGGGACACGGGCCGCCTGTTTGCCATGAAAGCCATGGACAAGGAGGTCATGAT


CACGCGCAACAAGGTCCACCGTGCGTGCACGGAGCGCGACATCCTCGGGCGCCTGGACCACCCCTTCCTG


CCCACCCTCTACGCCTCCTTCCAGACGGCCACGCACGTGTGCCTGATCACGGAGTTCTGCGCGGGCGGGG


AGCTGTACGGGGTGCTGGAGAAGCAGAAGGGGAAGCGCTTCCCCGAGAGTGTGGCCAAGTTCTTCGGGGC


GGAGGTGCTCCTCTCCCTCGAGTACTTGCATTGCCAGGGCGTTGTATACCGCGACCTGAAGCCGGAGAAC


GTGCTGATCACCGAAAAGGGCCACGCGATGCTCAGCGACTTCGACCTCTCCTTCCTCACCCAGTCCACCG


TGCCCCGGGTTGAGATGCCCCCTCCGGAGGCGCTGGAGATGCTGAAGAAGAAGAAGGGGGGAGGAGGGAA


CAAGAAGAAGAAGGGCAGCAAGGGAGGGGGCGGCGACGTCGAGGCCAAGCTGGCGGCCCTGCGGGCCATC


ACTCCCACGCTGGTCGTGGAGCCGGTCAGCTCGTCCAACTCCTTTGTGGGGACGGAGGAGTACATTGCCC


CCGAGATCATCAACGGCACGGGGCACAGCAGCCCCGTCGATTGGTGGGCCTTCGGAATCTTTCTGCACGA


AATGCTGTACGGAAAGACGCCATTCCGGGGCCGCAACCGGCAGCGCACCTTCACAAACGTCCTCATGAAG


CCCCTCACCTTTCCGGACACTCCTCAGGTGAGTAGCGAGGCCAAGGCGCTGATGATGGCTCTGCTGGAGA


AGGATCCGGAGAAGCGGCTGGGGAGCAAGAAGGGGGCTGCGGAGATCAGAGGGCACCCCTTCTTCAGAGA


CCTCAACTGGGCGCTGCTGCGCCACCGGGCCCCTCCCCCTCTCAGCGTGCCAGTGAAGCCCATCACCACG


GAGTCCGACTCGGCGCGCCAGTCGATCTCTGAGGAGGAGTTGGACTGGGATGAAAACGAGGCCCGGCCTT


CCACGTCCATATCCAC






SEQ ID NO: 86









>ANC96844.1 phototropin, partial [Phymatodocis nordstedtiana]


MGPPGSSSVPSMVPGTTHTHVTGGGSVPTARRYSLGLTPEPAAPQKVLGSKAELRDALTAFQQTFVMVDA


TKPDYPVMFASEGFYQMTGYSALETIGKNCRFLQGPETDRAEVAKLKQAILAGESWCGRLLNYKKDGTAF


WNLLTVSPVKDDDGTVVRFIGMQVEVTKYTEGSKDKETRPNALPVSLIKYDARQKEEAESTVSELVVEAT


KHPLLESMGGGGTLGGGGMEKLMQLPKVEEGGEDAVDDRRSKSDRRKSGLMTLLSKKEKAAPSEGKLAEA


PKAAETAEEDVGDDRKARKGMDLATTLERIQKNFVITDPRLPDNPIIFASDDFLELTEYSREEIIGRNCR


FLQGPDTNPKTVQKIREAINNQEDITVQLLNYTKSGKPFWNLFHLQAVKDNKGLLQYFIGVQLDASQYVD


PNIQGLEDRFAQEGEKIVLETAANIDGAVRELADPGAAPQDLWAIHSMQAVRKPHKATDPAWKAILEVME


KDGKLGLKHFRPIKPLGAGDTGSVHLVELRDTGRLFAMKAMDKEVMITRNKVHRACTERDILGRLDHPFL


PTLYASFQTATHVCLITEFCAGGELYGVLEKQKGKRFPESVAKFFGAEVLLSLEYLHCQGVVYRDLKPEN


VLITEKGHAMLSDFDLSFLTQSTVPRVEMPPPEALEMLKKKKGGGGNKKKKGSKGGGGDVEAKLAALRAI


TPTLVVEPVSSSNSFVGTEEYIAPEIINGTGHSSPVDWWAFGIFLHEMLYGKTPFRGRNRQRTFTNVLMK


PLTFPDTPQVSSEAKALMMALLEKDPEKRLGSKKGAAEIRGHPFFRDLNWALLRHRAPPPLSVPVKPITT


ESDSARQSISEEELDWDENEARPSTSIST






SEQ ID NO: 87









>KT321720.1 Penium exiguum phototropin (PHOT) mRNA cds


ATGGCTCCGCCCCCGAATGCGGAAATAGCGGCGTTCGCCAAGGGGGCCACGCACGAGCGAGTCACGGGCG


GAGGCAGTGTGCCCACTGCGCGGCGGTACTCGCTGGGGCTGGGGCAGGAGGATGCTGCCCCGCGCACGAG


CGGCGGCGGGCAGAAGGTGCTTGGCGCCAAGGCGGAGCTGAGGGATGCTCTGACCGCGTTCCAGCAGACC


TTCGTTATGGTTGACGCCACCAAGCCCGACTACCCGGTCATGTTCGCCAGCGAAGGTTTCTACCAGATGA


CTGGATACTCCGCCCTCGAAACCATCGGCAAGAACTGCCGCTTCCTGCAGGGCCCGGACACGGACAGGGA


GGAGGTGGGGAAGCTGAAGCAGGCCATTATGGGCGGGGAGAGCTGGTGTGGCAGACTGCTCAACTACAAA


AAAGACGGCACGCCCTTCTGGAATCTGCTGACGGTGTCGCCCGTGAAGGACGACAACGGCAAAGTGGTCA


AGTTCATTGGAATGCAAGTGGAAGTCACAAAATATACTGAAGGGTCCAAAGACAAAGAGACCCGCCCCAA


CGCCCTTCCAGTATCTCTCATTAAATATGATGCCCGGCAGAGGGAGGAGGCAGAGAGCTCAGTGAGTGAG


CTGCTGGCAGAGGCGTCCAAGCATCCCCTGCTGGACGAGGCAGGGGCAGGGGCCGCAGGGGGGGGCATGG


AGAAGCTCATGCAGCTGCCCAAAGTGGACGAGTCTGCTTCCGCTGCAGCTGAGGCCAAAGGAGATCGCCG


CAAGTCCGGCCTCATGTCCATGCTCTCGAAGAAGGAGCAGAAGGGACAGGGCAAGGGGGCGCAGGAGAAG


GTGGAGGAGGAGGATGATGGTGGGGATGTGGAGCACAAGACGAGAAAGGGGCTTGATCTCGCGACAACCC


TGGAACGTATTCAAAAGAACTTTGTCATCACGGATCCGCGCCTGCCCGACAACCCCATCATTTTTGCGTC


AGATGACTTTTTGGAGCTGACAGAGTACACCCGCGAAGAAATCATAGGCCGCAACTGCAGGTTCCTGCAG


GGGCCAGACACGAACCCGAAGACGGTGCAGAAGATCCGAGATGCCATCAACAGTCAGGAGGACATCACAG


TGCAGCTGCTGAACTACACTAAGAGCGGCAAGCCCTTTTGGAATCTGTTTCATCTTCAGGCTGTGAAGGA


CAACAAGGGTACTCTGCAGTACTTTATCGGAGTCCAGCTGGATGCCAGCCAATACCTCGACCCCAACATC


CAGGGCCTTGAGGATCGCTTTGCAACAGAGGGAGAGAAGATTATTGTGGAGGCTGCAAGCAACATTGACT


CGGCCGTGAAAGAGCTGGCAGACACTGGAGCTGCTCCTCAGGATCTGTGGGCTATTCACTCAGTCCCGGC


AGCTGTAAAGCCCCACAAAAGACAAGACCCAGCCTGGCAGGCCGTGCAGGAGGCCATCTCCAAGGACGGG


AAGCTGGGGCTGAAACACTTTCGACCCATCAAGCCATTGGGAGCCGGGGACACTGGAAGCGTGCACTTGG


TTGAGCTTCGTGACAGTGGGTGCCTGTTTGCAATGAAGGCCATGGACAAAGAAGTCATGATCAACCGCAA


CAAGGTGCACCGTGCTGTGACTGAAAGGGAGATTCTGGGGCGCATAGACCACCCCTTCCTGCCCACGCTG


TTCGCCTCCTTCCAAACGGCGACGCATGTGTGCCTAATCACCGAGTTCTGTGAGGGCGGAGAGCTGTACG


GCGTTCTGGAAAAGCAGAAGGGCAAACGCTTTCCGGAGCCCGTCGCAAAGTTCTTCGCAGCGGAAGTGCT


GTTGGCTTTGGAGTACCTGCACTGCCAAGGCGTGGTGTACCGAGATCTGAAGCCGGAGAATGTGCTCATT


GCCAAGTCAGGCCATGCTGTACTCAGTGACTTCGACCTTTCCTTCCTCACCCAGGCCACGCCCAAGCTGG


AGATGCCCCCTCCTTCGGCAGCGGAGGGGAAGAAGAAGAAGAAGGGGGCTGGCAAGAAGAAGAAGAAGGG


GGGCACAGGGGACAAGGCTGGGGACAGGGACCCCGGGGAGCCCCTGCCAATGCTCATTGCAGAGCCTGAC


TCGTCCTCCAACTCCTTCGTTGGCACAGAAGAGTACATTGCGCCTGAAATCATCAATGGTACCGGGCACA


GCAGCCCCGTCGACTGGTGGGCCTTTGGCATCTTCCTGCACGAAATGCTGTACGGCAAAACTCCGTTCCG


GGGCCGCAACAGACAGCGCACGTTCACAAATGTGCTCATGAAGGAACTTACCTTCTCTGACTCAGTACCA


GTGTCCAACGAGGCAAAGAACTTGATGAAGAAGCTTCTTGAGAAGGAACCAGAGAAGAGGCTGGGGGGCA


AAAAAGGAGCAGCAGAAATTCGAGCCCACCCTTTCTTCAGAGACATTGATTGGGCACTCGTCCGCCACCA


TAAACCCCCTGGTCTGGCGGTGCCGGTGAAGCCCATCACAACGGAGCCAGATTCAGTGCGCCAGTCGTCC


GAAATGGAGGAACTCGATTGGGACGAGAACGAGGCCCGGCCATCCACATCGTTGTCGATGGATTATGGGT


ATTAA






SEQ ID NO: 88









>ANC96845.1 phototropin, partial [Penium exiguum]


MAPPPNAEIAAFAKGATHERVTGGGSVPTARRYSLGLGQEDAAPRTSGGGQKVLGAKAELRDALTAFQQT


FVMVDATKPDYPVMFASEGFYQMTGYSALETIGKNCRFLQGPDTDREEVGKLKQAIMGGESWCGRLLNYK


KDGTPFWNLLTVSPVKDDNGKVVKFIGMQVEVTKYTEGSKDKETRPNALPVSLIKYDARQREEAESSVSE


LLAEASKHPLLDEAGAGAAGGGMEKLMQLPKVDESASAAAEAKGDRRKSGLMSMLSKKEQKGQGKGAQEK


VEEEDDGGDVEHKTRKGLDLATTLERIQKNFVITDPRLPDNPIIFASDDFLELTEYTREEIIGRNCRFLQ


GPDTNPKTVQKIRDAINSQEDITVQLLNYTKSGKPFWNLFHLQAVKDNKGTLQYFIGVQLDASQYLDPNI


QGLEDRFATEGEKIIVEAASNIDSAVKELADTGAAPQDLWAIHSVPAAVKPHKRQDPAWQAVQEAISKDG


KLGLKHFRPIKPLGAGDTGSVHLVELRDSGCLFAMKAMDKEVMINRNKVHRAVTEREILGRIDHPFLPTL


FASFQTATHVCLITEFCEGGELYGVLEKQKGKRFPEPVAKFFAAEVLLALEYLHCQGVVYRDLKPENVLI


AKSGHAVLSDFDLSFLTQATPKLEMPPPSAAEGKKKKKGAGKKKKKGGTGDKAGDRDPGEPLPMLIAEPD


SSSNSFVGTEEYIAPEIINGTGHSSPVDWWAFGIFLHEMLYGKTPFRGRNRQRTFTNVLMKELTFSDSVP


VSNEAKNLMKKLLEKEPEKRLGGKKGAAEIRAHPFFRDIDWALVRHHKPPGLAVPVKPITTEPDSVRQSS


EMEELDWDENEARPSTSLSMDYGY






SEQ ID NO: 89









>KJ195103.1 Coleochaete scutata phototropin (PHOT) mRNA cds


ATGGAAGGGGCATCCCAACGTGAGCAAATGCAAAAGCAACTTGACGAGAACTTTGGACCTCATTTGAAGG


CTTCCCGGGGTCCATCATTGTCCGCTGAGATAGAGAAGGCTGGCCAACAGGAGACATCTTTGCCTGCAAC


ACAGCTCGCAGTTGGGAGTGTTAGGCTATTAAATTCAGCCTCCAGGTCAGAAATTACCACCCTTTCTTCC


CCACATTCAGTTCTCTGGCAGGGTGGAGCCGGAGGCAAATCGAGCCTGACTGACGCAAAGGCAACAGCTC


GTTCATCGACATCGGCGGAGTATTCCAGTGATACGCATACGTACTTTGGAGGCCGCACATCGTCATCTTC


TTTCTCTAACACACCAGAACTTCTTTCGCCGTACGGAGTAGCTCCTACAGTGAGACGGAGCATGGATGCC


CCTCAAGTTTCGAAGGGAGGGACGGATGCACAAGGAAAAAATGCTGTCTCTTCGTCCGAAGGGATTGTGG


GAGACAGTGGTCGGAAGCAGCTGCCGCAGCTGTCTATCCAGATTCAGTCTGGAACCAGGAACTCAGGTGA


ACGGCCAGGGTCTGCTACATCTGCTGGATCCTATTCCGAAGGCCCAGGGGGAGTGTCATCCTACTTTGAT


GAGGGTTGGGCTCGGTACAGTATGAAGGTGAATGATACCATTGGTGCTTTCCAGGGCGGTGGTCCAGTAA


AATCAAACTCAAGTGGTGCATCAAAGTCAAACTCGGAAGCAAGTGTAGGAGGCAGCAGCCGGAGTGTGCC


TCCGATGGCAGACGAGCTCAAGGACATTTTGTCAACCTTCAGACAGACCTTCGTTGTGTCAGATGCCACA


AAGTCTGAATGTCCCATCATGTATGCGAGCGAGGGCTTCTACCACTTAACAGGCTACACTCCGGACGAAG


TAATCGGCCATAATTGTCGGTTTCTGCAAGGTCCTGGGACGGATGTAAAAGAAGTGGCAAAGATTCGAGC


CGCAATTCGGGATGGGAAAAGCTACTGCGGACGGCTGATGAATTACCGGAAGGACGGAACACACTTCTGG


AACCTTCTCACCGTCGCACCCGTCAAGAATGAGCGAGGGAATGTGATTAAGTTCATCGGAATGCAAGTGG


AAGTGTCAAAGTTCACCGAGGGGCACCACGGAGACACAACCCGGCCAAATGGACTTCCCTCCGGACTCAT


CGCCTATGACGCAAGAGCGAAGGACAGGGTGGCTCCTGCGGTCTCTGAACTCGTTGACGTAGTGTCAAAG


CCGCACCCTCTGCTGGAGCTCCCTCCCGCTCAGCCACAGGAGGGGAGTGGCCTTGCCAAGCTCTTCTCCT


CCCTCCCCCCTCCACAGCAAAACGTACCCCCAGCGAGTGAGCTTCTCATGAACCAGATGCCCGAGACTTT


CCCCGGCCGCCCCTCAGCGACTGTCGCGGAAAGAAAGGATTGGGGCATGGAGCTGGACACTCCGAGAACA


GTGGAAGAAAAGAAGAAGGGACGGACAGCCGCCTTTTTAACCCTCTTGGGATTCTCTGGAAAAGACGCAA


GTGCAACTTCGACCTCCGTTGGGGTCCCCACGTTGGATCTGCCTGTGGTGGAAGCTACCCCTGCCCAAGA


ATCTCGAGAGAGAGACAGTGTGGAGACGGACGGCGGGGACTACATTCCGGAGGCGCGCCGGGGCATGGAT


CTCGCAACCACGCTGGAGCGCATACCGAAAAACTTTGTCATCACCGATCCCCGCCTGGATGAGAATCCTA


TCATTTTTGCTTCCGACAGCTTCTTAGAGCTTACGGAGTACTCACGAGAGGAGGTGCTTGGCCGCAATTG


CAGATTTTTGCAGGGGCCGGACACGGACCCAGAAACAGTGAAGAAAATCCGAGAGGCAATCCGGGACTGC


CGGGATGTCACGGTCCAGCTCTTGAACTACACCAAGTCGGGAAAACCATTCTGGAATCTTTTTCACTTGC


AAGCTGTGAGGGACAGATCGGGTGAGCTGCAATACTTCATAGGGGTACAGCTGGATGCGAGCCTTCCAGC


TGACCGTGAGGGCCTCAAAGTTCAGATCCCCGGCTCACGACTCTCCGACAACACAGCGAGCAAAGGCACC


AAGATTGTACAAGAGACAGCAAGAAACATTGACGGAGCAGTGCGCGAACTTCCAGACGCTAACTTGCATC


CCGAGGACTTGTGGGCGGGCCATAGTGTGACGGTGTTGGCGAAGCCGCATAAGAATAACGACGCATCGTG


GCAGGCTATCCGTGGGATCAAAACTAGCAGTGGACGACTGGGCTTGAGACACTTTAAACCTATTCGACCA


CTTGGAGCCGGCGACACAGGCAATGTGCACTTGGTGGAGCTCAAGGGCAGCAACTGTTTGTTTGCGATGA


AGGCGATGGACAAGGAGTCCATGATCAGCAGAAACAAGGTCCACCGTGCATGCACAGAGAGACAGATCAT


CTCAGTCCTCGACCATCCTTTCCTCCCAACGCTCTACGCTTCCTTCCAGACTGCGACACATGTTTGCCTT


ATCACTGACTTCTGCCCTGGAGGGGAGCTGTATAGCTTGCTTGAGAAGCAACCCGGCAAGATCTTTAGTG


AAGAGAGTGCCAGATTTTACGCTGCCGAGGTTCTCCTTGCACTGGAGTACTTGCACTACAAAGGTGTGAT


ATACCGAGACTTAAAACCAGAGAACGTCCTCTTGCAAGAGAACGGCCACATCTTGCTGACGGACTTCGAT


CTCTCCTTCCTCACATCCACCAGTCCTACTGTCGTCAAGAGGACACAACCAGGCTCGAGGCAGTCAAAGC


GCAAGGACAGAGAGGTCAACGAGATGATTGCGCAGCCCATCTCCTCCTCCAACTCCTTTGTCGGCACTGA


GGAGTACATCGCACCTGAGATCATTAACGGCGTAGGCCACGGCAGTGCCGTCGACTGGTGGGCGTTCGGT


GTCTTCCTCTACGAGATGCTCTTTGGCAGGACACCCTTTCGCGCCAAGCATCGCCAGCGCACCTTCCAAA


ACATTCTCGAAAAGGATCTCCACTTTCCTGACAGGCCTCAGGTGAGCCTGGCGGCCAAGCAGCTCCTCCG


TGGCCTGCTCACCCGAGAGCCGGAGAAACGACTGGGTTCTAAACGCGGGTCAAACGAGCTCAAGGAGCAT


GCTTTCTTCAAAGACATCAGCTGGGCGCTCATACGATCCCGAAGTGTGCCGGAGCTGGTGGTCCCCTTGA


AAATCTCCACACCACCACCCATCCAAGAAGCAGAACTCGACTGGGATGAAAAAGAAGCCAGAACACCACC


GGCTGGGGAATGA






SEQ ID NO: 90









>AHZ63904.1 phototropin [Coleochaete scutata]


MEGASQREQMQKQLDENFGPHLKASRGPSLSAEIEKAGQQETSLPATQLAVGSVRLLNSASRSEITTLSS


PHSVLWQGGAGGKSSLTDAKATARSSTSAEYSSDTHTYFGGRTSSSSFSNTPELLSPYGVAPTVRRSMDA


PQVSKGGTDAQGKNAVSSSEGIVGDSGRKQLPQLSIQIQSGTRNSGERPGSATSAGSYSEGPGGVSSYFD


EGWARYSMKVNDTIGAFQGGGPVKSNSSGASKSNSEASVGGSSRSVPPMADELKDILSTFRQTFVVSDAT


KSECPIMYASEGFYHLTGYTPDEVIGHNCRFLQGPGTDVKEVAKIRAAIRDGKSYCGRLMNYRKDGTHFW


NLLTVAPVKNERGNVIKFIGMQVEVSKFTEGHHGDTTRPNGLPSGLIAYDARAKDRVAPAVSELVDVVSK


PHPLLELPPAQPQEGSGLAKLFSSLPPPQQNVPPASELLMNQMPETFPGRPSATVAERKDWGMELDTPRT


VEEKKKGRTAAFLTLLGFSGKDASATSTSVGVPTLDLPVVEATPAQESRERDSVETDGGDYIPEARRGMD


LATTLERIPKNFVITDPRLDENPIIFASDSFLELTEYSREEVLGRNCRFLQGPDTDPETVKKIREAIRDC


RDVTVQLLNYTKSGKPFWNLFHLQAVRDRSGELQYFIGVQLDASLPADREGLKVQIPGSRLSDNTASKGT


KIVQETARNIDGAVRELPDANLHPEDLWAGHSVTVLAKPHKNNDASWQAIRGIKTSSGRLGLRHFKPIRP


LGAGDTGNVHLVELKGSNCLFAMKAMDKESMISRNKVHRACTERQIISVLDHPFLPTLYASFQTATHVCL


ITDFCPGGELYSLLEKQPGKIFSEESARFYAAEVLLALEYLHYKGVIYRDLKPENVLLQENGHILLTDFD


LSFLTSTSPTVVKRTQPGSRQSKRKDREVNEMIAQPISSSNSFVGTEEYIAPEIINGVGHGSAVDWWAFG


VFLYEMLFGRTPFRAKHRQRTFQNILEKDLHFPDRPQVSLAAKQLLRGLLTREPEKRLGSKRGSNELKEH


AFFKDISWALIRSRSVPELVVPLKISTPPPIQEAELDWDEKEARTPPAGE









SEQ ID NO: 91









>KT321723.1 Chaetosphaeridium globosum phototropin (PHOT) mRNA partial cds


TCGGGGTCCTCAAGTGGGGAGCCCCGAGAGCCGCTCCCCCAAGTGGCTGCAGAGGTTCGGGACGTCCTCT


CGTCCTTCCGGCAGGCATTTGTCATCTCCGACGCAACTCTGAAGGATACTCCAATCATGTTTGCAAGCGA


GGAGTTCTATCGAATGACTGGGTATGGGCCATCCGAGGTCATCGGGAAGAACTGCCGCTTCCTCCAAGGC


AAGGATACAAAGAAGGAGGATGTCGACAAGATCCGGCAGTGTGTCAAGAAGGGCGAGCACTTCTGCGGGC


GCATCCTAAACTACCGCAAGAACGGAGAGCCCTTCTGGAACCTCCTCACAGTGGCGCCAGTCAAGAACTC


CCGGGGGGAGTGCGTCAAGTTCATTGGCATGCAAGTGGAAGTGAGCAAGTACACAGAGGGTTCGGCAGCA


GAGCAGACACGGCCTGGAGGGCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN


NNCCTCGTGCCAGCCGTGGAAGACATCATGAGTGCTGTCACTGCTCCCCCCGCCAAGAACCCCNNNNNNN


NNNNNNNCCCCCCAGCAGGGGCGCTGGCGCCGGCGGCCTCTCCTCTCTCCTCAACCTCCCCACCGGCACA


AGTGGGGGTCCGGGTACCGGGAAGCACGGCTTTGTGAGCTCGCTGCCGCTTGTGAATGACCTCCTGAGTC


CCAATCTGGGGATTGGCAACCACAAGGCGACGCCCCTCTTCCTCGGGCCTGTCCCCCCAAGGGGCACACC


CTCGCCGGTGAATGGGGGGGGGAAGGCTGGGGAATCGAGGGGGNNNNNNNNNNNNNNNNNNNNNNNNNNN


NNNNNNNNNNNNNNCAAGTTCGGCTTGCGGCGCTCCAAGGACATGGGCAGCCCCAGCGGAAGCGGCAGAA


ACTTGGCCGGTCAGGGGCCTGCGGCGCACATCCCCGAGGATGGGGAGGTGGAGCGGCAGCCGGCCCCCGA


CGCCAAGACCCCAGACCTGAGGGACTCCACCGACTCCTCGGGCATGGAACTCGGGGAGTGCCGCATCAAG


GAGATGCGGCGGGGCATTGACATTGCAACCACGCTCGAGCGCATTCAGAAGAACTTTGTCATCACTGACC


CCCGCTTGCCCGACAATCCCATTATTTTTGCATCGGACAGCTTCCTGGAGCTGACTGAGTACACCAGGGA


GGAGATCATCGGTCGGAACTGCCGGTTCCTGCAAGGGGAGGGCACTGATCGGGCCACGGTTCAGCGCATC


CGGGACGCCATCCGTACAGAGAAGGACGTGACGGTGCAGCTGCTGAACTACACAAAGTCAGGGAAGCCCT


TCTGGAATCTCTTCCACTTGCAGGCCGTCAAGGACCAACAGGGTTTGTTGCAGTATTTCATTGGGGTCCA


GCTCGACGGGAGTCTGTACTTGGATAAGAACAAGAAGCTGTCAGAAGACACGGCCAGCAAGGGCACTGTC


CTGATCAGAGAAACAGCGTCCAAGGTGGACACTGCGGTCAAGGAGCTGCCAGACGCAGCGCTGAAAAAAG


AAGACCTGTGGGCGGGCCACCAGGTATTGGTGCTTCCAAAGCCACACAAGTGCAACAGCAGCAGCTGGGA


GGCAGTGCGCAGGGTTGCGGGCGTTGACACACGGCTCCGGCTGAAGCACTTTCGGCCTGTCAAGCCCCTG


GGGGCTGGTGACACTGGCAACGTTCACCTGGTGGAGCTCCGGGATACGGGCAAGCTCTTTGCAATGAAGG


CCATGGACAAGAACTCGATGATTGCGCGCAACAAGGTCCACAGAACAAACATGGAGCGCGAGATCCTGGG


CTCTCTCGACCACCCCTTCTTGCCCACACTGTACTCGAGCTTCACCACCAAGACACATGTGTGCCTCATC


ACTGACTACTGCTCGGGGGGGGAGCTGTTCACGCTCATGGACCGGCAGCCGGAGAAGCGCTTCTCGGAGG


CCAGCGCAAGGTTCTACTGTGCCGAGGTCCTGCTCGCCCTCGAGTACCTGCATCTCAAAGGCGTGATCTA


CCGCGACCTGAAGCCTGAGAACGTGCTTCTGATGGATACAGGCCACATCCAACTGACGGATTTTGACCTG


TCTTTCCTCACACGATCCAGCTCTACGGTCTTCAAGAAGACCGTGCCCGCGCCCCGATCGTCGCCTGTGG


TGATGAGTAGAAAGGCGCGGATGCGGCGGAAGAGGAGCCTCCGCAAGAGCAAGGCGCGGGGAGAAGAGGG


TGAGCTGTCCTCTTCAATGAGCGTGATGGTGAGCGAGCTGGTGGTGGAGCCGGCGGGGACGTCCAACTCG


TTCGTGGGGACCGAGGAGTACATTGCGCCGGAGGTGATCACGGGCAGCGGCCACACGGGCACGATCGACT


GGTGGGCGTTTGGCGTGCTCCTGTACGAGCTGCTGTGTGGGAAGACGCCCTTCCGGGGCCGGAACCGGCA


GAGGACGTTCCGGAACATCCTGGAGAAACCTGTCATTATGCCGCCCAACATTGAGATCTCGAGCGAGGGG


CAGGACCTCATCCAGAAGCTCTTGATCCGGGACCCCCTGCGTCGGCTGGGCAGCCAGCGTGGGGCCAATG


AGATCAAGGAGCACCCCTTCTTCAGAGCCATCAACTTCCCACTCATCCGCACTATGGTCCCCCCCCCGCT


CAAGGTCCCGGCCAAGTTTGTGTACCCTGACGTCAGCTCCCTCTCCCCGGACGTGGACTGGGACGACTTG


GAGGCGCGCACGCCGTCGCCTGTCGCCACTGACTACTTCTAG






SEQ ID NO: 92









>ANC96848.1 phototropin, partial [Chaetosphaeridium globosum]


SGSSSGEPREPLPQVAAEVRDVLSSFRQAFVISDATLKDTPIMFASEEFYRMTGYGPSEVIGKNCRFLQG


KDTKKEDVDKIRQCVKKGEHFCGRILNYRKNGEPFWNLLTVAPVKNSRGECVKFIGMQVEVSKYTEGSAA


EQTRPGGXXXXXXXXXXXXXXXXXPRASRGRHHECCHCSPRQEPXXXXXPPSRGAGAGGLSSLLNLPTGT


SGGPGTGKHGFVSSLPLVNDLLSPNLGIGNHKATPLFLGPVPPRGTPSPVNGGGKAGESRGXXXXXXXXX


XXXXXKFGLRRSKDMGSPSGSGRNLAGQGPAAHIPEDGEVERQPAPDAKTPDLRDSTDSSGMELGECRIK


EMRRGIDIATTLERIQKNFVITDPRLPDNPIIFASDSFLELTEYTREEIIGRNCRFLQGEGTDRATVQRI


RDAIRTEKDVTVQLLNYTKSGKPFWNLFHLQAVKDQQGLLQYFIGVQLDGSLYLDKNKKLSEDTASKGTV


LIRETASKVDTAVKELPDAALKKEDLWAGHQVLVLPKPHKCNSSSWEAVRRVAGVDTRLRLKHFRPVKPL


GAGDTGNVHLVELRDTGKLFAMKAMDKNSMIARNKVHRTNMEREILGSLDHPFLPTLYSSFTTKTHVCLI


TDYCSGGELFTLMDRQPEKRFSEASARFYCAEVLLALEYLHLKGVIYRDLKPENVLLMDTGHIQLTDFDL


SFLTRSSSTVFKKTVPAPRSSPVVMSRKARMRRKRSLRKSKARGEEGELSSSMSVMVSELVVEPAGTSNS


FVGTEEYIAPEVITGSGHTGTIDWWAFGVLLYELLCGKTPFRGRNRQRTFRNILEKPVIMPPNIEISSEG


QDLIQKLLIRDPLRRLGSQRGANEIKEHPFFRAINFPLIRTMVPPPLKVPAKFVYPDVSSLSPDVDWDDL


EARTPSPVATDYF






SEQ ID NO: 93









>KJ195105.1 Interfilum paradoxum phototropin (PHOT) mRNA, complete cds


ATGGCTGGTCAGTATATAGTTGACCCTGCACTGAATGGGGCAAACAGGGGCCCTAGTGCAGACTACAGTG


AGGACGGGGGCAGCAAACGCAGCTCAGGGTCGACCTCTACATTGCCACGCATCTCACATGACTTGAAAGA


TGCTCTGTCCACGTTCAAGCACACATTTGTGGTTGCGGATGCAACCAAGGACATGGCTATCATGTATGCA


AGCGCAGGCTTCTATGACATGACGCAGTATGGGCCAGAGGACGTCATTGGGAAGAACTGCCGCTTCTTGC


AAGGGCCTGGCACGGACCAGGAGGAAGTTGCTCGGATAAGAAGAGCGATCAAGAATGGGGAGAGCCACTG


CGGTCGCCTCCTCAACTTCAAGAAGGACGGGACGCCCTTCTGGAATTTGTTGACCCTTGCACCAATCAAG


AATGAGCAGGGACAAGTTGTCAAGTTCATCGGGATGCAAGTGGAGGTCACACAGTTTACAGAGGGCGAAC


TTGAGAAGGCAATGCGGCCCAATGGGATGTCAACATCCCTCATCAAATATGATTCTCGTCAAAAGCAGGG


TGCAACAGAGTCGGTCCTCGACATCGTGGATGCTGTCAAGAACCCAAGCCAGAAGGGCCAAGGGCCAGCG


CCTAGCCCCTTCCAGCCAGGAGCGGGTTTGGCTAGTCTTCTTGCTGCTGTGCCGAAGAGCACGCCCTCAG


CAGACCCCAGCAAAGATGAGCTAGCTACGCTCTATGAAAGTGAAGGGGGCTTGGCGGACAGGAAGGAGGG


CGCTGGGAAGAGGCGCACGTCAGGATTCATGAACCTGCTGAAGAGTGGAGGAAAGCCGCTGCAGGCAGAC


TCACCGATTGCTACGTTGACCCGGCCGCAAAGTCTGAACCTCAGCGCAGAGCTGGTGCCAACCCAGGGGA


CCACTCCTGATGCACAAGGCGCTCTGAACTTTGGGGATGACAGGGCAGCAGAGGAGAGGAAGGGGCTGGA


CCTTGCCACCACCCTGGAGCGTATCCAGAAGAACTTTGTCATCACAGACCCCAGGCTGCCAGACAACCCC


ATCATTTTTGCGTCCGATGACTTCCTGACCCTGACAGAGTACTCGCGAGAGGAGATCCTGGGGCGCAATT


GCCGCTTCCTGCAAGGGCCTGAGACAGACCAGAAGACTGTGGAGGAGATTCGCGTTGCGATCAGGGAGGA


GAAGGATATCACAGTGCAGCTGCTCAACTACAAGAAGAGCGGCGTTCCGTTCTGGAACATGTTCCACTTG


CAGCCTGTCAGGGACAAGCGGGGCGAGCTGCAGTACTTCATTGGGGTGCAGCTGGATGCTAGTGCCTGGG


ACTCCATGGGCGACCAAGCCCCGCAAGCGCCTCCTCAGACCAAGGCAGCACAGAAGAGCATTGTCAAAGA


CTCTGCATTGGAAGCCGCTGCCGCTGTACAAGAATTACCAGATCCAGGCCAGCGGCCAGAGGATGTGTGG


GCTGGTCACAGCAAGCCTGTGCTCACTAAACCCCACAAGCGGGACGCAGAGGCGTGGAAGGCCATCAAGC


TGATTAAGCAGAGGGATGGCCGTCTGGGGCTTCGACACTTCCGGCCAATCAGGCCTTTGGGTTCAGGCGA


CACTGGCAGTGTGCACCTAGTGGAGCTAAAGGGAACGAAGCACCTCTTTGCAATGAAGGCCATGGACAAG


CAAGTCATGGTCAACAGAAACAAGGTGCACCGTGCCATCACAGAGAGGGACATTCTGGCTGCCCTGGACC


ACCCATTCCTCCCAACCCTCTACGCTTCCTTCCAGACTGCCACCCACGTCTGTCTCGTAACAGACTACTG


TCCGGGAGGCGAGCTCTACTACCTCTTGGAGCAGCAGCCACAGAAGAGGTTCTCAGAAGAAGTCGTCAGG


TTCTTTGCGGCTGAGGTGCTCCTGGCGCTCGAGTACCTCCATCTCCAGGGCGTTGTGTACCGCGACCTGA


AGCCCGAGAACGTTCTGCTGCAAGAGACCGGGCACATCCTGCTGACCGACTTCGACCTCTCCTTCCTAAC


CTCCTCCAGCCCTACGATGGTGCGGCCTCCACAGACTGCGGGCAAGAAGAAGCGGAAGCAGCAGAACGGC


TTTGTGCGGCCCGAGCTGGTGGCAGAGCCGACCACCAACTCCAACTCATTTGTGGGCACCGAAGAGTACA


TTGCTCCTGAGATCATCAGTGGCTCGGGGCACAGTGGGTCGGTGGACTGGTGGGCGTTTGGCATCTTCAT


TTACGAGATGCTGTATGGCAAGACGCCCTTCCGGGGGCGCAACAGGCAGCGCACGTTCACCAACATTCTT


CTCAAGGACCTTACCTTCCCACCGCAGCCCCAGGTCAGCCTAGCTGCGCGGCGGTTTATCCGCGGGCTGT


TGGAAAGGGACCCCAACAAGCGGCTGGGGGCAGGCAAGGGCGCCACCGAATTGAAAGCGCACCCATTCTT


CGAGGGCCTCAACTGGCCCCTGATCCGCTTTGATCACCCTCCCAACCCGGAGAAGCCCGTCCAAGTGTCC


AAGGTGGAGGTCCGAGAGTCTCTGGACGAGAAGGAGGAACTAGACTGGGAGGAAGTTGACGAGCAGGGCC


ATCTGATGCAGGAGCAAATTGTGCCCACTTCAATGTAG






SEQ ID NO: 94









>AHZ63906.1 phototropin [Interfilum paradoxum]


MAGQYIVDPALNGANRGPSADYSEDGGSKRSSGSTSTLPRISHDLKDALSTFKHTFVVADATKDMAIMYA


SAGFYDMTQYGPEDVIGKNCRFLQGPGTDQEEVARIRRAIKNGESHCGRLLNFKKDGTPFWNLLTLAPIK


NEQGQVVKFIGMQVEVTQFTEGELEKAMRPNGMSTSLIKYDSRQKQGATESVLDIVDAVKNPSQKGQGPA


PSPFQPGAGLASLLAAVPKSTPSADPSKDELATLYESEGGLADRKEGAGKRRTSGFMNLLKSGGKPLQAD


SPIATLTRPQSLNLSAELVPTQGTTPDAQGALNFGDDRAAEERKGLDLATTLERIQKNFVITDPRLPDNP


IIFASDDFLTLTEYSREEILGRNCRFLQGPETDQKTVEEIRVAIREEKDITVQLLNYKKSGVPFWNMFHL


QPVRDKRGELQYFIGVQLDASAWDSMGDQAPQAPPQTKAAQKSIVKDSALEAAAAVQELPDPGQRPEDVW


AGHSKPVLTKPHKRDAEAWKAIKLIKQRDGRLGLRHFRPIRPLGSGDTGSVHLVELKGTKHLFAMKAMDK


QVMVNRNKVHRAITERDILAALDHPFLPTLYASFQTATHVCLVTDYCPGGELYYLLEQQPQKRFSEEVVR


FFAAEVLLALEYLHLQGVVYRDLKPENVLLQETGHILLTDFDLSFLTSSSPTMVRPPQTAGKKKRKQQNG


FVRPELVAEPTTNSNSFVGTEEYIAPEIISGSGHSGSVDWWAFGIFIYEMLYGKTPFRGRNRQRTFTNIL


LKDLTFPPQPQVSLAARRFIRGLLERDPNKRLGAGKGATELKAHPFFEGLNWPLIRFDHPPNPEKPVQVS


KVEVRESLDEKEELDWEEVDEQGHLMQEQIVPTSM









SEQ ID NO: 95









>KJ195106.1 Entransia fimbriata phototropin (PHOT) mRNA, complete cds


ATGGGGATTGTAGTTCAAGCACCTGGGAAGGGGGCACTGAAAGGGGCGAAAATGCAGGATCAGGCCACGG


CCACTGGCAGGGGGTCAGCTGTGGGTCAGCCCTCATCTCGAAACACCTCCTTGGACAGCGAGGGGGGCAG


CAGAGGGACCTCTGGAGTGTCCCTGCCACGGGTGTCGAGTGAGGTGAAGCTTGCCCTTTCCAGCTTCCGC


CACACGTTTGTGGTCACGGACGCGCTATCCGAAGACATGCCAATCTTGTATGCCAGCGACGGTTTTTACA


AGATGACGGGGTACGCTCCTGCGGAGACGGTTGGGATGAATTGTCGCTTCCTCCAGGGCAAGCACACCGA


CCCATCCACCAAGGCCAAGATCAAGGCGGCGGTGGCGGCAGGCCACGGCTTCTGCGGCCGCATCCTCAAC


TACCGCAAGGACGGGTCCTCTTTCTGGAACCTGCTCACCATCTCCCCCATCAAGGACAATAATGGCAATG


TCGTGCGGTTCATCGGTATGCAAGTGGAGGTTACCAAGACGACCGAAGGGGACAAGCACGATGACCTCAG


GCCCTCTGGGATGCCCACGTCAATGGTCAACTATGATGCCCGGCTGCAGGCAGGGGCCCGGACATCGGTT


GTGGAGCTGTTGCAAGCCCTCCAGGACCCCTCGCCCTTTGCTATGCATGCTGAGGAGCCGCTGCCACCGC


CGCAGGCCTTGGGGGGCCTGGCCTCCCTGCTGGCACTTCCCAGGGTTGATGACACCGCAGCTATGTTTAC


AGCTGGGGATGCGTCAGTGCAGGAGTACGACGGGATTGATCCATCCGGCAAGCCCACGGCCGGGTTCATG


TCCCTGTTGAAATTCGGAGGCCTCCCGGTTCCGCGCAAGTCAGAGCGCTTGTTTCGCCGCGCGGTGGCGG


AGCAGGCTCCCACTGAGGAGGAGCGGGAGCCGGTGGTGGACCGCAAGGCAATGGATCTTGCCACCACGTT


GGAACGGATTGAGAAGAACTTTGTCATCACTGATCCCCGCCTGCCGGACAACCCAATTATCTTCGCATCC


GACGCCTTCCTTCAACTCACCGAGTACGGCCGTGAGGAGATCCTAGGACGTAACTGCAGGTTCTTACAGG


GCCCCGACACGGACCCCCATGTGGTGTTGGAGATCCGCGCTGCGATCAAGGAAGGCCGCGAGTGCACAGT


GCAGCTTCTCAACTACAAGAGGAGCGGCACTCCGTTCTGGAACATGTTCCACTTGCAGCCGGTGCGGACA


AGACAGGGCGAGATCCAGTTCTTCATCGGTGTCCAGTTGGATGCGTCCAACTGGGGCCCCCCGGAGGAGC


ACCATCGGGAGAAGGCAGCGATTGTTCAGGCCACCGCTGGCGATGTGGGCGAGGCAGTGAAGGACTTCCC


AGACCCAGAGAAGAAACCGGAGGATCTGTGGGAGCCTCACACCCGGCCAGTGCGGATGAAGCCACACCAG


CAGCGAAAGGGGTCGTGGGCAGCCATTTTGAAGGTCCAAGAGGATGCAGGAGAGCTGAACCTGCAGCACT


TCACACCCATTCGGCCGCTGGGCTGTGGTGACACGGGCAGTGTACACCTCGTAGAGCTCAAGGGGACTGG


AGCGCTTTTCGCTCTCAAGGCAATGGACAAGGCGGCCATGATCGCCCGCAATAAGGTCCATCGCGTCCTC


ACCGAGAGGGAAGTGCTGGCCGCTGTCGACCACCCTTTCCTTCCAACTCTCTACACATCCTTTCAGACCA


AGACCCACGTCTGTCTCATCACTGATTTCTGTCCCGGGGGTGAACTCTACTATGTTCTGGACCGTCAGCC


ACACAAGCGCGTGTCAGAAGATGCCGCAAGGTTCTACATTGCTGAGGTGATCCTTGCCGTTGAGTACCTG


CACCTCATGGGTGTCACCTACCGTGACCTTAAGCCTGAGAACATCCTCATCCGCCAGGACGGCCACATCC


TCCTCACCGACTTCGACCTCTCGTTCCTCTCCTCCTCAGCCCCCCAGATCAAGGCCGGTCCGCCAGTTGC


CCGTTTCCTCTGCGCTCCTTCCCCGCCGTCTTTGCCTCAGCTCCTCGCTGAGCCGACGGCTAAGTCCAAC


TCCTTTGTCGGCACCGAGGAGTACATTGCTCCGGAGATCATTAGTGGCAAGGGGCACAGCAGCATGGTGG


ACTGGTGGGCACTAGGTATCTTCTTGTACGAGATGTTATATGGGCGCACCCCCTTCCGCGGCCGGAACCG


GCAGCGGACATTTGCTAACATCCTCGTGAAGGAGCTCGCCTTCCCGTTACAGCCACCGGTGAGTGCGGCG


GCCCGACGTCTCATCCACCAACTGCTTAGAAGAGACCCCCTGGAGCGTCTTGGGGCCCGCCATGGTGCTC


CAGAGATAAAGGAGCACCTATTCTTTGAGGACATTGACTGGCCCCTCATCCGCAGCATGCCCGCCCCCAA


ACTTGATGTGCCAATCACGCTCATTCCTTGTGTGCCCCGCTCCGCCCAACAAGGTGCCCAGGGTGACCTG


GAATGGGATGACGGGGAGGGGTCGGTCCATTTGCATGATGTGTTCTAA






SEQ ID NO: 96









>AHZ63907.1 phototropin [Entransia fimbriata]


MGIVVQAPGKGALKGAKMQDQATATGRGSAVGQPSSRNTSLDSEGGSRGTSGVSLPRVSSEVKLALSSFR


HTFVVTDALSEDMPILYASDGFYKMTGYAPAETVGMNCRFLQGKHTDPSTKAKIKAAVAAGHGFCGRILN


YRKDGSSFWNLLTISPIKDNNGNVVRFIGMQVEVTKTTEGDKHDDLRPSGMPTSMVNYDARLQAGARTSV


VELLQALQDPSPFAMHAEEPLPPPQALGGLASLLALPRVDDTAAMFTAGDASVQEYDGIDPSGKPTAGFM


SLLKFGGLPVPRKSERLFRRAVAEQAPTEEEREPVVDRKAMDLATTLERIEKNFVITDPRLPDNPIIFAS


DAFLQLTEYGREEILGRNCRFLQGPDTDPHVVLEIRAAIKEGRECTVQLLNYKRSGTPFWNMFHLQPVRT


RQGEIQFFIGVQLDASNWGPPEEHHREKAAIVQATAGDVGEAVKDFPDPEKKPEDLWEPHTRPVRMKPHQ


QRKGSWAAILKVQEDAGELNLQHFTPIRPLGCGDTGSVHLVELKGTGALFALKAMDKAAMIARNKVHRVL


TEREVLAAVDHPFLPTLYTSFQTKTHVCLITDFCPGGELYYVLDRQPHKRVSEDAARFYIAEVILAVEYL


HLMGVTYRDLKPENILIRQDGHILLTDFDLSFLSSSAPQIKAGPPVARFLCAPSPPSLPQLLAEPTAKSN


SFVGTEEYIAPEIISGKGHSSMVDWWALGIFLYEMLYGRTPFRGRNRQRTFANILVKELAFPLQPPVSAA


ARRLIHQLLRRDPLERLGARHGAPEIKEHLFFEDIDWPLIRSMPAPKLDVPITLIPCVPRSAQQGAQGDL


EWDDGEGSVHLHDVF






SEQ ID NO: 97









>KT321724.1 Spirotaenia minuta phototropin (PHOT) mRNA, partial cds


ATGGGGTCCGACGGGGCGTACGATGCGTATGGCTTTCCAACGGAGAAGTCTAGGACGCGTGGGGATTCCG


TCTCATTGGCGACTGGCCTTCCGGCTTTCTCGTCGGAGACGACGGGCCTGTTGGGCTCCTTCCGCCATTC


CTTTATCCTAACTGATCCCTCAAAGCCCGATTTCCCGATTGAATATGCAAGCGATGGGTTTTACGAACTT


ACCGGCTACACTCCCTCCGAGACTATGGGACGAAATTGTCGTTTTCTACAAGGGCCAGGCACAGACCGGC


TAGAGGTTGAGAAGCTGAAGGAAGCAATCATGGAAGGCAGGCCTATCTCCCTGCGGTTGCTAAACTACAA


GAAGAGCGGCGAGGCATTCTGGAATCTGCTGACGGTCTCTCCCTTTGACGTGGGGGGCAAGAGGAAGTTT


CTTGGAGTGCAGCTGGACGTGACCAAGCACACGGAGGGCGAGAAGGTGCCCTTGGTTTCCGCCGGGGAGG


TGCCTCTCCTAGTGCGCTATGAGACGCGCCTCATGGCAAAGACGCAAGCTACCGCTGATGATCTCATGTC


CGTGATCAAGCATGTGGATAGGAAACAGTCCATCAACGAGGACGAGGACCCAGAAGGAGACGACGAGTTT


GGTTACCCAACCATGTCCTTCGATGCCTATGGAAATCCCCGCATGTCCGATGTGGATGCTTTGCTCAGCC


GGTCACTGGAGAAGCCAAAGTTCCGTCACAGGCGTGTTGCCTTCGATTTGGCCACCTCGCTCGAGCGAGT


GCAGAGGAATTTCTGTATCACAAATCCCTACTTGCCAGACCATCCCATTGTCTTCTGCTCGGACGATTTC


TTGGACCTAACCGGGTATACCAGAGAGGAGGTCATCGGCAGGAACTGCCGCTTCTTGCAAGGCCCTTTGA


CTGACAGAGCCCAGGTCGCCAAGATCCGCGAGGCCATTGACAACGAATCAGAGTGTACTGTACAGCTGCT


CAACTACCGCAAGGATGGCTCCTGCTTCTGGAATATGTTCCACTTGGCTCCCATCTTCGACAACAGTGGG


AAGGTGCAGTTCTTTGTCGGAGTGCAGACCGACGTGTCGGACCACGAGGTGCTTCCCAGTGAGGACGACC


GGGATGCGCCACGGCCGAGCCTGGCGCCTGAGCTAGCAGCTAGGGATAGCAGCGTCTCCATTGCTGGTGC


CCAAATAGTTGCGGGGGCGGTAAATAATATGAAGGTAGCATGGACGGGAGCAACCGATCAAGTCAAGTCG


TCTTATCGAGCATGGCTGCCTCACACTCGCAGGTTGGAGAAGATCCACGCTCACAACAGCACTGCGGTGC


CATGGGATGCAATCCGCATGATAACTGGAGGCACTTACCGCTTGAGCATGCTGAATATCGTCCCCATCAA


GCTACTAGGACGAGGCGATACGGGCAGCGTCCTGCTGATTAGGCTAGCGGGGACACCGCTGTACCTTGCG


ATGAAAGTCCTGGAGAAGAGGAACCTTCTTGAGAGGAACAAGGTGCAACGTGCTTTTACGGAGAGGGAGA


TCTTGGCGTCATTGGATCATCCTTTCCTGCCCACTCTATTTGACTGCTTTCAAACAGAGAGCCATTTGTG


CTTCTTGACGGAATTCTGCTCCGGCGGCGAGCTGTATTCTATGCTCAGCGGGCTGCCTGGCAATTGCGTG


CCGGAGCCGGTGGGAAAGCTGTACATTGCAGAGGTGTTGCTGTCATTGGAATACCTGCACTTAAAGGGTG


TAGTCTACCGTGATTTGAAGCCAGAGAACATCATGATTCAGGATGATGGCCATCTCCTGCTCACTGATTT


CGACTTGTCATTCCGCGCCGGCTGCACACCTGACGTGTTCTTCATCGAGAGGAGAGTGGGCAAGCACGTG


TTCAAATTCCCATGTGTTGTGGCTGAGCCTCGTGGCAAGACCAACTCCTTCGTGGGTACTGCGGAATACT


TGGCCCCAGAGGTGATCAACAACACCGGCCACTCTGCCGCTGTCGATTGGTGGGCTCTCGGCATTCTGCT


GTACGAGTTGTTGTATGGCTTCTCGCCCTTCTTCTCCGACACTCGCGCCGTGACTTTCGACAACATCCTC


CACTGCGACGTGGAATTCCCCAGCCATCCCGTCGTCTCTGCCGAGGGCAAGTCTCTGATTTGCGAGCTGC


TTGTCAAGGATACTGCGCGTCGTCTGGGCAGCAGATACGGCGCGGACGAGATCAAGAAACATCCTTTCTT


CTATGGCGTCAAGTGGGCTTTGATTCGGTCCCAGCGGGCTCCGTATGTGCCAGGCGAGGATGTTCCATCC


ATTTTCGGCCCAGAGGATGAGCGAGGAACCACCTTCGCCGGTTTTTAG






SEQ ID NO: 98









>ANC96849.1 phototropin, partial [spirotaenia minuta]


MGSDGAYDAYGFPTEKSRTRGDSVSLATGLPAFSSETTGLLGSFRHSFILTDPSKPDFPIEYASDGFYEL


TGYTPSETMGRNCRFLQGPGTDRLEVEKLKEAIMEGRPISLRLLNYKKSGEAFWNLLTVSPFDVGGKRKF


LGVQLDVTKHTEGEKVPLVSAGEVPLLVRYETRLMAKTQATADDLMSVIKHVDRKQSINEDEDPEGDDEF


GYPTMSFDAYGNPRMSDVDALLSRSLEKPKFRHRRVAFDLATSLERVQRNFCITNPYLPDHPIVFCSDDF


LDLTGYTREEVIGRNCRFLQGPLTDRAQVAKIREAIDNESECTVQLLNYRKDGSCFWNMFHLAPIFDNSG


KVQFFVGVQTDVSDHEVLPSEDDRDAPRPSLAPELAARDSSVSIAGAQIVAGAVNNMKVAWTGATDQVKS


SYRAWLPHTRRLEKIHAHNSTAVPWDAIRMITGGTYRLSMLNIVPIKLLGRGDTGSVLLIRLAGTPLYLA


MKVLEKRNLLERNKVQRAFTEREILASLDHPFLPTLFDCFQTESHLCFLTEFCSGGELYSMLSGLPGNCV


PEPVGKLYIAEVLLSLEYLHLKGVVYRDLKPENIMIQDDGHLLLTDFDLSFRAGCTPDVFFIERRVGKHV


FKFPCVVAEPRGKTNSFVGTAEYLAPEVINNTGHSAAVDWWALGILLYELLYGFSPFFSDTRAVTFDNIL


HCDVEFPSHPVVSAEGKSLICELLVKDTARRLGSRYGADEIKKHPFFYGVKWALIRSQRAPYVPGEDVPS


IFGPEDERGTTFAGF






SEQ ID NO: 99









>XM_003063488.1 Micromonas pusilla CCMP1545 phototropin, blue light receptor


(PHOT), mRNA


CGCACCCGCGTCGCGCACGGACGACGAGCGCCGAGCGCCGGTCCTCGATCACGCGCGCGCGCGTCGAATC


TCGCGTCGAGCGCCGGAGCGTCGCGTCGGGGACGACGCGCGTCGAACGCGTCGCGCGCGCGAACGTTATC


CGGAGCTTTCCGTCCGATCCGCCCGGCGCGGCGCCAGCTGGATCGATCGATCTCCGCGTCGTCAGTCGAT


CGATCTCTCCCCGGCGTCGTCGCGTTCGAATCTAGGGCCGATCGCGGCGGCGCGGCGCGGCGCGTCATGG


CGGCGATGTCCGGTCAGGTCCCGCCGGATAAGATGCCGCAGGGTGTGTCATACACCGTCGACGAGAGCGG


CGGGATCGCCGCGCCCGAGGCGTCGAAAGGGTTGACGATGGCGCTGGCGTCGGTCCGGCACACGTTCACG


GTCAGCGACCCGACGCTGCCGGATTGTCCGATCGTGTACGCGTCCGACGGGTTCTTGAAGATGACCGGGT


ACTCCGCGGAGGAGGTGATCAACCGCAACTGCAGGTTCCTGCAGGGCGAAGACACCGATCGCGACGACGT


GCAAAAGATTCGCGACGCCGTGCAAAAAGGCGAGCGTTTGACCATCAGACTCCAAAACTACAAGAAGGAC


GGGACGCCGTTCTGGAACCTTCTCACGATCGCGCCGGTGAAGATGGAGGACGGCACGGTCGCGAAGTTCA


TCGGCGTGCAGGTGGACGTAACGGACCGGACGGAGGGCGAGGTGGGACGAACCGTCGGCGACGGCGGCGT


CGTCGGCGCCAAAGACGAGAAAGGCTTGCCGCTGCTCGTTCGGTACGACCAGAGACTCAAGGACCAGAAC


TACCCGGGCGTGGAGGACGTGGAGAAGGCGGTCATGAAGGGCGAGGGGATCGACGCGGACGCGACGAGGA


ACTCGCGCGCGAGAGAGGGGCTGGACATGGCGACGACGATGGAACGCATTCAGCAGTCGTTTCTCATCAG


CGACCCGTCGCTGCCGGATTGCCCGATCGTGTTCGCGTCCGACGGGTTCTTGGATTTCACCGGGTACGGC


CGCGAGGAGATCTTGGGGCGGAACTGCCGGTTCTTGCAGGGCGCGGGGACGGACCGCGACGCGGTGAAGG


AGATTCGGAACGCGATCAAAGACAACCGAGAGTGCACGGTTCGCCTGCTCAACTACACGAAGCAAGGGAA


ACCGTTCTGGAACATGTTCACGCTCGCGCCCGTCAGGGACCACGCGGGCGAGGTCAGGTTCTTCGCGGGG


GTGCAGGTGGACGTGACCGTGTACACGGACGCGGACGGCCGCCGCCTTGACAGCGTCGAGCTTCTGAGGC


AGACGAAGGCGCCGACGCCGCGGCACTCGGGCGACGACGAGGGCAAGTCAAAGTCGAAAGCCGCGACGAA


AAAAGTCTTGGAAGCGATCGGCGGGCTCACTGCAGCGGACGGCGAGCTGCCGTGGGCGAGGATGGTCGGC


CGCCTCGGCGCGCCGAAGCCGCACCAGGCCGGAGACGCGAACTGGGCGGCGCTGCGGAAGATCGTGGCCG


CGCACAAGGCGGCGGGGAGACCAGAGCGTTTGGCGCCGGAGGATTTCACGCCGTTGACGCGGCTCGGGCA


CGGCGACGTCGGCGCGGTGCACCTCGTGAGCCTGCGCGACGCGCCGAGCGCGAAGTTCGCGATGAAAGTT


CTCGTGAAGCAGGAGATGGTGGATCGAAACAAGCTTCATCGCGTGCGGACGGAGGGTCGAATTCTCGAGG


CGGTCGATCACCCGTTCGTCGCGACGCTGTACTCGGCGTTTCAGACGGACACGCACCTGTACTTTTTGAT


GGAGTACTGCGAGGGCGGCGAGCTGTACGAGACGCTGCAAAAGCAGCCCGGGAAGCGCTTCACCGAGGCG


ACGACCAAGTTTTACGCCGCGGAGGTTCTGTGCGCGCTGCAGTACCTCCACCTGATGGGCTTCATCTATC


GCGACTTGAAGCCGGAGAACATTTTGTTGCGTCGGAACGGACACGTCATCGTGACGGACTTTGACCTCTC


CTACTGCGCGTCGAGCCGCGCGCACGTCGTCATGATCGACGGCAAGGGCGAGGACGTCGTGGCCGGCGGC


GGGAGCGCGACGACGAGCGGGAGCGGGAGAGGGAGCGGCGGCGGGGGGGGAAGCGGCGGCGGCGGGAAGA


AGGAGCGTCGGCCGTCGGACGCCGGCTCGGAGAGTTCGAGTTCAAGAGGTGGGGGGGGCTTCTGCGGCAA


GGGCGGCGGCGGCGGCTCGAACCCCGCGACCCGCCGCGACACCCCGCGCCTCGTCGCGGAGCCGTTCGCG


TTCACCAACTCCTTCGTCGGCACGGAAGAGTACCTCGCCCCGGAGGTGTTGAACAGCACGGGGCACACGA


GCTCGATCGACTGGTGGGAGCTCGGCATCTTCATCCACGAGTGCGTGTTCGGGCTGACGCCGTTTCGCGC


GTCGAAACGCGAGCAGACGTTTCAGAACATCATCTCTCAGCCGCTCAGCTTCCCGTCGAACCCGCCGACG


AGCCCGGAGCTGAAGGATTTGCTCTCGCAGCTGCTGCGACGCGATCCGAGCGAGCGGTTGGGGACGAGAG


GGGGCGCGGAGGAGGTCAAGGCGCACCCGTTTTTCAAAGGGGTGGACTGGGCGTTGCTGCGTTGGAAAGA


CGCGCCGCTCGCGAAGAAGCCCGATCCGCCGAGGGCGGACGGCGGCGGCGACGAGGTGTTCGAGATCGAA


GTCTGAGAGAAGTCTGAGAGGTCTGTTTGGGGAGAAGAGAAGAGAAGTCTCAGTCTCTGGATGGAGACGT


CTGAGGCGGGCGGGCGGGCGGCGGGACGTCCCCTCGACGACGCGAGGGAGGAGCGTTTGCATAGCATACA


ATAGTAGATTCGCATCATTCACGAGCGCGTCGTTC






SEQ ID NO: 100









>XP_003063534.1 phototropin, blue light receptor [Micromonas pusilla CCMP1545] MAAMSGQVPPDKMPQGVSYTVDESGGIAAPEASKGLTMALASVRHTFTVSDPTLPDCPIVYASDGFLKMT GYSAEEVINRNCRFLQGEDTDRDDVQKIRDAVQKGERLTIRLQNYKKDGTPFWNLLTIAPVKMEDGTVAK FIGVQVDVTDRTEGEVGRTVGDGGVVGAKDEKGLPLLVRYDQRLKDQNYPGVEDVEKAVMKGEGIDADAT RNSRAREGLDMATTMERIQQSFLISDPSLPDCPIVFASDGFLDFTGYGREEILGRNCRFLQGAGTDRDAV KEIRNAIKDNRECTVRLLNYTKQGKPFWNMFTLAPVRDHAGEVRFFAGVQVDVTVYTDADGRRLDSVELL RQTKAPTPRHSGDDEGKSKSKAATKKVLEAIGGLTAADGELPWARMVGRLGAPKPHQAGDANWAALRKIV AAHKAAGRPERLAPEDFTPLTRLGHGDVGAVHLVSLRDAPSAKFAMKVLVKQEMVDRNKLHRVRTEGRIL EAVDHPFVATLYSAFQTDTHLYFLMEYCEGGELYETLQKQPGKRFTEATTKFYAAEVLCALQYLHLMGFI YRDLKPENILLRRNGHVIVTDFDLSYCASSRAHVVMIDGKGEDVVAGGGSATTSGSGRGSGGGGGSGGGG KKERRPSDAGSESSSSRGGGGFCGKGGGGGSNPATRRDTPRLVAEPFAFTNSFVGTEEYLAPEVLNSTGH TSSIDWWELGIFIHECVFGLTPFRASKREQTFQNIISQPLSFPSNPPTSPELKDLLSQLLRRDPSERLGT RGGAEEVKAHPFFKGVDWALLRWKDAPLAKKPDPPRADGGGDEVFEIEV






SEQ ID NO: 101









>KU698737.1:704-2884 Tetraselmis cordiformis cds


ATGTCTGCAATGATCCCCGAGACCTCCACGGAGCTTACTTCCGTGCTTTCAAACCTAAAGCATACTTTCG


TCGTTGCGGATGCAACTCTTCCGGACTGTCCACTGGTGTTTGCTAGCGAGTCTTTCTATGAGATGACGGG


ATACAGTAAGGACGAGGTTCTCGGGCATAACTGCAGGTTCTTGCAAGGGGAGGGAACCAGTCCAAAGGAG


ATTCAGAAATGTCGCGAGGCGGTGAAGAATGGGACTGTCGTTTCTGTCCGTCTCCTCAATTACCGCAAGG


ACGGCACGCCTTTCTGGAATTTGCTGACCTTGACACCGGTCAAAACATCGACTGGTCAGGTCACAAAGTT


CGTTGGCGTCCAGGTTGACGTGACGGGCCGCACAGAAGGCAAGAACTTCGTTGATGGGGAGGGGGTTCCC


CTCCTAGTCCATTATGATAATCGCCTGAAGGAAAACGTTGCAAAGAACATAGTCAGCGAGGTCGTGGACA


CCGTGGACAGAGTGGAGAACAAGGGTGCTGGCCGTGCAACGAAGCCCAAAGCCTTCCCTCGCGTGGCACT


TGATCTCGCCACCACCGTTGAGCGCATTCAGCAGAACTTCTGCATCTCGGATCCCACCCTGCCCGACTGT


CCCATCGTCTTCACCTCGGACGCCTTCCTGGAACTCACAGGCTACACGCGAGAGGAGGTTCTGGGTAGAA


ACTGCCGCTTTCTCCAGGGCCCCAGCACAGACCAAAGGACGGTGGACCAGATCCGCGAGGCCGTGACCAA


CAGGGAGGAGCTTACCGTCCGTATTCTGAACTATACAAAGCAGGGCATCCCATTCTGGAACATGTTAACC


CTCGCGCCGATCCGAGACGTGGACGGAACTTGCCGATTCATGGTCGGTGTACAGGTAGACGTCACCGCAG


CGGATGCCACCTCTGCGCCTGGCGAGATCCCAGCGCAGAAAGATCTGGGGCCTGTCTCGTCGGCTGCGTC


TGCTAGCAACGTTATTGGGAGCGCCCTCAAGAACCTTGGCATGGGAAATGCTGTCATGAAGAACCCTTGG


ACGCAGCTCACCATCGGCAAGGTTTACAGGAAGCCACATATGTCAGAAAACAAATCACTTCTGGCTCTCC


GTGCTACCGAGGCAGAGCATGGAACTCTGAAGGTCGTGCACTTCAAGCGTCTAAAGCAGGTTGGCAGCGG


AGATGTTGGTCTGGTGGACCTCGTGAGCCTGATCGGCACCAACCACGAGTTTGCCATGAAGTCTCTGGAC


AAGCAAGAAATGATCGAGCGCAACAAGGTAGCCCGTGTACTCACAGAGGAGTCGATTCTCTCACGGATCG


ATCACCCCTTCCTCGCTAACCTCTACTGCACACTCGAGACGCCTAGCCACCTGCACTTCCTGATGCAAAT


CTGCTCCGGTGGGGAGCTCTACGGGCTTCTTAACGCCCAGCCAAAGAAACGCTTGAAGGAGGCCCACGTC


CGCTTCTATGTTGCGGAGGTCCTCCTTGCGTTGCAGTACCTCCACCTTATCGGCGTCATATACCGCGACC


TGAAACCAGAGAATATTCTGCTCCACGGCAGCGGACATGCCATGCTCACAGACTTCGATCTCTCCTTCTC


GAAGGGTGAAACAGTCCCTCGGATAGAGAAACAGTCGGCCTCTGCTTGGAGCTCTCCAAAGGAGACCGCT


GGCTGCACCAAGTCGAGCTCGAATCTACCGGTAAAGCCCCACGACAAATACCTGCTGATCGCCGACCCGG


TCGCAAGGTCAAACTCGTTTGTGGGAACGGAGGAATACCTGGCGCCGGAGGTAATTAACGGCACAGGCCA


CGGCTCTGAGGTCGACTGGTGGGCGCTCGGCATCCTGACGTACGAGCTCATTTTTGGCACCACGCCATTT


CGGGGCATGCGTCGAGACGAGACCTTCGAGAACGTACTGCGTCTTCCTCTCACTGTCCCGCAGAAGCCCA


TTATCAGCGCCGAATGCAAGGACTTTATCCAGCAGCTCCTGATTAAGAACCCCGAGAAGCGTCTAGGTGC


CAAGAGGGGGGCTGAGGACATCAAGGCTCACCCCTGGTTTGCAAGTATCGAGTGGTCCCTGATTCGGAAT


GAGCAGCCGCCATTTGTGCCCAACAATGTAGCTACGCCAAGCAACACGGCCGGAGCCNCGACAACTACTG


ATGGCTCGTAG






SEQ ID NO: 102









>AML76833.1 putative LOV domain-containing protein [Tetraselmis cordiformis]


MSAMIPETSTELTSVLSNLKHTFVVADATLPDCPLVFASESFYEMTGYSKDEVLGHNCRFLQGEGTSPKE


IQKCREAVKNGTVVSVRLLNYRKDGTPFWNLLTLTPVKTSTGQVTKFVGVQVDVTGRTEGKNFVDGEGVP


LLVHYDNRLKENVAKNIVSEVVDTVDRVENKGAGRATKPKAFPRVALDLATTVERIQQNFCISDPTLPDC


PIVFTSDAFLELTGYTREEVLGRNCRFLQGPSTDQRTVDQIREAVTNREELTVRILNYTKQGIPFWNMLT


LAPIRDVDGTCRFMVGVQVDVTAADATSAPGEIPAQKDLGPVSSAASASNVIGSALKNLGMGNAVMKNPW


TQLTIGKVYRKPHMSENKSLLALRATEAEHGTLKVVHFKRLKQVGSGDVGLVDLVSLIGTNHEFAMKSLD


KQEMIERNKVARVLTEESILSRIDHPFLANLYCTLETPSHLHFLMQICSGGELYGLLNAQPKKRLKEAHV


RFYVAEVLLALQYLHLIGVIYRDLKPENILLHGSGHAMLTDFDLSFSKGETVPRIEKQSASAWSSPKETA


GCTKSSSNLPVKPHDKYLLIADPVARSNSFVGTEEYLAPEVINGTGHGSEVDWWALGILTYELIFGTTPF


RGMRRDETFENVLRLPLTVPQKPIISAECKDFIQQLLIKNPEKRLGAKRGAEDIKAHPWFASIEWSLIRN


EQPPFVPNNVATPSNTAGAXTTTDGS






SEQ ID NO: 103









>KJ195127.1 Bolbocoleon piliferum phototropin (PHOT) mRNA, complete cds


ATGGCACAATTGCCTCCTCCGGCAGCGCAGTTAACGCAGGTGTTGTCGAGTCTTCGCCACACATTTGCCG


TTGCCGATGCAACACTTCCAGATTGTCCCCTGGTGTACGCCAGCGAAGGGTTCTACCAGATGACTGGGTA


CACGAAGGACGAGGTTCTGGGTCACAACTGCCGTTTCCTCCAAGGTGAAGCCACAGATCCGGTAGAGGTT


GAGAAAATTCGTGATGCTGTTAAGAACGGCCGGAGTACCGCTGTTCGCCTTCTCAACTATCGCAAGGATG


GAACACCATTCTGGAATCTCCTTACTGTCACGCCCGTCTATGCAGCGGACGGGACGCTGTCCAAGTACAT


TGGAGTCCAAGTGGATGTCACCTCCAAAACCGAAGGATCAGCTTACACAGACCGCAGTGGTGTACCTCTT


CTAGTCAAGTACAATGACCGCCTGAAGCAGAACGTTGCTCATGACATTGTCGCGGATGTCAAAGATGCGG


TTGAAAGTGCTGAGCCGTCCCTGCAAAACAAGGCTGTTGGGACAGCGCCCAAGGCATTTCCACGTGTTGC


CATTGATCTTGCTTCGACAGTCGAGCGTATTCAACAAGCCTTTGTTGTGTCGGATCCAAACCTGCCAGAC


TGCCCAATCGTCTTCGCCTCGGACGCCTTTCTTGAGATGACGGGTTTTTCCCGGTTTGAAGTGCTCGGTC


GCAACTGTAGATTTCTCCAGGGAAAGCACACGGATGCGCATGCCATTGATGAGATCCGAGCAGCCGTGAA


AGAGGGCTCGGAGTGCACAGTGCGTCTGCTCAACTACAAAAAGGATGGCACCCCCTTCTGGAACATGCTT


TCTGTGGCGCCCATGATGGACGTCGACGGCACAGTGTGCTTCTTCATTGGCGTGCAAGTGAATGTCACCG


CTGAGACACCTGCACAAGACGGCCTGCCTGCAGTTGACCAGGGAGCTGTGAAGAAAGCATTGGACACTGC


ACAGATCCAGTCTGCAGTGTCACACCTGCACACAAAGCCGTCGTCGCCCGGGCGTGACCCGTTTTCTGCA


ATTCCGCATGCTAAGCTGCGTATCAAGCCGCACCGCAGCATGGACCGCGCCTGGCACGCGCTGCACAAGC


TCCAGCAGGCAGAGGGCACGATCGAGCTGCGGCATTTCAAGCGCGTGCAGCAGCTTGGTTCGGGTGACGT


GGGGCTGGTTGACCTTGTCCGCATCCAGGGGTCAGATGTCACTGTTGCCATGAAGACGATCGACAAAGTA


GAGATTTTGGAGCGCAACAAGCTGCACAGACTTCTCACCGAAGAGAATATTCTGCAGCAGTGTGACCATC


CGTTCCTCGCTGCATTATACTGTACCATCCAGAGTGAGCACTATCTGCATTTTGTCATGGAGTACTGCCC


CGGCGGAGAGCTGTACAAGCTGCTGTATGCACAGCACAACAACCGGTTTGAGGAGCGAGATGTGCAGTTC


TATGCTGCGGAAGTGCTCATGTCCCTGCAATATCTGCACATTCTCGGGTGTGTCTACCGAGATCTCAAGC


CTGAGAACATATTGATCATGGCGGATGGCCATGTGCGAGTGACAGACTTCGATCTTTGCATTCTTACGTC


AGATTTCAAGCCACAGTTGGTCAAGGGGCCACGCGAGCTTGCTGCAAATGCCAATGTAGCCCGGCACTCC


AAGACGGGGAAGGTTGGCGGAAAAGGATGCTATGGTGGCAGCGGAGTGCAGTTAGGTGAAGGGCTTGTGT


TGTCAGGGGAGCCGCAGATGCGAACCAACAGTTTTGTTGGGACTGAAGAGTATCTGTCGCCCGAGGTGAT


TCAGGGGAACTCGCACGGTGCTGCAGTTGACTGGTGGTCGTTGGGTATCCTGATATATGAGCTTTCCTTC


GGAACGACTCCATTCAAAGGGCAACGCCGGTCTGAGACCTTCTCCAGTATTGTCAAGAAGGACGTCAAGT


TTCCGGACGAACCTGTGGTCAGCTCGCAATGCAAGGACATCATTTTGCAGCTGCTTGTCAAGGATGAGAC


CAAGCGGCTGGGGAACAAGTATGGAGCGGAGGAGATCAAGCGGCACCCTTTCTTCAAAGACGTAGATTGG


CAGTTCTTGCGATCCCGAACACCACCGTGGGTGCCCCGAGGAACTGTGGCGTCAGGCAATATTGCTGGGT


TCTGA






SEQ ID NO: 104









>AHZ63928.1 phototropin [Bolbocoleon piliferum]


MAQLPPPAAQLTQVLSSLRHTFAVADATLPDCPLVYASEGFYQMTGYTKDEVLGHNCRFLQGEATDPVEV


EKIRDAVKNGRSTAVRLLNYRKDGTPFWNLLTVTPVYAADGTLSKYIGVQVDVTSKTEGSAYTDRSGVPL


LVKYNDRLKQNVAHDIVADVKDAVESAEPSLQNKAVGTAPKAFPRVAIDLASTVERIQQAFVVSDPNLPD


CPIVFASDAFLEMTGFSRFEVLGRNCRFLQGKHTDAHAIDEIRAAVKEGSECTVRLLNYKKDGTPFWNML


SVAPMMDVDGTVCFFIGVQVNVTAETPAQDGLPAVDQGAVKKALDTAQIQSAVSHLHTKPSSPGRDPFSA


IPHAKLRIKPHRSMDRAWHALHKLQQAEGTIELRHFKRVQQLGSGDVGLVDLVRIQGSDVTVAMKTIDKV


EILERNKLHRLLTEENILQQCDHPFLAALYCTIQSEHYLHFVMEYCPGGELYKLLYAQHNNRFEERDVQF


YAAEVLMSLQYLHILGCVYRDLKPENILIMADGHVRVTDFDLCILTSDFKPQLVKGPRELAANANVARHS


KTGKVGGKGCYGGSGVQLGEGLVLSGEPQMRTNSFVGTEEYLSPEVIQGNSHGAAVDWWSLGILIYELSF


GTTPFKGQRRSETFSSIVKKDVKFPDEPVVSSQCKDIILQLLVKDETKRLGNKYGAEEIKRHPFFKDVDW


QFLRSRTPPWVPRGTVASGNIAGF






SEQ ID NO: 105









>KT321732.1 Ulvella endozoica phototropin (PHOT) mRNA, partial cds


GCAGCGGCACCTCAGTTGACGCATGTGCTGTCCTCGCTGAGGCACACATTCGCTGTGGCGGACGCCACCC


TCCCGGACATGCCCCTGGTTTACGCCAGCGAAGGCTTTTATCAGATGACAGGATACACCAGGGAGGAGGT


GCTCGGGCACAACTGCCGGTTCCTGCAAGGGCAAGCGACAGACCTGAACGAGGTTGCAAAGATCAGAACA


GCCATAGAACAAGGCAAGGGTGCTGCTGTGCGTTTGCTCAACTATAGAAAGGACGGAACCCCTTTCTGGA


ACCTGCTGACAGTGATGCCCGTGTATGCTGCCGATGGCTCCTTGTCCAAGTTCATCGGTGTTCAAGTTGA


CGTGACATCTCGAACAGAAGGCTACGCGTACGTGGACAACTCGGGCGTTCCTCTTTTGGTCAAGTACAAT


GACCGCCTGAAACAGAATGTCGCACATGACATCGTCGAGGATGTTGTGAGTGCTGTGCAAGATGCCGAGA


CTGCCAAGGAACCTCAACCTAGCCAACCTAAAATTGGTGCAGCCCCAAAGGCCTTCCCCCGTGTGGCTAT


TGATCTGGCTACGACAGTTGAACGTATTCAGCAAGCATTCGTCATTTCCGATCCCAATCTGCCAGACTGC


CCCATCGTCTTTGCTTCAGATGCCTTTCTGCAGATGACCGGATTCTCCCGATATGAGGTCCTGGGACGTA


ATTGTCGGTTTCTCCAGGGCACACAAACGGACCCGCGCGCGGTCGATGAGATCCGTTCAGCGATCAGGGA


TGGCACAGAGTGCACAGTCCGCATCCTGAACTACAGAAAGGATGGCTCGCCCTTCTGGAACATGTTCTCG


CTTGCGCCCATGTCAGATATCGATGGCACGATCTGCTTCTTCATCGGTGTACAAGTTGATGTGACTGCAT


ACAACAACAGGGCTGCGTCAGGGGCAGACATAGTGCCCAATGTTGATGACAATGCAGCGAAGCTGGCATC


GGATACAGCCACCATCAAGCATGCCGTGAGCCATCTGGGAACTAGCCACGGTCCTCAAGTGGGTGACCCC


TTCGCTGTGATTCCCACCTCTGAGCTGAGTATCAAGCCCCACAGCAGCATGGACCGTGCCTGGCAAGCTC


TGCACAAGCTGCAGCAAACGCATGGCACCATCTCGTTAAAGCACTTCAAGCGTGTGCAACAGTTGGGTTC


GGGAGATGTGGGGCTTGTTGATCTGGTGCGCATTCAGGGATCGGAGGAGCTCGTTGCGATGAAGACAGTC


GACAAAGCTGAGATCCTTGAGCGCAACAAGCTCCACCGTCTGATCACCGAGGAGAGCATCCTGCGGCGCT


GTGACCACCCTTTCCTTGCGATGCTGTACTGTACGGTGCAGAGTGAGCACTATCTGCACTTCGTTATGGA


GTACTGCCCAGGTGGTGAGCTGTACAAGCTCTTATACGCTCAGAAGGGGAACCAGTTTGCAGAGCCTGAC


GTGGCGTTCTTCTCGTCAGAGGTTCTCCTGGCGCTGCAGTACCTACATGTCATCGGTTGTGTATATCGCG


ATCTGAAGCCGGAGAACATTCTGATAATGGGTGATGGCCACGTGCGCCTGACCGACTTTGACTTGTGCAT


ACTGAACCCGGACTTCCAGCCTGAAATGGTGCCACTCACTGGTGATACCAGTCCTACAGCTAGGGCGCGC


CAGATGAAGGGGAGGAGGCCCGGGGCTCCATGTGTGGGGGGGCGGAGCGGGAGCCCAAGGCAGCCACTGG


TGCTATCAGGAGAACCACAGCTTCGTACCAACAGCTTCGTTGGTACGGAGGAGTACCTGTCACCTGAGGT


CATCCAAGGCAACTCGCACGGTGCAGCTGTTGACTGGTGGTCGCTCGGCATTCTCATCTATGAACTCATA


TACGGAACTACACCTTTCAAGGGACAGCGGCGCTCTGAGACTTTCTCCAACATTGTGAAGAATCCTGTCA


AGTTCCCAGAGGAACCAGCCGTCACACCAGCATGCAAGGACATCATCACGCAGCTGCTTGTGAAAGATGA


GACGAAACGCCTCGGTACCAGGCTGGGTGCGGAAGAGATTAAGCAGCATCCTTTCTTCGCAAGCGTCCAC


TGGCAACTGCTGCGCTCCCGAAGCAACCCACCTTACATCCCTCGCGCAAAGGCGCTGACGGGTGATCACG


TGCCATCGTTCTGA






SEQ ID NO: 106









>ANC96857.1 phototropin, partial [Ulvella endozoica]


AAAPQLTHVLSSLRHTFAVADATLPDMPLVYASEGFYQMTGYTREEVLGHNCRFLQGQATDLNEVAKIRT


AIEQGKGAAVRLLNYRKDGTPFWNLLTVMPVYAADGSLSKFIGVQVDVTSRTEGYAYVDNSGVPLLVKYN


DRLKQNVAHDIVEDVVSAVQDAETAKEPQPSQPKIGAAPKAFPRVAIDLATTVERIQQAFVISDPNLPDC


PIVFASDAFLQMTGFSRYEVLGRNCRFLQGTQTDPRAVDEIRSAIRDGTECTVRILNYRKDGSPFWNMFS


LAPMSDIDGTICFFIGVQVDVTAYNNRAASGADIVPNVDDNAAKLASDTATIKHAVSHLGTSHGPQVGDP


FAVIPTSELSIKPHSSMDRAWQALHKLQQTHGTISLKHFKRVQQLGSGDVGLVDLVRIQGSEELVAMKTV


DKAEILERNKLHRLITEESILRRCDHPFLAMLYCTVQSEHYLHFVMEYCPGGELYKLLYAQKGNQFAEPD


VAFFSSEVLLALQYLHVIGCVYRDLKPENILIMGDGHVRLTDFDLCILNPDFQPEMVPLTGDTSPTARAR


QMKGRRPGAPCVGGRSGSPRQPLVLSGEPQLRTNSFVGTEEYLSPEVIQGNSHGAAVDWWSLGILIYELI


YGTTPFKGQRRSETFSNIVKNPVKFPEEPAVTPACKDIITQLLVKDETKRLGTRLGAEEIKQHPFFASVH


WQLLRSRSNPPYIPRAKALTGDHVPSF






SEQ ID NO: 107









>KJ195129.1 Coccomyxa pringsheimii phototropin (PHOT) mRNA, complete cds


ATGCCCGCTCAGACCGGGCAGGCTGAAAAGCAGCAGAAGGATGCGCAGCTGCATCCTGAGCTGCAGCGGC


CTGGGCAAAAGGTGCCAGGCCCTGCACCACAGCTCACAAAGGTTCTGGCGGGATTGCGGCATACTTTCGT


GGTAGCGGATGCCACGCTACCGGATTGCCCTTTGGTGTTCGCCAGCGAAGGATTCCTCTCGATGACAGGA


TACTCGGCTGAGGAGGTGCTGGGACACAACTGCCGCTTCCTGCAAGGGGAGGGTACAGACCCCAAGGAGG


TGGCAATCATCAGGGATGCAGTGAAGAAGGGGGAGGGCTGCTCTGTGCGCCTGCTCAACTACAGGAGGGA


TGGCACTCCCTTCTGGAACTTGCTCACCATGACGCCCATCAAGACAGAGGACGGCAAGGTGTCAAAGTTT


GTGGGAGTGCAGGTCGATGTGACCTCAAAGACAGAAGGGAAGGCCTTCTCAGATGCCACTGGTGTGCCAC


TGCTGGTGAAGTATGACACACGGCTGAGGGAAAATGTAGCAAAGAACATCGTCCAGGATGTCACGTCGCA


AGTGCAGGAAGCGGAGGAGGAAGACTCGGAGGCTACCAGGGTTGCCGGCCTGAAAGGCTTCAACAAGCTG


TGGCACAAGATGGGCAACAAGTCATCAGCCAACGACCCACAGCTGCAGAAGCAGGGAGAGCGGCTAGGCA


AGAAAATGACAGCCCCCAAAACGTTTCCCAGGGTGGCCATGGATCTGGCAACAACAGTGGAGCGCATCCA


GCAGAATTTCTGCATCTGCGATCCCAACCTGCCGGACAACCCGATAGTCTTCGCGTCAGACGGCTTCCTG


GAGATGTCCCAGAACGACCGCTTTGAGGTCCTGGGTCGCAACTGCCGCTTCCTGCAGGGGCCGGACACTG


ACCCCAAGGCGATCACTATCATCCGGGACGCGATCAAGAGCCAGAGCGAGGCGACCGTGCGCATTCTCAA


CTACCGCAAGAACGGGCAGCCCTTCTGGAACATGCTCACCATTGCACCCATGGCTGACGTTGGCGGCACC


TCCCGTTTCTTCATCGGAGTCCAGGTGGATGTGACGGCAGAGGATGTGCCGATGACGGGCGGCATTCCGG


CGGTTGACCAGAAGGCCGTCAAGGCGGCGGACCCGATGGGGAGCGTGCTGGGCATGGCACAGCGGCAGAT


GGGCGCTGGCTGGGCCGTGCACGACCCTTGGCAGGCCATCCATGCAGGCGTCTCTAGCCGCAAGCCACAC


AAGGCCCAGGAGAAGCCGTGGGCGGCGCTGCAGGCGACGAATGAGAAGACTGGTCGGCTGGGGCTGTCGC


AGTTCCGCCGCCTGAAGCAGCTGGGCACCGGCGACGTCGGCCTTGTGGACATGGTGGAGCTGCAGGACGG


CTCTGGCAGGTATGCGATGAAGACACTGGAGAAGGCGGAGATGCTGGAGCGCAACAAGGTGATGCGTGTG


CTGACGGAGGCCAAGATCCTGTCGGTGGTGGACCACCCCTTCCTGGCCAGCCTCTACGGCACCATCGTGA


CCGACACCCACCTCCATTTCCTCATGCAGATCTGCGAGGGCGGCGAGCTCTACGCGCTGCTCACCTCGCA


GCCCTCCAAGCGCTTCAAGGAGAGCCACGTCCGCTTCTACACTGCAGAGGTGCTGATTGCGCTGCAGTAC


CTGCACCTGATGGGCTTTGTGTACCGGGACCTGAAGCCCGAGAACATTCTGCTGCACAGCAGCGGCCACA


TCCTGCTTACCGACTTTGATCTCTCCTACTGCCAGGGCTCCACCGAAGTTAAGTTTGAGAAGAAGAAGAA


CGGCCACGCCAAGCCGCAGCTCGGGGCTGGGCAGGTGAGACCCTCAGAGGAGATCACGCTGATCGCTGTG


CCGGACGCGCGCGCCAAATCCTTTGTGGGCACTGAGGAGGACCTTGCGCCAGAGGTCATAAACGGTGTCG


GCCACGGGCCAGGAGTGGACTGGTGGAGTTTTGGGATCCTGATCTATGAGCTGTTGTACGGATTCACCCC


TTTCCGGGGCAAGAAGCGTGACGAGACATTCAACAACATCCTCAAGCGACCGCTCAACTTCCCTGAATTG


CCGGAGGTCTCCGACGAGTGCAAGGACCTGATTTCGCAGCTGCTGGAGCGCGACCCGGCCAAGCGGCTGG


GCGCGCACGCGGGCGCAGAGGAGATCAAGGCGCACCCCTTCTATGAGTCCATCAATTGGGCCCTCCTGCG


CAACACGCGGCCGCCCTACATCCCCCGCCGCAATGTGCGCAAGGCCACCCCCTCCCCCGCCGCGGAGGCC


AATTTCGGCGACTTCTGA






SEQ ID NO: 108









>AHZ63930.1 phototropin [Coccomyxa subellipsoidea]


MPAQTGQAEKQQKDAQLHPELQRPGQKVPGPAPQLTKVLAGLRHTFVVADATLPDCPLVFASEGFLSMTG


YSAEEVLGHNCRFLQGEGTDPKEVAIIRDAVKKGEGCSVRLLNYRRDGTPFWNLLTMTPIKTEDGKVSKF


VGVQVDVTSKTEGKAFSDATGVPLLVKYDTRLRENVAKNIVQDVTSQVQEAEEEDSEATRVAGLKGFNKL


WHKMGNKSSANDPQLQKQGERLGKKMTAPKTFPRVAMDLATTVERIQQNFCICDPNLPDNPIVFASDGFL


EMSQNDRFEVLGRNCRFLQGPDTDPKAITIIRDAIKSQSEATVRILNYRKNGQPFWNMLTIAPMADVGGT


SRFFIGVQVDVTAEDVPMTGGIPAVDQKAVKAADPMGSVLGMAQRQMGAGWAVHDPWQAIHAGVSSRKPH


KAQEKPWAALQATNEKTGRLGLSQFRRLKQLGTGDVGLVDMVELQDGSGRYAMKTLEKAEMLERNKVMRV


LTEAKILSVVDHPFLASLYGTIVTDTHLHFLMQICEGGELYALLTSQPSKRFKESHVRFYTAEVLIALQY


LHLMGFVYRDLKPENILLHSSGHILLTDFDLSYCQGSTEVKFEKKKNGHAKPQLGAGQVRPSEEITLIAV


PDARAKSFVGTEEDLAPEVINGVGHGPGVDWWSFGILIYELLYGFTPFRGKKRDETFNNILKRPLNFPEL


PEVSDECKDLISQLLERDPAKRLGAHAGAEEIKAHPFYESINWALLRNTRPPYIPRRNVRKATPSPAAEA


NFGDF






SEQ ID NO: 109









>KJ195128.1 Prasiola crispa phototropin (PHOT) mRNA, complete cds


ATGGCGTCTCAAAGAAAGGTGCCGGCCCCCGCAGCTCAGCTCACAAAGGTGCTTGCGGGTTTACGGCATA


CGTTTGTGGTAGCTGACGCAACTCTACCGGATTGTCCACTGGTCTACGCGAGCGAAGGGTTCCTGCAGAT


GTCTGGCTACACTGCTGACGAGGTGTTGGGGCACAACTGTCGGTTTCTGCAAGGAGAGGGCACCGACCCA


AAGGAGGTCGCGGTCATTCGAGATGCTGTAAAACACGGTACCAGCTGCTCTGTGAGGCTGCTGAATTATC


GCAAGAATGGCAGCCCCTTTTGGAATCTGCTGACTATGACGCCTATCAAAACGGACGATGGCAAAGTGAC


CAAGTATGTTGGCGTCCAAGTGGATGTAACGAGTAAAACCGAGGGGCTTTCAACTGGCGATCAATCAGGC


GTGCCTTTACTGGTGAAGTATGATACCAGGCTCAAGGAAAGTGGGAAGAATGCAGTCAACGAAATCAACG


CGACAGTCCAGGAGGCAGAGCCGAGCAAGCTGCCCAAGAAGTCTAAAGCACCCAAGGCTTTCCCTCGTGT


CGCCATGGACTTGGCGACGACTGTCGAACGCATCCAGCAGAACTTTGTGATCTCTGACCCCCACTTGCCC


GACTGCCCCATCGTGTTCGCATCCGACGGGTTCTTGGACCTCACAGAGTATAGCCGCGAGGAGATTCTCG


GCCGCAACTGCCGCTTCTTGCAGGGCCAAGACACAGATCCTGCAGCGGTGTCTGAGATTCGGGATGCTGT


GCGGAACGGCAGCGAGGCGAGTGTCAGGCTGCTGAACTACAAGAAGTCCGGGACACCCTTCTGGAACATG


TTCACTTTGGCGCCCATGGCAGACGTGGATGGCAATCTGCGCTTCATCATCGGAGTCCAGGTCGATGTGA


CGGCAGCGGATACAACGGCTCCTGGGAAGCTGCCAGCTGTCGATCCGCAGGCAGCTGTCAGTGCTCAGAC


GACTGGGATGATTAACACCGCGCTCCAACATATGGGGCTGGGTCCTGACCCCTGGAAAGCTATTAGGGTC


GGGGTGGCATCGACTAAGCCACATTCTTCAGCAGCTCCGGAATGGAAGAAGTTGCGCAGACTACAGGACA


GCGATGTTGCCCTCAAGCTGTCCCACTTTCGAAGAGTGAAACAGCTCGGCTCGGGTGATGTCGGCCTGGT


TGATCTCGTCCAAATTCAGGGCGACTCCGAATCAAGGTATGCTATGAAGACACTAGAGAAGCGAGAGATG


GTAGAACGCAACAAGGTGATGCGCGTCCTCACTGAGGAGCGAATCCTGGCTGCCGTGGACCACCCCTTCG


TTGCACATCTATACGCCACCATTCAAACCGAGACACACCTCCACTTCCTCATGCAGTACTGTGGGGGAGG


TGAGCTATACGGCCTCCTGATGAGTCAGACTCACAAGCGGCTATCAGAGAGTCACATGCAGTTTTATGTC


GCTGAAGTGCTGCTGGCTCTCCAATATCTTCACCTTCTCGGTTTTGTATACCGGGATCTGAAGCCGGAGA


ATATTCTGATCAGTGCCTCCGGACATGCGCTGCTGACGGATTTCGATCTGTCTTTCTGCTCAAATGGCAC


CAAGCCTCGCATTGAGCGGTCAGCGCCATCGCATCTGAGGGAGCAGAGCAGTCGCAACAGCAGCAAGGTG


CAGAAGAACGGACAGAACAAGTCGGAGAGGTGGAACGCAATGGAGGCAGCTTCTCTGACTCTGGTAGCTG


AGCCCGAGGGTCGTGCCAATTCCTTTGTGGGCACAGAGGAGTATTTGGCCCCTGAAATCATCAACGGCAC


TGGCCACGGTCCCGGAGTTGATTGGTGGTCTTTTGGTATCCTAATGTATGAGCTGGTGTACGGGTTCACA


CCCTTCCGTGGGGCCAAACGAGACCAGACTTTCGAGAACATCCTCAAGTCCCCTCTCATTTTCCCACCCA


AGCCAGAGATCAGCAAGTCCTGTCAGGATTTGATATGTGCACTTCTGGTGCGACAACCAGAGTCGCGGCT


AGGCGCCTACGCCGGAGCTGAGGAAATCAAGCTGCATCCTTTCTTCAGCAACATCAACTGGCCGCTGATC


CACAACAGCAAGCCTCCCTATGCGCCCTCATCCTCTGGTGGCGGCCTCCGACAGAACCCAGCGTTTGACA


ACTTCTGA






SEQ ID NO: 110









>AHZ63929.1 phototropin [Prasiola crispa]


MASQRKVPAPAAQLTKVLAGLRHTFVVADATLPDCPLVYASEGFLQMSGYTADEVLGHNCRFLQGEGTDP


KEVAVIRDAVKHGTSCSVRLLNYRKNGSPFWNLLTMTPIKTDDGKVTKYVGVQVDVTSKTEGLSTGDQSG


VPLLVKYDTRLKESGKNAVNEINATVQEAEPSKLPKKSKAPKAFPRVAMDLATTVERIQQNFVISDPHLP


DCPIVFASDGFLDLTEYSREEILGRNCRFLQGQDTDPAAVSEIRDAVRNGSEASVRLLNYKKSGTPFWNM


FTLAPMADVDGNLRFIIGVQVDVTAADTTAPGKLPAVDPQAAVSAQTTGMINTALQHMGLGPDPWKAIRV


GVASTKPHSSAAPEWKKLRRLQDSDVALKLSHFRRVKQLGSGDVGLVDLVQIQGDSESRYAMKTLEKREM


VERNKVMRVLTEERILAAVDHPFVAHLYATIQTETHLHFLMQYCGGGELYGLLMSQTHKRLSESHMQFYV


AEVLLALQYLHLLGFVYRDLKPENILISASGHALLTDFDLSFCSNGTKPRIERSAPSHLREQSSRNSSKV


QKNGQNKSERWNAMEAASLTLVAEPEGRANSFVGTEEYLAPEIINGTGHGPGVDWWSFGILMYELVYGFT


PFRGAKRDQTFENILKSPLIFPPKPEISKSCQDLICALLVRQPESRLGAYAGAEEIKLHPFFSNINWPLI


HNSKPPYAPSSSGGGLRQNPAFDNF






SEQ ID NO: 111









>KT321727.1 Scourfieldia sp. STK 1728 phototropin (PHOT) cds


ATGAATCCGGAGTATGACGACCCGCCGCCGGCGGGCGCGGAGCGCGTCACCAAGGACGCCACCCACAATG


CGCTGATCGTGAAGAAGGTCCGCACCAAAGAGGAGCACGAGGCGCTGTCGCCCGTGACGGGCGTCGTGGC


GCCGTCCAAGCCCCTCACGATGGCGATGGCTGGCATGTGGCAGACTTTTGTCATCACAGACATGACCATC


AAGGACGGGCCCATCGTGTTCGCGTCGGAGGGCTTTTACCACATGACGGGCTACCCCGCGGATGAGGTGC


TCGGCCGCAACTGCCGCTTCCTGCAGGGGCCGGACACGAACCGCGATGACGTGACCAAGCTGCGCAATGC


CGTGATGGGCGGATTCTCCGTCAGCGTGCGGCTGCTCAACTACCGCAAGGATGGCAACCCGTTCTGGAAC


TACCTCACCATGACGCCCATCAAGAACGAGGACGGTATCGTGACCAAGTTCGTGGGCGTTCAGGTGGACG


TGTCGAGCAAGACCGAGGGCCGCGTCACGTCGGCGTTTGCGGACCGGCAGGGCGTGCCGCTGCTGATCAA


GTACGACACGCGCATCCGCGATAACGCGATGCGCGAGAACGTGGCGCCCGTCATCCAGGCCGTGGCCACC


GCTGAGGGCGGCACCGCCGCCTCGTTCCCGACGGCCGCCTCGGACGCGGTCGGCGGCGTGGCCGACTCGC


GCGCGTCGATGGGCGCGACCTCGATCGATCAGGCCGCGCAGCCGGGCTCGATGGAGGTCCGGCGCTCGGT


GGTGCCGGCCTGGGAGGCCAAGACCCGCCACGGTCTGGACCTGGCCACCACCCTGGAGCGCCTGCAGGCG


TCCTTCTGCGTGTGCGACCCGTCAGTCAAGGGCGCGCCGATCGTGTTTGCGTCCGACACGTTCTTGACGT


TGACCGAGTACCCGCGCGAGGAGGTGCTGGGCCGCGACTTTCTGTTCCTGCAGGGCCCCAAGACCGACAA


GCGGGCGCTCAAAGAGATCAGCACGGCCATCGCGGAGAACTCCGAGGCGACGGTTCGCGTGCTCAACCAG


ACCAAGTCCGGCCGCCAGTTTTGGGACATGTTCCACGTGGCGCCGATCAAGGACCTGGCGGGTAACGTGA


TGTATCTGATCGGTGTGCACATGGATGTATCCCAGATGGTGGACGACCGGTCGGCCTCCAAGGACGCCAA


CCTGGTGGGCCAGCTCGCGCCGCACCTGAAGCAGGCCATGGGCGGCATCTCCACGGCCGTCGGCGCGGTG


GCCGACAAGGCCAAGATTGCGGACCCGTTCGCGCGCATCGACGGCCGGCGCGTGCGCGCCACCAAGCCGC


ACCAGTGCAACGACCAGGGCTGGAAGGCCATCCAGGCGCTGGTGACCCGCGACGGCTACGTGGGGCCGAT


GCACTTCGAGAAGGTCCGGCGGCTCGGCTCCGGCGACGCGGGCCAGGTGTACCTGGTTCAGATCAAGGGC


GGCGGGCACCGCTACGCCATGAAGGTGCTGAGCAAGCAGGACATGCTCGAGCGCAACAAGGTGCACCGTG


TCAACACCGAGGAGTCGATCCTGTCCTCTCTGGACCACCCCTTCCTGGCCACGCTGTACGCGGCCTTCCA


GACCGAGTCGAATCTGCACTTCATCATGCAGTACTGCGGCGGCGGGCAGCTGTACGACCTGCTGCGCAAG


CAGGAGCCCAAGGGCCGGCTGCCGGAGGAGTCGACGCGCTTTTACACGGCCGAGGTGCTGCTGGCGCTGC


AGTATCTGCACCTGCAGGGCTTCATCTACCGCGACCTCAAGCCCGAGAACGTGCTGCTGCGCGAGGACGG


CCACATCATCTTGACGGATTTCGATCTGTCCTACACGGGCGTGACCAAGCCTGTGATGCTGCCGGCCGCG


GCGGGGCCCGCCGGCGCGCGCGGGCCGGCGCTGATGGCCGAGCCCGAGGCGATGGCCAACTCCTTCGTGG


GGACGGAGGAGTACCTGTCGCCCGAGGTGGTGGCGGGCGCCGGGCACTCGGCGGGGGTGGACTGGTGGTG


CCTGGGCATCTTCATGTTTGAGCTGTTTTATGGCATGACCCCGTTCAAGGGCGCCTCGCTGGACCGCACC


ATGGACAACGTGCTCAAAAAGGACGTGGTGTTCCCCGAGGTGCCCAGCGCGGGCTTCCCCGGTGTGCAGA


TGTCGCCCGAGGGCCAGGACTTTATCCGTCAGCTGCTGCAGCGCGACCCGGCCAAGCGCCTGGGCGGCAA


GGGCGGCGCCGAGGAGATCAAGGCGCACCCCTTCTTTGAGGGCGTCGACTGGGCGCTGCTGCGCAACACG


ACGCCGCCCTATGTGCCGCCGGTGGGCCGCGGGCCGGCCAAGGTGCCGGGCGCGTCGTCG






SEQ ID NO: 112









>ANC96852.1 phototropin, partial [scourfieldia sp. STK 1728]


MNPEYDDPPPAGAERVTKDATHNALIVKKVRTKEEHEALSPVTGVVAPSKPLTMAMAGMWQTFVITDMTI


KDGPIVFASEGFYHMTGYPADEVLGRNCRFLQGPDTNRDDVTKLRNAVMGGFSVSVRLLNYRKDGNPFWN


YLTMTPIKNEDGIVTKFVGVQVDVSSKTEGRVTSAFADRQGVPLLIKYDTRIRDNAMRENVAPVIQAVAT


AEGGTAASFPTAASDAVGGVADSRASMGATSIDQAAQPGSMEVRRSVVPAWEAKTRHGLDLATTLERLQA


SFCVCDPSVKGAPIVFASDTFLTLTEYPREEVLGRDFLFLQGPKTDKRALKEISTAIAENSEATVRVLNQ


TKSGRQFWDMFHVAPIKDLAGNVMYLIGVHMDVSQMVDDRSASKDANLVGQLAPHLKQAMGGISTAVGAV


ADKAKIADPFARIDGRRVRATKPHQCNDQGWKAIQALVTRDGYVGPMHFEKVRRLGSGDAGQVYLVQIKG


GGHRYAMKVLSKQDMLERNKVHRVNTEESILSSLDHPFLATLYAAFQTESNLHFIMQYCGGGQLYDLLRK


QEPKGRLPEESTRFYTAEVLLALQYLHLQGFIYRDLKPENVLLREDGHIILTDFDLSYTGVTKPVMLPAA


AGPAGARGPALMAEPEAMANSFVGTEEYLSPEVVAGAGHSAGVDWWCLGIFMFELFYGMTPFKGASLDRT


MDNVLKKDWFPEVPSAGFPGVQMSPEGQDFIRQLLQRDPAKRLGGKGGAEEIKAHPFFEGVDWALLRNT


TPPYVPPVGRGPAKVPGASS






SEQ ID NO: 113









>KT321734.1 oedogonium foveolatum phototropin (PHOT) mRNA cds


ATGTCGGCTCCTTCCGGTGCTCCAAATGTGCCTGCACCAGCGGCTCAGTTAACTAAAGTCCTTGCTGGAT


TGCGGCACACATTCGTGGTGTCAGATGCAACACTACCTGATTTTCCGCTGGTTTTTGCTAGCGAGGGATT


TCTTCAAATGACGGGCTACACTGCGGATGAAGTCTTGGGTCATAACTGTCGCTTCCTTCAAGGAGAAGGT


ACAGATCCCAAGGAAGTGGCCAAGATTCGCGAAGCTTTAAAAAAAGGTGAACCCATCAGCGTCAGGTTGT


TAAACTATCGTAAAGATGGCACTCCGTTTTGGAACCTGCTTACGATGACGCCCATCCACACCCCTGATGG


CAAGGTGTCCAAGTTCATTGGGGTGCAGGTCGATGTGACCAGCAAGACCGAGGGCAAAGCTTACGAAGAA


AACAAGGGCATGCCGTTAATCGTCAAGTATGACGCACGTTTGCGTGAGAATGTTGCCAAGAACATCGTCG


AAGACGTCCAAACCACGGTCGAGAAGGTGGAGCTCGGCGAGCGTCCGAAAGTTCATGGTCCGAAGGCCTT


CCCCCGTGTTGCGCTAGATTTAGCCACAACAGTCGAGCGTATCCAGCAAAACTTCGTCATCTGCGATCCC


ACCCTCCCTGATTGCCCGATTGTGTTTGCATCTGATGCGTTCCTGGAGCTCACAGAGTATTCCCGCGAGG


AGGTGTTAGGTCGAAACTGCCGGTTTTTGCAAGGCAAACACACTGATGCTGCAGCAGTCGCTGAGATCAG


AGAGGCAGTCCACAATGGCCAGGAACTGACTGTGCGTCTTCTGAATTACACCAAGTCCGGCCGGCCGTTT


TGGAACATGTTCACCATGGCTCCCATGATGGATCAGGACGGTACGATCCGCTTCTTCATTGGAGTGCAAG


TCGATGTCACTGCTCAGTCTAAGGCTCAAGGCGAAGCTGCAGCATGGAAGAAGACTCCTGAGGTGCAGGC


TCAAGCGCAGCTGGGGCATCAGGCAGCTTCTGCTATTGGTGCAGCCCTTAAAATGAATGCCACTTGGGTT


GCAGATCCATGGTCTGCTATTGCTGGAAACGTTGTGAGATGCAAACCCCACAAGTCAGCTGACAGTGCGT


ACAAAGCTTTGGCGGACATATCTAAGAAGGAGGGCAAAGTAAAATTGATGCACTTTCGTCGCGTAAAGCA


ACTAGGATCTGGTGATGTTGGTTTGGTGGACTTGGTGCAGCTGCAGGGTCAGGAGCACCAGTTTGCCATG


AAAACTCTGGATAAATGGGAAATGCAAGAACGCAACAAAATTCAGCGCGTTTTGACGGAAGTGCAAATAC


TGAATCAAGTTGATCACCCATTCCTTGCAACTTTGTACTGCACCATCCAAACTGAAACCCACTTGCATTT


CATCATGGAATATTGTGAAGGTGGTGAGCTGTATGGCTTATTGCATTCACAACCCAGGAAGCGGCTCAAA


GAATCTCAAGTCAAGTTCTATGCAGCAGAGGTGCTGGTTGCTCTGCAGTACCTACACCTGCTGGGCTATG


TGTATCGGGACTTGAAGCCTGAGAATATTCTGCTGCATAGTTCAGGCCACGTGCTTCTAACTGATTTTGA


TCTGTCCTATGCTAAGGGCACCACGACTCCAGTCCTGGAAGAGCGTTCGGTTCCGAAAATGCAGGCGAAA


ACCAAGAATGGGAAGAAGGTTGTGGTGACTCCGCCACAATATGTCCTGGTTGCAGAGCCCCAGGCGAAGG


CCAACTCCTTCGTAGGCACCGAAGAGTACCTTGCACCGGAAGTCATCACTGCTCAGGGTCATTCTGCAGG


CGTTGACTGGTGGTCCTTTGGTATCTTGATGTATGAGTTATTGTACGGTTTCACGCCTTTCAGGGGTTCA


CGGCGAGATGAAACTTTCGAGAACATCCTGAAACAGCCTCTTTCATTTCCTTCCAACCCGCCAATTAGCG


ACCAGTGCAAGAACTTGATTTCTTCGCTGCTTGTCAAGGAGCCAGCCCAGCGTCTGGGGGCCAAGGCAGG


AGCTGAGGACATCAAAGCTCATCCATTTTTCGCAGGCACTAATTGGGCTCTCTTGCGCAATGAGACACCT


CCTTACGTGCCGAAGCAGGGCAAAGATCCTGCAACCCCAGGCAGTGCTCAGTTCAACAACTTTTGA






SEQ ID NO: 114









>ANC96859.1 phototropin, partial [Oedogonium foveolatum]


MSAPSGAPNVPAPAAQLTKVLAGLRHTFVVSDATLPDFPLVFASEGFLQMTGYTADEVLGHNCRFLQGEG


TDPKEVAKIREALKKGEPISVRLLNYRKDGTPFWNLLTMTPIHTPDGKVSKVQVDVTSKTEGKAYEE


NKGMPLIVKYDARLRENVAKNIVEDVQTTVEKVELGERPKVHGPKAFPRVALDLATTVERIQQNFVICDP


TLPDCPIVFASDAFLELTEYSREEVLGRNCRFLQGKHTDAAAVAEIREAVHNGQELTVRLLNYTKSGRPF


WNMFTMAPMMDQDGTIRFVQVDVTAQSKAQGEAAAWKKTPEVQAQAQLGHQAASAIGAALKMNATWV


ADPWSAIAGNVVRCKPHKSADSAYKALADISKKEGKVKLMHFRRVKQLGSGDVGLVDLVQLQGQEHQFAM


KTLDKWEMQERNKIQRVLTEVQILNQVDHPFLATLYCTIQTETHLHFIMEYCEGGELYGLLHSQPRKRLK


ESQVKFYAAEVLVALQYLHLLGYVYRDLKPENILLHSSGHVLLTDFDLSYAKGTTTPVLEERSVPKMQAK


TKNGKKVVVTPPQYVLVAEPQAKANSFVGTEEYLAPEVITAQGHSAGVDWWSFGILMYELLYGFTPFRGS


RRDETFENILKQPLSFPSNPPISDQCKNLISSLLVKEPAQRLGAKAGAEDIKAHPFFAGTNWALLRNETP


PYVPKQGKDPATPGSAQFNNF






SEQ ID NO: 115









>KT321737.1 Fritschiella tuberosa phototropin (PHOT) mRNA, partial cds


ATGGCAGACCCGAACGTCCAACCGGTGCCCGCGCCGGCAACGCAGCTCACCAAGGTCCTGGTTGGCCTGC


GGCACACTTTTGTCGTCGCTGATGCCACGCTGCCAGACCTCCCGCTGGTTTACGCCAGCGACGGGTTCTA


CCAGATGACGGGCTACGGCCCGGACGAGGTGCTGGGCCACAACTGCCGCTTCCTGCAAGGAGAGGGCACG


GACCCCAAGGAGGTGGCGAAGGTGCGGGCAGCCATCAAGAATGGCGAGCCCGTGAGCGTGCGCCTGCTCA


ACTACCGCAAGGACGGCACGCCCTTCTGGAACTTGCTCACCATGACGCCCATCAAGACGCCCGACGGCCG


CGTCTCCAAGATCGTGGGCGTGCAGGTCGACGTCACCAGCAAGACCGAGGGCAAGGCCGCGGCCGAGGCC


AAGGGCGTGCCGCTGCTGGTCAAGTACGACGCACGCCTGCGCGAGAACGTCGCCAAGAAGATCGTCGAGG


ACGTCACCACCGCCGTGCAGACCGCCGAGACCGGAGAGGACAAGGTCAAGGCGCAGGCGCCCAAGGCCTT


CCCGCGTGTGGCCATGGACCTGGCCACCACGGTGGAGCGCATCCAGCAGAACTTCTGCATCTGCGACCCC


ACGCTGCCCGACTGCCCCATCGTGTTCGCGTCGGACGCCTTCCTGGAGCTGACAGAGTACACGCGCGAGG


AGGTGCTGGGGCGCAACTGCCGCTTCCTGCAGGGGCCGGCCACGGACAAGCACACCATCGACGAGATCCG


GCAGGCCATCCGCATGGGCTCCGAGTGCACCGTGCGCGTGCTCAACTACACCAAGACAGGCCGCCCCTTC


TGGAACATGTTCACGCTGGCGCCCATGTGCGACCAGGACGGCACCATCCGCTTCTTCATCGGCGTCCAGG


TGGACGTGACGGCGCAGTCGGGGCAGCCGGGCATGGACGTGCCGCAGTGGTCACGCACCAAGTCGCAGGA


GGTGCAGACCGCCAAGCAGGGCCACCAGGCGGCCACCGCCATCTCGGCGGCGCTGCAGACCATGGGCTGG


CCCGCCAACCCGTGGGCGTCCATCCAGGGCGTCGTCGCGCGCCAGAAGCCGCACAAGCGCGGCGACCGCG


CGTTCCAGGCGCTGCGGGAGCTGCAGGAGCGTGAGGGCAAGCTCAAGCTGCTGCACTTCCGGCGCATCAA


GCAGCTGGGCACGGGCGACGTGGGCAACGTGGACCTGGTGCAGCTGCAGGGCACCGAGTTCCGCTTCGCG


ATGAAGACGCTGGACAAGCTGGAGATGCAGGAGCGCAACAAGGTGCAGCGCGTGCTCACAGAGGAGGGCA


TCCTGTCGCACGTCGACCACCCCTTCCTTGCCACCCTCTACTGCACCATCCAGACGGACACGCACCTGCA


CTTCGTCATGGAGTTCTGCGACGGCGGCGAGCTGTACGGCCTGCTCAACAGCCAGCCCAAGAAGCGGCTC


AAGGAGGCGCACGTGCAGTTCTACGCGGCGGAGGTGCTGCTGGCGCTGCAGTACCTGCACCTGCTGGGCT


ACATTTACCGCGACCTGAAGCCGGAGAACATCCTGCTGCAGGCGTCCGGCCACGTGCTGCTGACCGACTT


CGACCTCTCCTACGCGCAAGGCGTCACCGACGTCTCTCTGGAGAAGGTAGTCAAGCGGTCTCGCACTGGC


AAGGTGGTGCGGCGCGGCGCCGGCATCGAGAACTACACGCTGGTGGCGGAGCCGGAGGCGCGCGCCAACT


CTTTCGTGGGCACGGAGGAGTACCTGGCGCCCGAGGTGATCAACGCCAGCGGGCACGGCAGCCAGGTGGA


CTGGTGGTCCTTCGGCATCCTCATCTACGAACTCGTCTACGGCTTCACGCCCTTCCGCGGCTCCCGCCGC


GACGAGACCTTCGAGAACATCCTCAAGCGCGAGCTCACCTTCCCCCTCAAGCCCGAGATCAGCCCGGAGT


GCAAGTCGCTCATCTCGGCGCTGCTGGTCAAGGACCCCACGATGCGGCTGGGCTACAAATACGGCGCGGA


GGAGATCAAGAAGCACCCCTTCTTCGCCGGCATCGTCTGGCCCCTGCTGCGCCACCGCGCGCCCCCCTAC


GTCGTAGAGAACCAGCTGCCTGTGGGCGTGCCGCACGCCAATCAGCACTTTGACGACTACTAA






SEQ ID NO: 116









>ANC96862.1 phototropin, partial [Fritschiella tuberosa]


MADPNVQPVPAPATQLTKVLVGLRHTFVVADATLPDLPLVYASDGFYQMTGYGPDEVLGHNCRFLQGEGT


DPKEVAKVRAAIKNGEPVSVRLLNYRKDGTPFWNLLTMTPIKTPDGRVSKIVGVQVDVTSKTEGKAAAEA


KGVPLLVKYDARLRENVAKKIVEDVTTAVQTAETGEDKVKAQAPKAFPRVAMDLATTVERIQQNFCICDP


TLPDCPIVFASDAFLELTEYTREEVLGRNCRFLQGPATDKHTIDEIRQAIRMGSECTVRVLNYTKTGRPF


WNMFTLAPMCDQDGTIRFVQVDVTAQSGQPGMDVPQWSRTKSQEVQTAKQGHQAATAISAALQTMGW


PANPWASIQGVVARQKPHKRGDRAFQALRELQEREGKLKLLHFRRIKQLGTGDVGNVDLVQLQGTEFRFA


MKTLDKLEMQERNKVQRVLTEEGILSHVDHPFLATLYCTIQTDTHLHFVMEFCDGGELYGLLNSQPKKRL


KEAHVQFYAAEVLLALQYLHLLGYIYRDLKPENILLQASGHVLLTDFDLSYAQGVTDVSLEKVVKRSRTG


KVVRRGAGIENYTLVAEPEARANSFVGTEEYLAPEVINASGHGSQVDWWSFGILIYELVYGFTPFRGSRR


DETFENILKRELTFPLKPEISPECKSLISALLVKDPTMRLGYKYGAEEIKKHPFFAGIVWPLLRHRAPPY


VVENQLPVGVPHANQHFDDY






SEQ ID NO: 117









>KT321742.1 Pediastrum duplex phototropin (PHOT) mRNA cds


ATGTCGCAACCAAGTGCATCGATACCAGCTGCGGCTGGGCAGCTGACCCAGGTGTTAGCTGGGCTGAAGC


ATACTTTCGTTGTGGCCGATGCAACGCTGCCAGACTGTCCCCTGGTGTTCGCTAGCGAAGGATTCTACCA


GATGACTGGCTATGGCCCTGATGAGGTTCTAGGGCACAACTGCCGCTTCTTGCAAGGAGAGGGCACTGAC


AAGAAGGAAGTTACAAAGCTGCGCCAAGCGATCAAGGATGGTGAGCCCATCAGCGTCCGTCTGCTGAACT


ACCGCAAGGATGGAACACCATTCTGGAACCTGCTGACCATGACCCCAATCAAGACACCTGATGGCAAGGT


GTCGAAGTTCGTGGGGGTGCAGGTGGATGTGACCAGTAAGACAGAGGGGAAGCTGCCCCACGAGAACCTG


CTGGTCAAGTATGATGCCCGCCTGCGTGACAACGTGGCCGTCAACATTGTAACAGACGTCACCAACGCTG


TGCAGAAGACAGAGACGGGGACCAACGCCCCGCTGAGTGTGATCCCTACAGGGATTGGGAAGCACGGCCC


CAAGGCGTTCCCCCGTGTGGCTATTGATCTGGCCACCACTGTGGAGCGCATCCAGCAGAACTTCTGTATC


TGTGACCCCACGCTACCGGATTGCCCTATTGTGTTTGCGTCTGATGCGTTCCTGGAGCTGACTGAGTATG


CTCGTGAGGAGGTGCTGGGCCGCAACTGCAGGTTCTTACAGGGCCCTGGCACAGACCCCAAGACCGTGCA


GGTGATCCGTGATGCCATCAAGACACGGGATGAGATCACGGTGCGCATCCTGAACTACACCCGCAGCGGG


AAGCCCTTCTGGAACATGTTCACCCTGGCCCCCATGAAGGACAGCAATGGGGAGACACGCTTCCTGGTGG


GAGTGCAGGTGGATGTGACTGCCCAGGGTGAAAAGGGTGACACCACCCTGCCCTCCTGGAACAAGACCAC


CAGTGAGGAGGTGGTGAAGGCGCAGCAGGGCAACCAGGCAGCCAGCCTTATCAGCAACGCACTGCAGAGC


ATGGGCTGGGGGGCCAACCCCTGGGCAGGCATCACAGGCACAGTTATGAGGAGGAAGCCTCACAAGGGTG


AGGACCAGGCCTATCAGACGCTGCTGAACCTCCAGGGGCGGGAGGGGAAGCTGAAGCTGGCTCACTTCAG


GCGGGTGAAGCAGCTGGGGGCGGGAGATGTGGGGCTGGTGGACCTGGTGCAGCTGCAGGGTACTGACTTG


AAGTTCGCCATGAAGACGCTGGACAAGTGGGAGATGCAGGAGCGCAACAAGGTGGCCCGCGTGCTGACGG


AGGAGAACATCCTGACTGTGGTGGACCACCCCTTCCTTGCCACCCTCTACTGCGCCATCCAGACAGACAC


ACACCTCCATTTCGTGATGGAGTACTGTGAGGGAGGGGAGCTGTATGGCCTGCTCAATGCACAGCCCAAG


AAGCGCTTGAAAGAGGCACATGTCAAGTTCTACGCTGCTGAGGTGCTGCTGGCTCTGCAGTACCTGCACC


TGCTGGGGTACATCTACCGCGACCTGAAGCCCGAGAACATCCTCCTCCACCACACTGGCCATGTACTGCT


CACTGACTTTGACCTCAGCTATGCACGTGGCACAGCCAGCGTTAAGATCCAGGCCACACCTAGTGAGGGG


GGCAAGCGGGTCAAATCTTCCAGCTGCACCAAGCCGCCAGAGGAGGCGGGGCCGGCACCGCATACTGCCC


CCAATGGGGACGAGCTGGTGCTGCTGGCAGAGCCTGCCGCCCGGGCGAACTCCTTTGTGGGGACAGAGGA


GTACCTGGCTCCTGAGGTCATTAATGCGGCTGGGCATGCAGCACCGGTGGATTGGTGGTCCTTTGGGATC


CTCATGTACGAGCTGCTGTATGGCTTCACGCCCTTCCGTGGTGCACGGCGTGAGGAGACGTTTGAGAACA


TCTTGCGTAATCCGCTGACCTTCCCCAGCAAGCCTGTGGTGTCGGAGGCTTGTCAAGATCTGATCCGGCA


GCTGCTGGTGAAGGACCCGGCAAAGCGGTTGGGGACGCGGGCGGGTGCGGAGGAGATCAAGAAGCATGAG


TTCTTCAAGGGGGTCAACTGGGCGCTGGTGCGGAATGAGCAGCCACCGTATGTGCCAAGAAAGGTGGCAG


CAGGAGGGAAGGAGGGCAGTAGTTTGAGTATGAATGCCAGTATGGATCAGGGGAGCGCTGGGTTTGACAA


CTACTGA






SEQ ID NO: 118









>ANC96867.1 phototropin [Pediastrum duplex]


MSQPSASIPAAAGQLTQVLAGLKHTFVVADATLPDCPLVFASEGFYQMTGYGPDEVLGHNCRFLQGEGTD


KKEVTKLRQAIKDGEPISVRLLNYRKDGTPFWNLLTMTPIKTPDGKVSKFVGVQVDVTSKTEGKLPHENL


LVKYDARLRDNVAVNIVTDVTNAVQKTETGTNAPLSVIPTGIGKHGPKAFPRVAIDLATTVERIQQNFCI


CDPTLPDCPIVFASDAFLELTEYAREEVLGRNCRFLQGPGTDPKTVQVIRDAIKTRDEITVRILNYTRSG


KPFWNMFTLAPMKDSNGETRFLVGVQVDVTAQGEKGDTTLPSWNKTTSEEVVKAQQGNQAASLISNALQS


MGWGANPWAGITGTVMRRKPHKGEDQAYQTLLNLQGREGKLKLAHFRRVKQLGAGDVGLVDLVQLQGTDL


KFAMKTLDKWEMQERNKVARVLTEENILTVVDHPFLATLYCAIQTDTHLHFVMEYCEGGELYGLLNAQPK


KRLKEAHVKFYAAEVLLALQYLHLLGYIYRDLKPENILLHHTGHVLLTDFDLSYARGTASVKIQATPSEG


GKRVKSSSCTKPPEEAGPAPHTAPNGDELVLLAEPAARANSFVGTEEYLAPEVINAAGHAAPVDWWSFGI


LMYELLYGFTPFRGARREETFENILRNPLTFPSKPVVSEACQDLIRQLLVKDPAKRLGTRAGAEEIKKHE


FFKGVNWALVRNEQPPYVPRKVAAGGKEGSSLSMNASMDQGSAGFDNY






SEQ ID NO: 119









>Volvox carteri f. nagariensis phototropin cds


ATGGCAGGGGTACCCTCCCCCGCCAGCCAGCTCACGAAGGTGCTGGCCGGCCTGCGGCATACGTTTGTCG


TTGCGGATGCAACACTCCCGGATTGCCCCCTGGTGTACGCCAGTGAAGGGTTCTACGCAATGACAGGATA


CGGTCCTGATGAGGTTCTTGGACATAACTGCCGGTTTCTGCAGGGCGAGGGTACGGACCCCAAGGAGGTT


CAAAAGATCCGCGAGGCCATCAAGAAGGGGGAGGCGTGCTCGGTGCGCCTGCTCAACTACCGCAAAGATG


GCACGCCGTTCTGGAACCTGCTCACGGTGACGCCCATCAAGACTCCGGACGGCAAGGTGTCCAAGTTTGT


GGGTGTGCAGGTCGATGTGACCAGCAAGACGGAGGGCAAGGCGCTCGCGGACAACTCCGGCGTGCCCCTG


CTCGTCAAGTACGACCACCGTTTGCGCGAAAACGTGGCCAAGAAGATTGTGGATGATGTCACCATTGCCG


TGGAGAAGGCGGAGGGTGTGGAACCTGGGGCAGCCTCGGCCGCCGCCACGGCGGCTGGTCAGGGAAAGCC


GCAGGGCGTCCGCGGCGCGGCCCCCAAGTCCTTTCCTCGTGTGGCTTTGGATCTGGCCACCACCGTGGAG


CGCATCCAGCAGAATTTCGTCATTTCAGATCCAACATTGCCGGACTGCCCCATCGTCTTTGCTTCGGATG


CATTTTTGGAGCTGACTGGCTATTCGCGCGAGGACGTGCTGGGACGTAACTGCCGCTTTCTACAGGGCCC


CGGTACTGATTCAGCCACCGTGGATCAGATCCGTGAGGCCATCCGCACGGGTACGGAGATCACGGTCCGC


ATCCTGAACTACACCAAGCAGGGCCGACCCTTCTGGAATATGTTCACCATGGCGCCCATGAGAGATCAGG


ACGGCTCAGTGCGCTTCTTTGTGGGGGTGCAGGTAGACGTGACTGCTCAGTCCGCGACGCCGGACAAGAC


TCCCACGTGGAACAAGACTCCCTCCGCGGAGGAGGAGAAGGCCAAGCAGGGAGCCGTGGCGGCGTCCATG


ATTAGCAGCGCGGTTATGGGCATGGCCACACCCATGGCCAGCAACCCCTGGGCCGCCATCAACGGGGAGG


TCATGCGGCGTAAGCCCCACAAGAGCGATGATAAGGCCTATCAGGCGCTGTTGGCGCTGCAGCAGCGTGA


CGGCAAGTTGAAGCTGATGCACTTCCGGCGTGTGAAGCAGCTAGGGGCGGGAGATGTGGGTCTGGTGGAC


CTGGTGCAGCTGCAGGGCACGGACTTCAAGTTCGCCATGAAGACCCTGGACAAGTTCGAGATGCAGGAGC


GCAACAAGGTGCCCCGTGTGCTGACCGAGTGCTCTATTCTGGCGGCTGTGGACCACCCCTTCCTGGCCAC


CCTCTACTGCACCATTCAGACCGACACGCACCTGCACTTCGTCATGGAGTACTGCGATGGTGGCGAGCTG


TACGGCCTGCTGAACAGTCAGCCCAAGAAGAGGCTCAAGGAGGAGCATGTCCGGTTTTACGCGGCGGAGG


TCCTCCTGGCCCTGCAGTACCTGCACCTACTCGGCTACGTGTACAGGGACCTAAAGCCCGAGAACATCCT


TCTTCACCACTCGGGGCACGTGCTATTGACGGACTTTGACTTGTCGTACAGCAAGGGCGTTACGACACCG


CGGCTAGAGCGCGTGGCGGCGCCGGACGGCAGCGGTGGCGGCTCGGCGCCGGCGCCGGCGGGGTCGGCGG


GGTCAAAGTCTTCGCGCAAGTCCTTCCTGCTGCTGGCGGAACCTGTGGCCCGTGCGAACAGTTTCGTGGG


CACCGAGGAGTACTTGGCACCGGAGGTCATCAACGCGGCGGGACACGGATCGGGTGTCGACTGGTGGTCG


CTAGGCATCTTGATCTACGAGCTGCTGTACGGCACTACACCCTTTCGTGGATCAAGGCGGGACGAGACCT


TTGACAACATCATCAAGTCACAGCTGCGCTTCCCGGCCAAACCTGCTGTCAGTGAGGAGGGCCGCGACCT


CATCGAGAAGCTTCTGGTCAAGGACGTGAGCCGTCGCCTCGGCAGTCGTACAGGGGCCAATGAGATTAAG


TCGCATCCCTGGTTCAAGAGCATCAATTGGGCGCTGCTGCGCAACGAGCCGCCGCCGTACGTGCCGCGCC


GGGCATCCAAGACGCAGGGCGGTGGTGGCGGCGGCGGCGGCGGCGCGGCGTTCGACAACTACTGA






SEQ ID NO: 120









>EFJ48666.1 phototropin [Volvox carteri f. nagariensis]


MAGVPSPASQLTKVLAGLRHTFVVADATLPDCPLVYASEGFYAMTGYGPDEVLGHNCRFLQGEGTDPKEV


QKIREAIKKGEACSVRLLNYRKDGTPFWNLLTVTPIKTPDGKVSKFVGVQVDVTSKTEGKALADNSGVPL


LVKYDHRLRENVAKKIVDDVTIAVEKAEGVEPGAASAAATAAGQGKPQGVRGAAPKSFPRVALDLATTVE


RIQQNFVISDPTLPDCPIVFASDAFLELTGYSREDVLGRNCRFLQGPGTDSATVDQIREAIRTGTEITVR


ILNYTKQGRPFWNMFTMAPMRDQDGSVRFFVGVQVDVTAQSATPDKTPTWNKTPSAEEEKAKQGAVAASM


ISSAVMGMATPMASNPWAAINGEVMRRKPHKSDDKAYQALLALQQRDGKLKLMHFRRVKQLGAGDVGLVD


LVQLQGTDFKFAMKTLDKFEMQERNKVPRVLTECSILAAVDHPFLATLYCTIQTDTHLHFVMEYCDGGEL


YGLLNSQPKKRLKEEHVRFYAAEVLLALQYLHLLGYVYRDLKPENILLHHSGHVLLTDFDLSYSKGVTTP


RLERVAAPDGSGGGSAPAPAGSAGSKSSRKSFLLLAEPVARANSFVGTEEYLAPEVINAAGHGSGVDWWS


LGILIYELLYGTTPFRGSRRDETFDNIIKSQLRFPAKPAVSEEGRDLIEKLLVKDVSRRLGSRTGANEIK


SHPWFKSINWALLRNEPPPYVPRRASKTQGGGGGGGGGAAFDNY






SEQ ID NO: 121









>KT321740.1 Tetradesmus dimorphus phototropin (PHOT) mRNA cds


ATGGCTGGACATGTCCCCGCTGCTGCATCGCAGCTGACACAAGTGCTGGCAAAGCTCAGGCACACCTTTG


TGGTGGCAGATGCTACGCTGCCTGACTGCCCTCTGGTGTATGCCAGTGAATCGTTCTACCAGATGACTGG


CTATGGGCCTGATGAGGTCCTGGGGCACAACTGCCGCTTCCTGCAAGGCGAGGGCACAGATCCGAAGGAG


GTGGCCAAGCTGCGCAATGCTATCAGGGCTGGCGAGCCGGTCAGCTGCAGGCTGCTCAATTACCGCAAGG


ATGGCACGCCCTTCTGGAACCTGCTGACAATGACACCCATCAAGACGCCTGATGGCAAGGTCTCCAAGTT


TGTGGGCGTGCAGGTGGATGTGACCAGCAAGACGGAGGGCAAGGTGGACAACAGCCACATGCTGGTCAAG


TACGATGCACGCCTGCGCGACAATGTGGCATCTGGCGTGGTGCAGGAGGTCACAGACACAGTGCAGATGA


CTGAGACGGGCACGCACATCAACCCTGGCATGATTCCCAGCGGCATCGGCAAGGTGGGGCCCAAGGCCTT


CCCCCGCGTGGCCATGGACCTGGCCACCACTGTGGAGCGCATCCAGCAGAACTTTGTCATCTGCGACCCC


AGCCTGCCGGACTGCCCGATTGTGTTTGCCAGTGATGCCTTCCTGGACCTGACGGAGTTCCCGCGCGAGG


AGGTGCTTGGGCGCAACTGCAGGTTCCTGCAGGGCCCGGGCACGGACCCCGGCACGGTGCAGACCATCCG


CGACGCGATCAAGAGCGGCGACGAGATCACCGTGCGCATCCTCAACTACAAGCGCAGCGGCACGCCCTTC


TGGAACATGTTCACGCTGGCGCCCATGAAGGACAGCGACGACACCATCCGCTTCCTGGTCGGCGTGCAGG


TGGACGTCACAGCGCAGGGCGCCGCCGGCGACACCGCCGCGCCAGCATGGACCAAGTCGCCCAGCGACGA


GGCCGAAAAGGTGCAGCAGGGCAACCAGGCAGCCTCCCTCATCAGCTCAGCGCTGCAGAACCTCGGCTGG


GGAGCCAGCCCCTGGGCTCAAATCAGCGGCAGCATTATGCGGGCGAAGCCGCACAAGGCCAGCGATGCAG


CCTTCCAGGCGCTGCTGCGGCTGCAGCAGCGCGAGGGGCAGCTGCGGCTGAACCACTTCCGGCGCGTGAA


GCAGCTGGGGGCGGGAGATGTGGGGCTGGTAGACCTGGTGCAGCTGCAGGGCACGGACATGAAGTTTGCC


ATGAAGACGCTGGACAAGTGGGAGATGCAGGAGCGCAACAAAGTGGCGCGCGTGCTGACAGAAGAAAGCA


TCCTCACAGCCATCGACCACCCCTTCCTGGCAACCTGCTACTGCTCCATCCAGACAGACTCCCACCTGCA


CTTTGTGATGGAATTCTGCGAGGGGGGCGAGCTGTACGGGCTGCTGAACGCGCAGCCACGCAAGCGGCTC


AAGGAGTCACACGTCAAGTTTTACGCTGCTGAGGTGCTCATCGCGCTGCAGTACCTGCACCTGCTGGGCT


ACATCTACCGCGACCTCAAGCCAGAGAACATCCTGCTGCACCACACCGGCCACGTGCTGCTGACAGACTT


TGACCTGAGCTACGCGCGCGGCACCACCACGCCGCGCATGCAGGCCACTAACGCGGAGTGCACGCCGCGC


CACAGCAGCAGCTGCACCAAGGTGGAGGAGCCGCTGCAGCCGGGCCAGGCGCCCAATGGCGACGAGCTGC


TGCTGCTGGCTGAGCCTGTGGCTCGCGCCAACAGCTTCGTGGGCACTGAGGAGTACCTGGCGCCCGAGGT


CATCAACGCAGCTGGCCACGCTGCGCCTGTTGACTGGTGGAGCTTTGGCATCCTCATCTACGAGCTCATG


TTTGGCACCACGCCCTTCAGGGGTGCGCGGCGCGAGGAGACGTTTGAAAACGTGCTGCGCAACCCGCTCA


CATTCCCTTCCAAGCCAGCCATCAGCCCAGAAGCGCAAGACCTCATGAGCCAGCTGCTCGCAAAGGACCC


GGCGCAGCGCTTGGGCACACGCGCAGGCGCAGAGGAGATCAAAAAGCACCCCTGGTTTGAGGGCATCAAT


TGGGTGCTTCTGCGGCACCAGCAGCCGCCGTATGTGCCGCGTATGTGCCGCGCCGCGCTGTTGCTGCTGC


TGCAAGTGGTGCTGCTGGCAGCGGCAACGCGAGCGCGGACGGCGTGCCGGGCGCGGCGGGCGGCGCCCGC


GGCG






SEQ ID NO: 122









>ANC96865.1[Tetradesmus dimorphus]


MAGHVPAAASQLTQVLAKLRHTFVVADATLPDCPLVYASESFYQMTGYGPDEVLGHNCRFLQGEGTDPKE


VAKLRNAIRAGEPVSCRLLNYRKDGTPFWNLLTMTPIKTPDGKVSKFVGVQVDVTSKTEGKVDNSHMLVK


YDARLRDNVASGVVQEVTDTVQMTETGTHINPGMIPSGIGKVGPKAFPRVAMDLATTVERIQQNFVICDP


SLPDCPIVFASDAFLDLTEFPREEVLGRNCRFLQGPGTDPGTVQTIRDAIKSGDEITVRILNYKRSGTPF


WNMFTLAPMKDSDDTIRFLVGVQVDVTAQGAAGDTAAPAWTKSPSDEAEKVQQGNQAASLISSALQNLGW


GASPWAQISGSIMRAKPHKASDAAFQALLRLQQREGQLRLNHFRRVKQLGAGDVGLVDLVQLQGTDMKFA


MKTLDKWEMQERNKVARVLTEESILTAIDHPFLATCYCSIQTDSHLHFVMEFCEGGELYGLLNAQPRKRL


KESHVKFYAAEVLIALQYLHLLGYIYRDLKPENILLHHTGHVLLTDFDLSYARGTTTPRMQATNAECTPR


HSSSCTKVEEPLQPGQAPNGDELLLLAEPVARANSFVGTEEYLAPEVINAAGHAAPVDWWSFGILIYELM


FGTTPFRGARREETFENVLRNPLTFPSKPAISPEAQDLMSQLLAKDPAQRLGTRAGAEEIKKHPWFEGIN


WVLLRHQQPPYVPRMCRAALLLLLQVVLLAAATRARTACRARRAAPAA






SEQ ID NO: 123









>KT321746.1 Pedinomonas tuberculata phototropin (PHOT) mRNA, partial cds


ATGCACAAACCGAATCTGGAGGGCGTGAAGGTCCAGCTTCCTCCCCAAGCTGGACAACTATCCAAATTAT


TAGAGGGCTTGAAGCATACATTCGTAGTGTCAGATGCTACCCTGCCTGACTGCCCGCTCGTTTTCGCTTC


GGAAAGTTTCTACAAAATGACCGGATTCAACGCTGATGAAATTCTCGGCAAAAATTGTCGTTTCCTACAA


GGAGAGCAAACAGATCGTGAAACAGTAGCAAAGATTCGAGCAGCAATTAACAAGGGGGATGGAATATCCT


GCCGCCTCCTGAACTACCGAAGGGACGGCACTCCCTTCTGGAACCTGCTCACCATCACCCCTATCAAGAA


CGCGCAGGGCAAGGTCACCAAATTCGTCGGAGTACAAGTAGACGTGACCTCGAAGACCGAGGGCAAAGTA


GAGACGGAGAGGTCGCTGGTGCACTACGATGACCGACTCCGTCAGACTGTGGCACATAAAGTAGTAACGG


ACGTCACTATGGCCGTAGAGGACGCTGAGATGTCTATGGAGGGAGGCAAGAAGGCCGCCCCTAAAGCGTT


CCCCCGTGTCGCTATTGATCTGGCCACCACTGTGGAACGTGCGCAGCAGAATTTCGTAATCGCGGACCCT


AAATTGCCCGATTGCCCTATCGTGTTCGCCTCCGATCAGTTCTTAGATTTGACTGGGTATGCACGAGAGG


AGGTGCTAGGGAGAAACTGCAGATTCCTACAGGGTCCTGATACTGACCCTAAGACCGTGGCTGAGATCAG


AGATGCCCTAGCTAACAATAAAGAGGTGACGGTGCGTATCCTCAACTACACAAAATCCGGCAAGCCCTTC


TGGAACTTGTTCACCTTAGCACCTATTCAAGATATCGATGGCACCGTAAGGTTCTTCGTGGGAGTCCAGG


TGGACGTGACTGATAAGGAGGCGCAGAAGGCGATGGAGGCTCAGGCTGAGGTGATGGCCCTGCAGTCCGC


AGTGAAGGACCTGCAGTCAGGCTGGAAGGACGATCCATGGAAGGGCCTCAGCACCGGGCTGTGTAAGAAC


AAGCCACATACCGGCGTTACAGAGCCCTACAAGGCCCTGGAGGCTATCCAGAAGCGTGACGGCGCTCTGG


GTCTGCAGCACTTCAAGCGTATTAAGCAGCTAGGCAATGGTGATGTGGGTATGGTGGACCTGGTCCAGCT


GGACGGTACCACCTTCAAATTCGCCATGAAAACTCTCGACAAAAGGGAGATGCTGGAGCGCAATAAGGTT


CACCGTGTGATGACTGAGATCAAGTGTCTAGGTATGGTCGACCACCCTTTTGTGGCCTGCATGTACGCCG


TGCTGCAGACCAAGACCCACCTGCACTTCATCCTCGAATACTGCGAGGGGGGCGAGGTATACTCCTTATT


GAACGCGCAGCCTAACAAGAGGCTCAAGGAGCAGCACGTCCAGTTCTATGCGGCCGAGGTACTTATCGCC


CTGCAGTACCTGCATCTGATGGGAATTATCTACAGAGATCTCAAGCCCGAGAACTTGCTTATCCGCGATG


ACGGCCACGTGATCATGACGGACTTCGATCTGTCTTATGTGAAGGGTACTCTGGAGTGCCGCGTGGATCA


GGTACAGACCTTCGTCCCAGCCAAGAACAACTCGAACCGAAAGATCAAGATCAACATACCCACACTGGTG


GCAGAGCCCAAGGCGCGGGCTAACTCGTTCGTTGGCACAGAGGAATACCTAGCCCCTGAGGTGATCAACG


CCGGGGGGCACTCCTCCGGGGTGGACTGGTGGTCGTTTGGTATCCTGATGTACGAGCTGCTGTATGGCAC


CACCCCTTTCCGCGGCCCCCGTCGAGACGACACGTTTGAGAACATCTTGTCAGCCCCCCTTAACTTCCCC


AGCAAGCCTCAGGTGTCGCCTCAGTGCATCGACCTGATCCAGCAGCTGCTACATAAGAACCCGGCTAAGA


GACTAGGAGCACAAAGAGGAGCAGAAGAAATCAAGGCTCATCCCTTCTGGAAGGGCATTAACTGGGCGCT


ATTGCGGAGAGAGAGGCCTCCCTTCGTGCCTAAGAAGGGAGGAGTGGGAGCGCCGGCAACCGGCGGCAGC


TCATCCTCGGGGGGAGTCCCCGGCCCGG






SEQ ID NO: 124









>ANC96871.1 phototropin, partial [Pedinomonas tuberculata]


MHKPNLEGVKVQLPPQAGQLSKLLEGLKHTFVVSDATLPDCPLVFASESFYKMTGFNADEILGKNCRFLQ


GEQTDRETVAKIRAAINKGDGISCRLLNYRRDGTPFWNLLTITPIKNAQGKVTKFVGVQVDVTSKTEGKV


ETERSLVHYDDRLRQTVAHKVVTDVTMAVEDAEMSMEGGKKAAPKAFPRVAIDLATTVERAQQNFVIADP


KLPDCPIVFASDQFLDLTGYAREEVLGRNCRFLQGPDTDPKTVAEIRDALANNKEVTVRILNYTKSGKPF


WNLFTLAPIQDIDGTVRFFVGVQVDVTDKEAQKAMEAQAEVMALQSAVKDLQSGWKDDPWKGLSTGLCKN


KPHTGVTEPYKALEAIQKRDGALGLQHFKRIKQLGNGDVGMVDLVQLDGTTFKFAMKTLDKREMLERNKV


HRVMTEIKCLGMVDHPFVACMYAVLQTKTHLHFILEYCEGGEVYSLLNAQPNKRLKEQHVQFYAAEVLIA


LQYLHLMGHYRDLKPENLLIRDDGHVIMTDFDLSYVKGTLECRVDQVQTFVPAKNNSNRKIKINIPTLV


AEPKARANSFVGTEEYLAPEVINAGGHSSGVDWWSFGILMYELLYGTTPFRGPRRDDTFENILSAPLNFP


SKPQVSPQCIDLIQQLLHKNPAKRLGAQRGAEEIKAHPFWKGINWALLRRERPPFVPKKGGVGAPATGGS


SSSGGVPGP






SEQ ID NO: 125









>XM_002506242.1 Micromonas commoda blue light receptor mRNA cds


ATGAGCGAGCCGGCTCCCGCCGTCGAGCCCTCGGCGGCTGCGCCTTCGGACGAGGTGCCAAAATTCGACG


AGACCAAGACGCACGAGAGCATCGACATCGGCTTCACGGTGGACGCCGGCGGCGGCATCAGCGCGCCGCA


GGCGAGCAAGGACCTGACCAACGCGCTGGCGTCGCTCCGTCACACCTTTACCGTGTGCGACCCGACGCTC


CCGGACTGCCCCATCGTCTACGCGTCGGACGGGTTCCTGAAGATGACCGGATACCCCGCCGAGGAGGTCC


TCAACCGCAACTGCAGGTTCCTCCAGGGGGAGGAGACGAACATGGACGACGTGCGCAAGATATCCGAGGC


GGTCAAGAAGGGCGAGAGGATCACCGTCCGCCTGCTCAATTACCGCAAGGATGGCCAGAAGTTCTGGAAC


CTGCTCACCGTCGCGCCGGTCAAGCTGCCGGACGGGACCGTCGCCAAGTTCATCGGCGTGCAGGTGGACG


TCAGCGACAGGACCGAGGGCAACGCGGATAACTCCGCGGCGATGAAGGACACCAAAGGTCTCCCCCTGCT


CGTCAAGTACGATCAGCGGTTGAAGGATCAGAACTTCAACAGGGTGGACGACGTGGAGAAGGCGGTGCTG


ACGGGCGAGGGCGTCGACCTCGACGCGAACCCGGTGGCGGCGAACAGAGGAGGCCTCGACATGGCCACCA


CCCTGGAGCGCATCCAGCAGTCCTTCGTCATCGCCGACCCGTCTTTGCCCGACTGCCCCATCGTGTTCGC


GTCTGACGGGTTTTTGGACTTCACCGGGTACACCCGCGAGGAGATCTTGGGGCGGAACTGCCGGTTCCTG


CAAGGTCCGCGGACCGATCGGAGCGCGGTGGCGGAGATTCGCAAGGCGATCGACGAGGGCAGCGAGTGCA


CCGTCCGGCTCTTAAACTACACCAAGCAGGGGAAGCCGTTTTGGAACATGTTCACCATGGCGCCCGTGCG


GGACGAGCAGGGAAACGTCCGTTTCTTCGCGGGGGTTCAGGTTGACGTCACGGTGTACACCCGCGAGGAG


GGCGAGAAGGACGCCACGAGCTTGGACCTCGTGAAGGAGTACGACAAGGACAGGGACGAGAGCTCGTTCG


ATCGACAGATGAAGGAGTACTCGAAGCAGACGGCGAGCGCGGTTGCGTCGGGGGTTGCCGGGCTTAAAGA


CGGGGATTTGCCCTGGAAGAACATGGTGGGCATCCTGCGGACGCCGCAGCCGCACCAGCGGCACGATCCC


AACTGGGTGGCGCTCAAGGCGCGAGTGGACAAGCACGAGGCGGAGGGCAAGGTTGGAAGGCTGTCGCCGG


ATGATTTCGTGCCGCTGAAGCGGCTAGGCAACGGCGACGTGGGCAGCGTCCACCTGGTCCAGCTCGCGGG


GACCAATCGGCTGTTCGCGATGAAGATACTGGTCAAGCAGGAGATGCACGAAAGGAACAAGCTGCACAGG


GTCCGGACGGAGGGTCAGATTTTGGAGACGGTGGATCACCCCTTCGTCGCGACGCTGTACGCCGCGTTTC


AGACTGACACGCACCTGTACTTTGTGCTCGAGTACTGCGAAGGCGGCGAGCTGTACGAGACGCTGCAGAA


GGAACCGGAGAAGCGATTTCCGGAGACGATCGCGAAGTTCTACGCCGCGGAGGTTCTCGTCGCGCTGCAG


TACCTCCACCTCATGGGATTCATCTACCGCGACCTCAAGCCGGAGAACATCCTCCTTCGCAGGGACGGGC


ACATCATCGTGACCGACTTTGACCTCAGCTATTGCGCCTCGTCCAGAGCGCACGTCATCATGAAGGAGGG


GCGAGCGCCCGGCGCGAGGGCGAGGAACCGCAGGGTTTCGCAGCGGCGGTCGTTCGCGGGAGGCGGGCGT


CCCTCCGTCGCCATCGATGTTGGAGGGAGCGGGAAGCCGCCCGGCGAAAACGCGTCAGGTCGGTCGCCCC


GACAATCGCAGATGTCCATCGACGCCACACACAACGGCGGCGTCGCCATACCCGGCGCGTCGCCAAAATC


CGCCGGCCCCGGGCTCGACATGATCGCGTGCGGCACGTTCCTGTCCCCGAACGGCGCCAACAAGTCGGGG


AAGTTTCCGCAGATCATCGCCGAGCCCTTCGCGTACACAAACTCTTTCGTCGGCACGGAGGAGTACCTGG


CGCCCGAGGTTCTCAACTCGACGGGTCACACGAGCTCGATCGACTGGTGGGAGCTCGGCATCTTCATCCA


CGAGATGGTGTTCGGGACGACGCCGTTTCGGGCGAACAAGCGCGAGCAGACCTTCCACAACATCGTCCAC


CAGCCCCTGGACTTTCCGTCGACGCCGCCGGTGAGCGGCGAGCTGAAGGATCTGCTTCGGCAGTTGCTCC


AGCGCGATCCCAGCGTCAGGTTGGGGACGCAGGGCGGCGCGGAGGAGGTCAAGGCGCACCCGTTCTTTCG


GAACGTGGACTGGGCGCTGCTGCGGTGGGCGAAGGCGCCGTTGGCGGAGAAGATCGCGAGGAGGATGGCG


AGGGCGAGCGGGGCGGAGGCGGCGAGCGCGGCGGTGGACGCAGGGGGCGGCGGCGACGACGACGAAATGT


TTCAGATGGACGTCGAGCAGTGA






SEQ ID NO: 126









>XP_002506288.1 Phototropin-Micromonas commoda


MSEPAPAVEPSAAAPSDEVPKFDETKTHESIDIGFTVDAGGGISAPQASKDLTNALASLRHTFTVCDPTL


PDCPIVYASDGFLKMTGYPAEEVLNRNCRFLQGEETNMDDVRKISEAVKKGERITVRLLNYRKDGQKFWN


LLTVAPVKLPDGTVAKFIGVQVDVSDRTEGNADNSAAMKDTKGLPLLVKYDQRLKDQNFNRVDDVEKAVL


TGEGVDLDANPVAANRGGLDMATTLERIQQSFVIADPSLPDCPIVFASDGFLDFTGYTREEILGRNCRFL


QGPRTDRSAVAEIRKAIDEGSECTVRLLNYTKQGKPFWNMFTMAPVRDEQGNVRFFAGVQVDVTVYTREE


GEKDATSLDLVKEYDKDRDESSFDRQMKEYSKQTASAVASGVAGLKDGDLPWKNMVGILRTPQPHQRHDP


NWVALKARVDKHEAEGKVGRLSPDDFVPLKRLGNGDVGSVHLVQLAGTNRLFAMKILVKQEMHERNKLHR


VRTEGQILETVDHPFVATLYAAFQTDTHLYFVLEYCEGGELYETLQKEPEKRFPETIAKFYAAEVLVALQ


YLHLMGFIYRDLKPENILLRRDGHIIVTDFDLSYCASSRAHVIMKEGRAPGARARNRRVSQRRSFAGGGR


PSVAIDVGGSGKPPGENASGRSPRQSQMSIDATHNGGVAIPGASPKSAGPGLDMIACGTFLSPNGANKSG


KFPQIIAEPFAYTNSFVGTEEYLAPEVLNSTGHTSSIDWWELGIFIHEMVFGTTPFRANKREQTFHNIVH


QPLDFPSTPPVSGELKDLLRQLLQRDPSVRLGTQGGAEEVKAHPFFRNVDWALLRWAKAPLAEKIARRMA


RASGAEAASAAVDAGGGGDDDEMFQMDVEQ






EXAMPLES

Certain embodiments of the invention will be described in more detail through the following examples. The examples are intended solely to aid in more fully describing selected embodiments of the invention, and should not be considered to limit the scope of the invention in any way.


Example 1 - Growth of Chlamydomonas Reinhardtii


Chlamydomonas
reinhardtii parental strains (cw15 and UV4) and the phototropin knockout (PHOT K/O) mutants (CW15 and A4) were grown at 25° C. in 250 mL Erlenmeyer flasks containing 100 mL of High-Salt (HS) or Tris-Acetate-Phosphate (TAP) media and shaken at 150 rpm (world wide web at chlamy.org/media.html). Cultures were typically inoculated from a log phase culture using 1 mL of cells. Flasks were illuminated using fluorescent light at the light intensities as indicated for each experiment.


Example 2 - Measurement of Photoautotrophic Growth and Biomass Estimation

Photoautotrophic growth of the parent strains CW15 and UV4) and the phototropin knock out mutants (G5 and A4) was measured in environmental photobioreactors (“ePBRs”) (obtained from Phenometrics, Inc.) in 500 mL of liquid HS media. All experiments were done in triplicates for each time point and each treatment. Light intensity was programmed for a 12 h sinusoidal light period with a peak mid-day intensity of 2,000 µmol photons m-2 s-1. Temperature was a constant 25° C., and the ePBRs were stirred with a magnetic stir bar at 200 rpm. Filtered air was bubbled constantly through the growing cultures. The optical density of the cultures was monitored on a daily basis at 750 nm using a Cary 300 Bio UV-Vis spectrophotometer (Agilent). After completion of growth measurements, the total contents of individual ePBRs were harvested by centrifugation at 11,000 rpm for 15 min. Cell pellets were frozen immediately in liquid N2 and later freeze-dried using a Microprocessor Controlled Lyophilizer (Flexi-Dry). After drying, pellets were weighed for total biomass.


Example 3 - Measurement of Chlorophyll Fluorescence

For Chl fluorescence induction analysis, cell suspensions of the parental wild-type and transgenic Chlamydomonas strains were adjusted to a Chl concentration of ~ 2.5 µg/mL. Quenching of Chl fluorescence was measured using the FL-3500 fluorometer (Photon System Instruments) (Kaftan, Meszaros et al. 1999). The cells were dark adapted for 10 min prior to the measurement. Chl fluorescence was induced using non-saturating continuous illumination and Chl fluorescence levels were measured every 1 µs using a weak pulse-modulated measuring flash. For the state transition experiments, low light grown cultures were dark adapted or pre-illuminated with 715 nm light for 10 min prior to the induction of Chl fluorescence. The actinic flash duration for this experiment was set to 50 µs and Chl fluorescence was measured every 1 µs.


Example 4 - Measurement of Photosynthetic Oxygen Evolution

CO2-supported rates of oxygen evolution were determined for low light (50 µmol photons m-2 s-1) HS grown log-phase cultures (0.4-0.6 OD750 nm) using a Clark-type oxygen electrode (Hansatech Instruments). Cells were re-suspended in 20 mM HEPES buffer (pH 7.4) and air-saturated rates of oxygen evolution were measured as a function of light intensity (650 nm) at 50, 150, 300, 450, 600, 750 and 850 µmol photons m-2 s-1. The same experiment was repeated in the presence of 10 mM NaHCOs. Light saturation curves were normalized on the basis of Chl as well as cell density (A750 nm). Chl was determined by method described by Arnon (Arnon 1949).


Example 5 - Measurement of Pigment Content by HPLC


Chlamydomonas cultures were grown at low (50 µmol photons m-2 s-1) and high (saturating) light (500 µmol photons m-2 s-1) intensities for 5 days in HS media in shaker flasks. Cells were centrifuged at 3,000 rpm for 3 min and immediately frozen in liquid nitrogen and lyophilized. Carotenoids and chlorophylls were extracted with 100% acetone in the dark for 20 min. After incubation samples were centrifuged at 14,000 rpm for 2 min in a microfuge and the supernatant was transferred to a glass tube and dried under vacuum. The dried samples were re-suspended in 1 mL of acetonitrile:water:triethylamine (900:99:1, v/v/v) for HPLC analysis. Pigment separation and chromatographic analysis were performed on a Beckman HPLC equipped with a UV-Vis detector, using a C18 reverse phase column at a flow rate of 1.5 ml/min. Mobile phases were (A) acetonitrile/H2O/triethylamine (900:99:1, v/v/v) and (B) ethyl acetate. Pigment detection was carried out at 445 nm with reference at 550 nm (Tian and DellaPenna 2001). Individual algal pigments were identified on the basis of their retention times and optical absorbance properties and quantified on the basis of their integrated absorbance peaks relative to known carotenoid standards. Carotenoid standards were purchased from DHI, Denmark. Pigments were standardized on the basis of dry weight of three replicates.


Example 7 - Transmission Electron Microscopy

Cells were prepared for electron microscopy by immobilizing cells in 3% sodium alginate (w/v) and the alginate beads were then solidified by incubation in cold 30mM CaCl2 for 30 min. We used alginate encapsulated algal cells to keep cells intact as well as to protect from direct and harmful effect of chemicals during fixation processes. These cells were fixed using 2% glutaraldehyde for 1.5-2 hours and after fixation, these cells were post fixed in buffered 2% osmium tetroxide for 1.5 hours. After dehydration these cells were embedded in Spurr’s resin. Thin sections were stained with uranyl acetate and lead citrate. LEO 912 transmission electron microscope was used to view and collect images at 120 kv and a Proscan digital camera.


Example 8 - Transcriptome Analysis

Total RNA was extracted from 100 mg of cells/sample, flash frozen in liquid nitrogen, grown at high light (500 µmol photons m-2 s-1) intensities for 5 days in HS media in shaker flasks) using the Direct-zol RNA-miniprep kit (ZYMO, P/N 2051) according to the manufacturer’s instructions. Each total RNA sample was enriched for mRNA by hybridizing the poly(A) tail to oligo d(T)25 probes covalently coupled to magnetic beads, followed by elution (NEB, P/N S1419S). The enriched mRNA fractions were prepared for Illumina sequencing using the ScriptSeq V.2 RNA-seq Library Preparation Kit (Epicentre, P/N SSV21106) and sequenced on a Hi-Seq 2000 (2 × 150 bp), multiplexed at 6 samples per lane. The resultant sequence reads were trimmed for quality and mapped to the coding sequences present in version 9 of the Chlamydomonasreinhardtii genome annotation at web address phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Creinhardtii using bowtie2. The relative transcript abundance of each gene (mean of 3 biological samples) was determined using RSEM and differential expression values (UV4 vs A4) were calculated using EdgeR. All genes identified as differentially expressed were mapped to KEGG biochemical maps using the v.9 annotation assignments.


Example 9- Identification of Chlorella Spp. Phototropin Coding Sequence

Phototropin genes were identified in three Chlorella species (herein designated as strain 1412, strain 1228 and Chlorellasorokiniana UTEX1230) and a Picochlorumsoloecismus (DOE101) by conducting homologous BLASTp searches against the annotations of Chlorella species using Chlamydomonasreinhardtii phototropin genes/proteins (NP_851210) and Arabidopsisthaliana protein sequences (Accession # AED97002.1 and AEE78073) as query proteins. The Chlorella spp. and Picochlorum phototropin homologs were aligned to other phototropin amino acid sequences using CLUSTALW, then truncated based on conserved sequence alignments and phylogenetically analyzed using a Maximum-Likelihood algorithm. Each Chlorella strain contains two paralogous copies of photoropin and Picochlorumsoloecismus. (DOE101) was found to contain 1 homolog of phototropin. These sequences are provided as SEQ ID Nos. 1-14. Additional phototropin sequences and functional homologs are provided in Table 1 and SEQ ID NO 51-66 and SEQ ID NO 69-128.


Example 10 - Inducible Control of Phototropin Expression in Chlamydomonas Reinhardtii

One method to reduce expression of algal PHOT gene(s) is to use RNAi technology driving the expression of double stranded, fold-back RNA elements to reduce the PHOT expression. A strong gene promoter such as psaD or other strong constitutive gene promoters could be used to drive expression of the RNAi construct similar to methods used previously in Chlamydmonas for modulation of light harvesting antennae complex (Perrine, Negi et al. 2012).


Example 11 - Production of a Chlorella Phototropin Minus Mutant

PHOT gene knockouts could be potentially generated by traditional mutagenesis approaches including chemical, UV, random insertional mutagenesis screened by TILLING (Comai, Young et al. 2004, Nieto, Piron et al. 2007), and by targeted knock outs using CRISPR/cas9 (Wang, Yang et al. 2013, Xiao, Wang et al. 2013, Dubrow 2014). Pooled PHOT-based PCR screening coupled with sequencing of PHOT PCR products could be used to screen for PHOT mutants.


Example 12 - Chemical Mutagenesis for Production of a Phototropin K/O Mutant in Chlorella sorokiniana

Classical chemical mutagenesis is carried out using N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). This mutagen makes nucleotide changes in the DNA and these changes, depending on their position, can have effects that are either positive or negative in the use of the strain being treated. By careful observation of phenotypes produced, as well as implementation of selective pressure, one selects mutants with improved traits for the desired purpose. This method has been applied to algae previously (Yan, Aruga et al. 2000).


Identifying strains of algae that grow rapidly and produce high starch is used as a selection marker for PHOT K/O mutants. Because this approach does not involve adding foreign DNA (in fact is focused only on existing genetic potential of the strain being mutagenized), strains generated by chemical mutagenesis are not considered to be “genetically modified”, allowing deployment in the field without additional government regulation.


N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was chosen based on its proven use for modifying blue-green algae, as well as its ability to eliminate toxicity by degradation in dilute acid. First, the conditions required to result in approximately 99% lethality for Chlorellaprotothecoides are determined; this degree of lethality generated optimal mutation frequency in blue-green algae (Chapman and Meeks 1987). Two treatments, exposure to 0.25 mg/mL MNNG for 30 minutes and 0.025 mg/mL MNNG for 60 minutes, result in approximately 99% lethality for this strain (unpublished data). Both treatments are used to generate mutagenized populations of Chlorella using enrichment strategies.


Approximately 108 cells are mutagenized with four concentrations of MNNG and incubated for three different durations. After rinsing out the mutagen, approximately 104 cells are spread plated on nutrient plates, and the number of colonies scored after 12 days. Treatments with approximately 100 surviving colonies, representing 99% lethality, are chosen as optimal for generating mutations.


PHOT K/O mutants are expected to be more rapidly growing and to produce excess sink molecules/material. in C.protothecoides the sink is lipid which could be used as a screen for selection of cells representing high lipid cells. Numerous methods are in the literature for such selection such as Nile red (Pick and Rachutin-Zalogin 2012) and BODIPY 493/503 (Ohsaki, Shinohara et al. 2010). High lipid cells are selected by flow cytometry and then placed in flask for cell culture. Rapid growing high lipid cells will dominate the culture and should be PHOT K/O as determined in this invention.


Example 13 - Genome Editing Using CRISPR/cas9 to Reduce Expression of Phototropin in Chlamydomonas Reinhardtii

Recently, it has been demonstrated that CRISPR/cas9 genome editing techniques can be used to knock out genes of interest in Chlamydomonas when the Cas9 gene is expressed constitutively. By incorporating multiple guide RNA elements to specifically recognize the PHOT gene high efficiencies of gene mutagenesis can occur during miss-repair of the double stranded break in the target gene catalyzed by Cas/9 by the endogenous repair enzymes. By targeting repair of a recognized restriction endonuclease site, inhibition of the digestion of the PHOT-specific PCR product by the diagnostic restriction endonuclease can be used as an effective screen for PHOT mutants. Similarly, DNA repair mistakes that occur following double stranded DNA breaks in the PHOT gene generated by TALEN complexes can be used to generate PHOT-specific mutants.


REFERENCES CITED

The following references and others cited herein, to the extent that they provide exemplary procedural and other details supplementary to those set forth herein, are specifically incorporated herein by reference and include US published patent applications and published patents: US 20130116165; US 20140249295; US 20130330718; US 8,859,232 and other patent related documents EP2682469; WO 2011133493; WO 201408626; and WO 2013056212 and other publications listed:


Other Publications

Arnon, D. I. (1949). “Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris.” Plant Physiol 24(1): 1-15.


Ausubel, F. M., R. Brent, R. Kingston, D. Moore, J. Seidman, J. Smith and K. Struhl (1997). Short Protocols in Molecular Biology. New York, Wiley.


Baena-Gonzalez, E., F. Rolland, J. M. Thevelein and J. Sheen (2007). “A central integrator of transcription networks in plant stress and energy signalling.” Nature 448(7156): 938-942.


Briggs, W. R. and M. A. Olney (2001). “Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome.” Plant Physiol 125(1): 85-88.


Chapman, J. and J. Meeks (1987). “Conditions for mutagenesis of the nitrogen-fixing cyanobacterium Anabaena variabilis.” J Gen Microbiol 131: 111-118.


Chen, M., J. Chory and C. Fankhauser (2004). “Light signal transduction in higher plants.” Annu Rev Genet 38: 87-117.


Comai, L., K. Young, B. J. Till, S. H. Reynolds, E. A. Greene, C. A. Codomo, L. C. Enns, J. E. Johnson, C. Burtner, A. R. Odden and S. Henikoff (2004). “Efficient discovery of DNA polymorphisms in natural populations by Ecotilling.” Plant J 37(5): 778-786.


Dubrow, Z. (2014). The develpment and application of the CRISPR/CAS system as a powerful new tool for genome editing: A case study.


Ermilova, E. V., Z. M. Zalutskaya, K. Huang and C. F. Beck (2004). “Phototropin plays a crucial role in controlling changes in chemotaxis during the initial phase of the sexual life cycle in Chlamydomonas.” Planta 219(3): 420-427.


Folta, K. M., E. J. Lieg, T. Durham and E. P. Spalding (2003). “Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light.” Plant Physiol 133(4): 1464-1470.


Fu, X., D. Wang, X. Yin, P. Du and B. Kan (2014). “Time course transcriptome changes in Shewanella algae in response to salt stress.” PLoS One 9(5): e96001.


Gaj, T., C. A. Gersbach and C. F. Barbas, 3rd (2013). “ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering.” Trends Biotechnol 31(7): 397-405.


Green, M. and J. Sambrook (2012). Molecular cloning: A laboratory manual. Cold Spring Habor, NY, Cold Spring Harbor Laboratory Press.


Grossman, A. R. (2005). “Paths toward Algal Genomics.” Plant Physiology 137(2): 410-427.


Huang, K. and C. F. Beck (2003). “Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonasreinhardtii.” Proc Natl Acad Sci U S A 100(10): 6269-6274.


Huang, K. and C. F. Beck (2003). “Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonasreinhardtii.” Proceedings of the National Academy of Sciences 100(10): 6269-6274.


Huang, K., T. Kunkel and C. F. Beck (2004). “Localization of the blue-light receptor phototropin to the flagella of the green alga Chlamydomonas reinhardtii.” Mol Biol Cell 15(8): 3605-3614.


Hwang, Y. S., G. Jung and E. Jin (2008). “Transcriptome analysis of acclimatory responses to thermal stress in Antarctic algae.” Biochem Biophys Res Commun 367(3): 635-641.


Im, C. S., S. Eberhard, K. Huang, C. F. Beck and A. R. Grossman (2006). “Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonasreinhardtii.” Plant J 48(1): 1-16.


Kaftan, D., T. Meszaros, J. Whitmarsh and L. Nedbal (1999). “Characterization of photosystem II activity and heterogeneity during the cell cycle of the green alga scenedesmus quadricauda.” Plant Physiol 120(2): 433-442.


Kagawa, T., M. Kimura and M. Wada (2009). “Blue Light-Induced Phototropism of Inflorescence Stems and Petioles is Mediated by Phototropin Family Members phot1 and phot2.” Plant and Cell Physiology 50(10): 1774-1785.


Kanehisa, M. and S. Goto (2000). “KEGG: kyoto encyclopedia of genes and genomes.” Nucleic Acids Res 28(1): 27-30.


Kanehisa, M., S. Goto, Y. Sato, M. Kawashima, M. Furumichi and M. Tanabe (2014). “Data, information, knowledge and principle: back to metabolism in KEGG.” Nucleic Acids Res 42(Database issue): D199-205.


Koid, A. E., Z. Liu, R. Terrado, A. C. Jones, D. A. Caron and K. B. Heidelberg (2014). “Comparative transcriptome analysis of four prymnesiophyte algae.” PLoS One 9(6): e97801.


Kozuka, T., S. G. Kong, M. Doi, K. Shimazaki and A. Nagatani (2011). “Tissue-autonomous promotion of palisade cell development by phototropin 2 in Arabidopsis.” Plant Cell 23(10): 3684-3695.


Matsuoka, D., T. Iwata, K. Zikihara, H. Kandori and S. Tokutomi (2007). “Primary processes during the light-signal transduction of phototropin.” Photochem Photobiol 83(1): 122-130.


Moni, A., A. Y. Lee, W. R. Briggs and I. S. Han (2015). “The blue light receptor Phototropin 1 suppresses lateral root growth by controlling cell elongation.” Plant Biol (Stuttg) 17(1): 34-40.


Nieto, C., F. Piron, M. Dalmais, C. F. Marco, E. Moriones, M. L. Gomez-Guillamon, V. Truniger, P. Gomez, J. Garcia-Mas, M. A. Aranda and A. Bendahmane (2007). “EcoTILLING for the identification of allelic variants of melon elF4E, a factor that controls virus susceptibility.” BMC Plant Biol 7: 34.


Ohsaki, Y., Y. Shinohara, M. Suzuki and T. Fujimoto (2010). “A pitfall in using BODIPY dyes to label lipid droplets for fluorescence microscopy.” Histochem Cell Biol 133(4): 477-480.


Onodera, A., Kong, S-G, M. Doi, K.-I. Shimazaki, J. Christie, N. Mochizuki and A. Nagatani (2005). “Phototropin from Chlamydomonasreinhaardtii is functional in Arabidopsisthaliana.” Plant Cell Physiol 46(2): 367-374.


Perrine, Z., S. Negi and R. Sayre (2012). “Optimization of photosynthetic light energy utilization by microalgae.” Algal Res 134-142.


Pick, U. and T. Rachutin-Zalogin (2012). “Kinetic anomalies in the interactions of Nile red with microalgae.” Journal of microbiological methods 88(2): 189-196.


Reeck, G. R., C. de Haen, D. C. Teller, R. F. Doolittle, W. M. Fitch, R. E. Dickerson, P. Chambon, A. D. McLachlan, E. Margoliash, T. H. Jukes and et al. (1987). ““Homology” in proteins and nucleic acids: a terminology muddle and a way out of it.” Cell 50(5): 667.


Rismani-Yazdi, H., B. Z. Haznedaroglu, K. Bibby and J. Peccia (2011). “Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels.” BMC Genomics 12: 148.


Sambrook, J., E. Fritsch and T. Maniatis (1989). Molecular cloning: a laboratory manual. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press.


Sethi, P., M. Prasad and S. Roy (2009). All-optical switching in LOV2-C250S protein mutant from Chlamydomonas reinhardtii green algae. Emerging Trends in Electronic and Photonic Devices & Systems, 2009. ELECTRO ‘09. International Conference on.


Sizova, I., A. Greiner, M. Awasthi, S. Kateriya and P. Hegemann (2013). “Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases.” Plant J 73(5): 873-882.


Salomon, Michael, Briggs, Winslow, and Christie, John (2000) “Photochemical and Mutational Analysis of the FMN-Bidning Domains of the Plant Blue Light Receptor, Phototropin.” Biochemistry 39: 9401-9410.


Suetsugu, N. and M. Wada (2007). “Phytochrome-dependent Photomovement Responses Mediated by


Phototropin Family Proteins in Cryptogam Plantst.” Photochemistry and Photobiology 83(1): 87-93. Sullivan, S., C. E. Thomson, D. J. Lamont, M. A. Jones and J. M. Christie (2008). “In vivo phosphorylation


site mapping and functional characterization of Arabidopsis phototropin 1.” Mol Plant 1(1): 178-194. Takemiya, A., S. Inoue, M. Doi, T. Kinoshita and K. Shimazaki (2005). “Phototropins promote plant growth in response to blue light in low light environments.” Plant Cell 17(4): 1120-1127.


Tian, L. and D. DellaPenna (2001). “Characterization of a second carotenoid beta-hydroxylase gene from Arabidopsis and its relationship to the LUT1 locus.” Plant Mol Biol 47(3): 379-388.


Trippens, J., A. Greiner, J. Schellwat, M. Neukam, T. Rottmann, Y. Lu, S. Kateriya, P. Hegemann and G. Kreimer (2012). “Phototropin Influence on Eyespot Development and Regulation of Phototactic Behavior in Chlamydomonasreinhardtii.” The Plant Cell 24(11): 4687-4702.


Veetil, S. K., C. Mittal, P. Ranjan and S. Kateriya (2011). “A conserved isoleucine in the LOV1 domain of a novel phototropin from the marine alga Ostreococcus tauri modulates the dark state recovery of the domain.” Biochim Biophys Acta 1810(7): 675-682.


Wang, H., H. Yang, C. S. Shivalila, M. M. Dawlaty, A. W. Cheng, F. Zhang and R. Jaenisch (2013). “One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.” Cell 153(4): 910-918.


Xiao, A., Z. Wang, Y. Hu, Y. Wu, Z. Luo, Z. Yang, Y. Zu, W. Li, P. Huang, X. Tong, Z. Zhu, S. Lin and B. Zhang (2013). “Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish.” Nucleic Acids Res 41(14): e141.


Yan, X.-H., Y. Aruga and Y. Fujita (2000). “Induction and characterization of pigmentation mutants in Porphyra yezoensis (Bangiales, Rhodophyta).” Journal of Applied Phycology 12(1): 69-81.


Zorin, B., Y. Lu, I. Sizova and P. Hegemann (2009). “Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene.” Gene 432(1-2): 91-96.


Toivola, J., Nikkanen, L.,Dahlström ,K. M., Salminen , T. A., Lepistö, A., Vignols, F., and Rintamäki,E.(2013). “Overexpression of chloroplast NADPH dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains.” Frontiers in plant sciences doi: 10.3389/fpls.2013.00389


Takahashi F (2016) Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles. J Plant Res 129(2):189-97.

Claims
  • 1. A method for increasing a biomass productivity in an algal strain comprising: reducing or eliminating as compared to the wild-type parental line an expression or function of a gene or a gene sequence comprising a light-oxygen-voltage-sensing (LOV) domain and a Serine/Threonine kinase domain which gene or gene sequence functions as a phototropin and a gene or gene sequence that has 75% or greater homology to a sequence coding for a sequence selected from SEQ ID NO: 1, 3, 5, 7, 9, 11, 51, 53-72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, or 126.
  • 2. The method of claim 1, wherein the gene or gene sequence has at least 80% homology to a sequence coding for a sequence selected from SEQ ID NO: 1, 3, 5, 7, 9, 11, 51, 53-72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, or 126.
  • 3. The method of claim 1, wherein the gene or gene sequence has at least 90% homology to a sequence coding for a sequence selected from SEQ ID NO: 1, 3, 5, 7, 9, 11, 51, 53-72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, or 126.
  • 4. The method of claim 1, wherein the biomass productivity of the algal strain is increased by greater than around 2-fold.
  • 5. The method of claim 1, wherein the biomass productivity of storage product(s) in the algal strain is increased by greater than around 2-fold.
  • 6. The method of claim 5, wherein the storage product(s) is selected from starch, lipid, pigments and other sink molecules.
  • 7. The method of claim 4, wherein the biomass productivity is increased by greater than around 2-fold.
  • 8. The method of claim 1, wherein the biomass productivity is increased for bioproducts chosen from lipids, waxes, polysaccharides (e.g., starch, glycogen, mannans, glycans, cellulose, hemicellulose), pigments (e.g., xanthophyll).
  • 9. The method of claim 1, wherein the expression or function of the phototropin gene and the homologs thereof is reduced by chemical mutagenesis and selection.
  • 10. The method of claim 1, wherein the expression or function of the phototropin gene and the homologs thereof is reduced by genome editing.
  • 11. The method of claim 1, wherein the expression of the phototropin gene and the homologs thereof is reduced by trans acting elements (e.g., RNAi).
  • 12. The method of claim 1 wherein the expression of the phototropin gene and the homologs thereof is reduced on an inducible basis through an inducible promoter.
  • 13. An algal strain wherein relative to a wild-type parental line an expression of a phototropin gene or a homologous gene is reduced,photosynthetic pigments making up an antenna complex are reduced,and a content of sink molecules is increased.
  • 14. The algal line of claim 13, wherein the phototropin gene or the homologs thereof are rendered to be non-functional.
  • 15. The algal line of claim 13, wherein the phototropin gene or the homologs thereof are substantially deleted.
  • 16. The algal line of claim 13, wherein the phototropin gene or the homologs thereof can be rendered to be non-functional on an inducible basis through an inducible promoter.
  • 17. The algal line of claim 13, wherein the phototropin gene or the homologs thereof deletion would generate sterile and stable diploid population of polyploid algae to avoid recombination of genetic material during sexual reproduction.
  • 18. The algal line of claim 13, wherein the phototropin gene or the homologs thereof deletion would be used to generate stable transgene-stacking traits in polyploid algal strains.
  • 19-34. (canceled)
CROSS-REFERENCE TO RELATED APPLICATIONS

\ This application is a continuation of U.S. Pat. Application No. 16/820,062, entitled “Productivity and Bioproduct Formation in Phototropin Knock/Out Mutants in Microalgae”, filed Mar. 16, 2020, which is a continuation-in-part of U.S. Pat. Application No. 15/831,178, entitled “Productivity and Bioproduct Formation in Phototropin Knock/Out Mutants in Microalgae”, filed Dec. 4, 2017, and issued Mar. 17, 2020 as U.S. Pat. No. 10,590,398, which is a continuation of International Patent Application No. PCT/IB2016/054466, entitled “Improved Productivity and Bioproduct Formation in Phototropin Knock/Out Mutants in Microalgae”, filed on Jul. 26, 2016, which claims priority to and benefit of U.S. Provisional Pat. Application No. 62/171,176 entitled “Improved Productivity and Bioproduct Formation in Phototropin Knock/out Mutants in Microalgae” filed on Jun. 4, 2015, and the specification and claims thereof are incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under contract/grant Nos. Prime Contract No. DE-AC52-06NA25396 and NMC, Inc. subcontract No. 277529 awarded by Department of Energy (DOE); DE-EE0006316 awarded by DOE-REAP; and DE-EE0007089-40101-5804 awarded by DOE-PACE. The U.S. government has certain rights in the invention.

Provisional Applications (1)
Number Date Country
62171176 Jun 2015 US
Continuations (2)
Number Date Country
Parent 16820062 Mar 2020 US
Child 17678834 US
Parent PCT/IB2016/054466 Jul 2016 WO
Child 15831178 US
Continuation in Parts (1)
Number Date Country
Parent 15831178 Dec 2017 US
Child 16820062 US