Productivity and Bioproduct Formation in Phototropin Knock/Out Mutants in Microalgae

Information

  • Patent Application
  • 20200208125
  • Publication Number
    20200208125
  • Date Filed
    March 16, 2020
    4 years ago
  • Date Published
    July 02, 2020
    4 years ago
Abstract
Phototropin is a blue light receptor, which mediates a variety of blue-light elicited physiological processes in plants and algae. In higher plants these processes include phototropism, chloroplast movement and stomatal opening. In the green alga Chlamydomonas reinhardtii, phototropin plays a vital role in progression of the sexual life cycle and in the control of the eye spot size and light sensitivity Phototropin is also involved in blue-light mediated changes in the synthesis of chlorophylls, carotenoids, chlorophyll binding proteins. We compared the transcriptome of phototropin knock out (PHOT KO) mutant and wild-type parent to analyze differences in gene expression in high light grown cultures (500 μmol photons m−2s−1). Our results indicate the up-regulation of genes involved in photosynthetic electron transport chain, carbon fixation pathway, starch, lipid, and cell cycle control genes. With respect to photosynthetic electron transport genes, genes encoding proteins of the cytochrome b6f and ATP synthase complex were up regulated potentially facilitating proton-coupled electron transfer. In addition genes involved in limiting steps in the Calvin cycle Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), Sidoheptulose 1,7 bisphosphatase (SBPase), Glyceraldehyde-3-phosphate dehydrogenase (3PGDH) and that mediate cell-cycle control (CDK) were also up regulated along with starch synthase and fatty acid biosynthesis genes involved in starch and lipid synthesis. In addition, transmission electron micrographs show increased accumulation of starch granules in PHOT mutant compared to wild type, which is consistent with the higher expression of starch synthase genes. Collectively, the altered patterns of gene expression in the PHOT mutants were associated with a two-fold increase in growth and biomass accumulation compared to wild type when grown in environmental photobioreactors (Phenometrics) that simulate a pond environment. In conclusion, our studies suggest that phototropin may be a master gene regulator that suppresses rapid cell growth and promotes gametogenesis and sexual recombination in wild type strains.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Mar. 2, 2018, is named PHOT_US_Sequences_031620_ST25.txt and is 314 Kbytes in size.


TECHNICAL FIELD

Disclosed embodiments of the present invention are in the field of improved performance of microalgae in the production of biological products such as but not limited to biofuels, biomass, pigments, starch, oils and the like through selection, mutagenesis or engineering to reduce expression or knockout the phototropin gene for example.


BACKGROUND

Phototropin is a blue light receptor, which mediates a variety of blue-light elicited physiological processes in plants and algae. In higher plants these processes include phototropism, chloroplast movement and stomatal opening. In the unicellular green alga Chlamydomonas reinhardtii, phototropin (PHOT) plays a vital role in the progression of the sexual life cycle and in the control of the eye spot size and light sensitivity. Phototropin is also involved in blue-light mediated changes in the synthesis of chlorophylls, carotenoids, and chlorophyll binding proteins. The UV-A/blue light sensing phototropins mediate a variety of light responses and are responsible in higher plants for optimization of photosynthetic yields (Chen, Chory et al. 2004).


Phototropins are commonly composed of two domains, an amine terminal photosensory domain and a carboxy terminal serine/threonine protein kinase domain. The photosensory domain is a flavin mononucleotide binding domain, the LOV domain. Plants and green algae contain two of these domains in the phototropin regulatory sequence, LOV1 and LOV2 (Chen, Chory et al. 2004). LOV domain is a member of PAS domains and are about 110 amino acids. There is a conserved sequence within the LOV domain identified at amino acid position 238-245 of SEQ ID NO: 1 for example (Gly Arg Asn Cys Arg Phe Leu Gln Gly). (Salomon et al. 2000). A diagram of the phototropin protein is:




embedded image


Phototropin knock-out mutants (PHOT K/O) have been made previously in plants (Suetsugu and Wada 2007, Moni, Lee et al. 2015) and algae (Zorin, Lu et al. 2009; Trippens, Greiner et al. 2012). However, all the PHOT K/O mutant prior art that has been located to date did not show improved productivity of the plant or alga.


In plants two phototropins have been reported, phot1 and phot2, these phototropins share sequence homology and have overlapping functions. These blue-light-sensitive receptors consist of two parts: a C-terminal serine-threonine kinase and two LOV domains that bind flavin mononucleotide as chromophores at the N-terminus. Recently, in the unicellular green alga, Chlamydomonas reinhardtii, a phototropin homolog was identified. It exhibits photochemical properties similar to those of higher plant phototropins and is also functional in Arabidopsis. Studies show that the basic mechanism of phototropin action is highly conserved, even though its apparent physiological functions are quite diverse.


Phototropin in Higher Plants:

Plants utilize several families of photoreceptors to better react to their environment, allowing them to fine tune pathways controlled by the photoreceptors—phototropin, phytochrome, and cryptochrome (Chen, Chory et al. 2004).


In higher plants phototropin mediates a variety of blue-light elicited physiological processes (Sullivan, Thomson et al. 2008). Phototropins are UV-A/blue light sensing photoreceptors that are known to optimize photosynthetic yields (Chen, Chory et al. 2004). The involvement of phototropin in photomovement in higher plants is well documented (Suetsugu and Wada 2007, Kagawa, Kimura et al. 2009). Studies involving Arabidopsis mutants lacking the phot1 and phot2 genes have revealed that in addition to regulating hypocotyl curvature of seedlings towards blue light, phototropins also regulate a diverse range of responses in flowering plants. These responses include chloroplast movements, nuclear positioning, stomatal opening, leaf expansion, leaf movements and leaf photomorphogenesis.


Phototropin knock-out mutants (PHOT K/O) have been made previously in plants (Suetsugu and Wada 2007, Moni, Lee et al. 2015). For instance in Physcomitrella patens (a moss) there are three PHOT genes and they have all been knocked out in different mutants (Suetsugu and Wada 2007). The focus of the P. patens study was the effect of PHOT K/O on phototropism (movement toward light) and the phenotypes they observed allowed them to determine which of the genes were necessary for phototropism (Suetsugu and Wada 2007).


PHOT expression was higher in darkness than in light, and phot1 Arabidopsis mutants was shown to increase the number of lateral roots produced (Moni, Lee et al. 2015). phot was also demonstrated to mediate phototropism, chloroplast relocation and leaf expansion (Matsuoka, Iwata et al. 2007). Using phot deficient Arabidopsis mutants, phototropin 2 was linked to palisade parenchyma cell development of leaves (Kozuka, Kong et al. 2011).


Another study looked at the role of phototropin under low photosynthetically active radiation (Takemiya, Inoue et al. 2005). They found that the wild-type and the PHOT1 mutant both showed increased but similar growth in low radiance blue light super imposed on red light. In white light there was no increase in biomass in both phot1 and phot2 mutants as well as in the double phot mutant.


A study by Folta and colleagues investigated the relationship between phot1 and phototropism and growth inhibition in Arabidopsis (Folta, Lieg et al. 2003). They found that the onset of phototropism and the phot1-mediated growth inhibition coincided and postulated that both were due to phot1 expression.


There is a substantial amount of patent literature around phototropin in higher plants. However, the focus has been on the commercial utility of the upstream, light regulated areas rather than on the phototropin gene itself. These light control domains that regulate PHOT expression—the light-oxygen-voltage-sensing (LOV) domains—have been carefully evaluated for potential commercial application in higher plants.


Shu & Tsien application (US20130330718) focused on using the LOV domain for control of proteins that generate singlet oxygen (SOGs). These fusion protein tags could be used for imaging under blue light for research purposes.


Other patents use light switchable regulatory sequences and contemplate the use of the phototropin LOV domain such as Yang and colleagues (EP2682469).


Hahn & Karginov (WO2011133493) focused on allosteric regulation of kinases using the light activated domains for control of expression in engineered fusion proteins (such as the LOV domains).


Hahn and colleagues (U.S. Pat. No. 8,859,232) demonstrated that the LOV domain of phototropin can be used as a light activated switch for the activation or inactivation of fusion proteins of interest. They contemplated using a LOV domain that could contain substantial portions of the phototropin molecule in addition to the LOV domain. They contemplated using the LOV domain isolated from algae and gave the specific example of Vaucheria frigida, a stramenopile or heterokont alga.


Kinoshita and colleagues (WO2014142334) demonstrated that overexpression of phototropin had no impact of stomatal opening in higher plants.


Bonger and colleagues (US20140249295) used the LOV domain as a fusion with another functional protein wherein the light switching ability of the LOV domain was used to control the stability and/or function of the fusion protein.


Folta and colleagues (WO2014085626) using mutants of phototropin 1 were able to show that the function of phot1 is mediation of the pathway in which green light reverses the effects of red and/or blue light on plant growth.


Schmidt & Boyden (US20130116165) describe a new group of fusion proteins with light regulatory regions derived from Avena sativa phototropin 1. These regulatory domains are used for altering channel function in membranes.


To date there is no disclosure of the use of PHOT knockout or knockdown (suppression) technology to improve or algae plant productivity.


Phototropin in Algae:

Phototropin has already been well studied in several different algae including Chlamydomonas reinhardtii (Briggs and Olney 2001). However, there are indications that phototropins have diverged significantly or that the genes that function as phototropin are not very homologous to plant phototropin genes. For instance it was reported that in Thalassiosira pseudonana (a diatom) and Cyanidioschyzon merolae (unicellular red alga) no genes were found encoding the phototropins (Grossman 2005). However putative genes with photosensory LOV domains, aurechromes, have been reported for these and other photosynthetic stramenopiles (Table 1). Most aureochromes contain a single LOV domain and function as transcription factors that regulate cell division, chloroplast movement, pigment production, and phototropism. (Takahashi. J Plant Res (2016) 129:189-197)


In Chlamydomonas reinhardtii, phototropin plays a vital role in progression of the sexual life cycle (Huang and Beck 2003), control of the eye spot size and light sensitivity (Trippens, Greiner et al. 2012). Phototropin is also involved in blue-light mediated changes in the synthesis of chlorophylls, carotenoids, chlorophyll binding proteins. Phototropin has been localized to the flagella of Chlamydomonas reinhardtii (Huang, Kunkel et al. 2004). Phototropin is also known to be involved in expression of genes encoding chlorophyll and carotenoid biosynthesis and LHC apoproteins in Chlamydomonas reinhardtii Eberhard et al. 2006). The Chlamydomonas reinhardtii phototropin gene has been cloned and shown to function when expressed in Arabidopsis (Onodera, Kong et al. 2005).


Phototropin has been shown to control multiple steps in the sexual life cycle of Chlamydomonas reinhardtii (Huang and Beck 2003). PHOT knockdowns using RNAi were generated (Huang and Beck 2003). The entire focus of this study was on sexual mating and no mention of improved biomass, starch accumulation or photosynthesis rate was observed. It is also involved in the chemotaxis that is the initial phase of the sexual cycle of Chlamydomonas reinhardtii (Ermilova, Zalutskaya et al. 2004). However, no cell cycle implications of phototropin knockout or knockdowns have been published.


Detailed studies have carefully analyzed the function of the LOV domain in several algal species. An example is the Chlamydomonas reinhardtii mutant LOV2-C250S where careful studies of the light activation and regulation of this domain were carried out to better understand the mechanism of action (Sethi, Prasad et al. 2009).


Phototropin knock-out mutants (PHOT K/O) have been made previously in algae (Zorin, Lu et al. 2009 Trippens, Greiner et al. 2012). PHOT minus strains had larger eyespots than the parental strain (Trippens, Greiner et al. 2012). This study focused on the impact of PHOT on eyespot structure function. These authors used a knock-out mutant of PHOT to reduce expression of phototropin (Trippens, Greiner et al. 2012).


Novel phototropins have been described in the green alga Ostreococcus tauri and with a focus on their LOV domain structure/function (Veetil, Mittal et al. 2011).


Abad and colleagues (WO2013056212) provide the sequence for phototropin from a green alga, Auxenochiorella protothecoides, and indicate that the gene would be important for photosynthetic efficiency. However, they do not discuss the impact of deletion or inhibition of this gene on the alga.


DEFINITIONS

Unless otherwise defined, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the exemplary embodiments, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned are incorporated by reference in their entirety. In case of conflict, the present specification and definitions will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting for the practice of this invention.


Unless specifically referred to in the specification singular forms such as “a,” “an,” and “the,” include their plural forms. As an example, “an alga” includes its plural form “algae” and “a plant” includes the plural “plants.”


The term “algae” will refer to all organisms commonly referred to as algae including the prokaryotic cyanophyta (commonly called blue-green algae and cyanobacteria), prochlorophyta, glaucophyta, rhodophyta, heterokontophyta, haptophyte, cryptophyta, dinophyta, euglenophyta, chloroaracniophyta, chlorophyta, and those organisms of indeterminate nomenclature normally referred to as algae. A full description of these is found in the book “Algae An Introduction to Phycology” by Van Den Hoek, Mann & Jahns (1995), which is included by reference.


The term “expression” as used herein refers to transcription and/or translation of a nucleotide sequence within a host cell. The level of expression of a desired product in a host cell may be determined on the basis of either the amount of corresponding mRNA that is present in the cell, or the amount of the desired polypeptide encoded by the selected sequence.


The term “overexpression” as used herein refers to excessive expression of a gene product (RNA or protein) in greater-than-normal amounts.


The term “homologous” refers to the relationship between two proteins that possess a “common evolutionary origin”, including proteins from superfamilies (e.g., the immunoglobulin superfamily) in the same species, as well as homologous proteins from different species.


As used herein, “identity” means the percentage of identical nucleotide or amino acid residues at corresponding positions in two or more sequences when the sequences are aligned to maximize sequence matching, i.e., taking into account gaps and insertions.


The term “sequence similarity” refers to the degree of identity or correspondence between nucleic acid or amino acid sequences that may or may not share a common evolutionary origin (Reeck, de Haen et al. 1987). However, in common usage and in the current invention, the term “homologous”, when modified with an adverb such as “highly”, may refer to sequence similarity and may or may not relate to a common evolutionary origin.


In specific embodiments, two nucleic acid sequences are “substantially homologous” or “substantially similar” when at least about 75%, and more preferably at least 80%, and more preferably at least 85%, and more preferably at least about 90% or at least about 95% of the nucleotides (or any integer value in between) match over a defined length of the nucleic acid sequences, as determined by a sequence comparison algorithm such as BLAST, CLUSTAL, MUSCLE, etc. An example of such a sequence is an allelic or species variant of the specific phototropin gene of the present invention. Sequences that are substantially homologous may also be identified by hybridization, e.g., in a Southern hybridization experiment under stringency conditions as defined for that particular system. The homology may be as high as about 93-95%, 98%, or 99% (or any integer value in between). For example, the sequence to which homology is matched is a wild-type parental line and the length of the sequence is the full length of the sequence from wild-type parental line.


Similarly, in particular embodiments of the invention, two amino acid sequences are “substantially homologous” or “substantially similar” when greater than 75% of the amino acid residues are identical wherein identical contemplates a conservative substitution at a nucleic acid position. In a preferred embodiment there is at least 80%, and more preferably at least 85%, and more preferably at least about 90% and more preferably at least about 90-95% of the amino acid residues are identical (or any integer value in between). Two sequences are functionally identical when greater than about 95% of the amino acid residues are similar. Preferably the similar or homologous polypeptide sequences are identified by alignment using, for example, the GCG (Genetics Computer Group, Version 7, Madison, Wis.) pileup program, or using any of the programs and algorithms described above. Conservative amino acid substitutions are among: acidic (negatively charged) amino acids such as aspartic acid and glutamic acid; basic (positively charged) amino acids such as arginine, histidine, and lysine; neutral polar amino acids such as glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; neutral nonpolar (hydrophobic) amino acids such as alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; amino acids having aliphatic side chains such as glycine, alanine, valine, leucine, and isoleucine; amino acids having aliphatic-hydroxyl side chains such as serine and threonine; amino acids having amide-containing side chains such as asparagine and glutamine; amino acids having aromatic side chains such as phenylalanine, tyrosine, and tryptophan; amino acids having basic side chains such as lysine, arginine, and histidine; amino acids having sulfur-containing side chains such as cysteine and methionine; naturally conservative amino acids such as valine-leucine, valine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, aspartic acid-glutamic acid, and asparagine-glutamine. A further aspect of the homologs encoded by DNA useful in the transgenic plants or algae of the invention are those proteins that differ from a disclosed protein as the result of deletion or insertion of one or more amino acids in a native sequence.


The term “knockout” or “gene knockout” refers herein to any organism and/or its corresponding genome where the gene of interest has been rendered unable to perform its function. This can be accomplished by both classical mutagenesis, natural mutation, specific or random inactivation, targeting in cis or trans, or any method wherein the normal expression of a protein is altered to reduce its effect. For example but not to limit the definition 1) one can use chemical mutagenesis to damage the gene and then select for organisms not expressing the gene, 2) one can target the gene and remove a portion or all of the gene by homologous recombination, 3) one can use RNAi methods to produce an inhibitor molecule for a particular protein and similar methods and 4) one can use genome editing tools (i.e. CRISPR-Cas) to specifically modify the gene.


The practice of the present invention will employ, unless otherwise indicated, conventional techniques of chemistry, molecular biology, microbiology, recombinant DNA and immunology, which are within the capabilities of a person of ordinary skill in the art. Such techniques are explained in the literature (Sambrook, Fritsch et al. 1989, Ausubel, Brent et al. 1997, Green and Sambrook 2012).


The term “transcriptome” refers to the set of RNA molecules present in a population of cells. It often reflects how an organism responds to particular situations and is looking at what genes are regulated under a particular condition. Examples of transcriptome analyses on algae are found in the following references (Hwang, Jung et al. 2008, Rismani-Yazdi, Haznedaroglu et al. 2011, Fu, Wang et al. 2014, Koid, Liu et al. 2014).


The term “biofuel” refers to any fuel made through the application of biological processes not on a geological timescale. Examples include but are not limited to conversion of algal biomass to biocrude through hydrothermal liquefaction, anaerobic digestion of spent algal biomass for conversion to methane, extraction of lipid from algal biomass to convert to biodiesel, and conversion of water to biohydrogen through biological processes.


The term “bioproduct” is any product produced from biological processes either in whole or in part.


The term biomass productivity or production as used herein refers to the rate of generation of biomass in an ecosystem. It is usually expressed in units of mass per unit surface (or volume) per unit time, for instance grams per square metre per day (g m−2 d−1). The mass unit may relate to biologically produced dry matter generated.


The term “sink molecules”, “sink compounds”, sink materials” refers to molecules used by an organism to store captured carbon. These can be but are not limited to sugars, starch, glycogen, lipids, fats, waxes, and similar biomolecules.


The publications discussed above are provided solely for their disclosure before the filing date of the present application. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosures by virtue of prior invention.


SUMMARY OF THE INVENTION

This and other unmet needs of the prior art are met by exemplary compositions and methods as described in more detail below.


One embodiment of the present invention provides for a method for increasing a biomass productivity of an algal strain wherein the expression or function of a Chlamydomonas reinhardtii phototropin gene, a gene substantially similar to the Chlamydomonas reinhardtii phototropin gene or a sequence substantially similar to SEQ ID NO 1-14, 51-66 and 69-128 is reduced or eliminated. In a preferred embodiment the gene substantially similar has greater than 75% homology, more preferably greater than 80%, or 85%, or 90% or 95% homology to the Chlamydomonas reinhardtii phototropin gene or the sequence identified in SEQ ID NO 1-14, 51-66 and 69-128.


For example, the biomass productivity of the algal strain is increased by greater than around 2-fold. The biomass production of storage product(s) in the algal strain is increased by greater than around 2-fold, for example the storage product(s) is selected from starch, lipid, pigments and other sink molecules and for example the productivity of biomass is increased by greater than around 2-fold. Further, the biomass productivity may be increased for bioproducts chosen from lipids, waxes, polysaccharides (e.g., starch, glycogen, mannans, glycans, cellulose, hemicellulose), pigments (e.g., xanthophyll). In a preferred embodiment the expression of the Chlamydomonas reinhardtii phototropin gene, the gene substantially similar to the Chlamydomonas reinhardtii phototropin gene or the sequence substantially similar to SEQ ID NO 1-14, 51-66 and 69-128 is reduced by example chemical mutagenesis and selection, genome editing, trans acting elements (e.g., RNAi), and/or an inducible basis through an inducible promoter.


Another embodiment of the present invention provides for an algal strain wherein relative to the wild-type parental line the expression of the phototropin gene or a substantially similar gene is reduced, the photosynthetic pigments making up the antenna complex are reduced, and/or the content of sink molecules is increased. In a preferred embodiment the phototropin gene or a substantially similar gene been rendered to be non-functional. In a preferred embodiment the non-functional gene has been substantially deleted or is rendered to be non-functional on an inducible basis through an inducible promoter. In a preferred embodiment the algal line having the phototropin gene deletion would generate sterile and stable diploid population of polyploid algae to avoid recombination of genetic material during sexual reproduction or in another embodiment would be used to generate stable transgene-stacking traits in polyploid algal strains. In a preferred embodiment the phototropin gene or a substantially similar gene is selected from SEQ ID NO 1-14, 51-66 and 69-128. In another preferred embodiment the gene or the gene substantially similar has greater than 75% homology, or greater than 80%, or 85%, or 90% or 95% homology to the Chlamydomonas reinhardtii phototropin gene or the sequence identified in SEQ ID NO 1-14, 51-66 and 69-128.


In another embodiment a method for increasing a biomass productivity of an algal strain wherein the expression or function of a Chlamydomonas reinhardtii NTR2 or NTRC gene, a gene substantially similar to a Arabidopsis NTR2 or NTRC gene or a sequence substantially similar to SEQ ID NO 35-50 and 67-68 is over expressed in the algal strain is provided. In a preferred embodiment the gene substantially similar has greater than 75% homology, or more than 80%, 85%, 90%, or 95% homology to the Arabidopsis NTR2 or NTRC gene or the sequence identified in SEQ ID NO 35-50 and 67-68.


For example, the biomass productivity of the algal strain is increased by greater than around 2-fold. The biomass production of storage product(s) in the algal strain is increased by greater than around 2-fold, for example the storage product(s) is selected from starch, lipid, pigments and other sink molecules and for example the productivity of biomass is increased by greater than around 2-fold. Further, the biomass productivity may be increased for bioproducts chosen from lipids, waxes, polysaccharides (e.g., starch, glycogen, mannans, glycans, cellulose, hemicellulose), pigments (e.g., xanthophyll).


In yet another embodiment a method for increasing a productivity of an algal strain wherein the expression or function of a Chlamydomonas reinhardtii KIN10 or KIN11 gene, a gene substantially similar to a Arabidopsis KIN10 or KIN11 gene or a sequence substantially similar to SEQ ID NO 15-34 is over expressed in the algal strain is provided. In a preferred embodiment the gene substantially similar has greater than 75% homology, or greater than 80%, 85%, 90%, or 95% homology to the Arabidopsis KIN10 or KIN11 gene or the sequence identified in SEQ ID NO 15-34. For example, the biomass productivity of the algal strain is increased by greater than around 2-fold. The biomass production of storage product(s) in the algal strain is increased by greater than around 2-fold, for example the storage product(s) is selected from starch, lipid, pigments and other sink molecules and for example the productivity of biomass is increased by greater than around 2-fold. Further, the biomass productivity may be increased for bioproducts chosen from lipids, waxes, polysaccharides (e.g., starch, glycogen, mannans, glycans, cellulose, hemicellulose), pigments (e.g., xanthophyll).


Exemplary embodiments of the compositions, systems, and methods disclosed herein wherein algae are treated so as to reduce or eliminate the expression of phototropin or a heterologous gene with the same function such that improved productivity is achieved.


In one aspect, embodiments of the present invention provide an organism and the method to use such organism where the phototropin gene is knocked out and the photosynthetic rate is improved and the biomass productivity improves.


In a further aspect, the mutant is produced from Chlamydomonas reinhardtii and the biomass productivity is doubled.


Another embodiment of the present invention provides an organism with reduced PHOT expression wherein the sexual cycle is arrested and the genetic stability of the algal cell culture line is improved.


In a further embodiment the organism is derived from Chlamydomonas reinhardtii and has reduced promiscuity resulting in a more stable genotype and phenotype.


In one aspect, embodiments of the present invention provide an organism with reduced phototropin gene expression and the method to use such organism which as improved non-photochemical quenching providing the ability for better response to high light levels.


In one aspect, embodiments of the present invention provide an organism with reduced phototropin expression and the method to use such organism that results in higher levels of sink molecules, such as but not limited to lipid and starch.


In a further embodiment the organism has enhanced cell division compared to wild-type.


In a further embodiment the organism is derived from Chlamydomonas reinhardtii.


In another embodiment of the method wherein the expression of the Chlamydomonas reinhardtii phototropin gene is reduced by genome editing (i.e. CRISPR/Cas).


In another embodiment of the method wherein the expression of the Chlamydomonas reinhardtii phototropin gene is reduced by trans acting elements (e.g., RNAi).


In a further embodiment the gene downstream of PHOT has substantial homology to the Arabidopsis KIN10 or KIN11 genes or a portion thereof (Snf1 related kinases, SNRK) and can be overexpressed to increase the productivity of an algal strain.


In yet a further embodiment the KIN10 and KIN11 genes or a portion thereof are chosen from genes substantially homologous to a nucleic acid sequence identified in SEQ ID NO 15 to 34 or a nucleic acid sequence encoding for an amino acid sequence identified in SEQ ID NO15 to 34.


In a further embodiment the gene downstream of phot has substantial homology to the Arabidopsis NTRC and NTR2 gene(s) or a portion thereof and can be overexpressed to increase the productivity of an algal strain.


In yet a further embodiment the NTRC and NTR2 genes or a portion thereof are chosen from genes substantially homologous to a nucleic acid sequence identified in SEQ ID NO 35 to 50 or a nucleic acid sequence encoding for an amino acid sequence selected in SEQ ID NO 35 to 50.





BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the exemplary embodiments of the invention will be had when reference is made to the accompanying drawings, and wherein:



FIG. 1A-D Comparison of chlorophyll a/b ratios and chlorophyll content of PHOT K/O lines (PHOT K/O line G5 and parent cw15) and (PHOT K/O line A4 and parent UVM4): (A) chlorophyll a/b ratios in low light, (B) chlorophyll a/b ratios in low light and high light, (C) chlorophyll content in low light grown cells of cw15 parent and G5 mutant, and (D) chlorophyll content in low light grown cells of UV4 parent and A4 mutant.



FIG. 2A-D—Carotenoid pigment comparison of low light (LL) and high light (HL) grown cultures of Chlamydomonas reinhardtii PHOT K/O lines compared to wild-type. LL=Low light, HL=high light, CW15=Parent for G5 PHOT K/O line, UV4=parent for A4 PHOT K/O line, Neo=neoxanthin, Lutein=lutein, Viola=violaxanthin, Anthera=antheraxanthin, and Zea=zeaxanthin.



FIG. 3A-B—Xanthophyll cycle carotenoid de-epoxidation in Chlamydomonas reinhardtii PHOT K/O (lines G5 and A4) and their corresponding parental lines (CW15 and UVM4) grown at low and high light intensities.



FIG. 4A-D—Chlorophyll fluorescence induction kinetics of low-light grown Chlamydomonas reinhardtii PHOT K/O lines and respective wild-type parental strains. Cultures were either dark adapted or pre-illuminated with 715 nm light (photosystem I (PSI) actinic light) prior to measurement. For Chl fluorescence induction measurements, Chl fluorescence was measured under continuous, non-saturating illumination every microsecond.



FIG. 5A-B—Photosynthetic rate comparison of Chlamydomonas reinhardtii PHOT K/O lines and parent lines under increasing light intensity. CW15 and UV4 are parental wild-type lines while G5 and A4 are the PHOT K/O lines.



FIG. 6—KEGG pathway graphical data on photosynthetic electron transport chain related gene expression Chlamydomonas reinhardtii PHOT K/O lines and parent lines. Star indicates fold change in transcript abundance relative to parent line.



FIG. 7A-D—Growth and biomass comparison of Chlamydomonas reinhardtii PHOT K/O lines and parent lines in environmental photobioreactors from Phenometric (ePBRs).



FIG. 8—KEGG pathway graphical data on carbon fixation related gene expression Chlamydomonas reinhardtii PHOT K/O lines and parent lines. Hatched line and/or star indicates fold change in transcript abundance relative to parent line.



FIG. 9—Cell cycle pathway diagram. N/MA (Never in mitosis), NEK2, NEK6 (N/MA related kinases), Cyclin and CDK (Cyclin-dependent kinases), RB (retinoblastoma)/mat3 (mating type-linked) genes are up-regulated in cell cycle pathway.



FIG. 10—Starch synthesis pathway.



FIG. 11A-B—Thylakoid membrane structure and starch accumulation comparison of PHOT K/O line with parent line. Inserts are a magnification of the thylakoid grana stacks.



FIG. 12—KEGG pathway graphical data on terpenoid synthesis related gene expression Chlamydomonas reinhardtii PHOT K/O lines and parent lines. Star indicates up-regulated genes relative to parent line.





DETAILED DESCRIPTION

While there have been numerous studies on algal phototropin (Huang and Beck 2003, Ermilova, Zalutskaya et al. 2004, Huang, Kunkel et al. 2004, Im, Eberhard et al. 2006, Sethi, Prasad et al. 2009, Veetil, Mittal et al. 2011, Trippens, Greiner et al. 2012) to date there has been no correlation of the reduction or knock-out of phototropin to higher levels of biomass production and increased production of sink molecules/products such as starch and lipid.


The transcriptome of a Chlamydomonas reinhardtii phototropin knock out (PHOT K/O) mutant and the wild-type parent were compared to analyze differences in gene expression in high light grown cultures (500 μmol photons m−2 s−1). An up-regulation of genes involved in photosynthetic electron transport chain, carbon fixation pathway, starch, lipid, and cell cycle control genes was observed in the PHOT K/O mutants. Referring now to FIG. 6, with respect to photosynthetic electron transport genes, genes encoding proteins of the cytochrome b6f and ATP synthase complex were up regulated potentially facilitating rate limitations in proton-coupled electron transfer. In addition genes involved in the rate limiting steps in the Calvin cycle, including Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), sidoheptulose 1,7 bisphosphatase (SBPase), glyceraldehyde-3-phosphate dehydrogenase (3PGDH) and that mediate cell-cycle control (CDK), were also up regulated in the PHOT K/O mutants as well as the starch synthase and fatty acid biosynthesis genes involved in starch and lipid synthesis. In addition, transmission electron micrographs show increased accumulation of starch granules in PHOT K/O mutant compared to wild-type, which is consistent with the higher expression of starch synthase genes. Collectively, the altered patterns of gene expression in the PHOT K/O mutants were associated with a two-fold increase in growth and biomass accumulation compared to wild-type when grown in environmental photobioreactors (PBR101 from Phenometrics, Inc., Lansing, Mich.) that simulate a pond environment as evidence of increase productivity of algae. These surprising results suggest that phototropin may be a master gene regulator that suppresses rapid cell growth and promotes gametogenesis and sexual recombination in wild-type strains. Therefore, down regulating expression or eliminating the phototropin genes (e.g., PHOTO K/O mutants) provides a valuable means to increase productivity of algae that has commercial applications.


Using a variety of methods exemplary embodiments of the invention are directed at improving the productivity of algal systems based on control of the phototropin gene and genes similar to phototropin in algal systems. This is particularly applicable to improving biomass productivity in algal mass culturing either for production of algal biofuels or bioproducts.


Productivity is a central issue in algae production and a doubling of the productivity could be very attractive to groups who hope to cross the threshold of commercial viability. However, one should note that widespread adoption of transgenic algae as a production system is not yet embraced. Several companies (for example Algenol, Ft. Meyers, Fla.) are using transgenic algae (cyanobacteria) in closed tube reactors outdoors and, presumably, have a track to (national) regulatory approval. Use of transgenic algae has been approved in Florida and approvals have recently been granted by the US EPA for GMO field trials for Sapphire Energy Company.


Production of bioproducts using this invention, owing to the observed doubling of productivity in biomass and sink molecules/compounds, could be pivotal in reaching commercial viability. The observed increase in starch production by this invention is especially important as it shows sink molecules/compounds are enhanced by the methods of this invention.


Alternative genome editing technologies such as CRISPR/Cas 9, Talen and Zinc finger nuclease approaches could also be used to inhibit expression of phototropin (Gaj, Gersbach et al. 2013, Sizova, Greiner et al. 2013).


It is possible to make PHOT knockouts using non-GMO approaches such as classical mutagenesis using chemical mutagens such as methylnitronitroso guanidine and ethyl methane sulfonate (Yan, Aruga et al. 2000).


To date, supporting data for this invention have been limited to the green alga, Chlamydomonas reinhardtii. Compared to wild-type C. reinhardtii, PHOT K/O mutants of the invention show:

    • 1. Reduction in chlorophyll and carotenoid pigments (see FIG. 1).
    • 2. Reduced light harvesting antenna size (see FIG. 1).
    • 3. 2-fold increase in photosynthesis rate (see in FIG. 5).
    • 4. Increased expression of genes that control rate limiting steps in photosynthetic electron transfer and Calvin Cycle activity (see FIG. 6 and FIG. 8).
    • 5. 2-fold increase in growth and biomass (see in FIG. 7.)
    • 6. Increased expression of starch synthesis genes (see in FIG. 10.)
    • 7. Increased accumulation of xanthophyll cycle pigments (see in FIG. 12).
    • 8. Higher accumulation of starch grains (see in FIG. 11B).
    • 9. Increased expression of the chloroplast localized MEP terpenoid synthesis pathway but not the cytoplasmic MVA terpenoid synthesis pathway (see in FIG. 12)
    • 10. Increased expression of cell cycle control genes potentially accelerating rates of cell division (see in FIG. 9).
    • 11. Increased expression of glycolysis pathway genes.
    • 12. Increased expression of Kin10/Kin11 (SNRK) genes.
    • 13. Increased expression of NTR2 and NTRC genes.


Additionally, PHOT K/O mutants were unable to undergo sexual mating, which was attributed to an impact of the PHOT K/O on the cell cycle—effectively blocking meiosis while accelerating photosynthetic and cell division rates.


PHOT Knockout (K/O) Mutants of Chlamydomonas Reinhardtii


Chlamydomonas reinhardtii PHOT knockout lines were generated in different parental backgrounds. PHOT K/O line G5 was made in cw15 parental background and A4 mutant line was made in UV4 background (Zorin, Lu et al. 2009).


Pigment Analysis of Phototropin Knock Out Lines

Chlorophyll (Chl) and carotenoids are the central pigments of the photosynthetic apparatus. These pigments are associated with light-harvesting complexes and reaction-center complexes in photosynthetic organisms. The light environment plays a major role in governing the pigment composition of pigment-protein complexes of the photosynthetic apparatus. Blue light is especially important in modulating the synthesis of Chl and carotenoids, as well as the biogenesis of the photosynthetic apparatus in microalgae and vascular plants. Consistent with phototropin regulation of pigment biosynthetic pathways C. reinhardtii PHOT K/O lines showed:

  • Chlorophyll content: Higher chlorophyll a/b (Chl a/b) ratios compared to their respective wild-types when grown under low light intensities. As shown in FIGS. 1A and 1B, the G5 mutant line has Chl a/b ratios of 2.8 and 3.1 in low and high light, respectively while its parent CW15 has a Chl a/b ratio of 2.2 in low light with no significant increase in high light. Similarly, the mutant A4 line has Chl a/b ratios of 2.9 and 3.4 in low light and high light respectively, and its parent has a Chl a/b ratio of 2 in low light with no significant change in high light. Chl a/b ratios are also higher in PHOT K/O lines under high light grown cultures, which is consistent with a reduction in chlorophyll antenna size at high light. FIGS. 1C and 1D shows a 50-60% reduced chlorophyll content per gram dry weight in the PHOT mutants compared to parent wild-type.


Carotenoid content: When grown under low light intensities PHOT K/O lines showed a 30-40% reduction in carotenoid content compared to parent wild. The changes in xanthophyll cycle pigments were analyzed since the xanthophyll cycle pigments play an important role as antioxidants and for non-photochemical quenching of excess energy captured by the light harvesting complex. Both PHOT K/O lines show higher accumulation of photoprotective pigments in high light compared to their respective WT parents. Referring now to FIG. 2B, G5 PHOT accumulates 2.5 fold more lutein and 4.1 fold more zeaxanthin compared to the parental line as shown in FIG. 2A. Referring now to FIG. 2D, A4 PHOT K/O accumulates 2.8 lutein and 3.8 fold zeaxanthin as well as 2.8 fold antheraxanthin compared to its respective parent as shown in FIG. 2C. These results are consistent with the better photosynthetic performance of these lines when grown in high light intensities.


De-epoxidation rates: Consistent with the xanthophyll cycle pigment accumulation PHOT K/O lines show higher De-epoxidation in high light conditions as compared to their respective wild-type under high light (FIG. 3A-B). These data are consistent with the better performance of PHOT K/O lines in high light intensities as they have more robust photoprotection mechanisms.


Photosynthetic State Transition Analysis in Parent and PHOT K/O Lines:

In C. reinhardtii, the peripheral PSII antenna is able to migrate laterally between PSII and PSI, in a process known as state transitions, to balance the excitation energy distribution between the two photosystems and to regulate the ratio of linear and cyclic electron flows. Linear electron transfer produces ATP and NADPH, while cyclic electron transfer driven by PSI produces only ATP. Increasing the antenna size of the PSI complex facilitates cyclic electron transfer and has been shown to enhance ATP production and support the optimal growth of Chlamydomonas. To assess the impact of reduced pigment content on the ability to carry out state transitions, chlorophyll (Chl) fluorescence induction kinetics were measured in low-light grown parent wild-type (FIGS. 4A and C) and PHOT K/O cells (FIG B and D), that were either dark adapted (sold line) or pre-illuminated with PSI (715 nm) actinic light (broken line). PSI actinic light pre-illumination promotes light harvesting complex II (LHCII) migration from PSI to PSII. An increase in the PSII antenna size would accelerate Chl fluorescence rise kinetics and increase the maximal Chl fluorescence level at sub-saturating light intensities. Wild-type strains (FIGS. 4A and C) and PHOT K/O lines (FIGS. 4B and D) all had faster Chl fluorescence rise kinetics and achieved greater maximum Chl fluorescence levels following pre-illumination with PSI light as compared to dark adapted cells consistent with robust state transitions.


Photosynthetic Rates in WILD-TYPE and PHOT K/O Lines:

Referring now to FIG. 5A and FIG. 5B, the photosynthetic rates of the PHOT lines were determined under increasing light conditions and PHOT K/O lines (open boxes) show 2 fold higher photosynthetic rates compared to their respective parent strains (filled circles). Rate limiting genes in photosynthetic electron transport genes were up-regulated in high light grown cultures (FIG. 6). Up-regulation of these genes may play a role in higher photosynthetic efficiency of PHOT K/O mutants.


Photosynthetic Electron Transport Pathway Genes:

The transcriptomic analysis of the PHOT K/O mutants compared to wild-type parental strains provided information on the different genes impacted by the elimination of phototropin expression (FIG. 6). These data are reported in the KEGG (Kyoto Encyclopedia of Genes and Genome) pathway format (Kanehisa and Goto 2000, Kanehisa, Goto et al. 2014) found on the world wide web at genome.jp/kegg/mapper.html last visited May 25, 2016. Rate limiting genes in photosynthetic electron transport pathway were up-regulated in high light grown cultures. Up-regulation of these genes may play a role in higher photosynthetic efficiency of PHOT K/O mutants.

    • 1. PetC: Is a nuclear gene encoding the Rieske protein of the cytochrome b6/f (cyt b6/f complex. The cytochrome b6f complex catalyzes the rate-limiting step in photosynthetic electron transport. Increases in its expression levels or stoichiometry relative to the PSI and PSII reaction centers would be predicted to increase rates of electron and proton transfer. A 2-fold increase on petC expression was observed for the PHOT K/O mutants (see FIG. 6).
  • AtpD: Encodes the delta subunit for ATPase. A 3-fold increase on AtpD expression was observed for the PHOT K/O mutants (see FIG. 6).
  • F type ATPase genes: The delta and gamma subunits of the F type ATPase gene were evaluated. Increases in expression of the ATPase complex would facilitate proton flux, increase ATP synthesis and reduce feedback inhibition on proton coupled electron transfer by accelerating dissipation of the delta pH gradient across the thylakoid membrane. A 3-fold increase was observed for the PHOT K/O mutants (see FIG. 6).
  • PGRL1: Is an important gene for efficient cyclic electron flow. A 2.2 fold increase was observed for PHOT K/O mutants
  • PGR7: Is a gene necessary for efficient photosynthetic electron transport. A 6.4 fold increase was observed for PHOT K/O mutants.


Growth and Biomass Analysis in Parent and PHOT K/O Lines:

Most importantly, phototropin knock out lines (open boxes), had twice the cell density (FIGS. 7A and 7C) and accumulated twice the biomass (FIGS. 7B and 7D) of their respective parental wild-type strain (solid boxes) when approaching the stationary phase of growth (after 12 days) (FIG. 7). These results are consistent with higher photosynthetic rates in phototropin knock out lines also impact biomass yield of cells grown under conditions mimicking the pond simulating conditions (ePBRs). These results are in concert with up-regulation of the genes involved in carbon fixation and cell cycle as determined by transcriptomic analysis.


Carbon Fixation Pathway Genes Upregulated:

Carbon fixation is the main pathway for storing energy and accumulating biomass in algae and plants. Many rate limiting genes were up-regulated in PHOT K/O lines (FIG. 8). SBPase and RuBisCO are limiting enzymes in the Calvin Cycle and their overexpression would increase carbon flux through the carbon reduction pathways. Carbonic anhydrase (CA), an enzyme active in the interconversion of bicarbonate and CO2 facilitating CO2 fixation.

    • 1. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) A 3-fold increase was observed for the PHOT K/O mutants (see FIG. 8).
    • 2. Sidoheptulose 1,7 bisphosphatase (SBPase): A 3-fold increase was observed for the PHOT K/O mutants (see FIG. 8).
    • 3. Glyceraldehyde-3-phosphate dehydrogenase (3PGDH): A 2-fold increase was observed for the PHOT K/O mutants (see FIG. 8).
    • 4. α carbonic anhydrases: A 2.6 to 5 fold increase was observed for the PHOT K/O mutants.
    • 5. β carbonic anhydrases: A 8 fold to 6 fold increase was observed for the PHOT K/O mutants.


Thioredoxin Reductase Genes are Up-Regulated in PHOT K/O Lines:

Thioredoxins are small ubiquitous redox proteins, which are crucial components of the regulatory redox networks in all living cells. Thioredoxins are reduced by different reductases, depending on their subcellular localization. Among these reductases, NADPH-dependent thioredoxin reductases (NTR) genes are known to regulate multiple gene targets involved in photosynthesis, non-photochemical quenching (NPQ), Calvin-Benson cycle, starch biosynthesis, cold stress tolerance and thermotolerance.

    • 1. NADPH-dependent thioredoxin reductase C (NTRC): A 2.4 fold increase was observed for the PHOT K/O mutants
    • 2. NADPH-dependent thioredoxin reductase 2 (NTR2): A 4 fold increase was observed for the PHOT K/O mutants


Key Growth Regulatory Genes are Up-Regulated in PHOT K/O Lines:

KIN10 or KIN11 ((Snf1 related kinases, SNRK) are one of the very well-studied central regulators of energy and stress metabolism in plants. SNRK1 proteins play central roles in coordinating energy balance and nutrient metabolism in plants. A 10-fold increase was observed for the PHOT K/O mutants.


Cell Cycle Pathway Genes Up Regulated:

Cell cycle genes are up regulated in Chlamydomonas reinhardtii PHOT K/O mutants may enhance cell division in these lines contributing to the higher biomass in these lines (FIG. 9).

    • 1. NIMA (Never in mitosis), NEK2, NEK6 (NIMA related kinases): Cell cycle progression (G2/M progression) 15, 5 and 5 fold increase, respectively, was observed for the PHOT K/O mutants.
    • 2. RCC1 (Regulator of chromosome condensation): A16 fold increase was observed for the PHOT K/O mutants. Cyclin and cyclin-dependent kinases (CDK): Cyclin-dependent kinases are involved in overall regulation of cell cycle progression and demonstrated a 2-fold increase for the PHOT K/O mutants.
    • 3. A 3-fold increase in MAT3 a homolog of retinoblastoma protein (MAT3/RB) was observed for the PHOT K/O mutants: These genes regulate the cell cycle at two key points: 1.) early/mid G1 control point, and 2) the size checkpoint for the dividing cell.


Glycolysis Pathway Genes are Up-Regulated in PHOT K/O Lines:

Glycolysis is the first step in the breakdown of glucose to extract energy for cellular metabolism, which converts glucose to pyruvate and generates ATP (energy) and NADH (reducing power). Many important genes of this pathway show higher expression in PHOT K/O mutants.

    • 1. Hexokinase: A 3.4 fold increase was observed for the PHOT K/O mutants.
    • 2. Glyceraldehyde phosphate dehydrogenase: A 6 fold increase was observed for the PHOT K/O mutants
    • 3. Fructose—bisphosphate Aldolase: A 4 fold increase was observed for the PHOT K/O mutants.
    • 4. Pyruvate Kinase: A 16 fold increase was observed for the PHOT K/O mutants.


Thylakoid Membrane Structure and Starch Accumulation in Parent and PHOT K/O Lines:

We compared the chloroplast ultrastructure of the parental and PHOT K/O cells to determine whether there were changes in thylakoid membrane structure and starch accumulation. Starch represents the most widespread storage polysaccharide found in the plastids of both photosynthetic and non-photosynthetic cells of plants and algae. PHOT K/O lines exhibited higher accumulation of starch grains compared to their respective parent strains as well as up-regulation of starch synthesis genes (FIGS. 10 and 11B) (discussed below).


Starch Biosynthesis Pathway Genes Upregulated in PHOT K/O Lines:


Chlamydomonas reinhardtii PHOT K/O mutants have higher starch accumulation due to up-regulation of the following genes involved in starch biosynthesis is FIG. 10. These results were consistent with the observed increase in starch content in PHOT K/O chloroplasts by EM.

    • 1. AGPase: ADP glucose pyrophosphorylase catalyzes the rate-limiting step and first-dedicated step for starch biosynthesis. A 2-fold increase was observed for the PHOT K/O mutants.
    • 2. Starch synthase 2, 3 and 4: A 5-fold increase was observed for the PHOT K/O mutants.
    • 3. Starch branching enzyme: A 3-fold increase was observed for the PHOT K/O mutants.


A structural hallmark of thylakoid membranes in plants and microalgae is the stacking of the membranes associated with the localization of the PSII complex. The stromal membranes extending from the stacks are enriched in PSI and ATPase complexes. This arrangement of LHCII complexes provides functional flexibility, enabling their primary light harvesting function as well as ability to participate in multilevel regulatory mechanisms involving highly efficient energy dissipation through pigment interactions such as chlorophyll-xanthophyll interactions. These regulatory processes require a significant reorganization in the membrane, and a substantial degree of structural flexibility in thylakoid membranes to carry out short-term adaptations and long-term acclimations in response to change in light and environmental stimuli.


An electron micrograph illustration showing the thylakoid membrane structure in both parent strain and PHOT K/O line is drastically altered in PHOT K/O lines. These results are in concert with the phototropin involvement in regulation of LHC protein biosynthesis and pigment biosynthesis. When thylakoid membranes are tightly stacked, they are densely packed with proteins and inhibit efficient protein diffusion including diffusions of the electron transport carrier protein plastocyanin. This protein mobility is required for efficient photosynthetic electron transfer, as well as regulation and repair of photodamaged photosynthetic apparatus. In parent cells thylakoid membranes are very tightly stacked giving very little space for the movement of the molecules). In contrast, PHOT K/O lines have parallel grana stacks and wide luminal spacing


Other Important Genes Upregulated in Transcriptomic Analysis:
Lipid Biosynthesis Pathway Genes:

The following genes involved in lipid metabolism are up regulated in PHOT K/O mutants:

    • 1. Acyl carrier protein (ACP) is an important component in both FA and polyketide biosynthesis with the growing chain bound during synthesis as a thiol ester. A 3-fold increase was observed for the PHOT K/O mutants.
    • 2. ω-3 fatty acid desaturase (FAD) A 4-fold increase was observed for the PHOT K/O mutants.
    • 3. Fatty acid biosynthesis (FAB). A 3-fold increase was observed for the PHOT K/O mutants.


Terpenoid Biosynthesis Pathway Genes:

The methyl erythritol 4-phosphate (MEP) pathway is the source of isoprenoid precursors for the chloroplast. The precursors lead to the formation of various isoprenoids having diverse roles in different biological processes. Some isoprenoids have important commercial uses. Isoprene, which is made in surprising abundance by some trees, plays a significant role in atmospheric chemistry. Multiple genes involved in MEP/DOXP pathway were up regulated in PHOT K/O mutants (FIG. 12). In contrast, the mevalonate terpenoid pathway (cytoplasmic) genes were not up regulated in PHOT K/O mutants.


Note that all data so far were generated in cell wall free mutants of Chlamydomonas reinhardtii. Metabolomic analyses in C. reinhardtii clarified the pathways and gene up-regulation in high light in C. reinhardtii PHOT K/O mutants of this invention:


Heterologous Algal Phototropin Genes

The Chlamydomonas reinhardtii phototropin gene has already been sequenced and a provisional version is available publically (GenBank 5718965). Additional algal genes are available that have either been shown to be a phototropin, contain blue light receptors, have some homology to phototropin or are putative blue light receptors similar to phototropin (Table 1). Additional phototropin genes in two other production strains of microalgae are known.



Chlorella sp. Strain1412. Is a strain developed by the National Alliance of Biofuels and Bio-products (NAABB) consortium and is housed at UTEX Culture Collection Of Algae at the University of Texas at Austin (UTEX). The amino acid sequence is provided as SEQ ID NO. 1 and the nucleotide sequence as SEQ ID NO. 2. The phototropin B gene of Chlorella sorokiniana. Strain 1412 is provided as SEQ ID NO. 3 and nucleotide as SEQ ID NO. 4.



Chlorella sp. sorokiniana strain 1230. Is a UTEX strain. The amino acid sequence of phototropin A is provided as SEQ ID NO. 5 and the nucleotide sequence as SEQ ID NO. 6. The amino acid sequence of phototropin B is provided as SEQ ID NO. 7 and the nucleotide sequence as SEQ ID NO. 8.



Chlorella sp. sorokiniana strain 1228. The amino acid sequence of phototropin A is provided as SEQ ID NO. 9 and the nucleotide sequence as SEQ ID NO. 10. The amino acid sequence of phototropin B is provided as SEQ ID NO. 11 and the nucleotide sequence as SEQ ID NO. 12.



Picochlorum soloecismus (DOE101). The amino acid sequence is provided as SEQ. ID NO. 13 and the nucleotide sequence as SEQ. ID NO. 14.









TABLE 1







List of publically available sequences that may be phototropins or


heterologous to phototropin genes based upon homology or function.










GenBank #
Alga
Description
Aliases





9688782

Micromonas pusila CCMP1545

Phototropin, blue
MICPUCDRAFT_49739




light receptor


9617508

Volvox carteri f. nagariensis

Phototropin
VOLCADRAFT_127319


23616146

Auxenochlorella protothecoides

Phototropin 2
F751_4755


23614975

Auxenochlorella protothecoides

Phototropin-1B
F751_3584


19011210

Bathycoccus prasinos

Phototropin
Bathy16g02310


9831018

Ostrecoccus tauri

Putative blue light
Ot16g02900




receptor


8249220

Micromonas sp, RCC299

Blue light receptor
MICPUN_105003


16998047

Cyanidioschyzon merolae 10D

Serine/threonine
MICPUT_105003




kinase


17089759

Galdieria sulphuraria

Serine/threonine
Gasu_15820




kinase


17087623

Galdieria sulphuraria

Serine/threonine
Gasu_38210




kinase


17041755

Coccomyxa subellipsoidea C-169

Putative blue light
COCSUDRAFT_63287




receptor


17350696

Chlorella variabilis

Hypothetical protein
CHLNCDRAFT_141214


5005771

Ostreococcus lucimarinus

Hypothetical protein
OSTLU_40751



CCE9901


17304390

Guillarida theta CCMP2712

Hypothetical protein
GUITHDRAFT_162563


7452793

Thalassiosira pseudonana

Hypothetical protein
THAPSDRAFT_33193



CCMP1355


7442442

Thalassiosira pseudonana

Hypothetical protein,
THAPSDRAFT_261631



CCMP1355
PAS domain


7200921

Phaeodactylum tricornutum CCAP

Hypothetical protein;
PHATRDRAFT_51933



1055/1
one PAS domain


CBJ25875

Ectocarpus siliculosus

aureochrome 1
AUR1; Esi_0017_0027



CCAP: 1310/4


XP_005854445

Nannochloropsis gaditana

PAS and BZIP
GA_0015702



CCMP526
domain containing




protein, putative




aureochrome


BAF91488

Vaucheria frigida

aureochrome1
AUREO1









Alternative Targets

Additional PHOT downstream signal transduction targets can be use as alternatives to the knockout or reduction in phot expression to generate the desirable phenotypes of this invention, including but not limited to improved photosynthetic efficiency, higher biomass productivity, increase yield of sink molecules/compounds, and improved genetic stability. An example of this could be the algal gene homologous to the Arabidopsis KIN10 and KIN11 kinases (Baena-Gonzalez, Rolland et al. 2007). Genes substantially homologous to the Chlorella genes in SEQ ID 15 to 27 and the Chlamydomonas genes in SEQ ID 28-34 would be applicable to this current invention.


Additional gene targets can be used as alternatives to the knockout or reduction in phot expression to generate the desirable phenotypes of this invention with desirable phenotypes having but not limited to improved photosynthetic efficiency, higher biomass productivity, increase yield of sink molecules. These genes could include the algal genes homologous to the Arabidopsis NADPH thioredoxin reductase C (NTRC) and NADPH thioredoxin reductase 2 genes (Toivola et al. 2013) Genes substantially homologous to the Chlorella genes in SEQ ID NO 35-40, 43-44 and 47 to 50 and the Chlamydomonas genes in SEQ ID 67-68 would be applicable to this current invention









TABLE 2







Sequence ID and Type








Sequence No. ( )
protein/dna(<212>); Organism/Strain(<213>)/protein





 1
<212> PRT



<213> Chlorella sorokiniana, strain 1412; phototropin A


 2
<212> DNA



<213> Chlorella sorokiniana, strain 1412; phototropin A


 3
<212> PRT



<213> Chlorella sorokiniana, strain 1412; phototropin B


 4
<212> DNA



<213> Chlorella sorokiniana, strain 1412; phototropin B


 5
<212> PRT



<213> Chlorella sorokiniana, strain 1230; Phototropin A


 6
<212> DNA



<213> Chlorella sorokiniana, strain 1230; Phototropin A


 7
<212> PRT



<213> Chlorella sorokiniana, strain 1230; phototropin B


 8
<212> DNA



<213> Chlorella sorokiniana, strain 1230; phototropin B


 9
<212> PRT



<213> Chlorella sorokiniana, strain 1228; Phototropin A


10
<212> DNA <213> Chlorella sorokiniana, strain 1228; phototropin A


11
<212> PRT



<213> Chlorella sorokiniana, strain 1228; phototropin B


12
<212> DNA



<213> Chlorella sorokiniana, strain 1228; phototropin B


13
<212> PRT



<213> Picochlorum soloecismus, strain DOE101, phototropin


14
<212> DNA



<213> Picochlorum soloecismus, strain DOE101; phototropin


15
<212> PRT



<213> Chlorella sorokiniana, strain 1228; KIN11 SNF1-related


16
<212> DNA



<213> Chlorella sorokiniana, strain 1228; KIN11 SNF1-related


17
<212> PRT



<213> Chlorella sorokiniana, strain 1228; KIN11 SNF1-related protein kinase



catalytic subunit alpha


18
<212> DNA <213> Chlorella sorokiniana, strain 1228; KIN11 SNF1-related protein kinase



catalytic subunit alpha


19
<212> PRT



<213> Chlorella sorokiniana, strain UTEX 1230; KIN11 SNF1-related protein kinase



catalytic subunit alpha


20
<212> DNA



<213> Chlorella sorokiniana, strain UTEX 1230; KIN11 SNF1-related protein kinase



catalytic subunit alpha


21
<212> PRT



<213> Chlorella sorokiniana, strain UTEX1230; KIN11 SNF1-related protein kinase



catalytic subunit


22
<212> DNA



<213> Chlorella sorokiniana, strain UTEX 1230; KIN11 SNF1-related protein kinase



atalytic subunit


23
<212> PRT



<213> Chlorella sorokiniana, strain 1412; KIN11 SNF1-related protein kinase



catalytic subunit


24
<212> DNA



<213> Chlorella sorokiniana, strain 1412; KIN11 SNF1-related protein kinase



catalytic subunit


25
<212> PRT



<213> Chlorella sorokiniana, strain 1412; KIN11 SNF1-related protein kinase



catalytic subunit homolog


26
<212> DNA



<213> Chlorella sorokiniana, strain 1412; KIN11 SNF1-related protein kinase



catalytic subunit homolog


27
<212> PRT



<213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


28
<212> DNA



<213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


29
<212> PRT



<213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


30
<212> DNA



<213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


31
<212> PRT



<213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


32
<212> DNA



<213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


33
<212> PRT



<213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


34
<212> DNA



<213> Chlamydomonas reinhardtii; SNF-1 KIN10/11 homolog


35
<212> DNA



<213> Chlorella sorokiniana, strain UTEX 1230; NTR2


36
<212> PRT



<213> Chlorella sorokiniana, strain UTEX 1230; NTR2


37
<212> DNA



<213> Chlorella sorokiniana, strain 1412; NTR2


38
<212> PRT



<213> Chlorella sorokiniana, strain 1412; NTR2


39
<212> DNA



<213> Chlorella sorokiniana, strain 1228; NTR2


40
<212> PRT



<213> Chlorella sorokiniana, strain 1228; NTR2


41
<212> DNA



<213> Picochlorum soloecismus, strain DOE101; NTR2


42
<212> PRT



<213> Picochlorum soloecismus, strain DOE101; NTR2


43
<212> DNA



<213> Chlorella sorokiniana, strain 1228; NTRC


44
212> PRT <213> Chlorella sorokiniana, strain 1228; NTRC


45
<212> DNA



<213> Picochlorum soloecismus, strain DOE101; NTRC


46
<212> PRT



<213> Picochlorum soloecismus, strain DOE101; NTRC


47
<212> DNA



<213> Chlorella sorokiniana, strain UTEX 1230; NTRC


48
<212> PRT



<213> Chlorella sorokiniana, strain UTEX 1230; NTRC


49
<212> DNA



<213> Chlorella sorokiniana, strain 1412; NTRC


50
<212> PRT



<213> Chlorella sorokiniana, strain 1412; NTRC


51
<212> PRT



<213> Chlorella variabilis; phototropin A


52<
<212> PRT



<213> Chlamydomonas reinhardtii, strain CC-503; phototropin


53
<212> PRT



<213> Botryococcus terribilis; phototropin A homolog


54
<212> PRT



<213> Tetraselmis striata; phototropin A


55
<212> PRT



<213> Micromonas pusilla, strain CCMP 1545; phototropin A


56
<212> PRT



<213> Dunaliella salina; phototropin A


57
<212> PRT



<213> Chlorella variabilis; phototropin B homolog


58
<212> PRT



<213> Haematococcus lacustris; phototropin B homolog


59
<212> PRT



<213> Tetraselmis striata; phototropin B homolog


60
<212> PRT



<213> Coccomyxa subellipsoidea, strain C-169; phototropin B homolog


61
<212> PRT



<213> Micromonas pusilla, strain CCMP1545; phototropin B homolog


62
<212> PRT



<213> Vaucheria frigida; aureochrome1


63
<212> PRT



<213> Fucus distichus; AUREOChrome-like protein


64
<212> PRT



<213> Nannochloropsis gaditana; aureochrome1-like protein


65
<212> PRT



<213> Nannochloropsis gaditana; aureohrome1-like protein


66
<212> PRT



<213> Sargassum fusiforme; putative aurochrome, LOV domain-containing protein


67
<212> PRT



<213> Chlamydomonas reinhardtii; NTR2


68
<212> PRT



<213> Chlamydomonas reinhardtii; NTRC

















Below are SEQ ID NO 69-128



SEQ ID NO: 128



>KT321711.1 Mesotaenium endlicherianum phototropin (PHOT) mRNA



GACCTCAAGGACGTTCTCACAGCTTTCCAACAGACATTTGTGCTGTCTGATGCCGCCAAACCGGATAGTC





CGATTATGTTTGCCAGCGAGGGGTTCTACAACATGACGGGTTACACTCCCAAGGAAGTCATTGGCTACAA





TTGCCGCTTTCTTCAAGGGCCAGACACAGACCGCAACGAGGTGGCGCGGCTGAAGCAGGCCCTGGCTGCA





GGAGAGAGCTACTGCGGCCGCCTGCTCAACTACAAGAAGGACGGCACCCCCTTCTGGAACCTGCTCACAG





TGTCGCCTGTCAAGGACGACAATGGCCGTGTCGTTAAGTTTGTTGGCATGCAAGTGGAGGTGTCCAAGTA





CACGGAGGGCACCAAGGACCAGGACGTGCGCCCCAACAACATGCCCGTCTCCCTCATCAAATACGACGCT





CGGCAGCGCGAGGTGGCGTCCAGCATGGTGGGCGAGCTCGTGGAGACGGTCAAGAAGCCCGGCGCTGAGG





AGAGCGGCGGCGGCCTCGCGCCGCTCTATGCGCTGCCCGTGGCCGAGGGCGGCGCCGGTCAGAGCGGTGC





CGGCGCCGGCTCCTCCTCCATGCCGGCCGCGCTCACGCCCAAGAACGCGCGCCGCACCTCCGGCTTCCGC





TCCCTTCTTGGCATGAAGGGCGGCAAGCCCGACGAGGGCGGCGAGCCTGACCGCGTCGCCGCCGTTCCCG





AGGTGGTGGAGGAGGTGGAGGTGGGCGACGTGGAGCGCAAGGCGCGGCGCGGGATCGACCTGGCCACCAC





GCTGGAGCGTATCCAGAAGAACTTTGTCATCACCGACCCCCGCCTCCCCGAGAATCCCATCATCTTTGCC





TCCGACGACTTCCTGGAGCTCACGGAGTACTCGCGCGAGGACATCCTGGGGAAGAATTGCCGGTTCTTGC





AAGGGCCGGAGACGAACCGCGACACAGTGAAGAAGATCCGCGACGCCATCGACGCGGGCCAGGACATCAC





AGCGCAGCTGCTCAACTACACCAAGAGCGGCAAGAAGTTCTGGAACCTGTTCCATCTGCAGGCCGTGCGC





GACAACAAGGGCGAGCTGCAGTACTTCATCGGAGTGCAGCTGGATGCCAGCCAGTACGTGGACCCCGACG





CGCGCCGCCTGCCCGACGCCAACGTGAACGAGGGCACCAACATGATCGTGGATGCGTCCAACAAGATCGA





CGGCGCCCTCAAGGAGCTGCCTGATGCTGGCGCTACAAAGGAGGACCTGTGGGCCATCCACAGCCTGCCA





GCTGTGCCCAAGCCTCACAAGGTGCAGGACCCCCTGTGGACCGCCATCAACCAGGTGAAGCAGCGGGAGG





GCAAGCTGGGGCTGAAGCACTTCCGGCCCATCAAGCCGCTGGGCTGCGGCGACACGGGCAGAGTGCACCT





GGTGGAGCTGCGCGACACCGGCAAGCTGTTTGCCATGAAGGCCATGGACAAGGAGGTCATGATCAACCGC





AACAAGGTGCACCGCGCGTGTACTGAGCGCGAGATTCTGGGCCGCATCGACCACCCCTTCCTCCCCACCC





TCTACGCCTCCTTCCAGACGGCCACGCACGTGTGCCTCATCACGGACTTCTGCGACGGGGGCGAGCTCTA





CATGCTGCTGGAGCGTCAGAAGGGCAAGCGCTTCGCCGAAGAGGCTGTCCGCTTCTTTGGGTCCGAGATC





CTGCTGGCGCTGGAGTACCTGCACTGCCAGGGCGTAATCTACCGCGACCTCAAGCCCGAGAACATCCTGC





TGACAGCTGGCGGCCACGCGCTGCTCACCGACTTCGACCTCTCGTTCCTCACCACCGCGGAGCCGCGCGT





CATCCGGCCGGAGCCCGCACCCGGCGTGAAGAAGGGCAAGAAGAAGAAGAAGGGCGAGCCCGAGCCGCGC





CCGCAGTTTGTGGCGGAGCCCGTGGCACAGTCCAACTCGTTTGTCGGCACGGAGGAGTACATTGCGCCCG





AGATCATCAGCGGCGCCGGCCACAGCAGCGCCGTCGACTGGTGGGCCTTTGGCATCTTCCTGTACGAGAT





GACGTACGGGCGCACGCCCTTCCGCGGCAAGAACAGGCAGCGCACGTTCACCAACATCCTCATGAAGGAG





CTCGCCTTCCCCACAAACCCACCCGTGAGTGCAAATGCCAAGGCGCTGATGAAGGCTCTGCTGGAGCGCG





ACCCCGCGGTGAGGCTGGGAGGGACACGTGGCGCGTCGGAGATCAAGGAGCACCCCTTCTTCGAGTCCAT





CGACTGGGCCCTCGTCCGCCACAAGGGAGGGCCGAGCCTGGACGTGCCCATCAAGAAGATCGGCACAGAC





CCCGACACGAGCCGCGCTTCCATCAGCAGCGAGGCCACGGAGGACCTCGACTGGGACGACCAGGAGGCGC





TCACGCCCTCCACCAACCGCTCCATGGAGTACGGCTACCAGTAG





SEQ ID NO: 69



>ANC96836.1 phototropin, partial [Mesotaenium endlicherianum]



DLKDVLTAFQQTFVLSDAAKPDSPIMFASEGFYNMTGYTPKEVIGYNCRFLQGPDTDRNEVARLKQALAA





GESYCGRLLNYKKDGTPFWNLLTVSPVKDDNGRVVKFVGMQVEVSKYTEGTKDQDVRPNNMPVSLIKYDA





RQREVASSMVGELVETVKKPGAEESGGGLAPLYALPVAEGGAGQSGAGAGSSSMPAALTPKNARRTSGFR





SLLGMKGGKPDEGGEPDRVAAVPEVVEEVEVGDVERKARRGIDLATTLERIQKNFVITDPRLPENPIIFA





SDDFLELTEYSREDILGKNCRFLQGPETNRDTVKKIRDAIDAGQDITAQLLNYTKSGKKFWNLFHLQAVR





DNKGELQYFIGVQLDASQYVDPDARRLPDANVNEGTNMIVDASNKIDGALKELPDAGATKEDLWAIHSLP





AVPKPHKVQDPLWTAINQVKQREGKLGLKHFRPIKPLGCGDTGRVHLVELRDTGKLFAMKAMDKEVMINR





NKVHRACTEREILGRIDHPFLPTLYASFQTATHVCLITDFCDGGELYMLLERQKGKRFAEEAVRFFGSEI





LLALEYLHCQGVIYRDLKPENILLTAGGHALLTDFDLSFLTTAEPRVIRPEPAPGVKKGKKKKKGEPEPR





PQFVAEPVAQSNSFVGTEEYIAPEIISGAGHSSAVDWWAFGIFLYEMTYGRTPFRGKNRQRTFTNILMKE





LAFPTNPPVSANAKALMKALLERDPAVRLGGTRGASEIKEHPFFESIDWALVRHKGGPSLDVPIKKIGTD





PDTSRASISSEATEDLDWDDQEALTPSTNRSMEYGYQ





SEQ ID NO: 70



>AB206963.1 Mougeotia scalaris PHOTA mRNA for phototropin



TTTGACATCTAAACGGGCAGTTACGCTTCACGGTTAAAGAGTTTTCGATACTACGGAGGTAACTTTTCCA





CGACCCAGTTTTCACCTGCTTCACCCGCCTGTATTAAAGAAACGTTGTCTTCTCTTTCGTTCAGAGCATG





GCGGCATTAGTCAACCTTCCTATTTCGAGGTATCCTCAGCCCTTACTTGGAGAAGGGGTTGATGTCATTC





ATAAATCCGAAAAAGTCCTGGGTGAAGCTTCCCAGGGCCTGAAAGATGCCCTCACGGCTTTCCAACAGAC





ATTTGTAATGTGTGATGCCACAAAGCCAAACACTCCCGTCATGTTTGCCAGTGAGGGTTTCTACAGGATG





ACTGGCTACAGTGCTAAAGAGGTTATTGGCAAAAACTGTCGCTTCCTCCAAGGTCCCGAGACTGACCGCA





GTGAGGTGGAGAAGTTGAAGCAAGCACTTTTGGATGGTCAGTCATGGTGTGGCCGACTTCTGAACTACAG





GAAAGATGGTAGCAGTTTCTGGAACCTTCTTACAGTCTCTCCCGTAAAGGATGACAGTGGGAGAGTTGTG





AAATTTATCGGGATGCAGGTGGAGGTGTCTAAGTTTACAGAAGGAAAGAATGATGACATCAAGCGGCCCA





ATCAGCTCCCTGTCTCCCTGATTCGTTATGATGATAGGCAGAAGGATGAAGCAGAAGTCAGAGTGGAGGA





ACTACTGCAGGACATGAAGGAATCAGAATCACCAGCAGAGGTAGAAGCCAAGGTGCAAACAGTTCAGGTT





AGCGTGCCAGCTCAGCCCAGCAAGCTGTCAAAGGAGGCACCTGCAGAGACAAAGAAGACTCGCAGATCTT





CTTACTTTGGGAAGAATGCGGCTCCAAAGGCTGAAGAAGTACCCCCAGTCTTCGAGCCAGGAGTGGAAGT





CAGCCTGCTGATGGAAGACGAGCTGGATACCATGGCGGTAGAAAAGAAGCACAGACATGGTATCGATCTG





GCCACTACTTTGGAACGAATCCAGAAGAACTTTGTCATTACAGATCCGAGGCTTCCTGACAACCCAATCA





TTTTTGCGTCTGACGATTTCTTGGAGCTAACTGAGTACACTCGCGAGGAGATCATTGGTCGGAATTGTCG





ATTTCTGCAAGGAAAGGACACAGACAAAGAGACAGTAGCCAAAATCAGACATGCCATCGATAACCATCAA





GATATCACCGTGCAGCTACTCAATTACACCAAGAGTGGAAAGCCGTTCTGGAACTTATTCCATCTCCAGG





CTGTCAGGGACACCAAGGGTCGGTTGCAATACTTCATTGGAGTGCAGCTGGATGCCAGCACATATGTGGA





GCAGGCTTCAAAGAACATTCCAGATAATCTGAAGAAGATGGGGACAGAGGAGATCCACAACACTGCAAAT





AACGTCGACTTTGGACTGAAAGAGCTCCCGGATACAAACACAGGAAATAAGGACGATATCTGGACTCTAC





ACTCAAAGCAAGTCACTGCACTGCCCCACAAAAGCAACACTGAGAACTGGGATGCCATTCGCAAGGTAAT





TGCTTCAGAGGGGCAGATATCCCTGAAGAACTTCCGGCCGATAAAGCCCCTCGGGTACGGAGACACGGGG





AGTGTCCACCTGGTGGAGCTCCGTGATTCCGGAGTGTTCTTTGCCATGAAGGCCATGGACAAGGAGGTGA





TGGTCAACAGAAATAAGGTCCATCGAGCGTGCACAGAGCGGGAGATTCTGGAGCTTCTGGACCATCCGTT





CCTGCCGACGCTCTACGGATCCTTCCAGACACCCACCCATGTCTGCCTGATCACCGACTTCTGTCCCGGG





GGGGAGCTGTTTGCCCACCTGGAGAATCAGAAACAGAAACGGCTCAAGGAGAATGTGGCCAAGGTGTACG





CTGCGCAGATCCTGATGGCACTCGAGTACCTGCACCTGAAGGGAGTCATCTATCGAGATCTGAAGCCGGA





GAACATCCTCATCTGTGAAGGGGGGCATCTGCTGCTGACCGACTTCGACCTGTCATTCAGGACAGAGACA





GAAGTGAAGGTGGCCATGGTGCCCATTCCTGAGGAGGAGGGGGCACCTGTCGTCGAGAAGAAGAAGAAGA





AGAAAGGGAAGGCCCCTGCAGCTGCTGCCATGGCTCCCAGGTTCATCCCCCAGCTGGTTGCCGAACCGTC





AGGCACCAGCAACTCCTTTGTGGGCACAGAGGAGTACATCGCACCGGAGATTATCAGCGGAGTCGGCCAT





GGCAGCCAGGTGGATTGGTGGGCGTTTGGCATTTTTATCTATGAAATGTTGTACGGGAAGACGCCGTTCC





GAGGGAAGAATCGGAAGCGGACTTTCACAAATGTGCTGACCAAGGAGCTGGCGTATCCCACCGTCCCTGA





AGTGAGCCTGGATGTGAAGCTTCTCATCAAGGATCTTCTGAATCGCGATCCGTCTCAGCGACTGGGTGCC





ACTCGGGGGGCGTCTGAGATCAAGGAGCATCCATGGTTCAATGCCATTCAATGGCCTCTTATTTGCAAGG





ATGTGCCAGAATCAGACGTTCCTGTCAAGTTTATGCAGGTGGAGAATGAGCGCAGGGACTCCACTGCGGA





TGATGATGCTGACTGGGAGTCTAATGATGGTCGCAATTCTCTGTCGCTTGATCTGGGCAGGCAGTAGTTG





GTGGGTAGAGGGTTCGTTTGTTGGAGTTTCGTAGGTTGGTGTATGGACTTGTAGTTGGTTAGAGTCAGGA





ACAAACAAAGTTAGACCTATTGGTTTGAATAGTAACTTTATATGGAATTTTGTATTGTCCGGTTTTGAAT





ATTAGAACCTTTTTAATGGTATTCCAACATTCTGGTTTCAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 71



>BAE20160.1 phototropin [Mougeotiascalaris]



MAALVNLPISRYPQPLLGEGVDVIHKSEKVLGEASQGLKDALTAFQQTFVMCDATKPNTPVMFASEGFYR





MTGYSAKEVIGKNCRFLQGPETDRSEVEKLKQALLDGQSWCGRLLNYRKDGSSFWNLLTVSPVKDDSGRV





VKFIGMQVEVSKFTEGKNDDIKRPNQLPVSLIRYDDRQKDEAEVRVEELLQDMKESESPAEVEAKVQTVQ





VSVPAQPSKLSKEAPAETKKTRRSSYFGKNAAPKAEEVPPVFEPGVEVSLLMEDELDTMAVEKKHRHGID





LATTLERIQKNFVITDPRLPDNPIIFASDDFLELTEYTREEIIGRNCRFLQGKDTDKETVAKIRHAIDNH





QDITVQLLNYTKSGKPFWNLFHLQAVRDTKGRLQYFIGVQLDASTYVEQASKNIPDNLKKMGTEEIHNTA





NNVDFGLKELPDTNTGNKDDIWTLHSKQVTALPHKSNTENWDAIRKVIASEGQISLKNFRPIKPLGYGDT





GSVHLVELRDSGVFFAMKAMDKEVMVNRNKVHRACTEREILELLDHPFLPTLYGSFQTPTHVCLITDFCP





GGELFAHLENQKQKRLKENVAKVYAAQILMALEYLHLKGVIYRDLKPENILICEGGHLLLTDFDLSFRTE





TEVKVAMVPIPEEEGAPVVEKKKKKKGKAPAAAAMAPRFIPQLVAEPSGTSNSFVGTEEYIAPEIISGVG





HGSQVDWWAFGIFIYEMLYGKTPFRGKNRKRTFTNVLTKELAYPTVPEVSLDVKLLIKDLLNRDPSQRLG





ATRGASEIKEHPWFNAIQWPLICKDVPESDVPVKFMQVENERRDSTADDDADWESNDGRNSLSLDLGRQ





SEQ ID NO: 127



>KJ195120.1 Cylindrocystis cushleckae phototropin (PHOTA) mRNA



ATGGCGAGAATACCCCAGTCAAATTATCCTGCGAGGCTGAGTGATGTATCATCCACTCCAGGCGCTGGCA





AGGTGCTTGGTCAGGCCTCTGAAGGACTGAAGGATGTGCTCACTACGTTCCAGCAGACATTTGTTATGTG





TGATGCTACCAAACCTGACATTCCTGTCATGTTTGCCAGTGAGGGATTTTACGAAATGACTGGCTACAAT





GCCAAGGAAGTGATTGGCAAGAATTGCCGTTTCCTCCAAGGTACAGAAACAGACCGTGCTGAGGTGGCAA





AAATGAAGCAGGCCCTCATGGCCGGCGAGGGTTGGTGTGGCCGCCTTCTCAACTACCGAAAAGATGGAAC





TCCCTTCTGGAATCTTCTTACCGTATCGCCCGTGAAGGACGACAATGGGAGGGTGGTCAAGTTCATTGGA





ATGCAGGTGGAGGTTACCAAGTTCACGGAAGGCAAACAGGACGAGAATAAGCGCCCAAACCAGCTTCCGG





TCTCTCTCATTCGCTATGATGCTCGGCAGAAGGAGGAGGCTGAGCTTGGCGTCCAGGAGCTGGTGCACGC





AGTGCAGCGCCCCAAGCAGGGGGGTGGGATGGACAGCCTCATGGCCCTTCCCAAGGCGGGCGAGATGCCA





GCCTCAGAGCTGGAGGCAGAAACCCCCGGAAAGAAGAAGGGCAGGCGTGCATCGGGCATGAAAATGTTTG





GGGGAAAAGACAAGGCCCAGGAGGCAGAGCCGGAGGTGGAAACAGTAGACAGCGACGACGAGATCTCAGA





GAAGAAGCAACGTCACGGAATCGACCTGGCCACTACCCTGGAGCGTATTCAGAAAAATTTCGTCATCACG





GATCCTCGCCTGCCCGACAACCCCATTATCTTTGCATCCGACGACTTTCTGGAGCTTACGGAATACTCTC





GCGAGGAGGTGCTGGGCCGGAATTGTCGGTTCCTGCAAGGCAAGGACACAGACCGTGCCACTGTGGCCCG





CATCAGGGACGCCATCGATAACGCGCAGGACATCACTGTGCAGCTCCTCAATTACACCAAAAGCGGCAAA





CCTTTCTGGAACCTGTTCCACTTGCAAGCTGTGCGGGATAGCAAGGGTCAACTGCAGTACTTCATCGGAG





TTCAGCTGGACGCAAGCACATACGTTGAGCCCGTCACTCACGAGCTTCCCCAGAAGACCAAAACAGAGGG





CACTGAGGAGATCGTGAACACGGCCAACAATATCGATGTGGGGCTCAAGGAACTTCCCGACCCAAACAAT





AAAAAAGATGACATGTGGAACGGCCACTCCCAGGAGGTCTCCCCCCTTCCCCACCGCGTTGGCGACCCCA





GCTGGGAGGCTGTCCAGAAGGTCAAGGCCAGCGATGGTCGCCTGGCTCTGAAACATTTCCGGCCAATCAA





ACCCCTCGGTTGTGGAGACACAGGTAGCGTCCACCTTGTCGAGCTTCGCGATACGGGAAAACTTTTCGCC





ATGAAGGCTATGGACAAGGACGTGATGATCAATCGCAACAAGGTCCACAGAGCGTGCACCGAGCGCCAAA





TCTTGGGCGATCTCGACCATCCGTTCCTCCCCACACTCTACGGATCCTTCCAGACGGCCACCCACGTCTG





CCTCATCACCGACTTCTGTCCGGGCGGCGAACTCTACACCCACCTGGAGCACCAGAAGGGGAAAAGGTTT





CCTGAAGCTGCGGCAAAATTTTACGCTGCCGAGATTCTTCTGAGTTTGGAATACCTCCACTGCAAGGGCG





TGATTTACCGCGATCTCAAGCCAGAGAACATTCTCATCACCTCCTCGGGACACCTGGTGTTGACCGACTT





TGACCTGTCCTTCCTCAGCTCCACTATCCCCCAGCTCCTGAGGCCCAACCCCACAGAGGTGAGCGGCAAG





AAGAAGAAGAAGGGCAAGGGGGCGGCGCAGCCCTTGCCGCAGTTTGTGGCGGAGCCCACAGGGAGCAGCA





ACTCCTTCGTGGGCACAGAGGAGTACATCGCGCCGGAGATTATCAGCGGCACGGGCCACAGCAGCCAGGT





GGACTGGTGGGCTTTTGGCATCTTCGTGTATGAGATGCTGTACGGCAAGACCCCCTTCCGCGGGCGCAAC





CGCCAAAAGACCTTCACCAATGTGCTGATGAAAGAGCTGGCCTTCCCCAACAGCCCCCCCGTAAGTCTGG





AGGCCAAGCTCCTGATCAAGGCGCTGCTCACCCGGGATCCCCAGCAGCGCCTGGGCTCCGCGCGCGGCGC





CAGCGAGATCAAGGACCACCCCTGGTTTGCTGGGGTCAACTGGGCCCTCACCCGCTCCCAGCCCCCCCCC





GAGCTGGAGGTCCCGGTCACCTTCACCAGCGGCGAGCCCGACACGCACCGCCCGTCAACCACAGACGAAG





ACCTGGAGTGGGATAGCAACGAAGCACGGGACTCCAGCTCATCACTCTCATTTGACCAGAGCTAA





SEQ ID NO: 72



>AHZ63921.1 phototropin [Cylindrocystiscushleckae]



MARIPQSNYPARLSDVSSTPGAGKVLGQASEGLKDVLTTFQQTFVMCDATKPDIPVMFASEGFYEMTGYN





AKEVIGKNCRFLQGTETDRAEVAKMKQALMAGEGWCGRLLNYRKDGTPFWNLLTVSPVKDDNGRVVKFIG





MQVEVTKFTEGKQDENKRPNQLPVSLIRYDARQKEEAELGVQELVHAVQRPKQGGGMDSLMALPKAGEMP





ASELEAETPGKKKGRRASGMKMFGGKDKAQEAEPEVETVDSDDEISEKKQRHGIDLATTLERIQKNFVIT





DPRLPDNPIIFASDDFLELTEYSREEVLGRNCRFLQGKDTDRATVARIRDAIDNAQDITVQLLNYTKSGK





PFWNLFHLQAVRDSKGQLQYFIGVQLDASTYVEPVTHELPQKTKTEGTEEIVNTANNIDVGLKELPDPNN





KKDDMWNGHSQEVSPLPHRVGDPSWEAVQKVKASDGRLALKHFRPIKPLGCGDTGSVHLVELRDTGKLFA





MKAMDKDVMINRNKVHRACTERQILGDLDHPFLPTLYGSFQTATHVCLITDFCPGGELYTHLEHQKGKRF





PEAAAKFYAAEILLSLEYLHCKGVIYRDLKPENILITSSGHLVLTDFDLSFLSSTIPQLLRPNPTEVSGK





KKKKGKGAAQPLPQFVAEPTGSSNSFVGTEEYIAPEIISGTGHSSQVDWWAFGIFVYEMLYGKTPFRGRN





RQKTFTNVLMKELAFPNSPPVSLEAKLLIKALLTRDPQQRLGSARGASEIKDHPWFAGVNWALTRSQPPP





ELEVPVTFTSGEPDTHRPSTTDEDLEWDSNEARDSSSSLSFDQS





SEQ ID NO: 73



>KJ195119.1 Zygnemopsis sp. MFZO phototropin (PHOTA) mRNA



ATGGCTAGTCTTCCCCCTTCTCGCTATCCTGCCCGGTTAAACAATGAGGCTCCATTGCCGACAGCAAGCA





AAGTGCTGGGACAGGCCTCCGAAGGGCTCAAGGATGTGCTGACCACCTTCCAGCAGACCTTTGTGATGTG





TGATGCGACAAAGCCCGACATACCTGTAATGTTTGCCAGCGAAGGTTTTTACGAGATGACCGGATACACC





GCCAAAGAGGTCATCGGCAAGAACTGTCGGTTTCTGCAGGGGCCGGAAACGGACAAGGCTGAGTTGGGCA





AACTGAAGCAGGCCCTGATGGCCGGCGAGGGGTGGTGCGGCCGGCTGCTCAACTACCGCAAGGACGGCAC





TCCCTTCTGGAACCTGCTCACCATCTCCCCCGTCAAGGACGACAATGGCAGGGTGGTGAAATTCATCGGA





ATGCAAGTGGAGGTGACCAAGTTCACAGAAGGCAAGCAGGATGAGAACAAGCGGCCCAACCAGTTGCCCG





TGTCGCTCATTCGCTATGATGCTCGCCAGAAGGAGGAGGCCGAGCTGGGCGTGCAGGAGCTGGTGGACGC





GGTGCAGAAGCCGGCGATCAAGCAGGGTGGGGGCATGGAGAGCCTGATGGCGCTGCCCAAGGTGGAGGAG





ACCCCCGCGTCTCCCGACACTCCGGGGAGGAAGAAGGGCAAGCGCTCGTCCCTGCTGCTCTCACGCCTCA





GTGTGTCGTCCAGGCAGGCGCCCAAGCCCGAAGACTTGATCACGACTGAGGAGGACAAGCGGGACAGCTT





TGACGACATGTCGGAGAAGAAGCAGCGCCACGGCATCGACCTGGCCACCACTCTGGAGCGCATCCAGAAG





AACTTTGTCATCACAGATCCCAGACTGCCGGATAACCCCATTATTTTCGCCTCCGATGATTTCCTGGAGC





TCACCGAGTACAGCCGAGAGGAGGTCTTGGGCCGCAACTGTCGGTTTCTGCAGGGCAAGGACACCGACCG





CAACACGGTGGCCAAGATCCGGGCAGCCATTGACAGCCAGCAGGATATCACGGTCCAGCTGCTCAACTAC





ACCAAGAGCGGCAAGCCTTTCTGGAATCTCTTTCATCTGCAAGCCGTCCGTGATAGCAAGGGTCAGCTCC





AGTACTTCATTGGAGTGCAGCTGGACGCCAGCACGTACATCGAGCCCAGCTCGAAGCAGCTGCCTGAGCA





AACAGCCCTGCAGGGAACTGAGGAGATTGTGAACACTGCCCACAACGTCGATGTGGGATTGAAGGAGCTG





CCAGATGCGAATGCGCCCAAGGAGGACCTGTGGGCCGCACACTCCAAGCCCGTGTCAGCGCGGCCGCACC





ACCTGCTGGACCCCAACTGGGCGGCCATTGAACAGATCAAGGCCAAGGATGGCCGCCTGGGCCTGAAGCA





TTTCCGACCCATCAAGCCCCTCGGATGCGGAGACACCGGCAGCGTCCATCTTGTGGAGCTGCGCGATTCC





GGCAAGCTGTTTGCCATGAAGGCCATGGACAAAGAAGTGATGATTAACCGCAACAAGGTGCATCGCGCCT





GCACCGAGCGTCAGATCTTGGAAGATCTGGACCATCCGTTCTTGCCCACTCTGTACGGGTCGTTCCAGAC





GGCCACTCACGTCTGCTTGATCACTGATTTCTGCCCTGGGGGGGAGCTCTACGCCCACCTCGAGAACCAG





AAGGGCAAGAGGTTCCCCGAAGAGGTGGCCAAGTTCTACGCCGCAGAGATCCTCCTGAGTCTGGAGTACT





TGCATTGCCGCGGCGTCATCTACCGCGACCTCAAGCCCGAGAACATCCTCATCACAGAGACCGGCCACCT





GCTGTTGACCGATTTCGACCTTTCCTTCCTGAGCACCACCACTCCCAAGCTTCTGAGGCCCAGCCCCGTG





GAAAGCCCCGTGGGGAAGAAGAAGTCGAGGAAGAGCAGCAAGAATAGCGAGCCCCCGCCCCTGCCCCAGT





TTGTGGCTGAACCCTCCGGCAGCAGCAACTCGTTCGTGGGAACGGAGGAGTACATTGCGCCCGAGATCAT





CAGTGGAACCGGCCACAGCAGCCAGGTGGACTGGTGGGCCCTGGGCATCTTCATGTACGAGATGCTCTAT





GGCAAGACCCCCTTCCGAGGCCGCAACCGGCAACGCACCTTCACCAACGTGCTGATGAAGGAGCTGGCCT





TCCCCAACAGCCCCCCCGTGAGCCTGGAGGCCAAGCTGCTGATCAAGGCCCTGCTGGTGCGGGACCCGCA





GCAGCGCCTGGGAGCTGCCCGGGGGGCCAGCGAGATCAAGGACCACCCGTGGTTCGCGGGGCTGCAGTGG





CCCCTCATTCGCTGCAAGAGCCCACCAGGCTGCGAGGTCCCTGTGACCTTCATCAATGCGGAGGCTGAAA





ACCACCGCACATCTGCAACAGACGAGGAGTTGGATTGGGACACCAGCGAATCGCGAGACACCAACTCCAT





GTCGTTATCCTTTGACATGGCCTAG





SEQ ID NO: 74



>AHZ63920.1 phototropin [Zygnemopsis sp. MFZO]



MASLPPSRYPARLNNEAPLPTASKVLGQASEGLKDVLTTFQQTFVMCDATKPDIPVMFASEGFYEMTGYT





AKEVIGKNCRFLQGPETDKAELGKLKQALMAGEGWCGRLLNYRKDGTPFWNLLTISPVKDDNGRVVKFIG





MQVEVTKFTEGKQDENKRPNQLPVSLIRYDARQKEEAELGVQELVDAVQKPAIKQGGGMESLMALPKVEE





TPASPDTPGRKKGKRSSLLLSRLSVSSRQAPKPEDLITTEEDKRDSFDDMSEKKQRHGIDLATTLERIQK





NFVITDPRLPDNPIIFASDDFLELTEYSREEVLGRNCRFLQGKDTDRNTVAKIRAAIDSQQDITVQLLNY





TKSGKPFWNLFHLQAVRDSKGQLQYFIGVQLDASTYIEPSSKQLPEQTALQGTEEIVNTAHNVDVGLKEL





PDANAPKEDLWAAHSKPVSARPHHLLDPNWAAIEQIKAKDGRLGLKHFRPIKPLGCGDTGSVHLVELRDS





GKLFAMKAMDKEVMINRNKVHRACTERQILEDLDHPFLPTLYGSFQTATHVCLITDFCPGGELYAHLENQ





KGKRFPEEVAKFYAAEILLSLEYLHCRGVIYRDLKPENILITETGHLLLTDFDLSFLSTTTPKLLRPSPV





ESPVGKKKSRKSSKNSEPPPLPQFVAEPSGSSNSFVGTEEYIAPEIISGTGHSSQVDWWALGIFMYEMLY





GKTPFRGRNRQRTFTNVLMKELAFPNSPPVSLEAKLLIKALLVRDPQQRLGAARGASEIKDHPWFAGLQW





PLIRCKSPPGCEVPVTFINAEAENHRTSATDEELDWDTSESRDTNSMSLSFDMA





SEQ ID NO: 75



>AB206964.1 Mougeotia scalaris PHOTB mRNA for phototropin, complete cds



CTATTGCCTACACGACACTGTGCGCCATGAATTCGCCGCTATCGCCCTCTCGCGCGATTCAAACATCGGA





AGGAAAGATCTTGGAGCAGAAATCGGAGCTCAAGGATGTTCTCACTTCGTTCCACCAGACATTTGTTATA





TCAGATGCCACTAAGCCAGACATTCCTATAGTCTTTGCTAGTGAGGGTTTTTACGAGATGACCGGATATG





GTCCAGAGGAAGTTATTGGATACAACTGCCGATTCTTACAAGGCGAGGGTACAAGTCGTGACGAGGTCAC





CCGATTGAAGCAATGCCTTGTCGAGGGACAGCCATTTTGTGGTCGATTACTGAATTATCGTAAAGATGGG





ACCCCATTCTGGAATCTCCTCACTGTGTCTCCTGTAAGGAGTGCCACTGGTAAAGTTGTTAAATTTATTG





GTATGCAAACAGAGGTTTCTAAGTTCACAGAAGGAGCCGCGGATGGTATAAAGCGCCCCAATGACCTTCC





TGTTTCCCTCATCCGATATGATGCCCGACAGAAGGACGAGGCCGAAGTCTCAGTGACAGAAATCGTGCAT





GCAGTGGCTCACCCGGAGAAGGCCATAGCCAGACTGAGCACGGCTGTCACAGAGAGCAGTAAGAAGCACC





AACAGCAGTCTGTCAGCCCTGAATTTGGCGCTGAGGGTCTGAAGACGCCATTGATCACCATCAACGAAAA





GGAGGCAGTTGACGAAGTGGAAGTTGAGGAAGAAGGAAGGGACAGTTTTGAAATTACAGGAGAGAAAAAG





ATTCGCAGGGGTCTGGACCTGGCCACTACCCTTGAACGCATTCAGAAGAACTTTGTGATTACTGACCCCA





GACTCCCAGAGAACCCAATTATTTTCGCCTCTGACGACTTCCTAGAGCTGACAGAGTATTCACGAGAGGA





AGTCATTGGTCGTAACTGCAGATTCCTTCAGGGTCCAGATACAGACCAGGACACAGTGCAGAAGATCCGT





GATGCCATCAGAGACTGCAGAGACGTGACTGTTCAGCTCCTTAACTATACAAAGAGTGGGAAGCCATTCT





GGAACATGTTCCACCTACAGGCTGTCAAGAACAGCAAGGGAGAGCTGCAGTACTTTATTGGTGTCCAGCT





GGATGCCAGCACATACATTGAACCTAAACTGCAGCCGCTTTCAGAGAGTGCAGAGAAGGAAGGCACCAAA





CAAGTGAAGACAACGGCTGACAATGTTGACTCCAGCCTGAGGGAGCTGCCAGATCCCAATGTGTCCAAAG





AAGACATCTGGGGCATCCATTCCTCCGTTGCAGAGCCAAAGCCCCATCAGAAGAGAGGATACTCGTCAAA





GTGGGATGCAGTGCTGAAGATCAAAGCCAGAGATGGAAAAATAGGACTGAAGCACTTCCGACCAGTGAAA





CCCTTGGGCTGCGGAGACACTGGAAGCGTCCATTTGGTGGAGTTGAAAGACACGGGCAAGTTCTTTGCCA





TGAAGGCCATGGACAAGGAAGTTATGATCAACAGAAATAAGGTGCACAGGACTTGCACAGAGCGGCAAGT





TTTAGGGCTGGTGGACCATCCCTTCCTGCCTACGCTGTATGCCTCATTTCAGACTACAACACACATCTGT





CTCATCACTGATTTCTGCCCTGGAGGTGAGCTGTACATGCTACTGGACAGACAGCCATCTAAGAGGTTCC





CTGAATATGCAGCCAGGTTCTATGCTGCTGAGATTCTGCTGGCACTTGAGTACCTGCACCTGCAGGGTGT





TGTGTACCGAGACCTGAAGCCAGAGAACATTCTGATTGGCTATGACGGTCACCTGATGCTCACTGACTTT





GACCTCTCCTTTGTGTCAGAAACTGTTCCTGAGTTGGTGTTCCCCCCCAATTACAATAAGGATAAGCCCA





AGAGTAAGAATAAGAAGGACAGGGAAGGAAATCTGCCTGTTCTGGTGGCGCGTCCCTCTGGGACAAGCAA





TTCTTTTGTGGGTACTGAGGAGTACATCTGCCCAGAAATAATAAGTGGAATTGGTCACAACAGCCAAGTG





GATTGGTGGTCGTTTGGTATTTTCCTTTATGAGATGCTGTATGGAAAGACACCTTTTAGAGGTCGCAATC





GGCAGCGAACATTCTCCAACGCCCTCACAAAGCAGCTGGAGTTCCCACCAACACCACATATCAGTCAAGA





GGCCAAGGATCTGATCACTCTCCTCTTAGTGAAGGACCCAAGCAAGCGACTGGGAGCCATTTTTGGTGCC





AATGAAGTCAAGCAACATCCATTTTTCCGTGACTTTGACTGGACCCTCATTCGATGCAGACAACCTCCAT





CCTTAGATGTTCCTGTCAAGTTCAACAACCATTCGCCACAACGGACTTCAGGAGATGAGGAAGAAATGGA





GTGGGATGAAGATGAGAACATAAGTACATCCACAACTGTGTCTTTGGACTTTGACTAGTCGCACATATTT





TTAGCTTATAGCACACACGTATATATAAATAATAGATACATACTTATTACATAGTAGTGTTGTATAGTAA





GCATAATATTTTTGGTAATAATGTTTTGGTTTTGGTTTTGTTTTC





SEQ ID NO: 76



>BAE20161.1 phototropin [Mougeotiascalaris]



MNSPLSPSRAIQTSEGKILEQKSELKDVLTSFHQTFVISDATKPDIPIVFASEGFYEMTGYGPEEVIGYN





CRFLQGEGTSRDEVTRLKQCLVEGQPFCGRLLNYRKDGTPFWNLLTVSPVRSATGKVVKFIGMQTEVSKF





TEGAADGIKRPNDLPVSLIRYDARQKDEAEVSVTEIVHAVAHPEKAIARLSTAVTESSKKHQQQSVSPEF





GAEGLKTPLITINEKEAVDEVEVEEEGRDSFEITGEKKIRRGLDLATTLERIQKNFVITDPRLPENPIIF





ASDDFLELTEYSREEVIGRNCRFLQGPDTDQDTVQKIRDAIRDCRDVTVQLLNYTKSGKPFWNMFHLQAV





KNSKGELQYFIGVQLDASTYIEPKLQPLSESAEKEGTKQVKTTADNVDSSLRELPDPNVSKEDIWGIHSS





VAEPKPHQKRGYSSKWDAVLKIKARDGKIGLKHFRPVKPLGCGDTGSVHLVELKDTGKFFAMKAMDKEVM





INRNKVHRTCTERQVLGLVDHPFLPTLYASFQTTTHICLITDFCPGGELYMLLDRQPSKRFPEYAARFYA





AEILLALEYLHLQGVVYRDLKPENILIGYDGHLMLTDFDLSFVSETVPELVFPPNYNKDKPKSKNKKDRE





GNLPVLVARPSGTSNSFVGTEEYICPEIISGIGHNSQVDWWSFGIFLYEMLYGKTPFRGRNRQRTFSNAL





TKQLEFPPTPHISQEAKDLITLLLVKDPSKRLGAIFGANEVKQHPFFRDFDWTLIRCRQPPSLDVPVKFN





NHSPQRTSGDEEEMEWDEDENISTSTTVSLDFD





SEQ ID NO: 77



>KJ195118.1 Cylindrocystis cushleckae phototropin (PHOTB) mRNA



ATGGGACGAGATCCGGACGTGGATCAGCTTGGTCAGAATGTGTCTGGGCTATCAGTAGAGACGAATGGAA





ATAATAGTCAGGTTGCGCGTGGTACAGGCTTGGCCACACCCGACAAAGACAAAATCTTAACACAAACCGA





AGGGCTGACAGATGTGCTCACGACATTTCAACAAACGTTTGTCATGTCTGACGCTACCAAGCCCGATATC





CCAATCACATTCGCTAGTGAGGGATTCTACAAGATGACAGGCTACAGCCCTAAGGAGGTCATCGGGCGAA





ATTGCCGTTTTCTTCAAGGTGAAGGCACCGACCGTGCAGAAGTTGCCCGCCTGAAGCAATGTCTGGTCTC





CGGGGAAAGCTTCTGCGGCCGTCTGCTGAACTACAGAAAAGATGGAACACCTTTTTGGAATCTTCTCACG





GTATCTGCTGTCAAAAATGACGATGGCAAGATCGTGAAGTTTGTCGGAATGCAAGTGGAGGTGACTAAGT





ACACAGAGGGCAAAGCGGACGAGCAGAGGCGTCCCAATGACATGCCTGTTTCTCTCATCCGCTACGACGC





TCGGCAAAAGGAGGAGGCGGAGACTTCAGTGGCAGAAATTCTTCATGCTGTCAAGTTGCCAGAGCAAGCT





AAGGCGCGTCTCAGTATGACACCTGTCCTGGACGAATCTATATCCCAGAGGGAACAGGAGGTGAGCCAAG





AAGATGCGGCCGCAAAACGGAAACGGGAACGGAGGACGTCAGGATTCATGACTCTATTAGGGAACGGGGC





CACAAAGGAGGAGCTGACACCTGTCATTTCGGAGCCTTCCACGCCCCAACCCGTAGAGAAGGAGGAGGTT





CGAGACAGTTTCGAGCTAACCGGAGAGAAAAATGGGCGGCGAGGGCTGGATCTAGCAACGACCCTTGAAC





GTATCCAGAAAAATTTTGTCATCACTGACCCTCGACTTCCCGAAAACCCAATTATTTTCGCGTCAGACGA





CTTTTTGGAGTTGACCGAGTACTCAAGAGAGGAGGTCCTGGGCAGAAACTGCAGATTCCTACAGGGCAAG





GATACTGACCAGAAAACAGTTCAGGAGATCCGGGACGCTATCCGAGAGCAGAGAGACGTCACAGTGCAGC





TGCTCAACTACACCAAGGGCGGTCGTCCCTTCTGGAACCTGTTCCATCTGCAGGCTGTCAAGGACAGCAA





GGGGGACCTGCAGTACTTCATCGGGGTCCAGCTGGACGCCAGCACGTACGTGGAACCAGCCGCCAAACGC





CTCTCCGAAAAAACGGCAGCAGAAGGCAAGCAGCAGGTGGAGAATACTGCGGCCAATGTGGGGTTTGGAC





TCAAGGAGCTCCCAGATCCCAATGCTGCCAAAGAAGATTTGTGGGCTGCCCATTCAGTCCTGGTGGATCC





AAAGCCACATCGGAGGCAGGATTCAAACTGGGAAGCTATCTTAAAGATCCGCAAGCGGGATGGACGCCTG





GGTCTGAAGCACTTTCGGCCCATCAAGCCCCTCGGGTGCGGGGATACGGGCAGCGTGCACCTGGTGGAGC





TCCGGGACAGCGGAAAGCTCTTTGCCATGAAGGCCATGGACAAGGATGTCATGATCAACCGCAACAAGGT





CCATCGTGCGAGCACAGAGAGAGAAATCTTGGGTCTCATAGACCATCCCTTCCTTCCCACCCTGTACGCC





TCTTTCCAGACTGGCACTCACGTGTGCCTCATCACGGACTTTTGTCCGGGCGGTGAGCTCTACCTCCTGC





TGGAGCGGCAGCCACAAAAACGTTTCCCAGAACATGCTGCCAGATTTTTTGGGGCCGAAATTCTTCTTGC





TCTAGAATATCTCCACTGCCAGGGCGTCATCTACCGCGATCTGAAGCCCGAAAACATTTTGATCTCGCGA





AGCGGCCACCTCCTATTGACCGACTTTGACCTCTCTTTCCTCTCCGAAACGACACCCAAGCTTATCTTCC





CCCCCTCGGACAAAAAGAGGAGGCGGAAGAGGGAGGAGGAGGGCGACCATCAGAGGCCTACTTTTGTTGC





GGAGCCCATGGGCAGCAGCAATTCTTTTGTGGGGACCGAGGAGTACATTGCTCCAGAAATTATCAGCGGG





ATGGGGCACACCAGCCAGGTGGACTGGTGGGCCTTCGGTATTTTTCTGTACGAGATGATGTACTCCAAGA





CCCCCTTCCGCGGCCGCAATCGGCAACGCACCTTCACCAACATCCTCATGAAGGACCTCGCCTTCCCATC





CTCTCCCCCGGTGAGCGCGGCCGCCAAGCATCTGATTCGCGGCCTCCTGGAGCGCGACCCCCAGCGGCGG





CTGGGCGCCCAGCGCGGCGTGTCAGAAATTAAGGAGCACGCCTTCTTCCATGGCCTCCAGTGGTCCCTCA





TTCGCTGCCGGCAACCTCCCGAGCTGGAGACCCCGGTGAAGTTTACGAACACGGAGCCGGAACGAGAGGC





CGCAGAACAAGACGAAGAGGATCTTGAATGGGACGACACAGAGGCGAGGAGCGCTTCCACTTCCTTGGAT





TACTGA





SEQ ID NO: 78



>AHZ63919.1 phototropin [Cylindrocystiscushleckae]



MGRDPDVDQLGQNVSGLSVETNGNNSQVARGTGLATPDKDKILTQTEGLTDVLTTFQQTFVMSDATKPDI





PITFASEGFYKMTGYSPKEVIGRNCRFLQGEGTDRAEVARLKQCLVSGESFCGRLLNYRKDGTPFWNLLT





VSAVKNDDGKIVKFVGMQVEVTKYTEGKADEQRRPNDMPVSLIRYDARQKEEAETSVAEILHAVKLPEQA





KARLSMTPVLDESISQREQEVSQEDAAAKRKRERRTSGFMTLLGNGATKEELTPVISEPSTPQPVEKEEV





RDSFELTGEKNGRRGLDLATTLERIQKNFVITDPRLPENPIIFASDDFLELTEYSREEVLGRNCRFLQGK





DTDQKTVQEIRDAIREQRDVTVQLLNYTKGGRPFWNLFHLQAVKDSKGDLQYFIGVQLDASTYVEPAAKR





LSEKTAAEGKQQVENTAANVGFGLKELPDPNAAKEDLWAAHSVLVDPKPHRRQDSNWEAILKIRKRDGRL





GLKHFRPIKPLGCGDTGSVHLVELRDSGKLFAMKAMDKDVMINRNKVHRASTEREILGLIDHPFLPTLYA





SFQTGTHVCLITDFCPGGELYLLLERQPQKRFPEHAARFFGAEILLALEYLHCQGVIYRDLKPENILISR





SGHLLLTDFDLSFLSETTPKLIFPPSDKKRRRKREEEGDHQRPTFVAEPMGSSNSFVGTEEYIAPEIISG





MGHTSQVDWWAFGIFLYEMMYSKTPFRGRNRQRTFTNILMKDLAFPSSPPVSAAAKHLIRGLLERDPQRR





LGAQRGVSEIKEHAFFHGLQWSLIRCRQPPELETPVKFTNTEPEREAAEQDEEDLEWDDTEARSASTSLD





Y





SEQ ID NO: 79



>KJ195114.1 Cylindrocystis brebissonii phototropin (PHOT1) mRNA



ATGGATCCGCCTCAAGGAATCAGGAAAATGCCGTTTCAGTCCGACAGCTCTGATGTCTCCCAAGGCGCCA





AGAAGCGCCACAATGGGAGTGGGCGCCCTTCAAGTGCGGACAGCGGAGCGGCCAAGGTGTTGGTGGCGGC





CGGTGGGCTGCGCGACATTCTCTCCACCTTCACACAGACGTTCGTCATGTCCGATGCCACCAAGCCGGAC





GTGCCCATCATGTTTGCAAGCGAAGGCTTCTACAAAATGACCGGCTACGGAGTGGACGAAGTGATTGGAC





GGAACTGCCGCTTCCTCCAGGGGCCGGAGACCGACCGTGCTGAAGTCGCGCGCTTGAGGGAGTGCGTTGC





GCGCGGGGCTCCCTTCTGCGGACGCCTCCTCAACTACCGGAAGGACGGGGCTCCCTTCTGGAACTTGCTC





ACGGTGTCGCCTATCAAGGATGACGACGGGAGAGTGGTGCGCTTTGTGGGCATGCAGGTGGAGGTGACCA





AATCAACTGAGGGCCGTGCAGAGCTGATGAAACGTGCCGATAACGAGGCGTCTGTTTCTCTCATCAATTA





CGAGTCCCGACAGCAGGAGGAGGCCAGTCGGCGTGCGCAGGAGCTGGTGGAGGCCGTTGCCCAGAGCGAG





CAGCCGCAGGCGCAGGCAAGCGGCAGCCCGCGCCCGTCAGGGGATGAGGGCGGAGGCAGCCTGCGCAGCG





CCAGCAGTGCCAGCAGCGGCTTCTTCACCCCGCCGGAAACGGCCACGGCCCGGAACACAACGTCAACTCA





ACGGAGATCGTTTCGCCAAAGCGCGTCCAGCTTGGGGGCCCCAGAGGCGGAGGCGGAGGCGATGGCGGCG





GATGACGAAGGGAAGAAGCGCCTGGGGCGGCGCGGGCTGGACCTGGCCACCACGCTGGAGCGGATCCAGA





AGAACTTTGTGATCACCGACCCTCGCCTGCCGGATAACCCAATTATCTTTGCCTCGGATGACTTTCTCCA





GCTGACGGAGTACTCTCGAGAAGAGGTGCTGGGCCGCAACTGCAGGTTCCTTCAGGGGAAGGACACGGAC





CGAGGGACTGTAAAGCAAATTCACACAGCGATCGAGACGCGAGGCGACATAACGGTTCAACTCCTCAACT





ACACCAAGAGCGGAAAGCCATTCTGGAATCTTTTTCATCTTCAGGCAGTCAAAGATGGCCAGGGTGCGCT





GCAGTACTTCATTGGGGTGCAGCTGGATGCCAGCGAGTACGTAGAGCCCAGGCCCAGCGCAGACGAAAGA





AAGTTGCCAGAAAGCGTGGAGGCCCAGGGCAGCAAAGAGGTTGAGCAAACAGCAAGCAACGTGGGCGCAG





GCTTGAAGGAGCTGCCCGATGCACACCAGCCAAAGGAGGACCTTTGGAAGTTCCACTCCGAACCCGTGGC





ACCCCTGCCGCACGGGCGAATGACAACAAATTGGGGGCCAATTTTGAAGATTCTGGAACGAGATGGGCGG





ATAGGGCTGAAGGATTTTCGCCCAGTGCGACCGCTGGGCTGTGGAGACACGGGCAGCGTGCACCTGGTGG





AGCTCAAGGCGGAAGATGTGCCGGACGATTCTGCCGCTTCTGCTGAGGGGATGGAGGACGGACAGCAACG





ACCTTCTCAGAAGTTCCTGTACGCCATGAAGGCCATGGACAAGGTGGTTATGATCAAGCGCAACAAGGTC





CATCGCGCGTGCATGGAACGCTGCATTCTGGGGCTGACCGACCACCCACTCTTGCCTACTCTCTACGCAT





CCTTTCAGACCAGCACTCACGTGTGCCTCATCACCGACTATGCTCCGGGGGGGGAGCTCTTCCAGCTTCT





CGATGAACAACCCCACAAGCAGTTCCCAGAAGATGTTGCACGGTTTTTTGCGTCCGAAGTTCTCGTGGCA





CTCGAATATCTGCACTTTAAGGGGGTGGTGTATCGGGACTTGAAGCCCGAGAACATCCTGATCAGAGAAT





CCGGGCATCTCATGCTCACCGATTTTGACCTTTCCTTCATGGGAACCACAGTTCCGCAGAGGAGGAAAGG





CAGCGCAGCGCACTTCACCTCATTGCCAGAGTCACTGAAAGAAGGCGAGGAAGAGCTACTGCACGTGTTT





TTTGCTGAGCCGGAGGGCACCAGCAACTCCTTTGTCGGCACGGAAGAGTACATCGCACCGGAGATCATCA





AGGGTGTAGGCCACGGCTTTCAAGTCGACTGGTGGGCATTTGGGATTCTTCTGTATGAGCTCCTCTACGG





GCGCACGCCCTTCCGGGGCAGCTGCCGCACCAAGACCTTTTCCAGCATCCTCAACAAAGAGCTGGTCTTC





CCCAAGCTACCCGAGACGAGCGCTGCCGCCAAGGACCTGATGACGCGCCTCCTCGAACGCGACCCGGATC





TGCGCTTGGGGGGCTCCGGGGGCGTCCACGAGATCAAAGCGCACCCCTTCTTCAGCACCACCCACTGGCC





GCTGGTCCTGTGCCAACCTGTTCCGGATCTTGTCCTCTTGAAGACTTCGCCAAGCGCCGAAGCTGGTCCA





GGCGAAGGAGAGGGGGAAGGCCAAGAAGGGGACGATGCGGAGGATTGGGAGGAAGGTGACGGGAAAAAAA





CTCTCTCGCTGTCCCTGGAAGGCTGA





SEQ ID NO: 80



>AHZ63915.1 phototropin [Cylindrocystisbrebissonii]



MDPPQGIRKMPFQSDSSDVSQGAKKRHNGSGRPSSADSGAAKVLVAAGGLRDILSTFTQTFVMSDATKPD





VPIMFASEGFYKMTGYGVDEVIGRNCRFLQGPETDRAEVARLRECVARGAPFCGRLLNYRKDGAPFWNLL





TVSPIKDDDGRVVRFVGMQVEVTKSTEGRAELMKRADNEASVSLINYESRQQEEASRRAQELVEAVAQSE





QPQAQASGSPRPSGDEGGGSLRSASSASSGFFTPPETATARNTTSTQRRSFRQSASSLGAPEAEAEAMAA





DDEGKKRLGRRGLDLATTLERIQKNFVITDPRLPDNPIIFASDDFLQLTEYSREEVLGRNCRFLQGKDTD





RGTVKQIHTAIETRGDITVQLLNYTKSGKPFWNLFHLQAVKDGQGALQYFIGVQLDASEYVEPRPSADER





KLPESVEAQGSKEVEQTASNVGAGLKELPDAHQPKEDLWKFHSEPVAPLPHGRMTTNWGPILKILERDGR





IGLKDFRPVRPLGCGDTGSVHLVELKAEDVPDDSAASAEGMEDGQQRPSQKFLYAMKAMDKVVMIKRNKV





HRACMERCILGLTDHPLLPTLYASFQTSTHVCLITDYAPGGELFQLLDEQPHKQFPEDVARFFASEVLVA





LEYLHFKGVVYRDLKPENILIRESGHLMLTDFDLSFMGTTVPQRRKGSAAHFTSLPESLKEGEEELLHVF





FAEPEGTSNSFVGTEEYIAPEIIKGVGHGFQVDWWAFGILLYELLYGRTPFRGSCRTKTFSSILNKELVF





PKLPETSAAAKDLMTRLLERDPDLRLGGSGGVHEIKAHPFFSTTHWPLVLCQPVPDLVLLKTSPSAEAGP





GEGEGEGQEGDDAEDWEEGDGKKTLSLSLEG





SEQ ID NO: 81



>KJ195118.1 Cylindrocystis cushleckae phototropin (PHOTB) mRNA



ATGGGACGAGATCCGGACGTGGATCAGCTTGGTCAGAATGTGTCTGGGCTATCAGTAGAGACGAATGGAA





ATAATAGTCAGGTTGCGCGTGGTACAGGCTTGGCCACACCCGACAAAGACAAAATCTTAACACAAACCGA





AGGGCTGACAGATGTGCTCACGACATTTCAACAAACGTTTGTCATGTCTGACGCTACCAAGCCCGATATC





CCAATCACATTCGCTAGTGAGGGATTCTACAAGATGACAGGCTACAGCCCTAAGGAGGTCATCGGGCGAA





ATTGCCGTTTTCTTCAAGGTGAAGGCACCGACCGTGCAGAAGTTGCCCGCCTGAAGCAATGTCTGGTCTC





CGGGGAAAGCTTCTGCGGCCGTCTGCTGAACTACAGAAAAGATGGAACACCTTTTTGGAATCTTCTCACG





GTATCTGCTGTCAAAAATGACGATGGCAAGATCGTGAAGTTTGTCGGAATGCAAGTGGAGGTGACTAAGT





ACACAGAGGGCAAAGCGGACGAGCAGAGGCGTCCCAATGACATGCCTGTTTCTCTCATCCGCTACGACGC





TCGGCAAAAGGAGGAGGCGGAGACTTCAGTGGCAGAAATTCTTCATGCTGTCAAGTTGCCAGAGCAAGCT





AAGGCGCGTCTCAGTATGACACCTGTCCTGGACGAATCTATATCCCAGAGGGAACAGGAGGTGAGCCAAG





AAGATGCGGCCGCAAAACGGAAACGGGAACGGAGGACGTCAGGATTCATGACTCTATTAGGGAACGGGGC





CACAAAGGAGGAGCTGACACCTGTCATTTCGGAGCCTTCCACGCCCCAACCCGTAGAGAAGGAGGAGGTT





CGAGACAGTTTCGAGCTAACCGGAGAGAAAAATGGGCGGCGAGGGCTGGATCTAGCAACGACCCTTGAAC





GTATCCAGAAAAATTTTGTCATCACTGACCCTCGACTTCCCGAAAACCCAATTATTTTCGCGTCAGACGA





CTTTTTGGAGTTGACCGAGTACTCAAGAGAGGAGGTCCTGGGCAGAAACTGCAGATTCCTACAGGGCAAG





GATACTGACCAGAAAACAGTTCAGGAGATCCGGGACGCTATCCGAGAGCAGAGAGACGTCACAGTGCAGC





TGCTCAACTACACCAAGGGCGGTCGTCCCTTCTGGAACCTGTTCCATCTGCAGGCTGTCAAGGACAGCAA





GGGGGACCTGCAGTACTTCATCGGGGTCCAGCTGGACGCCAGCACGTACGTGGAACCAGCCGCCAAACGC





CTCTCCGAAAAAACGGCAGCAGAAGGCAAGCAGCAGGTGGAGAATACTGCGGCCAATGTGGGGTTTGGAC





TCAAGGAGCTCCCAGATCCCAATGCTGCCAAAGAAGATTTGTGGGCTGCCCATTCAGTCCTGGTGGATCC





AAAGCCACATCGGAGGCAGGATTCAAACTGGGAAGCTATCTTAAAGATCCGCAAGCGGGATGGACGCCTG





GGTCTGAAGCACTTTCGGCCCATCAAGCCCCTCGGGTGCGGGGATACGGGCAGCGTGCACCTGGTGGAGC





TCCGGGACAGCGGAAAGCTCTTTGCCATGAAGGCCATGGACAAGGATGTCATGATCAACCGCAACAAGGT





CCATCGTGCGAGCACAGAGAGAGAAATCTTGGGTCTCATAGACCATCCCTTCCTTCCCACCCTGTACGCC





TCTTTCCAGACTGGCACTCACGTGTGCCTCATCACGGACTTTTGTCCGGGCGGTGAGCTCTACCTCCTGC





TGGAGCGGCAGCCACAAAAACGTTTCCCAGAACATGCTGCCAGATTTTTTGGGGCCGAAATTCTTCTTGC





TCTAGAATATCTCCACTGCCAGGGCGTCATCTACCGCGATCTGAAGCCCGAAAACATTTTGATCTCGCGA





AGCGGCCACCTCCTATTGACCGACTTTGACCTCTCTTTCCTCTCCGAAACGACACCCAAGCTTATCTTCC





CCCCCTCGGACAAAAAGAGGAGGCGGAAGAGGGAGGAGGAGGGCGACCATCAGAGGCCTACTTTTGTTGC





GGAGCCCATGGGCAGCAGCAATTCTTTTGTGGGGACCGAGGAGTACATTGCTCCAGAAATTATCAGCGGG





ATGGGGCACACCAGCCAGGTGGACTGGTGGGCCTTCGGTATTTTTCTGTACGAGATGATGTACTCCAAGA





CCCCCTTCCGCGGCCGCAATCGGCAACGCACCTTCACCAACATCCTCATGAAGGACCTCGCCTTCCCATC





CTCTCCCCCGGTGAGCGCGGCCGCCAAGCATCTGATTCGCGGCCTCCTGGAGCGCGACCCCCAGCGGCGG





CTGGGCGCCCAGCGCGGCGTGTCAGAAATTAAGGAGCACGCCTTCTTCCATGGCCTCCAGTGGTCCCTCA





TTCGCTGCCGGCAACCTCCCGAGCTGGAGACCCCGGTGAAGTTTACGAACACGGAGCCGGAACGAGAGGC





CGCAGAACAAGACGAAGAGGATCTTGAATGGGACGACACAGAGGCGAGGAGCGCTTCCACTTCCTTGGAT





TACTGA





SEQ ID NO: 82



>AHZ63919.1 phototropin [Cylindrocystiscushleckae]



MGRDPDVDQLGQNVSGLSVETNGNNSQVARGTGLATPDKDKILTQTEGLTDVLTTFQQTFVMSDATKPDI





PITFASEGFYKMTGYSPKEVIGRNCRFLQGEGTDRAEVARLKQCLVSGESFCGRLLNYRKDGTPFWNLLT





VSAVKNDDGKIVKFVGMQVEVTKYTEGKADEQRRPNDMPVSLIRYDARQKEEAETSVAEILHAVKLPEQA





KARLSMTPVLDESISQREQEVSQEDAAAKRKRERRTSGFMTLLGNGATKEELTPVISEPSTPQPVEKEEV





RDSFELTGEKNGRRGLDLATTLERIQKNFVITDPRLPENPIIFASDDFLELTEYSREEVLGRNCRFLQGK





DTDQKTVQEIRDAIREQRDVTVQLLNYTKGGRPFWNLFHLQAVKDSKGDLQYFIGVQLDASTYVEPAAKR





LSEKTAAEGKQQVENTAANVGFGLKELPDPNAAKEDLWAAHSVLVDPKPHRRQDSNWEAILKIRKRDGRL





GLKHFRPIKPLGCGDTGSVHLVELRDSGKLFAMKAMDKDVMINRNKVHRASTEREILGLIDHPFLPTLYA





SFQTGTHVCLITDFCPGGELYLLLERQPQKRFPEHAARFFGAEILLALEYLHCQGVIYRDLKPENILISR





SGHLLLTDFDLSFLSETTPKLIFPPSDKKRRRKREEEGDHQRPTFVAEPMGSSNSFVGTEEYIAPEIISG





MGHTSQVDWWAFGIFLYEMMYSKTPFRGRNRQRTFTNILMKDLAFPSSPPVSAAAKHLIRGLLERDPQRR





LGAQRGVSEIKEHAFFHGLQWSLIRCRQPPELETPVKFTNTEPEREAAEQDEEDLEWDDTEARSASTSLD





Y





SEQ ID NO: 83



>KJ195111.1 Planotaenium ohtanii phototropin (PHOT) mRNA



ATGAGTACCTTGAAGGACGCCCTCTCATCGGGCACCACCCATGCAGACGTCAGAGGAGGAGGTAGCGTCC





CAACGGCGCGGCGCTACTCGCTCAAGATTGAGCAGACTCCTGCCGGCGGGTCTGGCGCTTCGAAAGTCCT





CAGCTCGAAATCAGAACTCAAAGATGCTCTCAGCGCGTTTCAGCAGACTTTCGTTATGGCCGACGGGACC





AAGCCTGATTTCCCCATCATGTTCGCGAGCGAGGGGTTTTACCAGATGACCGGATATACGCCATTAGAAA





CCATTGGAAAGAACTGTCGCTTCCTCCAGGGCCCTGAAACAGACCGTGCCGAGGTGAAGAAGCTTAAGGA





GGCGCTCGACCAGGGCCGCAGCTTTTGCGGTCGCATTCTGAATTACAAGAAAGATGGCACAAAGTTCTGG





AACCTTCTCACCATCTCTCCCGTCAAGGACGACAACGGAAAGGTCGTCAAGTTCATCGGGATGCTGACGG





AGGTGACCAAGTACACCGAGGGGGCGCACTCCGCCGACGTGCGGTCGAACCAACTCCCCATCTCGCTCAT





CAAATATGACGCGCGTCAGAAGGAGGAGGCCGAGAGCAGCGTCACTGAGCTCCTCGAAGCCGCCAAGGGC





CCGCACCCGCTCCTCGCGCCGCTCGGCCCGGGCAGCGTGTCGGCCGGTGGCGGCGGCATGGAGAAGTTGA





TGCAGCTCCCCAAGGTCGACGAAGGGGGCGCGGAGGACGACGTGGCCGCGAAGCCGAGTCGCAAGTCGGG





GCTCTTCAACATGCTCAGCAAGAAGGAGAGGCAGAGCATGAGCGCCGCGCCCGCAAAGAAGAAAGAGGAG





GATGACGACGACATGATCGACGATGAGTCGAAGAAGAAGGCACGACGGGGGCTCGATCTGGCGACCACTT





TGGAGCGTATCCAAAAGAATTTCGTCATCACGGACCCAAGGCTGCCAGAGAACCCAATTATTTTTGCTTC





TGACGATTTCTTGGAGCTCACCGAATACTCGAGAGAGGAAATCATTGGGAGGAACTGCAGGTTCCTTCAG





GGCAAAGACACCGACGAGAAGACCGTTCAGAAAATCAGGGACGCGATCAAAAACGAAGAAGATATCACTG





TGCAATTGTTGAACTACACCAAGAGCGGGAAGCCATTTTGGAACCTTTTTCATCTTCAGGCCGTGCGCGA





CAACAAGGGTGTGCTTCAATACTTCATCGGGGTCCAATTGGACGCGTCACAATACGTTGACCCTTCCATT





CATGGGCTTGACGCCACAGTCGCCAAGGAGGGCGAGCAGCTGATCATTGAGGCCGCCAATAGCGTAGAAG





GGGCCGTCAAGGAGTTGGCTGATCCAGGAAATTCCTCTCAAGACTTATGGGAGATCCATTCGCGCCCTGC





TGTCGCCAAGCCTCACAAAATGCAAGACGAGTCCTGGAAGTTCATCAAACAGGTCATTGAGAGAGAGGGT





AAGTTGGGGCTAAAGCATTTCAAGCCGATCAAACCTTTGGGGTGCGGTGACACCGGCAGCGTTCACCTGG





TCGAGCTTCGCGACACGGGCAAAATGTTCGCGATGAAGGCCATGGACAAGGAGGTCATGATCAACAGGAA





CAAGGTCCACCGTGCATGTACGGAAAGAGAGATCCTCGGAATGATCGACTTCCCGTTCCTGCCTACGCTG





TATGCTTCCTTTCAGACTGCCACTCACGTGTGTCTCATCACTGAGTTTTGCTCTGGAGGCGAACTATACG





GAGTGCTGGAGAAGCAAAAGGGAAAAAGATTCACGGAGGAAGTGGCCAAGTTCTTCACGGCTGAAGTGCT





CCTCGCTTTGCAGTACCTGCACTGTCACGGAATTGTGTACAGAGACCTGAAACCAGAAAACATCCTTCTC





ACGGGAGACGGGCACGCGATTCTGACGGACTTCGACCTTTCCTTTCTCACGCAATCAGCCACGCCGCAGG





TTCTCATGCCTCCCCCCGAAGCTTCCTCTGGCAAGAAGAAGAAGAAGAAGAAGGGCTCTGCGGACTCCGA





GCCGCGACCCAAATTCGTCTCCGAACCGAACGCGACGTCGAACTCCTTCGTCGGTACGGAAGAGTACATC





GCACCTGAAATCATCAGCGGCGCGGGGCACAGCGCGCCCGTCGACTGGTGGGCTCTTGGTATATTCATTT





ACGAAGTTTTGTACGGAAAGACCCCTTTCCGCGGTAGAAACCGACAGCGCACGTTCACGAACGTGCTGAT





GAAGGAATTGAACTTTGCTGAAAACCCTCCTGTTTCTGCCAACGCTAAGAGCATCATTCGAGCGTTGCTC





GAGAGGGACCCTGCGAAGCGGCTCGGCTCTGCGAGAGGCGCCACGGAGATCATGGACCATCCGTGGTTCT





CGGACATCAATTTCCCCCTCATCAAGAACAGGAAATTGCCGCCCCTGAGTGTAGCCGTGAAGAGCATCAG





TTCCGAACCTGACTCCGCTCGTCAGTCAGTGGCGGATGAAGAGTTGGAGTGGGACGAAAATGATGGAAGA





CCGTCCATTTCCTCTGATTACGGCTACTAG





SEQ ID NO: 84



>AHZ63912.1 phototropin [Planotaeniumohtanii]



MSTLKDALSSGTTHADVRGGGSVPTARRYSLKIEQTPAGGSGASKVLSSKSELKDALSAFQQTFVMADGT





KPDFPIMFASEGFYQMTGYTPLETIGKNCRFLQGPETDRAEVKKLKEALDQGRSFCGRILNYKKDGTKFW





NLLTISPVKDDNGKVVKFIGMLTEVTKYTEGAHSADVRSNQLPISLIKYDARQKEEAESSVTELLEAAKG





PHPLLAPLGPGSVSAGGGGMEKLMQLPKVDEGGAEDDVAAKPSRKSGLFNMLSKKERQSMSAAPAKKKEE





DDDDMIDDESKKKARRGLDLATTLERIQKNFVITDPRLPENPIIFASDDFLELTEYSREEIIGRNCRFLQ





GKDTDEKTVQKIRDAIKNEEDITVQLLNYTKSGKPFWNLFHLQAVRDNKGVLQYFIGVQLDASQYVDPSI





HGLDATVAKEGEQLIIEAANSVEGAVKELADPGNSSQDLWEIHSRPAVAKPHKMQDESWKFIKQVIEREG





KLGLKHFKPIKPLGCGDTGSVHLVELRDTGKMFAMKAMDKEVMINRNKVHRACTEREILGMIDFPFLPTL





YASFQTATHVCLITEFCSGGELYGVLEKQKGKRFTEEVAKFFTAEVLLALQYLHCHGIVYRDLKPENILL





TGDGHAILTDFDLSFLTQSATPQVLMPPPEASSGKKKKKKKGSADSEPRPKFVSEPNATSNSFVGTEEYI





APEIISGAGHSAPVDWWALGIFIYEVLYGKTPFRGRNRQRTFTNVLMKELNFAENPPVSANAKSIIRALL





ERDPAKRLGSARGATEIMDHPWFSDINFPLIKNRKLPPLSVAVKSISSEPDSARQSVADEELEWDENDGR





PSISSDYGY





SEQ ID NO: 85



>KT321719.1 Phymatodocis nordstedtiana phototropin (PHOT) mRNA



ATGGGTCCGCCAGGAAGTTCTAGCGTTCCGTCAATGGTCCCGGGCACGACTCACACGCACGTGACGGGCG





GGGGCAGCGTGCCTACAGCCCGGCGCTACTCGCTGGGGCTCACTCCGGAACCTGCGGCCCCGCAGAAGGT





GTTGGGCTCCAAGGCGGAGCTCCGCGACGCCCTCACCGCTTTTCAGCAGACCTTCGTGATGGTGGACGCT





ACGAAGCCCGACTACCCTGTTATGTTCGCCAGCGAGGGATTCTATCAAATGACAGGATACTCGGCCCTGG





AGACCATTGGGAAGAACTGCCGTTTTCTGCAGGGACCCGAAACTGACCGTGCTGAGGTGGCGAAGCTGAA





GCAGGCGATCCTGGCCGGGGAAAGCTGGTGCGGGCGGCTCCTGAACTACAAAAAGGACGGCACGGCCTTC





TGGAACCTCCTCACCGTCTCCCCAGTCAAGGACGATGATGGCACTGTCGTGCGATTCATCGGGATGCAAG





TGGAGGTGACCAAGTACACGGAGGGGTCCAAGGACAAGGAGACGCGTCCCAACGCCCTGCCCGTGTCCCT





CATCAAGTACGACGCACGGCAGAAGGAAGAGGCGGAGAGCACGGTGAGCGAGCTGGTGGTTGAGGCGACA





AAGCATCCGCTGCTGGAGTCTATGGGGGGCGGGGGCACTTTGGGGGGAGGAGGGATGGAGAAGCTGATGC





AGCTGCCCAAGGTTGAGGAAGGCGGGGAGGACGCCGTGGACGACCGCAGGTCTAAGTCGGACCGCCGCAA





GTCCGGCCTGATGACGCTCCTCTCGAAAAAGGAGAAGGCGGCGCCGTCGGAGGGGAAGCTAGCGGAGGCG





CCGAAGGCGGCAGAGACCGCAGAGGAGGACGTCGGGGACGACCGCAAGGCGAGGAAGGGAATGGACCTGG





CCACGACGCTGGAACGTATACAGAAGAATTTTGTCATCACGGATCCCCGCCTCCCCGACAACCCCATTAT





TTTTGCATCGGACGACTTCCTGGAACTCACGGAATACTCTCGAGAAGAAATTATCGGGAGGAATTGCAGG





TTCCTGCAGGGCCCGGACACCAACCCAAAGACGGTGCAGAAAATCCGTGAGGCGATCAACAACCAGGAGG





ATATCACCGTGCAGCTCCTCAACTACACAAAGAGCGGGAAGCCGTTTTGGAACCTCTTCCATCTGCAGGC





CGTGAAGGACAACAAGGGTTTGCTGCAGTACTTTATCGGCGTGCAGCTGGACGCCAGCCAGTATGTGGAC





CCGAACATCCAGGGCCTGGAGGACCGGTTCGCACAGGAGGGGGAGAAGATTGTGCTGGAGACGGCCGCCA





ACATCGATGGTGCTGTGCGCGAGTTGGCCGATCCGGGGGCGGCCCCGCAGGACCTCTGGGCCATCCACTC





CATGCAAGCTGTCCGCAAGCCACATAAGGCCACGGATCCTGCCTGGAAGGCCATCCTTGAGGTGATGGAG





AAGGACGGCAAGCTGGGGCTGAAGCACTTCCGCCCCATCAAGCCCCTGGGCGCGGGGGACACAGGCAGTG





TGCACCTGGTGGAGCTGCGGGACACGGGCCGCCTGTTTGCCATGAAAGCCATGGACAAGGAGGTCATGAT





CACGCGCAACAAGGTCCACCGTGCGTGCACGGAGCGCGACATCCTCGGGCGCCTGGACCACCCCTTCCTG





CCCACCCTCTACGCCTCCTTCCAGACGGCCACGCACGTGTGCCTGATCACGGAGTTCTGCGCGGGCGGGG





AGCTGTACGGGGTGCTGGAGAAGCAGAAGGGGAAGCGCTTCCCCGAGAGTGTGGCCAAGTTCTTCGGGGC





GGAGGTGCTCCTCTCCCTCGAGTACTTGCATTGCCAGGGCGTTGTATACCGCGACCTGAAGCCGGAGAAC





GTGCTGATCACCGAAAAGGGCCACGCGATGCTCAGCGACTTCGACCTCTCCTTCCTCACCCAGTCCACCG





TGCCCCGGGTTGAGATGCCCCCTCCGGAGGCGCTGGAGATGCTGAAGAAGAAGAAGGGGGGAGGAGGGAA





CAAGAAGAAGAAGGGCAGCAAGGGAGGGGGCGGCGACGTCGAGGCCAAGCTGGCGGCCCTGCGGGCCATC





ACTCCCACGCTGGTCGTGGAGCCGGTCAGCTCGTCCAACTCCTTTGTGGGGACGGAGGAGTACATTGCCC





CCGAGATCATCAACGGCACGGGGCACAGCAGCCCCGTCGATTGGTGGGCCTTCGGAATCTTTCTGCACGA





AATGCTGTACGGAAAGACGCCATTCCGGGGCCGCAACCGGCAGCGCACCTTCACAAACGTCCTCATGAAG





CCCCTCACCTTTCCGGACACTCCTCAGGTGAGTAGCGAGGCCAAGGCGCTGATGATGGCTCTGCTGGAGA





AGGATCCGGAGAAGCGGCTGGGGAGCAAGAAGGGGGCTGCGGAGATCAGAGGGCACCCCTTCTTCAGAGA





CCTCAACTGGGCGCTGCTGCGCCACCGGGCCCCTCCCCCTCTCAGCGTGCCAGTGAAGCCCATCACCACG





GAGTCCGACTCGGCGCGCCAGTCGATCTCTGAGGAGGAGTTGGACTGGGATGAAAACGAGGCCCGGCCTT





CCACGTCCATATCCAC





SEQ ID NO: 86



>ANC96844.1 phototropin, partial [Phymatodocisnordstedtiana]



MGPPGSSSVPSMVPGTTHTHVTGGGSVPTARRYSLGLTPEPAAPQKVLGSKAELRDALTAFQQTFVMVDA





TKPDYPVMFASEGFYQMTGYSALETIGKNCRFLQGPETDRAEVAKLKQAILAGESWCGRLLNYKKDGTAF





WNLLTVSPVKDDDGTVVRFIGMQVEVTKYTEGSKDKETRPNALPVSLIKYDARQKEEAESTVSELVVEAT





KHPLLESMGGGGTLGGGGMEKLMQLPKVEEGGEDAVDDRRSKSDRRKSGLMTLLSKKEKAAPSEGKLAEA





PKAAETAEEDVGDDRKARKGMDLATTLERIQKNFVITDPRLPDNPIIFASDDFLELTEYSREEIIGRNCR





FLQGPDTNPKTVQKIREAINNQEDITVQLLNYTKSGKPFWNLFHLQAVKDNKGLLQYFIGVQLDASQYVD





PNIQGLEDRFAQEGEKIVLETAANIDGAVRELADPGAAPQDLWAIHSMQAVRKPHKATDPAWKAILEVME





KDGKLGLKHFRPIKPLGAGDTGSVHLVELRDTGRLFAMKAMDKEVMITRNKVHRACTERDILGRLDHPFL





PTLYASFQTATHVCLITEFCAGGELYGVLEKQKGKRFPESVAKFFGAEVLLSLEYLHCQGVVYRDLKPEN





VLITEKGHAMLSDFDLSFLTQSTVPRVEMPPPEALEMLKKKKGGGGNKKKKGSKGGGGDVEAKLAALRAI





TPTLVVEPVSSSNSFVGTEEYIAPEIINGTGHSSPVDWWAFGIFLHEMLYGKTPFRGRNRQRTFTNVLMK





PLTFPDTPQVSSEAKALMMALLEKDPEKRLGSKKGAAEIRGHPFFRDLNWALLRHRAPPPLSVPVKPITT





ESDSARQSISEEELDWDENEARPSTSIST





SEQ ID NO: 87



>KT321720.1 Penium exiguum phototropin (PHOT) mRNA



ATGGCTCCGCCCCCGAATGCGGAAATAGCGGCGTTCGCCAAGGGGGCCACGCACGAGCGAGTCACGGGCG





GAGGCAGTGTGCCCACTGCGCGGCGGTACTCGCTGGGGCTGGGGCAGGAGGATGCTGCCCCGCGCACGAG





CGGCGGCGGGCAGAAGGTGCTTGGCGCCAAGGCGGAGCTGAGGGATGCTCTGACCGCGTTCCAGCAGACC





TTCGTTATGGTTGACGCCACCAAGCCCGACTACCCGGTCATGTTCGCCAGCGAAGGTTTCTACCAGATGA





CTGGATACTCCGCCCTCGAAACCATCGGCAAGAACTGCCGCTTCCTGCAGGGCCCGGACACGGACAGGGA





GGAGGTGGGGAAGCTGAAGCAGGCCATTATGGGCGGGGAGAGCTGGTGTGGCAGACTGCTCAACTACAAA





AAAGACGGCACGCCCTTCTGGAATCTGCTGACGGTGTCGCCCGTGAAGGACGACAACGGCAAAGTGGTCA





AGTTCATTGGAATGCAAGTGGAAGTCACAAAATATACTGAAGGGTCCAAAGACAAAGAGACCCGCCCCAA





CGCCCTTCCAGTATCTCTCATTAAATATGATGCCCGGCAGAGGGAGGAGGCAGAGAGCTCAGTGAGTGAG





CTGCTGGCAGAGGCGTCCAAGCATCCCCTGCTGGACGAGGCAGGGGCAGGGGCCGCAGGGGGGGGCATGG





AGAAGCTCATGCAGCTGCCCAAAGTGGACGAGTCTGCTTCCGCTGCAGCTGAGGCCAAAGGAGATCGCCG





CAAGTCCGGCCTCATGTCCATGCTCTCGAAGAAGGAGCAGAAGGGACAGGGCAAGGGGGCGCAGGAGAAG





GTGGAGGAGGAGGATGATGGTGGGGATGTGGAGCACAAGACGAGAAAGGGGCTTGATCTCGCGACAACCC





TGGAACGTATTCAAAAGAACTTTGTCATCACGGATCCGCGCCTGCCCGACAACCCCATCATTTTTGCGTC





AGATGACTTTTTGGAGCTGACAGAGTACACCCGCGAAGAAATCATAGGCCGCAACTGCAGGTTCCTGCAG





GGGCCAGACACGAACCCGAAGACGGTGCAGAAGATCCGAGATGCCATCAACAGTCAGGAGGACATCACAG





TGCAGCTGCTGAACTACACTAAGAGCGGCAAGCCCTTTTGGAATCTGTTTCATCTTCAGGCTGTGAAGGA





CAACAAGGGTACTCTGCAGTACTTTATCGGAGTCCAGCTGGATGCCAGCCAATACCTCGACCCCAACATC





CAGGGCCTTGAGGATCGCTTTGCAACAGAGGGAGAGAAGATTATTGTGGAGGCTGCAAGCAACATTGACT





CGGCCGTGAAAGAGCTGGCAGACACTGGAGCTGCTCCTCAGGATCTGTGGGCTATTCACTCAGTCCCGGC





AGCTGTAAAGCCCCACAAAAGACAAGACCCAGCCTGGCAGGCCGTGCAGGAGGCCATCTCCAAGGACGGG





AAGCTGGGGCTGAAACACTTTCGACCCATCAAGCCATTGGGAGCCGGGGACACTGGAAGCGTGCACTTGG





TTGAGCTTCGTGACAGTGGGTGCCTGTTTGCAATGAAGGCCATGGACAAAGAAGTCATGATCAACCGCAA





CAAGGTGCACCGTGCTGTGACTGAAAGGGAGATTCTGGGGCGCATAGACCACCCCTTCCTGCCCACGCTG





TTCGCCTCCTTCCAAACGGCGACGCATGTGTGCCTAATCACCGAGTTCTGTGAGGGCGGAGAGCTGTACG





GCGTTCTGGAAAAGCAGAAGGGCAAACGCTTTCCGGAGCCCGTCGCAAAGTTCTTCGCAGCGGAAGTGCT





GTTGGCTTTGGAGTACCTGCACTGCCAAGGCGTGGTGTACCGAGATCTGAAGCCGGAGAATGTGCTCATT





GCCAAGTCAGGCCATGCTGTACTCAGTGACTTCGACCTTTCCTTCCTCACCCAGGCCACGCCCAAGCTGG





AGATGCCCCCTCCTTCGGCAGCGGAGGGGAAGAAGAAGAAGAAGGGGGCTGGCAAGAAGAAGAAGAAGGG





GGGCACAGGGGACAAGGCTGGGGACAGGGACCCCGGGGAGCCCCTGCCAATGCTCATTGCAGAGCCTGAC





TCGTCCTCCAACTCCTTCGTTGGCACAGAAGAGTACATTGCGCCTGAAATCATCAATGGTACCGGGCACA





GCAGCCCCGTCGACTGGTGGGCCTTTGGCATCTTCCTGCACGAAATGCTGTACGGCAAAACTCCGTTCCG





GGGCCGCAACAGACAGCGCACGTTCACAAATGTGCTCATGAAGGAACTTACCTTCTCTGACTCAGTACCA





GTGTCCAACGAGGCAAAGAACTTGATGAAGAAGCTTCTTGAGAAGGAACCAGAGAAGAGGCTGGGGGGCA





AAAAAGGAGCAGCAGAAATTCGAGCCCACCCTTTCTTCAGAGACATTGATTGGGCACTCGTCCGCCACCA





TAAACCCCCTGGTCTGGCGGTGCCGGTGAAGCCCATCACAACGGAGCCAGATTCAGTGCGCCAGTCGTCC





GAAATGGAGGAACTCGATTGGGACGAGAACGAGGCCCGGCCATCCACATCGTTGTCGATGGATTATGGGT





ATTAA





SEQ ID NO: 88



>ANC96845.1 phototropin, partial [Peniumexiguum]



MAPPPNAEIAAFAKGATHERVTGGGSVPTARRYSLGLGQEDAAPRTSGGGQKVLGAKAELRDALTAFQQT





FVMVDATKPDYPVMFASEGFYQMTGYSALETIGKNCRFLQGPDTDREEVGKLKQAIMGGESWCGRLLNYK





KDGTPFWNLLTVSPVKDDNGKVVKFIGMQVEVTKYTEGSKDKETRPNALPVSLIKYDARQREEAESSVSE





LLAEASKHPLLDEAGAGAAGGGMEKLMQLPKVDESASAAAEAKGDRRKSGLMSMLSKKEQKGQGKGAQEK





VEEEDDGGDVEHKTRKGLDLATTLERIQKNFVITDPRLPDNPIIFASDDFLELTEYTREEIIGRNCRFLQ





GPDTNPKTVQKIRDAINSQEDITVQLLNYTKSGKPFWNLFHLQAVKDNKGTLQYFIGVQLDASQYLDPNI





QGLEDRFATEGEKIIVEAASNIDSAVKELADTGAAPQDLWAIHSVPAAVKPHKRQDPAWQAVQEAISKDG





KLGLKHFRPIKPLGAGDTGSVHLVELRDSGCLFAMKAMDKEVMINRNKVHRAVTEREILGRIDHPFLPTL





FASFQTATHVCLITEFCEGGELYGVLEKQKGKRFPEPVAKFFAAEVLLALEYLHCQGVVYRDLKPENVLI





AKSGHAVLSDFDLSFLTQATPKLEMPPPSAAEGKKKKKGAGKKKKKGGTGDKAGDRDPGEPLPMLIAEPD





SSSNSFVGTEEYIAPEIINGTGHSSPVDWWAFGIFLHEMLYGKTPFRGRNRQRTFTNVLMKELTFSDSVP





VSNEAKNLMKKLLEKEPEKRLGGKKGAAEIRAHPFFRDIDWALVRHHKPPGLAVPVKPITTEPDSVRQSS





EMEELDWDENEARPSTSLSMDYGY





SEQ ID NO: 89



>KJ195103.1 Coleochaete scutata phototropin (PHOT) mRNA



ATGGAAGGGGCATCCCAACGTGAGCAAATGCAAAAGCAACTTGACGAGAACTTTGGACCTCATTTGAAGG





CTTCCCGGGGTCCATCATTGTCCGCTGAGATAGAGAAGGCTGGCCAACAGGAGACATCTTTGCCTGCAAC





ACAGCTCGCAGTTGGGAGTGTTAGGCTATTAAATTCAGCCTCCAGGTCAGAAATTACCACCCTTTCTTCC





CCACATTCAGTTCTCTGGCAGGGTGGAGCCGGAGGCAAATCGAGCCTGACTGACGCAAAGGCAACAGCTC





GTTCATCGACATCGGCGGAGTATTCCAGTGATACGCATACGTACTTTGGAGGCCGCACATCGTCATCTTC





TTTCTCTAACACACCAGAACTTCTTTCGCCGTACGGAGTAGCTCCTACAGTGAGACGGAGCATGGATGCC





CCTCAAGTTTCGAAGGGAGGGACGGATGCACAAGGAAAAAATGCTGTCTCTTCGTCCGAAGGGATTGTGG





GAGACAGTGGTCGGAAGCAGCTGCCGCAGCTGTCTATCCAGATTCAGTCTGGAACCAGGAACTCAGGTGA





ACGGCCAGGGTCTGCTACATCTGCTGGATCCTATTCCGAAGGCCCAGGGGGAGTGTCATCCTACTTTGAT





GAGGGTTGGGCTCGGTACAGTATGAAGGTGAATGATACCATTGGTGCTTTCCAGGGCGGTGGTCCAGTAA





AATCAAACTCAAGTGGTGCATCAAAGTCAAACTCGGAAGCAAGTGTAGGAGGCAGCAGCCGGAGTGTGCC





TCCGATGGCAGACGAGCTCAAGGACATTTTGTCAACCTTCAGACAGACCTTCGTTGTGTCAGATGCCACA





AAGTCTGAATGTCCCATCATGTATGCGAGCGAGGGCTTCTACCACTTAACAGGCTACACTCCGGACGAAG





TAATCGGCCATAATTGTCGGTTTCTGCAAGGTCCTGGGACGGATGTAAAAGAAGTGGCAAAGATTCGAGC





CGCAATTCGGGATGGGAAAAGCTACTGCGGACGGCTGATGAATTACCGGAAGGACGGAACACACTTCTGG





AACCTTCTCACCGTCGCACCCGTCAAGAATGAGCGAGGGAATGTGATTAAGTTCATCGGAATGCAAGTGG





AAGTGTCAAAGTTCACCGAGGGGCACCACGGAGACACAACCCGGCCAAATGGACTTCCCTCCGGACTCAT





CGCCTATGACGCAAGAGCGAAGGACAGGGTGGCTCCTGCGGTCTCTGAACTCGTTGACGTAGTGTCAAAG





CCGCACCCTCTGCTGGAGCTCCCTCCCGCTCAGCCACAGGAGGGGAGTGGCCTTGCCAAGCTCTTCTCCT





CCCTCCCCCCTCCACAGCAAAACGTACCCCCAGCGAGTGAGCTTCTCATGAACCAGATGCCCGAGACTTT





CCCCGGCCGCCCCTCAGCGACTGTCGCGGAAAGAAAGGATTGGGGCATGGAGCTGGACACTCCGAGAACA





GTGGAAGAAAAGAAGAAGGGACGGACAGCCGCCTTTTTAACCCTCTTGGGATTCTCTGGAAAAGACGCAA





GTGCAACTTCGACCTCCGTTGGGGTCCCCACGTTGGATCTGCCTGTGGTGGAAGCTACCCCTGCCCAAGA





ATCTCGAGAGAGAGACAGTGTGGAGACGGACGGCGGGGACTACATTCCGGAGGCGCGCCGGGGCATGGAT





CTCGCAACCACGCTGGAGCGCATACCGAAAAACTTTGTCATCACCGATCCCCGCCTGGATGAGAATCCTA





TCATTTTTGCTTCCGACAGCTTCTTAGAGCTTACGGAGTACTCACGAGAGGAGGTGCTTGGCCGCAATTG





CAGATTTTTGCAGGGGCCGGACACGGACCCAGAAACAGTGAAGAAAATCCGAGAGGCAATCCGGGACTGC





CGGGATGTCACGGTCCAGCTCTTGAACTACACCAAGTCGGGAAAACCATTCTGGAATCTTTTTCACTTGC





AAGCTGTGAGGGACAGATCGGGTGAGCTGCAATACTTCATAGGGGTACAGCTGGATGCGAGCCTTCCAGC





TGACCGTGAGGGCCTCAAAGTTCAGATCCCCGGCTCACGACTCTCCGACAACACAGCGAGCAAAGGCACC





AAGATTGTACAAGAGACAGCAAGAAACATTGACGGAGCAGTGCGCGAACTTCCAGACGCTAACTTGCATC





CCGAGGACTTGTGGGCGGGCCATAGTGTGACGGTGTTGGCGAAGCCGCATAAGAATAACGACGCATCGTG





GCAGGCTATCCGTGGGATCAAAACTAGCAGTGGACGACTGGGCTTGAGACACTTTAAACCTATTCGACCA





CTTGGAGCCGGCGACACAGGCAATGTGCACTTGGTGGAGCTCAAGGGCAGCAACTGTTTGTTTGCGATGA





AGGCGATGGACAAGGAGTCCATGATCAGCAGAAACAAGGTCCACCGTGCATGCACAGAGAGACAGATCAT





CTCAGTCCTCGACCATCCTTTCCTCCCAACGCTCTACGCTTCCTTCCAGACTGCGACACATGTTTGCCTT





ATCACTGACTTCTGCCCTGGAGGGGAGCTGTATAGCTTGCTTGAGAAGCAACCCGGCAAGATCTTTAGTG





AAGAGAGTGCCAGATTTTACGCTGCCGAGGTTCTCCTTGCACTGGAGTACTTGCACTACAAAGGTGTGAT





ATACCGAGACTTAAAACCAGAGAACGTCCTCTTGCAAGAGAACGGCCACATCTTGCTGACGGACTTCGAT





CTCTCCTTCCTCACATCCACCAGTCCTACTGTCGTCAAGAGGACACAACCAGGCTCGAGGCAGTCAAAGC





GCAAGGACAGAGAGGTCAACGAGATGATTGCGCAGCCCATCTCCTCCTCCAACTCCTTTGTCGGCACTGA





GGAGTACATCGCACCTGAGATCATTAACGGCGTAGGCCACGGCAGTGCCGTCGACTGGTGGGCGTTCGGT





GTCTTCCTCTACGAGATGCTCTTTGGCAGGACACCCTTTCGCGCCAAGCATCGCCAGCGCACCTTCCAAA





ACATTCTCGAAAAGGATCTCCACTTTCCTGACAGGCCTCAGGTGAGCCTGGCGGCCAAGCAGCTCCTCCG





TGGCCTGCTCACCCGAGAGCCGGAGAAACGACTGGGTTCTAAACGCGGGTCAAACGAGCTCAAGGAGCAT





GCTTTCTTCAAAGACATCAGCTGGGCGCTCATACGATCCCGAAGTGTGCCGGAGCTGGTGGTCCCCTTGA





AAATCTCCACACCACCACCCATCCAAGAAGCAGAACTCGACTGGGATGAAAAAGAAGCCAGAACACCACC





GGCTGGGGAATGA





SEQ ID NO: 90



>AHZ63904.1 phototropin [Coleochaetescutata]



MEGASQREQMQKQLDENFGPHLKASRGPSLSAEIEKAGQQETSLPATQLAVGSVRLLNSASRSEITTLSS





PHSVLWQGGAGGKSSLTDAKATARSSTSAEYSSDTHTYFGGRTSSSSFSNTPELLSPYGVAPTVRRSMDA





PQVSKGGTDAQGKNAVSSSEGIVGDSGRKQLPQLSIQIQSGTRNSGERPGSATSAGSYSEGPGGVSSYFD





EGWARYSMKVNDTIGAFQGGGPVKSNSSGASKSNSEASVGGSSRSVPPMADELKDILSTFRQTFVVSDAT





KSECPIMYASEGFYHLTGYTPDEVIGHNCRFLQGPGTDVKEVAKIRAAIRDGKSYCGRLMNYRKDGTHFW





NLLTVAPVKNERGNVIKFIGMQVEVSKFTEGHHGDTTRPNGLPSGLIAYDARAKDRVAPAVSELVDVVSK





PHPLLELPPAQPQEGSGLAKLFSSLPPPQQNVPPASELLMNQMPETFPGRPSATVAERKDWGMELDTPRT





VEEKKKGRTAAFLTLLGFSGKDASATSTSVGVPTLDLPVVEATPAQESRERDSVETDGGDYIPEARRGMD





LATTLERIPKNFVITDPRLDENPIIFASDSFLELTEYSREEVLGRNCRFLQGPDTDPETVKKIREAIRDC





RDVTVQLLNYTKSGKPFWNLFHLQAVRDRSGELQYFIGVQLDASLPADREGLKVQIPGSRLSDNTASKGT





KIVQETARNIDGAVRELPDANLHPEDLWAGHSVTVLAKPHKNNDASWQAIRGIKTSSGRLGLRHFKPIRP





LGAGDTGNVHLVELKGSNCLFAMKAMDKESMISRNKVHRACTERQIISVLDHPFLPTLYASFQTATHVCL





ITDFCPGGELYSLLEKQPGKIFSEESARFYAAEVLLALEYLHYKGVIYRDLKPENVLLQENGHILLTDFD





LSFLTSTSPTVVKRTQPGSRQSKRKDREVNEMIAQPISSSNSFVGTEEYIAPEIINGVGHGSAVDWWAFG





VFLYEMLFGRTPFRAKHRQRTFQNILEKDLHFPDRPQVSLAAKQLLRGLLTREPEKRLGSKRGSNELKEH





AFFKDISWALIRSRSVPELVVPLKISTPPPIQEAELDWDEKEARTPPAGE





SEQ ID NO: 91



>KT321723.1 Chaetosphaeridium globosum phototropin (PHOT) mRNA



TCGGGGTCCTCAAGTGGGGAGCCCCGAGAGCCGCTCCCCCAAGTGGCTGCAGAGGTTCGGGACGTCCTCT





CGTCCTTCCGGCAGGCATTTGTCATCTCCGACGCAACTCTGAAGGATACTCCAATCATGTTTGCAAGCGA





GGAGTTCTATCGAATGACTGGGTATGGGCCATCCGAGGTCATCGGGAAGAACTGCCGCTTCCTCCAAGGC





AAGGATACAAAGAAGGAGGATGTCGACAAGATCCGGCAGTGTGTCAAGAAGGGCGAGCACTTCTGCGGGC





GCATCCTAAACTACCGCAAGAACGGAGAGCCCTTCTGGAACCTCCTCACAGTGGCGCCAGTCAAGAACTC





CCGGGGGGAGTGCGTCAAGTTCATTGGCATGCAAGTGGAAGTGAGCAAGTACACAGAGGGTTCGGCAGCA





GAGCAGACACGGCCTGGAGGGCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNCCTCGTGCCAGCCGTGGAAGACATCATGAGTGCTGTCACTGCTCCCCCCGCCAAGAACCCCNNNNNNN





NNNNNNNCCCCCCAGCAGGGGCGCTGGCGCCGGCGGCCTCTCCTCTCTCCTCAACCTCCCCACCGGCACA





AGTGGGGGTCCGGGTACCGGGAAGCACGGCTTTGTGAGCTCGCTGCCGCTTGTGAATGACCTCCTGAGTC





CCAATCTGGGGATTGGCAACCACAAGGCGACGCCCCTCTTCCTCGGGCCTGTCCCCCCAAGGGGCACACC





CTCGCCGGTGAATGGGGGGGGGAAGGCTGGGGAATCGAGGGGGNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNCAAGTTCGGCTTGCGGCGCTCCAAGGACATGGGCAGCCCCAGCGGAAGCGGCAGAA





ACTTGGCCGGTCAGGGGCCTGCGGCGCACATCCCCGAGGATGGGGAGGTGGAGCGGCAGCCGGCCCCCGA





CGCCAAGACCCCAGACCTGAGGGACTCCACCGACTCCTCGGGCATGGAACTCGGGGAGTGCCGCATCAAG





GAGATGCGGCGGGGCATTGACATTGCAACCACGCTCGAGCGCATTCAGAAGAACTTTGTCATCACTGACC





CCCGCTTGCCCGACAATCCCATTATTTTTGCATCGGACAGCTTCCTGGAGCTGACTGAGTACACCAGGGA





GGAGATCATCGGTCGGAACTGCCGGTTCCTGCAAGGGGAGGGCACTGATCGGGCCACGGTTCAGCGCATC





CGGGACGCCATCCGTACAGAGAAGGACGTGACGGTGCAGCTGCTGAACTACACAAAGTCAGGGAAGCCCT





TCTGGAATCTCTTCCACTTGCAGGCCGTCAAGGACCAACAGGGTTTGTTGCAGTATTTCATTGGGGTCCA





GCTCGACGGGAGTCTGTACTTGGATAAGAACAAGAAGCTGTCAGAAGACACGGCCAGCAAGGGCACTGTC





CTGATCAGAGAAACAGCGTCCAAGGTGGACACTGCGGTCAAGGAGCTGCCAGACGCAGCGCTGAAAAAAG





AAGACCTGTGGGCGGGCCACCAGGTATTGGTGCTTCCAAAGCCACACAAGTGCAACAGCAGCAGCTGGGA





GGCAGTGCGCAGGGTTGCGGGCGTTGACACACGGCTCCGGCTGAAGCACTTTCGGCCTGTCAAGCCCCTG





GGGGCTGGTGACACTGGCAACGTTCACCTGGTGGAGCTCCGGGATACGGGCAAGCTCTTTGCAATGAAGG





CCATGGACAAGAACTCGATGATTGCGCGCAACAAGGTCCACAGAACAAACATGGAGCGCGAGATCCTGGG





CTCTCTCGACCACCCCTTCTTGCCCACACTGTACTCGAGCTTCACCACCAAGACACATGTGTGCCTCATC





ACTGACTACTGCTCGGGGGGGGAGCTGTTCACGCTCATGGACCGGCAGCCGGAGAAGCGCTTCTCGGAGG





CCAGCGCAAGGTTCTACTGTGCCGAGGTCCTGCTCGCCCTCGAGTACCTGCATCTCAAAGGCGTGATCTA





CCGCGACCTGAAGCCTGAGAACGTGCTTCTGATGGATACAGGCCACATCCAACTGACGGATTTTGACCTG





TCTTTCCTCACACGATCCAGCTCTACGGTCTTCAAGAAGACCGTGCCCGCGCCCCGATCGTCGCCTGTGG





TGATGAGTAGAAAGGCGCGGATGCGGCGGAAGAGGAGCCTCCGCAAGAGCAAGGCGCGGGGAGAAGAGGG





TGAGCTGTCCTCTTCAATGAGCGTGATGGTGAGCGAGCTGGTGGTGGAGCCGGCGGGGACGTCCAACTCG





TTCGTGGGGACCGAGGAGTACATTGCGCCGGAGGTGATCACGGGCAGCGGCCACACGGGCACGATCGACT





GGTGGGCGTTTGGCGTGCTCCTGTACGAGCTGCTGTGTGGGAAGACGCCCTTCCGGGGCCGGAACCGGCA





GAGGACGTTCCGGAACATCCTGGAGAAACCTGTCATTATGCCGCCCAACATTGAGATCTCGAGCGAGGGG





CAGGACCTCATCCAGAAGCTCTTGATCCGGGACCCCCTGCGTCGGCTGGGCAGCCAGCGTGGGGCCAATG





AGATCAAGGAGCACCCCTTCTTCAGAGCCATCAACTTCCCACTCATCCGCACTATGGTCCCCCCCCCGCT





CAAGGTCCCGGCCAAGTTTGTGTACCCTGACGTCAGCTCCCTCTCCCCGGACGTGGACTGGGACGACTTG





GAGGCGCGCACGCCGTCGCCTGTCGCCACTGACTACTTCTAG





SEQ ID NO: 92



>ANC96848.1 phototropin, partial [Chaetosphaeridiumglobosum]



SGSSSGEPREPLPQVAAEVRDVLSSFRQAFVISDATLKDTPIMFASEEFYRMTGYGPSEVIGKNCRFLQG





KDTKKEDVDKIRQCVKKGEHFCGRILNYRKNGEPFWNLLTVAPVKNSRGECVKFIGMQVEVSKYTEGSAA





EQTRPGGXXXXXXXXXXXXXXXXXPRASRGRHHECCHCSPRQEPXXXXXPPSRGAGAGGLSSLLNLPTGT





SGGPGTGKHGFVSSLPLVNDLLSPNLGIGNHKATPLFLGPVPPRGTPSPVNGGGKAGESRGXXXXXXXXX





XXXXXKFGLRRSKDMGSPSGSGRNLAGQGPAAHIPEDGEVERQPAPDAKTPDLRDSTDSSGMELGECRIK





EMRRGIDIATTLERIQKNFVITDPRLPDNPIIFASDSFLELTEYTREEIIGRNCRFLQGEGTDRATVQRI





RDAIRTEKDVTVQLLNYTKSGKPFWNLFHLQAVKDQQGLLQYFIGVQLDGSLYLDKNKKLSEDTASKGTV





LIRETASKVDTAVKELPDAALKKEDLWAGHQVLVLPKPHKCNSSSWEAVRRVAGVDTRLRLKHFRPVKPL





GAGDTGNVHLVELRDTGKLFAMKAMDKNSMIARNKVHRTNMEREILGSLDHPFLPTLYSSFTTKTHVCLI





TDYCSGGELFTLMDRQPEKRFSEASARFYCAEVLLALEYLHLKGVIYRDLKPENVLLMDTGHIQLTDFDL





SFLTRSSSTVFKKTVPAPRSSPVVMSRKARMRRKRSLRKSKARGEEGELSSSMSVMVSELVVEPAGTSNS





FVGTEEYIAPEVITGSGHTGTIDWWAFGVLLYELLCGKTPFRGRNRQRTFRNILEKPVIMPPNIEISSEG





QDLIQKLLIRDPLRRLGSQRGANEIKEHPFFRAINFPLIRTMVPPPLKVPAKFVYPDVSSLSPDVDWDDL





EARTPSPVATDYF





SEQ ID NO: 93



>KJ195105.1 Interfilum paradoxum phototropin (PHOT) mRNA, complete cds



ATGGCTGGTCAGTATATAGTTGACCCTGCACTGAATGGGGCAAACAGGGGCCCTAGTGCAGACTACAGTG





AGGACGGGGGCAGCAAACGCAGCTCAGGGTCGACCTCTACATTGCCACGCATCTCACATGACTTGAAAGA





TGCTCTGTCCACGTTCAAGCACACATTTGTGGTTGCGGATGCAACCAAGGACATGGCTATCATGTATGCA





AGCGCAGGCTTCTATGACATGACGCAGTATGGGCCAGAGGACGTCATTGGGAAGAACTGCCGCTTCTTGC





AAGGGCCTGGCACGGACCAGGAGGAAGTTGCTCGGATAAGAAGAGCGATCAAGAATGGGGAGAGCCACTG





CGGTCGCCTCCTCAACTTCAAGAAGGACGGGACGCCCTTCTGGAATTTGTTGACCCTTGCACCAATCAAG





AATGAGCAGGGACAAGTTGTCAAGTTCATCGGGATGCAAGTGGAGGTCACACAGTTTACAGAGGGCGAAC





TTGAGAAGGCAATGCGGCCCAATGGGATGTCAACATCCCTCATCAAATATGATTCTCGTCAAAAGCAGGG





TGCAACAGAGTCGGTCCTCGACATCGTGGATGCTGTCAAGAACCCAAGCCAGAAGGGCCAAGGGCCAGCG





CCTAGCCCCTTCCAGCCAGGAGCGGGTTTGGCTAGTCTTCTTGCTGCTGTGCCGAAGAGCACGCCCTCAG





CAGACCCCAGCAAAGATGAGCTAGCTACGCTCTATGAAAGTGAAGGGGGCTTGGCGGACAGGAAGGAGGG





CGCTGGGAAGAGGCGCACGTCAGGATTCATGAACCTGCTGAAGAGTGGAGGAAAGCCGCTGCAGGCAGAC





TCACCGATTGCTACGTTGACCCGGCCGCAAAGTCTGAACCTCAGCGCAGAGCTGGTGCCAACCCAGGGGA





CCACTCCTGATGCACAAGGCGCTCTGAACTTTGGGGATGACAGGGCAGCAGAGGAGAGGAAGGGGCTGGA





CCTTGCCACCACCCTGGAGCGTATCCAGAAGAACTTTGTCATCACAGACCCCAGGCTGCCAGACAACCCC





ATCATTTTTGCGTCCGATGACTTCCTGACCCTGACAGAGTACTCGCGAGAGGAGATCCTGGGGCGCAATT





GCCGCTTCCTGCAAGGGCCTGAGACAGACCAGAAGACTGTGGAGGAGATTCGCGTTGCGATCAGGGAGGA





GAAGGATATCACAGTGCAGCTGCTCAACTACAAGAAGAGCGGCGTTCCGTTCTGGAACATGTTCCACTTG





CAGCCTGTCAGGGACAAGCGGGGCGAGCTGCAGTACTTCATTGGGGTGCAGCTGGATGCTAGTGCCTGGG





ACTCCATGGGCGACCAAGCCCCGCAAGCGCCTCCTCAGACCAAGGCAGCACAGAAGAGCATTGTCAAAGA





CTCTGCATTGGAAGCCGCTGCCGCTGTACAAGAATTACCAGATCCAGGCCAGCGGCCAGAGGATGTGTGG





GCTGGTCACAGCAAGCCTGTGCTCACTAAACCCCACAAGCGGGACGCAGAGGCGTGGAAGGCCATCAAGC





TGATTAAGCAGAGGGATGGCCGTCTGGGGCTTCGACACTTCCGGCCAATCAGGCCTTTGGGTTCAGGCGA





CACTGGCAGTGTGCACCTAGTGGAGCTAAAGGGAACGAAGCACCTCTTTGCAATGAAGGCCATGGACAAG





CAAGTCATGGTCAACAGAAACAAGGTGCACCGTGCCATCACAGAGAGGGACATTCTGGCTGCCCTGGACC





ACCCATTCCTCCCAACCCTCTACGCTTCCTTCCAGACTGCCACCCACGTCTGTCTCGTAACAGACTACTG





TCCGGGAGGCGAGCTCTACTACCTCTTGGAGCAGCAGCCACAGAAGAGGTTCTCAGAAGAAGTCGTCAGG





TTCTTTGCGGCTGAGGTGCTCCTGGCGCTCGAGTACCTCCATCTCCAGGGCGTTGTGTACCGCGACCTGA





AGCCCGAGAACGTTCTGCTGCAAGAGACCGGGCACATCCTGCTGACCGACTTCGACCTCTCCTTCCTAAC





CTCCTCCAGCCCTACGATGGTGCGGCCTCCACAGACTGCGGGCAAGAAGAAGCGGAAGCAGCAGAACGGC





TTTGTGCGGCCCGAGCTGGTGGCAGAGCCGACCACCAACTCCAACTCATTTGTGGGCACCGAAGAGTACA





TTGCTCCTGAGATCATCAGTGGCTCGGGGCACAGTGGGTCGGTGGACTGGTGGGCGTTTGGCATCTTCAT





TTACGAGATGCTGTATGGCAAGACGCCCTTCCGGGGGCGCAACAGGCAGCGCACGTTCACCAACATTCTT





CTCAAGGACCTTACCTTCCCACCGCAGCCCCAGGTCAGCCTAGCTGCGCGGCGGTTTATCCGCGGGCTGT





TGGAAAGGGACCCCAACAAGCGGCTGGGGGCAGGCAAGGGCGCCACCGAATTGAAAGCGCACCCATTCTT





CGAGGGCCTCAACTGGCCCCTGATCCGCTTTGATCACCCTCCCAACCCGGAGAAGCCCGTCCAAGTGTCC





AAGGTGGAGGTCCGAGAGTCTCTGGACGAGAAGGAGGAACTAGACTGGGAGGAAGTTGACGAGCAGGGCC





ATCTGATGCAGGAGCAAATTGTGCCCACTTCAATGTAG





SEQ ID NO: 94



>AHZ63906.1 phototropin [Interfilumparadoxum]



MAGQYIVDPALNGANRGPSADYSEDGGSKRSSGSTSTLPRISHDLKDALSTFKHTFVVADATKDMAIMYA





SAGFYDMTQYGPEDVIGKNCRFLQGPGTDQEEVARIRRAIKNGESHCGRLLNFKKDGTPFWNLLTLAPIK





NEQGQVVKFIGMQVEVTQFTEGELEKAMRPNGMSTSLIKYDSRQKQGATESVLDIVDAVKNPSQKGQGPA





PSPFQPGAGLASLLAAVPKSTPSADPSKDELATLYESEGGLADRKEGAGKRRTSGFMNLLKSGGKPLQAD





SPIATLTRPQSLNLSAELVPTQGTTPDAQGALNFGDDRAAEERKGLDLATTLERIQKNFVITDPRLPDNP





IIFASDDFLTLTEYSREEILGRNCRFLQGPETDQKTVEEIRVAIREEKDITVQLLNYKKSGVPFWNMFHL





QPVRDKRGELQYFIGVQLDASAWDSMGDQAPQAPPQTKAAQKSIVKDSALEAAAAVQELPDPGQRPEDVW





AGHSKPVLTKPHKRDAEAWKAIKLIKQRDGRLGLRHFRPIRPLGSGDTGSVHLVELKGTKHLFAMKAMDK





QVMVNRNKVHRAITERDILAALDHPFLPTLYASFQTATHVCLVTDYCPGGELYYLLEQQPQKRFSEEVVR





FFAAEVLLALEYLHLQGVVYRDLKPENVLLQETGHILLTDFDLSFLTSSSPTMVRPPQTAGKKKRKQQNG





FVRPELVAEPTTNSNSFVGTEEYIAPEIISGSGHSGSVDWWAFGIFIYEMLYGKTPFRGRNRQRTFTNIL





LKDLTFPPQPQVSLAARRFIRGLLERDPNKRLGAGKGATELKAHPFFEGLNWPLIRFDHPPNPEKPVQVS





KVEVRESLDEKEELDWEEVDEQGHLMQEQIVPTSM





SEQ ID NO: 95



>KJ195106.1 Entransia fimbriata phototropin (PHOT) mRNA, complete cds



ATGGGGATTGTAGTTCAAGCACCTGGGAAGGGGGCACTGAAAGGGGCGAAAATGCAGGATCAGGCCACGG





CCACTGGCAGGGGGTCAGCTGTGGGTCAGCCCTCATCTCGAAACACCTCCTTGGACAGCGAGGGGGGCAG





CAGAGGGACCTCTGGAGTGTCCCTGCCACGGGTGTCGAGTGAGGTGAAGCTTGCCCTTTCCAGCTTCCGC





CACACGTTTGTGGTCACGGACGCGCTATCCGAAGACATGCCAATCTTGTATGCCAGCGACGGTTTTTACA





AGATGACGGGGTACGCTCCTGCGGAGACGGTTGGGATGAATTGTCGCTTCCTCCAGGGCAAGCACACCGA





CCCATCCACCAAGGCCAAGATCAAGGCGGCGGTGGCGGCAGGCCACGGCTTCTGCGGCCGCATCCTCAAC





TACCGCAAGGACGGGTCCTCTTTCTGGAACCTGCTCACCATCTCCCCCATCAAGGACAATAATGGCAATG





TCGTGCGGTTCATCGGTATGCAAGTGGAGGTTACCAAGACGACCGAAGGGGACAAGCACGATGACCTCAG





GCCCTCTGGGATGCCCACGTCAATGGTCAACTATGATGCCCGGCTGCAGGCAGGGGCCCGGACATCGGTT





GTGGAGCTGTTGCAAGCCCTCCAGGACCCCTCGCCCTTTGCTATGCATGCTGAGGAGCCGCTGCCACCGC





CGCAGGCCTTGGGGGGCCTGGCCTCCCTGCTGGCACTTCCCAGGGTTGATGACACCGCAGCTATGTTTAC





AGCTGGGGATGCGTCAGTGCAGGAGTACGACGGGATTGATCCATCCGGCAAGCCCACGGCCGGGTTCATG





TCCCTGTTGAAATTCGGAGGCCTCCCGGTTCCGCGCAAGTCAGAGCGCTTGTTTCGCCGCGCGGTGGCGG





AGCAGGCTCCCACTGAGGAGGAGCGGGAGCCGGTGGTGGACCGCAAGGCAATGGATCTTGCCACCACGTT





GGAACGGATTGAGAAGAACTTTGTCATCACTGATCCCCGCCTGCCGGACAACCCAATTATCTTCGCATCC





GACGCCTTCCTTCAACTCACCGAGTACGGCCGTGAGGAGATCCTAGGACGTAACTGCAGGTTCTTACAGG





GCCCCGACACGGACCCCCATGTGGTGTTGGAGATCCGCGCTGCGATCAAGGAAGGCCGCGAGTGCACAGT





GCAGCTTCTCAACTACAAGAGGAGCGGCACTCCGTTCTGGAACATGTTCCACTTGCAGCCGGTGCGGACA





AGACAGGGCGAGATCCAGTTCTTCATCGGTGTCCAGTTGGATGCGTCCAACTGGGGCCCCCCGGAGGAGC





ACCATCGGGAGAAGGCAGCGATTGTTCAGGCCACCGCTGGCGATGTGGGCGAGGCAGTGAAGGACTTCCC





AGACCCAGAGAAGAAACCGGAGGATCTGTGGGAGCCTCACACCCGGCCAGTGCGGATGAAGCCACACCAG





CAGCGAAAGGGGTCGTGGGCAGCCATTTTGAAGGTCCAAGAGGATGCAGGAGAGCTGAACCTGCAGCACT





TCACACCCATTCGGCCGCTGGGCTGTGGTGACACGGGCAGTGTACACCTCGTAGAGCTCAAGGGGACTGG





AGCGCTTTTCGCTCTCAAGGCAATGGACAAGGCGGCCATGATCGCCCGCAATAAGGTCCATCGCGTCCTC





ACCGAGAGGGAAGTGCTGGCCGCTGTCGACCACCCTTTCCTTCCAACTCTCTACACATCCTTTCAGACCA





AGACCCACGTCTGTCTCATCACTGATTTCTGTCCCGGGGGTGAACTCTACTATGTTCTGGACCGTCAGCC





ACACAAGCGCGTGTCAGAAGATGCCGCAAGGTTCTACATTGCTGAGGTGATCCTTGCCGTTGAGTACCTG





CACCTCATGGGTGTCACCTACCGTGACCTTAAGCCTGAGAACATCCTCATCCGCCAGGACGGCCACATCC





TCCTCACCGACTTCGACCTCTCGTTCCTCTCCTCCTCAGCCCCCCAGATCAAGGCCGGTCCGCCAGTTGC





CCGTTTCCTCTGCGCTCCTTCCCCGCCGTCTTTGCCTCAGCTCCTCGCTGAGCCGACGGCTAAGTCCAAC





TCCTTTGTCGGCACCGAGGAGTACATTGCTCCGGAGATCATTAGTGGCAAGGGGCACAGCAGCATGGTGG





ACTGGTGGGCACTAGGTATCTTCTTGTACGAGATGTTATATGGGCGCACCCCCTTCCGCGGCCGGAACCG





GCAGCGGACATTTGCTAACATCCTCGTGAAGGAGCTCGCCTTCCCGTTACAGCCACCGGTGAGTGCGGCG





GCCCGACGTCTCATCCACCAACTGCTTAGAAGAGACCCCCTGGAGCGTCTTGGGGCCCGCCATGGTGCTC





CAGAGATAAAGGAGCACCTATTCTTTGAGGACATTGACTGGCCCCTCATCCGCAGCATGCCCGCCCCCAA





ACTTGATGTGCCAATCACGCTCATTCCTTGTGTGCCCCGCTCCGCCCAACAAGGTGCCCAGGGTGACCTG





GAATGGGATGACGGGGAGGGGTCGGTCCATTTGCATGATGTGTTCTAA





SEQ ID NO: 96



>AHZ63907.1 phototropin [Entransiafimbriata]



MGIVVQAPGKGALKGAKMQDQATATGRGSAVGQPSSRNTSLDSEGGSRGTSGVSLPRVSSEVKLALSSFR





HTFVVTDALSEDMPILYASDGFYKMTGYAPAETVGMNCRFLQGKHTDPSTKAKIKAAVAAGHGFCGRILN





YRKDGSSFWNLLTISPIKDNNGNVVRFIGMQVEVTKTTEGDKHDDLRPSGMPTSMVNYDARLQAGARTSV





VELLQALQDPSPFAMHAEEPLPPPQALGGLASLLALPRVDDTAAMFTAGDASVQEYDGIDPSGKPTAGFM





SLLKFGGLPVPRKSERLFRRAVAEQAPTEEEREPVVDRKAMDLATTLERIEKNFVITDPRLPDNPIIFAS





DAFLQLTEYGREEILGRNCRFLQGPDTDPHVVLEIRAAIKEGRECTVQLLNYKRSGTPFWNMFHLQPVRT





RQGEIQFFIGVQLDASNWGPPEEHHREKAAIVQATAGDVGEAVKDFPDPEKKPEDLWEPHTRPVRMKPHQ





QRKGSWAAILKVQEDAGELNLQHFTPIRPLGCGDTGSVHLVELKGTGALFALKAMDKAAMIARNKVHRVL





TEREVLAAVDHPFLPTLYTSFQTKTHVCLITDFCPGGELYYVLDRQPHKRVSEDAARFYIAEVILAVEYL





HLMGVTYRDLKPENILIRQDGHILLTDFDLSFLSSSAPQIKAGPPVARFLCAPSPPSLPQLLAEPTAKSN





SFVGTEEYIAPEIISGKGHSSMVDWWALGIFLYEMLYGRTPFRGRNRQRTFANILVKELAFPLQPPVSAA





ARRLIHQLLRRDPLERLGARHGAPEIKEHLFFEDIDWPLIRSMPAPKLDVPITLIPCVPRSAQQGAQGDL





EWDDGEGSVHLHDVF





SEQ ID NO: 97



>KT321724.1 Spirotaenia minuta phototropin (PHOT) mRNA, partial cds



ATGGGGTCCGACGGGGCGTACGATGCGTATGGCTTTCCAACGGAGAAGTCTAGGACGCGTGGGGATTCCG





TCTCATTGGCGACTGGCCTTCCGGCTTTCTCGTCGGAGACGACGGGCCTGTTGGGCTCCTTCCGCCATTC





CTTTATCCTAACTGATCCCTCAAAGCCCGATTTCCCGATTGAATATGCAAGCGATGGGTTTTACGAACTT





ACCGGCTACACTCCCTCCGAGACTATGGGACGAAATTGTCGTTTTCTACAAGGGCCAGGCACAGACCGGC





TAGAGGTTGAGAAGCTGAAGGAAGCAATCATGGAAGGCAGGCCTATCTCCCTGCGGTTGCTAAACTACAA





GAAGAGCGGCGAGGCATTCTGGAATCTGCTGACGGTCTCTCCCTTTGACGTGGGGGGCAAGAGGAAGTTT





CTTGGAGTGCAGCTGGACGTGACCAAGCACACGGAGGGCGAGAAGGTGCCCTTGGTTTCCGCCGGGGAGG





TGCCTCTCCTAGTGCGCTATGAGACGCGCCTCATGGCAAAGACGCAAGCTACCGCTGATGATCTCATGTC





CGTGATCAAGCATGTGGATAGGAAACAGTCCATCAACGAGGACGAGGACCCAGAAGGAGACGACGAGTTT





GGTTACCCAACCATGTCCTTCGATGCCTATGGAAATCCCCGCATGTCCGATGTGGATGCTTTGCTCAGCC





GGTCACTGGAGAAGCCAAAGTTCCGTCACAGGCGTGTTGCCTTCGATTTGGCCACCTCGCTCGAGCGAGT





GCAGAGGAATTTCTGTATCACAAATCCCTACTTGCCAGACCATCCCATTGTCTTCTGCTCGGACGATTTC





TTGGACCTAACCGGGTATACCAGAGAGGAGGTCATCGGCAGGAACTGCCGCTTCTTGCAAGGCCCTTTGA





CTGACAGAGCCCAGGTCGCCAAGATCCGCGAGGCCATTGACAACGAATCAGAGTGTACTGTACAGCTGCT





CAACTACCGCAAGGATGGCTCCTGCTTCTGGAATATGTTCCACTTGGCTCCCATCTTCGACAACAGTGGG





AAGGTGCAGTTCTTTGTCGGAGTGCAGACCGACGTGTCGGACCACGAGGTGCTTCCCAGTGAGGACGACC





GGGATGCGCCACGGCCGAGCCTGGCGCCTGAGCTAGCAGCTAGGGATAGCAGCGTCTCCATTGCTGGTGC





CCAAATAGTTGCGGGGGCGGTAAATAATATGAAGGTAGCATGGACGGGAGCAACCGATCAAGTCAAGTCG





TCTTATCGAGCATGGCTGCCTCACACTCGCAGGTTGGAGAAGATCCACGCTCACAACAGCACTGCGGTGC





CATGGGATGCAATCCGCATGATAACTGGAGGCACTTACCGCTTGAGCATGCTGAATATCGTCCCCATCAA





GCTACTAGGACGAGGCGATACGGGCAGCGTCCTGCTGATTAGGCTAGCGGGGACACCGCTGTACCTTGCG





ATGAAAGTCCTGGAGAAGAGGAACCTTCTTGAGAGGAACAAGGTGCAACGTGCTTTTACGGAGAGGGAGA





TCTTGGCGTCATTGGATCATCCTTTCCTGCCCACTCTATTTGACTGCTTTCAAACAGAGAGCCATTTGTG





CTTCTTGACGGAATTCTGCTCCGGCGGCGAGCTGTATTCTATGCTCAGCGGGCTGCCTGGCAATTGCGTG





CCGGAGCCGGTGGGAAAGCTGTACATTGCAGAGGTGTTGCTGTCATTGGAATACCTGCACTTAAAGGGTG





TAGTCTACCGTGATTTGAAGCCAGAGAACATCATGATTCAGGATGATGGCCATCTCCTGCTCACTGATTT





CGACTTGTCATTCCGCGCCGGCTGCACACCTGACGTGTTCTTCATCGAGAGGAGAGTGGGCAAGCACGTG





TTCAAATTCCCATGTGTTGTGGCTGAGCCTCGTGGCAAGACCAACTCCTTCGTGGGTACTGCGGAATACT





TGGCCCCAGAGGTGATCAACAACACCGGCCACTCTGCCGCTGTCGATTGGTGGGCTCTCGGCATTCTGCT





GTACGAGTTGTTGTATGGCTTCTCGCCCTTCTTCTCCGACACTCGCGCCGTGACTTTCGACAACATCCTC





CACTGCGACGTGGAATTCCCCAGCCATCCCGTCGTCTCTGCCGAGGGCAAGTCTCTGATTTGCGAGCTGC





TTGTCAAGGATACTGCGCGTCGTCTGGGCAGCAGATACGGCGCGGACGAGATCAAGAAACATCCTTTCTT





CTATGGCGTCAAGTGGGCTTTGATTCGGTCCCAGCGGGCTCCGTATGTGCCAGGCGAGGATGTTCCATCC





ATTTTCGGCCCAGAGGATGAGCGAGGAACCACCTTCGCCGGTTTTTAG





SEQ ID NO: 98



>ANC96849.1 phototropin, partial [Spirotaeniaminuta]



MGSDGAYDAYGFPTEKSRTRGDSVSLATGLPAFSSETTGLLGSFRHSFILTDPSKPDFPIEYASDGFYEL





TGYTPSETMGRNCRFLQGPGTDRLEVEKLKEAIMEGRPISLRLLNYKKSGEAFWNLLTVSPFDVGGKRKF





LGVQLDVTKHTEGEKVPLVSAGEVPLLVRYETRLMAKTQATADDLMSVIKHVDRKQSINEDEDPEGDDEF





GYPTMSFDAYGNPRMSDVDALLSRSLEKPKFRHRRVAFDLATSLERVQRNFCITNPYLPDHPIVFCSDDF





LDLTGYTREEVIGRNCRFLQGPLTDRAQVAKIREAIDNESECTVQLLNYRKDGSCFWNMFHLAPIFDNSG





KVQFFVGVQTDVSDHEVLPSEDDRDAPRPSLAPELAARDSSVSIAGAQIVAGAVNNMKVAWTGATDQVKS





SYRAWLPHTRRLEKIHAHNSTAVPWDAIRMITGGTYRLSMLNIVPIKLLGRGDTGSVLLIRLAGTPLYLA





MKVLEKRNLLERNKVQRAFTEREILASLDHPFLPTLFDCFQTESHLCFLTEFCSGGELYSMLSGLPGNCV





PEPVGKLYIAEVLLSLEYLHLKGVVYRDLKPENIMIQDDGHLLLTDFDLSFRAGCTPDVFFIERRVGKHV





FKFPCVVAEPRGKTNSFVGTAEYLAPEVINNTGHSAAVDWWALGILLYELLYGFSPFFSDTRAVTFDNIL





HCDVEFPSHPVVSAEGKSLICELLVKDTARRLGSRYGADEIKKHPFFYGVKWALIRSQRAPYVPGEDVPS





IFGPEDERGTTFAGF





SEQ ID NO: 99



>XM_003063488.1 Micromonas pusilla CCMP1545 phototropin, blue light receptor



(PHOT), mRNA


CGCACCCGCGTCGCGCACGGACGACGAGCGCCGAGCGCCGGTCCTCGATCACGCGCGCGCGCGTCGAATC





TCGCGTCGAGCGCCGGAGCGTCGCGTCGGGGACGACGCGCGTCGAACGCGTCGCGCGCGCGAACGTTATC





CGGAGCTTTCCGTCCGATCCGCCCGGCGCGGCGCCAGCTGGATCGATCGATCTCCGCGTCGTCAGTCGAT





CGATCTCTCCCCGGCGTCGTCGCGTTCGAATCTAGGGCCGATCGCGGCGGCGCGGCGCGGCGCGTCATGG





CGGCGATGTCCGGTCAGGTCCCGCCGGATAAGATGCCGCAGGGTGTGTCATACACCGTCGACGAGAGCGG





CGGGATCGCCGCGCCCGAGGCGTCGAAAGGGTTGACGATGGCGCTGGCGTCGGTCCGGCACACGTTCACG





GTCAGCGACCCGACGCTGCCGGATTGTCCGATCGTGTACGCGTCCGACGGGTTCTTGAAGATGACCGGGT





ACTCCGCGGAGGAGGTGATCAACCGCAACTGCAGGTTCCTGCAGGGCGAAGACACCGATCGCGACGACGT





GCAAAAGATTCGCGACGCCGTGCAAAAAGGCGAGCGTTTGACCATCAGACTCCAAAACTACAAGAAGGAC





GGGACGCCGTTCTGGAACCTTCTCACGATCGCGCCGGTGAAGATGGAGGACGGCACGGTCGCGAAGTTCA





TCGGCGTGCAGGTGGACGTAACGGACCGGACGGAGGGCGAGGTGGGACGAACCGTCGGCGACGGCGGCGT





CGTCGGCGCCAAAGACGAGAAAGGCTTGCCGCTGCTCGTTCGGTACGACCAGAGACTCAAGGACCAGAAC





TACCCGGGCGTGGAGGACGTGGAGAAGGCGGTCATGAAGGGCGAGGGGATCGACGCGGACGCGACGAGGA





ACTCGCGCGCGAGAGAGGGGCTGGACATGGCGACGACGATGGAACGCATTCAGCAGTCGTTTCTCATCAG





CGACCCGTCGCTGCCGGATTGCCCGATCGTGTTCGCGTCCGACGGGTTCTTGGATTTCACCGGGTACGGC





CGCGAGGAGATCTTGGGGCGGAACTGCCGGTTCTTGCAGGGCGCGGGGACGGACCGCGACGCGGTGAAGG





AGATTCGGAACGCGATCAAAGACAACCGAGAGTGCACGGTTCGCCTGCTCAACTACACGAAGCAAGGGAA





ACCGTTCTGGAACATGTTCACGCTCGCGCCCGTCAGGGACCACGCGGGCGAGGTCAGGTTCTTCGCGGGG





GTGCAGGTGGACGTGACCGTGTACACGGACGCGGACGGCCGCCGCCTTGACAGCGTCGAGCTTCTGAGGC





AGACGAAGGCGCCGACGCCGCGGCACTCGGGCGACGACGAGGGCAAGTCAAAGTCGAAAGCCGCGACGAA





AAAAGTCTTGGAAGCGATCGGCGGGCTCACTGCAGCGGACGGCGAGCTGCCGTGGGCGAGGATGGTCGGC





CGCCTCGGCGCGCCGAAGCCGCACCAGGCCGGAGACGCGAACTGGGCGGCGCTGCGGAAGATCGTGGCCG





CGCACAAGGCGGCGGGGAGACCAGAGCGTTTGGCGCCGGAGGATTTCACGCCGTTGACGCGGCTCGGGCA





CGGCGACGTCGGCGCGGTGCACCTCGTGAGCCTGCGCGACGCGCCGAGCGCGAAGTTCGCGATGAAAGTT





CTCGTGAAGCAGGAGATGGTGGATCGAAACAAGCTTCATCGCGTGCGGACGGAGGGTCGAATTCTCGAGG





CGGTCGATCACCCGTTCGTCGCGACGCTGTACTCGGCGTTTCAGACGGACACGCACCTGTACTTTTTGAT





GGAGTACTGCGAGGGCGGCGAGCTGTACGAGACGCTGCAAAAGCAGCCCGGGAAGCGCTTCACCGAGGCG





ACGACCAAGTTTTACGCCGCGGAGGTTCTGTGCGCGCTGCAGTACCTCCACCTGATGGGCTTCATCTATC





GCGACTTGAAGCCGGAGAACATTTTGTTGCGTCGGAACGGACACGTCATCGTGACGGACTTTGACCTCTC





CTACTGCGCGTCGAGCCGCGCGCACGTCGTCATGATCGACGGCAAGGGCGAGGACGTCGTGGCCGGCGGC





GGGAGCGCGACGACGAGCGGGAGCGGGAGAGGGAGCGGCGGCGGGGGGGGAAGCGGCGGCGGCGGGAAGA





AGGAGCGTCGGCCGTCGGACGCCGGCTCGGAGAGTTCGAGTTCAAGAGGTGGGGGGGGCTTCTGCGGCAA





GGGCGGCGGCGGCGGCTCGAACCCCGCGACCCGCCGCGACACCCCGCGCCTCGTCGCGGAGCCGTTCGCG





TTCACCAACTCCTTCGTCGGCACGGAAGAGTACCTCGCCCCGGAGGTGTTGAACAGCACGGGGCACACGA





GCTCGATCGACTGGTGGGAGCTCGGCATCTTCATCCACGAGTGCGTGTTCGGGCTGACGCCGTTTCGCGC





GTCGAAACGCGAGCAGACGTTTCAGAACATCATCTCTCAGCCGCTCAGCTTCCCGTCGAACCCGCCGACG





AGCCCGGAGCTGAAGGATTTGCTCTCGCAGCTGCTGCGACGCGATCCGAGCGAGCGGTTGGGGACGAGAG





GGGGCGCGGAGGAGGTCAAGGCGCACCCGTTTTTCAAAGGGGTGGACTGGGCGTTGCTGCGTTGGAAAGA





CGCGCCGCTCGCGAAGAAGCCCGATCCGCCGAGGGCGGACGGCGGCGGCGACGAGGTGTTCGAGATCGAA





GTCTGAGAGAAGTCTGAGAGGTCTGTTTGGGGAGAAGAGAAGAGAAGTCTCAGTCTCTGGATGGAGACGT





CTGAGGCGGGCGGGCGGGCGGCGGGACGTCCCCTCGACGACGCGAGGGAGGAGCGTTTGCATAGCATACA





ATAGTAGATTCGCATCATTCACGAGCGCGTCGTTC





SEQ ID NO: 100



>XP_003063534.1 phototropin. blue light receptor [Micromonaspusilla



CCMP1545]


MAAMSGQVPPDKMPQGVSYTVDESGGIAAPEASKGLTMALASVRHTFTVSDPTLPDCPIVYASDGFLKMT





GYSAEEVINRNCRFLQGEDTDRDDVQKIRDAVQKGERLTIRLQNYKKDGTPFWNLLTIAPVKMEDGTVAK





FIGVQVDVTDRTEGEVGRTVGDGGVVGAKDEKGLPLLVRYDQRLKDQNYPGVEDVEKAVMKGEGIDADAT





RNSRAREGLDMATTMERIQQSFLISDPSLPDCPIVFASDGFLDFTGYGREEILGRNCRFLQGAGTDRDAV





KEIRNAIKDNRECTVRLLNYTKQGKPFWNMFTLAPVRDHAGEVRFFAGVQVDVTVYTDADGRRLDSVELL





RQTKAPTPRHSGDDEGKSKSKAATKKVLEAIGGLTAADGELPWARMVGRLGAPKPHQAGDANWAALRKIV





AAHKAAGRPERLAPEDFTPLTRLGHGDVGAVHLVSLRDAPSAKFAMKVLVKQEMVDRNKLHRVRTEGRIL





EAVDHPFVATLYSAFQTDTHLYFLMEYCEGGELYETLQKQPGKRFTEATTKFYAAEVLCALQYLHLMGFI





YRDLKPENILLRRNGHVIVTDFDLSYCASSRAHVVMIDGKGEDVVAGGGSATTSGSGRGSGGGGGSGGGG





KKERRPSDAGSESSSSRGGGGFCGKGGGGGSNPATRRDTPRLVAEPFAFTNSFVGTEEYLAPEVLNSTGH





TSSIDWWELGIFIHECVFGLTPFRASKREQTFQNIISQPLSFPSNPPTSPELKDLLSQLLRRDPSERLGT





RGGAEEVKAHPFFKGVDWALLRWKDAPLAKKPDPPRADGGGDEVFEIEV





SEQ ID NO: 101



>KU698737.1: 704-2884 Tetraselmiscordiformis



ATGTCTGCAATGATCCCCGAGACCTCCACGGAGCTTACTTCCGTGCTTTCAAACCTAAAGCATACTTTCG





TCGTTGCGGATGCAACTCTTCCGGACTGTCCACTGGTGTTTGCTAGCGAGTCTTTCTATGAGATGACGGG





ATACAGTAAGGACGAGGTTCTCGGGCATAACTGCAGGTTCTTGCAAGGGGAGGGAACCAGTCCAAAGGAG





ATTCAGAAATGTCGCGAGGCGGTGAAGAATGGGACTGTCGTTTCTGTCCGTCTCCTCAATTACCGCAAGG





ACGGCACGCCTTTCTGGAATTTGCTGACCTTGACACCGGTCAAAACATCGACTGGTCAGGTCACAAAGTT





CGTTGGCGTCCAGGTTGACGTGACGGGCCGCACAGAAGGCAAGAACTTCGTTGATGGGGAGGGGGTTCCC





CTCCTAGTCCATTATGATAATCGCCTGAAGGAAAACGTTGCAAAGAACATAGTCAGCGAGGTCGTGGACA





CCGTGGACAGAGTGGAGAACAAGGGTGCTGGCCGTGCAACGAAGCCCAAAGCCTTCCCTCGCGTGGCACT





TGATCTCGCCACCACCGTTGAGCGCATTCAGCAGAACTTCTGCATCTCGGATCCCACCCTGCCCGACTGT





CCCATCGTCTTCACCTCGGACGCCTTCCTGGAACTCACAGGCTACACGCGAGAGGAGGTTCTGGGTAGAA





ACTGCCGCTTTCTCCAGGGCCCCAGCACAGACCAAAGGACGGTGGACCAGATCCGCGAGGCCGTGACCAA





CAGGGAGGAGCTTACCGTCCGTATTCTGAACTATACAAAGCAGGGCATCCCATTCTGGAACATGTTAACC





CTCGCGCCGATCCGAGACGTGGACGGAACTTGCCGATTCATGGTCGGTGTACAGGTAGACGTCACCGCAG





CGGATGCCACCTCTGCGCCTGGCGAGATCCCAGCGCAGAAAGATCTGGGGCCTGTCTCGTCGGCTGCGTC





TGCTAGCAACGTTATTGGGAGCGCCCTCAAGAACCTTGGCATGGGAAATGCTGTCATGAAGAACCCTTGG





ACGCAGCTCACCATCGGCAAGGTTTACAGGAAGCCACATATGTCAGAAAACAAATCACTTCTGGCTCTCC





GTGCTACCGAGGCAGAGCATGGAACTCTGAAGGTCGTGCACTTCAAGCGTCTAAAGCAGGTTGGCAGCGG





AGATGTTGGTCTGGTGGACCTCGTGAGCCTGATCGGCACCAACCACGAGTTTGCCATGAAGTCTCTGGAC





AAGCAAGAAATGATCGAGCGCAACAAGGTAGCCCGTGTACTCACAGAGGAGTCGATTCTCTCACGGATCG





ATCACCCCTTCCTCGCTAACCTCTACTGCACACTCGAGACGCCTAGCCACCTGCACTTCCTGATGCAAAT





CTGCTCCGGTGGGGAGCTCTACGGGCTTCTTAACGCCCAGCCAAAGAAACGCTTGAAGGAGGCCCACGTC





CGCTTCTATGTTGCGGAGGTCCTCCTTGCGTTGCAGTACCTCCACCTTATCGGCGTCATATACCGCGACC





TGAAACCAGAGAATATTCTGCTCCACGGCAGCGGACATGCCATGCTCACAGACTTCGATCTCTCCTTCTC





GAAGGGTGAAACAGTCCCTCGGATAGAGAAACAGTCGGCCTCTGCTTGGAGCTCTCCAAAGGAGACCGCT





GGCTGCACCAAGTCGAGCTCGAATCTACCGGTAAAGCCCCACGACAAATACCTGCTGATCGCCGACCCGG





TCGCAAGGTCAAACTCGTTTGTGGGAACGGAGGAATACCTGGCGCCGGAGGTAATTAACGGCACAGGCCA





CGGCTCTGAGGTCGACTGGTGGGCGCTCGGCATCCTGACGTACGAGCTCATTTTTGGCACCACGCCATTT





CGGGGCATGCGTCGAGACGAGACCTTCGAGAACGTACTGCGTCTTCCTCTCACTGTCCCGCAGAAGCCCA





TTATCAGCGCCGAATGCAAGGACTTTATCCAGCAGCTCCTGATTAAGAACCCCGAGAAGCGTCTAGGTGC





CAAGAGGGGGGCTGAGGACATCAAGGCTCACCCCTGGTTTGCAAGTATCGAGTGGTCCCTGATTCGGAAT





GAGCAGCCGCCATTTGTGCCCAACAATGTAGCTACGCCAAGCAACACGGCCGGAGCCNCGACAACTACTG





ATGGCTCGTAG





SEQ ID NO: 102



>AML76833.1 putative LOV domain-containing protein [Tetraselmiscordiformis]



MSAMIPETSTELTSVLSNLKHTFVVADATLPDCPLVFASESFYEMTGYSKDEVLGHNCRFLQGEGTSPKE





IQKCREAVKNGTVVSVRLLNYRKDGTPFWNLLTLTPVKTSTGQVTKFVGVQVDVTGRTEGKNFVDGEGVP





LLVHYDNRLKENVAKNIVSEVVDTVDRVENKGAGRATKPKAFPRVALDLATTVERIQQNFCISDPTLPDC





PIVFTSDAFLELTGYTREEVLGRNCRFLQGPSTDQRTVDQIREAVTNREELTVRILNYTKQGIPFWNMLT





LAPIRDVDGTCRFMVGVQVDVTAADATSAPGEIPAQKDLGPVSSAASASNVIGSALKNLGMGNAVMKNPW





TQLTIGKVYRKPHMSENKSLLALRATEAEHGTLKVVHFKRLKQVGSGDVGLVDLVSLIGTNHEFAMKSLD





KQEMIERNKVARVLTEESILSRIDHPFLANLYCTLETPSHLHFLMQICSGGELYGLLNAQPKKRLKEAHV





RFYVAEVLLALQYLHLIGVIYRDLKPENILLHGSGHAMLTDFDLSFSKGETVPRIEKQSASAWSSPKETA





GCTKSSSNLPVKPHDKYLLIADPVARSNSFVGTEEYLAPEVINGTGHGSEVDWWALGILTYELIFGTTPF





RGMRRDETFENVLRLPLTVPQKPIISAECKDFIQQLLIKNPEKRLGAKRGAEDIKAHPWFASIEWSLIRN





EQPPFVPNNVATPSNTAGAXTTTDGS





SEQ ID NO: 103



>KJ195127.1 Bolbocoleon piliferum phototropin (PHOT) mRNA, complete cds



ATGGCACAATTGCCTCCTCCGGCAGCGCAGTTAACGCAGGTGTTGTCGAGTCTTCGCCACACATTTGCCG





TTGCCGATGCAACACTTCCAGATTGTCCCCTGGTGTACGCCAGCGAAGGGTTCTACCAGATGACTGGGTA





CACGAAGGACGAGGTTCTGGGTCACAACTGCCGTTTCCTCCAAGGTGAAGCCACAGATCCGGTAGAGGTT





GAGAAAATTCGTGATGCTGTTAAGAACGGCCGGAGTACCGCTGTTCGCCTTCTCAACTATCGCAAGGATG





GAACACCATTCTGGAATCTCCTTACTGTCACGCCCGTCTATGCAGCGGACGGGACGCTGTCCAAGTACAT





TGGAGTCCAAGTGGATGTCACCTCCAAAACCGAAGGATCAGCTTACACAGACCGCAGTGGTGTACCTCTT





CTAGTCAAGTACAATGACCGCCTGAAGCAGAACGTTGCTCATGACATTGTCGCGGATGTCAAAGATGCGG





TTGAAAGTGCTGAGCCGTCCCTGCAAAACAAGGCTGTTGGGACAGCGCCCAAGGCATTTCCACGTGTTGC





CATTGATCTTGCTTCGACAGTCGAGCGTATTCAACAAGCCTTTGTTGTGTCGGATCCAAACCTGCCAGAC





TGCCCAATCGTCTTCGCCTCGGACGCCTTTCTTGAGATGACGGGTTTTTCCCGGTTTGAAGTGCTCGGTC





GCAACTGTAGATTTCTCCAGGGAAAGCACACGGATGCGCATGCCATTGATGAGATCCGAGCAGCCGTGAA





AGAGGGCTCGGAGTGCACAGTGCGTCTGCTCAACTACAAAAAGGATGGCACCCCCTTCTGGAACATGCTT





TCTGTGGCGCCCATGATGGACGTCGACGGCACAGTGTGCTTCTTCATTGGCGTGCAAGTGAATGTCACCG





CTGAGACACCTGCACAAGACGGCCTGCCTGCAGTTGACCAGGGAGCTGTGAAGAAAGCATTGGACACTGC





ACAGATCCAGTCTGCAGTGTCACACCTGCACACAAAGCCGTCGTCGCCCGGGCGTGACCCGTTTTCTGCA





ATTCCGCATGCTAAGCTGCGTATCAAGCCGCACCGCAGCATGGACCGCGCCTGGCACGCGCTGCACAAGC





TCCAGCAGGCAGAGGGCACGATCGAGCTGCGGCATTTCAAGCGCGTGCAGCAGCTTGGTTCGGGTGACGT





GGGGCTGGTTGACCTTGTCCGCATCCAGGGGTCAGATGTCACTGTTGCCATGAAGACGATCGACAAAGTA





GAGATTTTGGAGCGCAACAAGCTGCACAGACTTCTCACCGAAGAGAATATTCTGCAGCAGTGTGACCATC





CGTTCCTCGCTGCATTATACTGTACCATCCAGAGTGAGCACTATCTGCATTTTGTCATGGAGTACTGCCC





CGGCGGAGAGCTGTACAAGCTGCTGTATGCACAGCACAACAACCGGTTTGAGGAGCGAGATGTGCAGTTC





TATGCTGCGGAAGTGCTCATGTCCCTGCAATATCTGCACATTCTCGGGTGTGTCTACCGAGATCTCAAGC





CTGAGAACATATTGATCATGGCGGATGGCCATGTGCGAGTGACAGACTTCGATCTTTGCATTCTTACGTC





AGATTTCAAGCCACAGTTGGTCAAGGGGCCACGCGAGCTTGCTGCAAATGCCAATGTAGCCCGGCACTCC





AAGACGGGGAAGGTTGGCGGAAAAGGATGCTATGGTGGCAGCGGAGTGCAGTTAGGTGAAGGGCTTGTGT





TGTCAGGGGAGCCGCAGATGCGAACCAACAGTTTTGTTGGGACTGAAGAGTATCTGTCGCCCGAGGTGAT





TCAGGGGAACTCGCACGGTGCTGCAGTTGACTGGTGGTCGTTGGGTATCCTGATATATGAGCTTTCCTTC





GGAACGACTCCATTCAAAGGGCAACGCCGGTCTGAGACCTTCTCCAGTATTGTCAAGAAGGACGTCAAGT





TTCCGGACGAACCTGTGGTCAGCTCGCAATGCAAGGACATCATTTTGCAGCTGCTTGTCAAGGATGAGAC





CAAGCGGCTGGGGAACAAGTATGGAGCGGAGGAGATCAAGCGGCACCCTTTCTTCAAAGACGTAGATTGG





CAGTTCTTGCGATCCCGAACACCACCGTGGGTGCCCCGAGGAACTGTGGCGTCAGGCAATATTGCTGGGT





TCTGA





SEQ ID NO: 104



>AHZ63928.1 phototropin [Bolbocoleonpiliferum]



MAQLPPPAAQLTQVLSSLRHTFAVADATLPDCPLVYASEGFYQMTGYTKDEVLGHNCRFLQGEATDPVEV





EKIRDAVKNGRSTAVRLLNYRKDGTPFWNLLTVTPVYAADGTLSKYIGVQVDVTSKTEGSAYTDRSGVPL





LVKYNDRLKQNVAHDIVADVKDAVESAEPSLQNKAVGTAPKAFPRVAIDLASTVERIQQAFVVSDPNLPD





CPIVFASDAFLEMTGFSRFEVLGRNCRFLQGKHTDAHAIDEIRAAVKEGSECTVRLLNYKKDGTPFWNML





SVAPMMDVDGTVCFFIGVQVNVTAETPAQDGLPAVDQGAVKKALDTAQIQSAVSHLHTKPSSPGRDPFSA





IPHAKLRIKPHRSMDRAWHALHKLQQAEGTIELRHFKRVQQLGSGDVGLVDLVRIQGSDVTVAMKTIDKV





EILERNKLHRLLTEENILQQCDHPFLAALYCTIQSEHYLHFVMEYCPGGELYKLLYAQHNNRFEERDVQF





YAAEVLMSLQYLHILGCVYRDLKPENILIMADGHVRVTDFDLCILTSDFKPQLVKGPRELAANANVARHS





KTGKVGGKGCYGGSGVQLGEGLVLSGEPQMRTNSFVGTEEYLSPEVIQGNSHGAAVDWWSLGILIYELSF





GTTPFKGQRRSETFSSIVKKDVKFPDEPVVSSQCKDIILQLLVKDETKRLGNKYGAEEIKRHPFFKDVDW





QFLRSRTPPWVPRGTVASGNIAGF





SEQ ID NO: 105



>KT321732.1 Ulvella endozoica phototropin (PHOT) mRNA, partial cds



GCAGCGGCACCTCAGTTGACGCATGTGCTGTCCTCGCTGAGGCACACATTCGCTGTGGCGGACGCCACCC





TCCCGGACATGCCCCTGGTTTACGCCAGCGAAGGCTTTTATCAGATGACAGGATACACCAGGGAGGAGGT





GCTCGGGCACAACTGCCGGTTCCTGCAAGGGCAAGCGACAGACCTGAACGAGGTTGCAAAGATCAGAACA





GCCATAGAACAAGGCAAGGGTGCTGCTGTGCGTTTGCTCAACTATAGAAAGGACGGAACCCCTTTCTGGA





ACCTGCTGACAGTGATGCCCGTGTATGCTGCCGATGGCTCCTTGTCCAAGTTCATCGGTGTTCAAGTTGA





CGTGACATCTCGAACAGAAGGCTACGCGTACGTGGACAACTCGGGCGTTCCTCTTTTGGTCAAGTACAAT





GACCGCCTGAAACAGAATGTCGCACATGACATCGTCGAGGATGTTGTGAGTGCTGTGCAAGATGCCGAGA





CTGCCAAGGAACCTCAACCTAGCCAACCTAAAATTGGTGCAGCCCCAAAGGCCTTCCCCCGTGTGGCTAT





TGATCTGGCTACGACAGTTGAACGTATTCAGCAAGCATTCGTCATTTCCGATCCCAATCTGCCAGACTGC





CCCATCGTCTTTGCTTCAGATGCCTTTCTGCAGATGACCGGATTCTCCCGATATGAGGTCCTGGGACGTA





ATTGTCGGTTTCTCCAGGGCACACAAACGGACCCGCGCGCGGTCGATGAGATCCGTTCAGCGATCAGGGA





TGGCACAGAGTGCACAGTCCGCATCCTGAACTACAGAAAGGATGGCTCGCCCTTCTGGAACATGTTCTCG





CTTGCGCCCATGTCAGATATCGATGGCACGATCTGCTTCTTCATCGGTGTACAAGTTGATGTGACTGCAT





ACAACAACAGGGCTGCGTCAGGGGCAGACATAGTGCCCAATGTTGATGACAATGCAGCGAAGCTGGCATC





GGATACAGCCACCATCAAGCATGCCGTGAGCCATCTGGGAACTAGCCACGGTCCTCAAGTGGGTGACCCC





TTCGCTGTGATTCCCACCTCTGAGCTGAGTATCAAGCCCCACAGCAGCATGGACCGTGCCTGGCAAGCTC





TGCACAAGCTGCAGCAAACGCATGGCACCATCTCGTTAAAGCACTTCAAGCGTGTGCAACAGTTGGGTTC





GGGAGATGTGGGGCTTGTTGATCTGGTGCGCATTCAGGGATCGGAGGAGCTCGTTGCGATGAAGACAGTC





GACAAAGCTGAGATCCTTGAGCGCAACAAGCTCCACCGTCTGATCACCGAGGAGAGCATCCTGCGGCGCT





GTGACCACCCTTTCCTTGCGATGCTGTACTGTACGGTGCAGAGTGAGCACTATCTGCACTTCGTTATGGA





GTACTGCCCAGGTGGTGAGCTGTACAAGCTCTTATACGCTCAGAAGGGGAACCAGTTTGCAGAGCCTGAC





GTGGCGTTCTTCTCGTCAGAGGTTCTCCTGGCGCTGCAGTACCTACATGTCATCGGTTGTGTATATCGCG





ATCTGAAGCCGGAGAACATTCTGATAATGGGTGATGGCCACGTGCGCCTGACCGACTTTGACTTGTGCAT





ACTGAACCCGGACTTCCAGCCTGAAATGGTGCCACTCACTGGTGATACCAGTCCTACAGCTAGGGCGCGC





CAGATGAAGGGGAGGAGGCCCGGGGCTCCATGTGTGGGGGGGCGGAGCGGGAGCCCAAGGCAGCCACTGG





TGCTATCAGGAGAACCACAGCTTCGTACCAACAGCTTCGTTGGTACGGAGGAGTACCTGTCACCTGAGGT





CATCCAAGGCAACTCGCACGGTGCAGCTGTTGACTGGTGGTCGCTCGGCATTCTCATCTATGAACTCATA





TACGGAACTACACCTTTCAAGGGACAGCGGCGCTCTGAGACTTTCTCCAACATTGTGAAGAATCCTGTCA





AGTTCCCAGAGGAACCAGCCGTCACACCAGCATGCAAGGACATCATCACGCAGCTGCTTGTGAAAGATGA





GACGAAACGCCTCGGTACCAGGCTGGGTGCGGAAGAGATTAAGCAGCATCCTTTCTTCGCAAGCGTCCAC





TGGCAACTGCTGCGCTCCCGAAGCAACCCACCTTACATCCCTCGCGCAAAGGCGCTGACGGGTGATCACG





TGCCATCGTTCTGA





SEQ ID NO: 106



>ANC96857.1 phototropin, partial [Ulvellaendozoica]



AAAPQLTHVLSSLRHTFAVADATLPDMPLVYASEGFYQMTGYTREEVLGHNCRFLQGQATDLNEVAKIRT





AIEQGKGAAVRLLNYRKDGTPFWNLLTVMPVYAADGSLSKFIGVQVDVTSRTEGYAYVDNSGVPLLVKYN





DRLKQNVAHDIVEDVVSAVQDAETAKEPQPSQPKIGAAPKAFPRVAIDLATTVERIQQAFVISDPNLPDC





PIVFASDAFLQMTGFSRYEVLGRNCRFLQGTQTDPRAVDEIRSAIRDGTECTVRILNYRKDGSPFWNMFS





LAPMSDIDGTICFFIGVQVDVTAYNNRAASGADIVPNVDDNAAKLASDTATIKHAVSHLGTSHGPQVGDP





FAVIPTSELSIKPHSSMDRAWQALHKLQQTHGTISLKHFKRVQQLGSGDVGLVDLVRIQGSEELVAMKTV





DKAEILERNKLHRLITEESILRRCDHPFLAMLYCTVQSEHYLHFVMEYCPGGELYKLLYAQKGNQFAEPD





VAFFSSEVLLALQYLHVIGCVYRDLKPENILIMGDGHVRLTDFDLCILNPDFQPEMVPLTGDTSPTARAR





QMKGRRPGAPCVGGRSGSPRQPLVLSGEPQLRTNSFVGTEEYLSPEVIQGNSHGAAVDWWSLGILIYELI





YGTTPFKGQRRSETFSNIVKNPVKFPEEPAVTPACKDIITQLLVKDETKRLGTRLGAEEIKQHPFFASVH





WQLLRSRSNPPYIPRAKALTGDHVPSF





SEQ ID NO: 107



>KJ195129.1 Coccomyxa pringsheimii phototropin (PHOT) mRNA, complete cds



ATGCCCGCTCAGACCGGGCAGGCTGAAAAGCAGCAGAAGGATGCGCAGCTGCATCCTGAGCTGCAGCGGC





CTGGGCAAAAGGTGCCAGGCCCTGCACCACAGCTCACAAAGGTTCTGGCGGGATTGCGGCATACTTTCGT





GGTAGCGGATGCCACGCTACCGGATTGCCCTTTGGTGTTCGCCAGCGAAGGATTCCTCTCGATGACAGGA





TACTCGGCTGAGGAGGTGCTGGGACACAACTGCCGCTTCCTGCAAGGGGAGGGTACAGACCCCAAGGAGG





TGGCAATCATCAGGGATGCAGTGAAGAAGGGGGAGGGCTGCTCTGTGCGCCTGCTCAACTACAGGAGGGA





TGGCACTCCCTTCTGGAACTTGCTCACCATGACGCCCATCAAGACAGAGGACGGCAAGGTGTCAAAGTTT





GTGGGAGTGCAGGTCGATGTGACCTCAAAGACAGAAGGGAAGGCCTTCTCAGATGCCACTGGTGTGCCAC





TGCTGGTGAAGTATGACACACGGCTGAGGGAAAATGTAGCAAAGAACATCGTCCAGGATGTCACGTCGCA





AGTGCAGGAAGCGGAGGAGGAAGACTCGGAGGCTACCAGGGTTGCCGGCCTGAAAGGCTTCAACAAGCTG





TGGCACAAGATGGGCAACAAGTCATCAGCCAACGACCCACAGCTGCAGAAGCAGGGAGAGCGGCTAGGCA





AGAAAATGACAGCCCCCAAAACGTTTCCCAGGGTGGCCATGGATCTGGCAACAACAGTGGAGCGCATCCA





GCAGAATTTCTGCATCTGCGATCCCAACCTGCCGGACAACCCGATAGTCTTCGCGTCAGACGGCTTCCTG





GAGATGTCCCAGAACGACCGCTTTGAGGTCCTGGGTCGCAACTGCCGCTTCCTGCAGGGGCCGGACACTG





ACCCCAAGGCGATCACTATCATCCGGGACGCGATCAAGAGCCAGAGCGAGGCGACCGTGCGCATTCTCAA





CTACCGCAAGAACGGGCAGCCCTTCTGGAACATGCTCACCATTGCACCCATGGCTGACGTTGGCGGCACC





TCCCGTTTCTTCATCGGAGTCCAGGTGGATGTGACGGCAGAGGATGTGCCGATGACGGGCGGCATTCCGG





CGGTTGACCAGAAGGCCGTCAAGGCGGCGGACCCGATGGGGAGCGTGCTGGGCATGGCACAGCGGCAGAT





GGGCGCTGGCTGGGCCGTGCACGACCCTTGGCAGGCCATCCATGCAGGCGTCTCTAGCCGCAAGCCACAC





AAGGCCCAGGAGAAGCCGTGGGCGGCGCTGCAGGCGACGAATGAGAAGACTGGTCGGCTGGGGCTGTCGC





AGTTCCGCCGCCTGAAGCAGCTGGGCACCGGCGACGTCGGCCTTGTGGACATGGTGGAGCTGCAGGACGG





CTCTGGCAGGTATGCGATGAAGACACTGGAGAAGGCGGAGATGCTGGAGCGCAACAAGGTGATGCGTGTG





CTGACGGAGGCCAAGATCCTGTCGGTGGTGGACCACCCCTTCCTGGCCAGCCTCTACGGCACCATCGTGA





CCGACACCCACCTCCATTTCCTCATGCAGATCTGCGAGGGCGGCGAGCTCTACGCGCTGCTCACCTCGCA





GCCCTCCAAGCGCTTCAAGGAGAGCCACGTCCGCTTCTACACTGCAGAGGTGCTGATTGCGCTGCAGTAC





CTGCACCTGATGGGCTTTGTGTACCGGGACCTGAAGCCCGAGAACATTCTGCTGCACAGCAGCGGCCACA





TCCTGCTTACCGACTTTGATCTCTCCTACTGCCAGGGCTCCACCGAAGTTAAGTTTGAGAAGAAGAAGAA





CGGCCACGCCAAGCCGCAGCTCGGGGCTGGGCAGGTGAGACCCTCAGAGGAGATCACGCTGATCGCTGTG





CCGGACGCGCGCGCCAAATCCTTTGTGGGCACTGAGGAGGACCTTGCGCCAGAGGTCATAAACGGTGTCG





GCCACGGGCCAGGAGTGGACTGGTGGAGTTTTGGGATCCTGATCTATGAGCTGTTGTACGGATTCACCCC





TTTCCGGGGCAAGAAGCGTGACGAGACATTCAACAACATCCTCAAGCGACCGCTCAACTTCCCTGAATTG





CCGGAGGTCTCCGACGAGTGCAAGGACCTGATTTCGCAGCTGCTGGAGCGCGACCCGGCCAAGCGGCTGG





GCGCGCACGCGGGCGCAGAGGAGATCAAGGCGCACCCCTTCTATGAGTCCATCAATTGGGCCCTCCTGCG





CAACACGCGGCCGCCCTACATCCCCCGCCGCAATGTGCGCAAGGCCACCCCCTCCCCCGCCGCGGAGGCC





AATTTCGGCGACTTCTGA





SEQ ID NO: 108



>AHZ63930.1 phototropin [Coccomyxasubellipsoidea]



MPAQTGQAEKQQKDAQLHPELQRPGQKVPGPAPQLTKVLAGLRHTFVVADATLPDCPLVFASEGFLSMTG





YSAEEVLGHNCRFLQGEGTDPKEVAIIRDAVKKGEGCSVRLLNYRRDGTPFWNLLTMTPIKTEDGKVSKF





VGVQVDVTSKTEGKAFSDATGVPLLVKYDTRLRENVAKNIVQDVTSQVQEAEEEDSEATRVAGLKGFNKL





WHKMGNKSSANDPQLQKQGERLGKKMTAPKTFPRVAMDLATTVERIQQNFCICDPNLPDNPIVFASDGFL





EMSQNDRFEVLGRNCRFLQGPDTDPKAITIIRDAIKSQSEATVRILNYRKNGQPFWNMLTIAPMADVGGT





SRFFIGVQVDVTAEDVPMTGGIPAVDQKAVKAADPMGSVLGMAQRQMGAGWAVHDPWQAIHAGVSSRKPH





KAQEKPWAALQATNEKTGRLGLSQFRRLKQLGTGDVGLVDMVELQDGSGRYAMKTLEKAEMLERNKVMRV





LTEAKILSVVDHPFLASLYGTIVTDTHLHFLMQICEGGELYALLTSQPSKRFKESHVRFYTAEVLIALQY





LHLMGFVYRDLKPENILLHSSGHILLTDFDLSYCQGSTEVKFEKKKNGHAKPQLGAGQVRPSEEITLIAV





PDARAKSFVGTEEDLAPEVINGVGHGPGVDWWSFGILIYELLYGFTPFRGKKRDETFNNILKRPLNFPEL





PEVSDECKDLISQLLERDPAKRLGAHAGAEEIKAHPFYESINWALLRNTRPPYIPRRNVRKATPSPAAEA





NFGDF





SEQ ID NO: 109



>KJ195128.1 Prasiola crispa phototropin (PHOT) mRNA, complete cds



ATGGCGTCTCAAAGAAAGGTGCCGGCCCCCGCAGCTCAGCTCACAAAGGTGCTTGCGGGTTTACGGCATA





CGTTTGTGGTAGCTGACGCAACTCTACCGGATTGTCCACTGGTCTACGCGAGCGAAGGGTTCCTGCAGAT





GTCTGGCTACACTGCTGACGAGGTGTTGGGGCACAACTGTCGGTTTCTGCAAGGAGAGGGCACCGACCCA





AAGGAGGTCGCGGTCATTCGAGATGCTGTAAAACACGGTACCAGCTGCTCTGTGAGGCTGCTGAATTATC





GCAAGAATGGCAGCCCCTTTTGGAATCTGCTGACTATGACGCCTATCAAAACGGACGATGGCAAAGTGAC





CAAGTATGTTGGCGTCCAAGTGGATGTAACGAGTAAAACCGAGGGGCTTTCAACTGGCGATCAATCAGGC





GTGCCTTTACTGGTGAAGTATGATACCAGGCTCAAGGAAAGTGGGAAGAATGCAGTCAACGAAATCAACG





CGACAGTCCAGGAGGCAGAGCCGAGCAAGCTGCCCAAGAAGTCTAAAGCACCCAAGGCTTTCCCTCGTGT





CGCCATGGACTTGGCGACGACTGTCGAACGCATCCAGCAGAACTTTGTGATCTCTGACCCCCACTTGCCC





GACTGCCCCATCGTGTTCGCATCCGACGGGTTCTTGGACCTCACAGAGTATAGCCGCGAGGAGATTCTCG





GCCGCAACTGCCGCTTCTTGCAGGGCCAAGACACAGATCCTGCAGCGGTGTCTGAGATTCGGGATGCTGT





GCGGAACGGCAGCGAGGCGAGTGTCAGGCTGCTGAACTACAAGAAGTCCGGGACACCCTTCTGGAACATG





TTCACTTTGGCGCCCATGGCAGACGTGGATGGCAATCTGCGCTTCATCATCGGAGTCCAGGTCGATGTGA





CGGCAGCGGATACAACGGCTCCTGGGAAGCTGCCAGCTGTCGATCCGCAGGCAGCTGTCAGTGCTCAGAC





GACTGGGATGATTAACACCGCGCTCCAACATATGGGGCTGGGTCCTGACCCCTGGAAAGCTATTAGGGTC





GGGGTGGCATCGACTAAGCCACATTCTTCAGCAGCTCCGGAATGGAAGAAGTTGCGCAGACTACAGGACA





GCGATGTTGCCCTCAAGCTGTCCCACTTTCGAAGAGTGAAACAGCTCGGCTCGGGTGATGTCGGCCTGGT





TGATCTCGTCCAAATTCAGGGCGACTCCGAATCAAGGTATGCTATGAAGACACTAGAGAAGCGAGAGATG





GTAGAACGCAACAAGGTGATGCGCGTCCTCACTGAGGAGCGAATCCTGGCTGCCGTGGACCACCCCTTCG





TTGCACATCTATACGCCACCATTCAAACCGAGACACACCTCCACTTCCTCATGCAGTACTGTGGGGGAGG





TGAGCTATACGGCCTCCTGATGAGTCAGACTCACAAGCGGCTATCAGAGAGTCACATGCAGTTTTATGTC





GCTGAAGTGCTGCTGGCTCTCCAATATCTTCACCTTCTCGGTTTTGTATACCGGGATCTGAAGCCGGAGA





ATATTCTGATCAGTGCCTCCGGACATGCGCTGCTGACGGATTTCGATCTGTCTTTCTGCTCAAATGGCAC





CAAGCCTCGCATTGAGCGGTCAGCGCCATCGCATCTGAGGGAGCAGAGCAGTCGCAACAGCAGCAAGGTG





CAGAAGAACGGACAGAACAAGTCGGAGAGGTGGAACGCAATGGAGGCAGCTTCTCTGACTCTGGTAGCTG





AGCCCGAGGGTCGTGCCAATTCCTTTGTGGGCACAGAGGAGTATTTGGCCCCTGAAATCATCAACGGCAC





TGGCCACGGTCCCGGAGTTGATTGGTGGTCTTTTGGTATCCTAATGTATGAGCTGGTGTACGGGTTCACA





CCCTTCCGTGGGGCCAAACGAGACCAGACTTTCGAGAACATCCTCAAGTCCCCTCTCATTTTCCCACCCA





AGCCAGAGATCAGCAAGTCCTGTCAGGATTTGATATGTGCACTTCTGGTGCGACAACCAGAGTCGCGGCT





AGGCGCCTACGCCGGAGCTGAGGAAATCAAGCTGCATCCTTTCTTCAGCAACATCAACTGGCCGCTGATC





CACAACAGCAAGCCTCCCTATGCGCCCTCATCCTCTGGTGGCGGCCTCCGACAGAACCCAGCGTTTGACA





ACTTCTGA





SEQ ID NO: 110



>AHZ63929.1 phototropin [Prasiolacrispa]



MASQRKVPAPAAQLTKVLAGLRHTFVVADATLPDCPLVYASEGFLQMSGYTADEVLGHNCRFLQGEGTDP





KEVAVIRDAVKHGTSCSVRLLNYRKNGSPFWNLLTMTPIKTDDGKVTKYVGVQVDVTSKTEGLSTGDQSG





VPLLVKYDTRLKESGKNAVNEINATVQEAEPSKLPKKSKAPKAFPRVAMDLATTVERIQQNFVISDPHLP





DCPIVFASDGFLDLTEYSREEILGRNCRFLQGQDTDPAAVSEIRDAVRNGSEASVRLLNYKKSGTPFWNM





FTLAPMADVDGNLRFIIGVQVDVTAADTTAPGKLPAVDPQAAVSAQTTGMINTALQHMGLGPDPWKAIRV





GVASTKPHSSAAPEWKKLRRLQDSDVALKLSHFRRVKQLGSGDVGLVDLVQIQGDSESRYAMKTLEKREM





VERNKVMRVLTEERILAAVDHPFVAHLYATIQTETHLHFLMQYCGGGELYGLLMSQTHKRLSESHMQFYV





AEVLLALQYLHLLGFVYRDLKPENILISASGHALLTDFDLSFCSNGTKPRIERSAPSHLREQSSRNSSKV





QKNGQNKSERWNAMEAASLTLVAEPEGRANSFVGTEEYLAPEIINGTGHGPGVDWWSFGILMYELVYGFT





PFRGAKRDQTFENILKSPLIFPPKPEISKSCQDLICALLVRQPESRLGAYAGAEEIKLHPFFSNINWPLI





HNSKPPYAPSSSGGGLRQNPAFDNF





SEQ ID NO: 111



>KT321727.1 Scourfieldia sp. STK 1728 phototropin (PHOT)



ATGAATCCGGAGTATGACGACCCGCCGCCGGCGGGCGCGGAGCGCGTCACCAAGGACGCCACCCACAATG





CGCTGATCGTGAAGAAGGTCCGCACCAAAGAGGAGCACGAGGCGCTGTCGCCCGTGACGGGCGTCGTGGC





GCCGTCCAAGCCCCTCACGATGGCGATGGCTGGCATGTGGCAGACTTTTGTCATCACAGACATGACCATC





AAGGACGGGCCCATCGTGTTCGCGTCGGAGGGCTTTTACCACATGACGGGCTACCCCGCGGATGAGGTGC





TCGGCCGCAACTGCCGCTTCCTGCAGGGGCCGGACACGAACCGCGATGACGTGACCAAGCTGCGCAATGC





CGTGATGGGCGGATTCTCCGTCAGCGTGCGGCTGCTCAACTACCGCAAGGATGGCAACCCGTTCTGGAAC





TACCTCACCATGACGCCCATCAAGAACGAGGACGGTATCGTGACCAAGTTCGTGGGCGTTCAGGTGGACG





TGTCGAGCAAGACCGAGGGCCGCGTCACGTCGGCGTTTGCGGACCGGCAGGGCGTGCCGCTGCTGATCAA





GTACGACACGCGCATCCGCGATAACGCGATGCGCGAGAACGTGGCGCCCGTCATCCAGGCCGTGGCCACC





GCTGAGGGCGGCACCGCCGCCTCGTTCCCGACGGCCGCCTCGGACGCGGTCGGCGGCGTGGCCGACTCGC





GCGCGTCGATGGGCGCGACCTCGATCGATCAGGCCGCGCAGCCGGGCTCGATGGAGGTCCGGCGCTCGGT





GGTGCCGGCCTGGGAGGCCAAGACCCGCCACGGTCTGGACCTGGCCACCACCCTGGAGCGCCTGCAGGCG





TCCTTCTGCGTGTGCGACCCGTCAGTCAAGGGCGCGCCGATCGTGTTTGCGTCCGACACGTTCTTGACGT





TGACCGAGTACCCGCGCGAGGAGGTGCTGGGCCGCGACTTTCTGTTCCTGCAGGGCCCCAAGACCGACAA





GCGGGCGCTCAAAGAGATCAGCACGGCCATCGCGGAGAACTCCGAGGCGACGGTTCGCGTGCTCAACCAG





ACCAAGTCCGGCCGCCAGTTTTGGGACATGTTCCACGTGGCGCCGATCAAGGACCTGGCGGGTAACGTGA





TGTATCTGATCGGTGTGCACATGGATGTATCCCAGATGGTGGACGACCGGTCGGCCTCCAAGGACGCCAA





CCTGGTGGGCCAGCTCGCGCCGCACCTGAAGCAGGCCATGGGCGGCATCTCCACGGCCGTCGGCGCGGTG





GCCGACAAGGCCAAGATTGCGGACCCGTTCGCGCGCATCGACGGCCGGCGCGTGCGCGCCACCAAGCCGC





ACCAGTGCAACGACCAGGGCTGGAAGGCCATCCAGGCGCTGGTGACCCGCGACGGCTACGTGGGGCCGAT





GCACTTCGAGAAGGTCCGGCGGCTCGGCTCCGGCGACGCGGGCCAGGTGTACCTGGTTCAGATCAAGGGC





GGCGGGCACCGCTACGCCATGAAGGTGCTGAGCAAGCAGGACATGCTCGAGCGCAACAAGGTGCACCGTG





TCAACACCGAGGAGTCGATCCTGTCCTCTCTGGACCACCCCTTCCTGGCCACGCTGTACGCGGCCTTCCA





GACCGAGTCGAATCTGCACTTCATCATGCAGTACTGCGGCGGCGGGCAGCTGTACGACCTGCTGCGCAAG





CAGGAGCCCAAGGGCCGGCTGCCGGAGGAGTCGACGCGCTTTTACACGGCCGAGGTGCTGCTGGCGCTGC





AGTATCTGCACCTGCAGGGCTTCATCTACCGCGACCTCAAGCCCGAGAACGTGCTGCTGCGCGAGGACGG





CCACATCATCTTGACGGATTTCGATCTGTCCTACACGGGCGTGACCAAGCCTGTGATGCTGCCGGCCGCG





GCGGGGCCCGCCGGCGCGCGCGGGCCGGCGCTGATGGCCGAGCCCGAGGCGATGGCCAACTCCTTCGTGG





GGACGGAGGAGTACCTGTCGCCCGAGGTGGTGGCGGGCGCCGGGCACTCGGCGGGGGTGGACTGGTGGTG





CCTGGGCATCTTCATGTTTGAGCTGTTTTATGGCATGACCCCGTTCAAGGGCGCCTCGCTGGACCGCACC





ATGGACAACGTGCTCAAAAAGGACGTGGTGTTCCCCGAGGTGCCCAGCGCGGGCTTCCCCGGTGTGCAGA





TGTCGCCCGAGGGCCAGGACTTTATCCGTCAGCTGCTGCAGCGCGACCCGGCCAAGCGCCTGGGCGGCAA





GGGCGGCGCCGAGGAGATCAAGGCGCACCCCTTCTTTGAGGGCGTCGACTGGGCGCTGCTGCGCAACACG





ACGCCGCCCTATGTGCCGCCGGTGGGCCGCGGGCCGGCCAAGGTGCCGGGCGCGTCGTCG





SEQ ID NO: 112



>ANC96852.1 phototropin. partial [Scourfieldia sp. STK 1728]



MNPEYDDPPPAGAERVTKDATHNALIVKKVRTKEEHEALSPVTGVVAPSKPLTMAMAGMWQTFVITDMTI





KDGPIVFASEGFYHMTGYPADEVLGRNCRFLQGPDTNRDDVTKLRNAVMGGFSVSVRLLNYRKDGNPFWN





YLTMTPIKNEDGIVTKFVGVQVDVSSKTEGRVTSAFADRQGVPLLIKYDTRIRDNAMRENVAPVIQAVAT





AEGGTAASFPTAASDAVGGVADSRASMGATSIDQAAQPGSMEVRRSVVPAWEAKTRHGLDLATTLERLQA





SFCVCDPSVKGAPIVFASDTFLTLTEYPREEVLGRDFLFLQGPKTDKRALKEISTAIAENSEATVRVLNQ





TKSGRQFWDMFHVAPIKDLAGNVMYLIGVHMDVSQMVDDRSASKDANLVGQLAPHLKQAMGGISTAVGAV





ADKAKIADPFARIDGRRVRATKPHQCNDQGWKAIQALVTRDGYVGPMHFEKVRRLGSGDAGQVYLVQIKG





GGHRYAMKVLSKQDMLERNKVHRVNTEESILSSLDHPFLATLYAAFQTESNLHFIMQYCGGGQLYDLLRK





QEPKGRLPEESTRFYTAEVLLALQYLHLQGFIYRDLKPENVLLREDGHIILTDFDLSYTGVTKPVMLPAA





AGPAGARGPALMAEPEAMANSFVGTEEYLSPEVVAGAGHSAGVDWWCLGIFMFELFYGMTPFKGASLDRT





MDNVLKKDVVFPEVPSAGFPGVQMSPEGQDFIRQLLQRDPAKRLGGKGGAEEIKAHPFFEGVDWALLRNT





TPPYVPPVGRGPAKVPGASS





SEQ ID NO: 113



>KT321734.1 Oedogonium foveolatum phototropin (PHOT) mRNA



ATGTCGGCTCCTTCCGGTGCTCCAAATGTGCCTGCACCAGCGGCTCAGTTAACTAAAGTCCTTGCTGGAT





TGCGGCACACATTCGTGGTGTCAGATGCAACACTACCTGATTTTCCGCTGGTTTTTGCTAGCGAGGGATT





TCTTCAAATGACGGGCTACACTGCGGATGAAGTCTTGGGTCATAACTGTCGCTTCCTTCAAGGAGAAGGT





ACAGATCCCAAGGAAGTGGCCAAGATTCGCGAAGCTTTAAAAAAAGGTGAACCCATCAGCGTCAGGTTGT





TAAACTATCGTAAAGATGGCACTCCGTTTTGGAACCTGCTTACGATGACGCCCATCCACACCCCTGATGG





CAAGGTGTCCAAGTTCATTGGGGTGCAGGTCGATGTGACCAGCAAGACCGAGGGCAAAGCTTACGAAGAA





AACAAGGGCATGCCGTTAATCGTCAAGTATGACGCACGTTTGCGTGAGAATGTTGCCAAGAACATCGTCG





AAGACGTCCAAACCACGGTCGAGAAGGTGGAGCTCGGCGAGCGTCCGAAAGTTCATGGTCCGAAGGCCTT





CCCCCGTGTTGCGCTAGATTTAGCCACAACAGTCGAGCGTATCCAGCAAAACTTCGTCATCTGCGATCCC





ACCCTCCCTGATTGCCCGATTGTGTTTGCATCTGATGCGTTCCTGGAGCTCACAGAGTATTCCCGCGAGG





AGGTGTTAGGTCGAAACTGCCGGTTTTTGCAAGGCAAACACACTGATGCTGCAGCAGTCGCTGAGATCAG





AGAGGCAGTCCACAATGGCCAGGAACTGACTGTGCGTCTTCTGAATTACACCAAGTCCGGCCGGCCGTTT





TGGAACATGTTCACCATGGCTCCCATGATGGATCAGGACGGTACGATCCGCTTCTTCATTGGAGTGCAAG





TCGATGTCACTGCTCAGTCTAAGGCTCAAGGCGAAGCTGCAGCATGGAAGAAGACTCCTGAGGTGCAGGC





TCAAGCGCAGCTGGGGCATCAGGCAGCTTCTGCTATTGGTGCAGCCCTTAAAATGAATGCCACTTGGGTT





GCAGATCCATGGTCTGCTATTGCTGGAAACGTTGTGAGATGCAAACCCCACAAGTCAGCTGACAGTGCGT





ACAAAGCTTTGGCGGACATATCTAAGAAGGAGGGCAAAGTAAAATTGATGCACTTTCGTCGCGTAAAGCA





ACTAGGATCTGGTGATGTTGGTTTGGTGGACTTGGTGCAGCTGCAGGGTCAGGAGCACCAGTTTGCCATG





AAAACTCTGGATAAATGGGAAATGCAAGAACGCAACAAAATTCAGCGCGTTTTGACGGAAGTGCAAATAC





TGAATCAAGTTGATCACCCATTCCTTGCAACTTTGTACTGCACCATCCAAACTGAAACCCACTTGCATTT





CATCATGGAATATTGTGAAGGTGGTGAGCTGTATGGCTTATTGCATTCACAACCCAGGAAGCGGCTCAAA





GAATCTCAAGTCAAGTTCTATGCAGCAGAGGTGCTGGTTGCTCTGCAGTACCTACACCTGCTGGGCTATG





TGTATCGGGACTTGAAGCCTGAGAATATTCTGCTGCATAGTTCAGGCCACGTGCTTCTAACTGATTTTGA





TCTGTCCTATGCTAAGGGCACCACGACTCCAGTCCTGGAAGAGCGTTCGGTTCCGAAAATGCAGGCGAAA





ACCAAGAATGGGAAGAAGGTTGTGGTGACTCCGCCACAATATGTCCTGGTTGCAGAGCCCCAGGCGAAGG





CCAACTCCTTCGTAGGCACCGAAGAGTACCTTGCACCGGAAGTCATCACTGCTCAGGGTCATTCTGCAGG





CGTTGACTGGTGGTCCTTTGGTATCTTGATGTATGAGTTATTGTACGGTTTCACGCCTTTCAGGGGTTCA





CGGCGAGATGAAACTTTCGAGAACATCCTGAAACAGCCTCTTTCATTTCCTTCCAACCCGCCAATTAGCG





ACCAGTGCAAGAACTTGATTTCTTCGCTGCTTGTCAAGGAGCCAGCCCAGCGTCTGGGGGCCAAGGCAGG





AGCTGAGGACATCAAAGCTCATCCATTTTTCGCAGGCACTAATTGGGCTCTCTTGCGCAATGAGACACCT





CCTTACGTGCCGAAGCAGGGCAAAGATCCTGCAACCCCAGGCAGTGCTCAGTTCAACAACTTTTGA





SEQ ID NO: 114



>ANC96859.1 phototropin, partial [Oedogoniumfoveolatum]



MSAPSGAPNVPAPAAQLTKVLAGLRHTFVVSDATLPDFPLVFASEGFLQMTGYTADEVLGHNCRFLQGEG





TDPKEVAKIREALKKGEPISVRLLNYRKDGTPFWNLLTMTPIHTPDGKVSKFIGVQVDVTSKTEGKAYEE





NKGMPLIVKYDARLRENVAKNIVEDVQTTVEKVELGERPKVHGPKAFPRVALDLATTVERIQQNFVICDP





TLPDCPIVFASDAFLELTEYSREEVLGRNCRFLQGKHTDAAAVAEIREAVHNGQELTVRLLNYTKSGRPF





WNMFTMAPMMDQDGTIRFFIGVQVDVTAQSKAQGEAAAWKKTPEVQAQAQLGHQAASAIGAALKMNATWV





ADPWSAIAGNVVRCKPHKSADSAYKALADISKKEGKVKLMHFRRVKQLGSGDVGLVDLVQLQGQEHQFAM





KTLDKWEMQERNKIQRVLTEVQILNQVDHPFLATLYCTIQTETHLHFIMEYCEGGELYGLLHSQPRKRLK





ESQVKFYAAEVLVALQYLHLLGYVYRDLKPENILLHSSGHVLLTDFDLSYAKGTTTPVLEERSVPKMQAK





TKNGKKVVVTPPQYVLVAEPQAKANSFVGTEEYLAPEVITAQGHSAGVDWWSFGILMYELLYGFTPFRGS





RRDETFENILKQPLSFPSNPPISDQCKNLISSLLVKEPAQRLGAKAGAEDIKAHPFFAGTNWALLRNETP





PYVPKQGKDPATPGSAQFNNF





SEQ ID NO: 115



>KT321737.1 Fritschiella tuberosa phototropin (PHOT) mRNA, partial cds



ATGGCAGACCCGAACGTCCAACCGGTGCCCGCGCCGGCAACGCAGCTCACCAAGGTCCTGGTTGGCCTGC





GGCACACTTTTGTCGTCGCTGATGCCACGCTGCCAGACCTCCCGCTGGTTTACGCCAGCGACGGGTTCTA





CCAGATGACGGGCTACGGCCCGGACGAGGTGCTGGGCCACAACTGCCGCTTCCTGCAAGGAGAGGGCACG





GACCCCAAGGAGGTGGCGAAGGTGCGGGCAGCCATCAAGAATGGCGAGCCCGTGAGCGTGCGCCTGCTCA





ACTACCGCAAGGACGGCACGCCCTTCTGGAACTTGCTCACCATGACGCCCATCAAGACGCCCGACGGCCG





CGTCTCCAAGATCGTGGGCGTGCAGGTCGACGTCACCAGCAAGACCGAGGGCAAGGCCGCGGCCGAGGCC





AAGGGCGTGCCGCTGCTGGTCAAGTACGACGCACGCCTGCGCGAGAACGTCGCCAAGAAGATCGTCGAGG





ACGTCACCACCGCCGTGCAGACCGCCGAGACCGGAGAGGACAAGGTCAAGGCGCAGGCGCCCAAGGCCTT





CCCGCGTGTGGCCATGGACCTGGCCACCACGGTGGAGCGCATCCAGCAGAACTTCTGCATCTGCGACCCC





ACGCTGCCCGACTGCCCCATCGTGTTCGCGTCGGACGCCTTCCTGGAGCTGACAGAGTACACGCGCGAGG





AGGTGCTGGGGCGCAACTGCCGCTTCCTGCAGGGGCCGGCCACGGACAAGCACACCATCGACGAGATCCG





GCAGGCCATCCGCATGGGCTCCGAGTGCACCGTGCGCGTGCTCAACTACACCAAGACAGGCCGCCCCTTC





TGGAACATGTTCACGCTGGCGCCCATGTGCGACCAGGACGGCACCATCCGCTTCTTCATCGGCGTCCAGG





TGGACGTGACGGCGCAGTCGGGGCAGCCGGGCATGGACGTGCCGCAGTGGTCACGCACCAAGTCGCAGGA





GGTGCAGACCGCCAAGCAGGGCCACCAGGCGGCCACCGCCATCTCGGCGGCGCTGCAGACCATGGGCTGG





CCCGCCAACCCGTGGGCGTCCATCCAGGGCGTCGTCGCGCGCCAGAAGCCGCACAAGCGCGGCGACCGCG





CGTTCCAGGCGCTGCGGGAGCTGCAGGAGCGTGAGGGCAAGCTCAAGCTGCTGCACTTCCGGCGCATCAA





GCAGCTGGGCACGGGCGACGTGGGCAACGTGGACCTGGTGCAGCTGCAGGGCACCGAGTTCCGCTTCGCG





ATGAAGACGCTGGACAAGCTGGAGATGCAGGAGCGCAACAAGGTGCAGCGCGTGCTCACAGAGGAGGGCA





TCCTGTCGCACGTCGACCACCCCTTCCTTGCCACCCTCTACTGCACCATCCAGACGGACACGCACCTGCA





CTTCGTCATGGAGTTCTGCGACGGCGGCGAGCTGTACGGCCTGCTCAACAGCCAGCCCAAGAAGCGGCTC





AAGGAGGCGCACGTGCAGTTCTACGCGGCGGAGGTGCTGCTGGCGCTGCAGTACCTGCACCTGCTGGGCT





ACATTTACCGCGACCTGAAGCCGGAGAACATCCTGCTGCAGGCGTCCGGCCACGTGCTGCTGACCGACTT





CGACCTCTCCTACGCGCAAGGCGTCACCGACGTCTCTCTGGAGAAGGTAGTCAAGCGGTCTCGCACTGGC





AAGGTGGTGCGGCGCGGCGCCGGCATCGAGAACTACACGCTGGTGGCGGAGCCGGAGGCGCGCGCCAACT





CTTTCGTGGGCACGGAGGAGTACCTGGCGCCCGAGGTGATCAACGCCAGCGGGCACGGCAGCCAGGTGGA





CTGGTGGTCCTTCGGCATCCTCATCTACGAACTCGTCTACGGCTTCACGCCCTTCCGCGGCTCCCGCCGC





GACGAGACCTTCGAGAACATCCTCAAGCGCGAGCTCACCTTCCCCCTCAAGCCCGAGATCAGCCCGGAGT





GCAAGTCGCTCATCTCGGCGCTGCTGGTCAAGGACCCCACGATGCGGCTGGGCTACAAATACGGCGCGGA





GGAGATCAAGAAGCACCCCTTCTTCGCCGGCATCGTCTGGCCCCTGCTGCGCCACCGCGCGCCCCCCTAC





GTCGTAGAGAACCAGCTGCCTGTGGGCGTGCCGCACGCCAATCAGCACTTTGACGACTACTAA





SEQ ID NO: 116



>ANC96862.1 phototropin, partial [Fritschiellatuberosa]



MADPNVQPVPAPATQLTKVLVGLRHTFVVADATLPDLPLVYASDGFYQMTGYGPDEVLGHNCRFLQGEGT





DPKEVAKVRAAIKNGEPVSVRLLNYRKDGTPFWNLLTMTPIKTPDGRVSKIVGVQVDVTSKTEGKAAAEA





KGVPLLVKYDARLRENVAKKIVEDVTTAVQTAETGEDKVKAQAPKAFPRVAMDLATTVERIQQNFCICDP





TLPDCPIVFASDAFLELTEYTREEVLGRNCRFLQGPATDKHTIDEIRQAIRMGSECTVRVLNYTKTGRPF





WNMFTLAPMCDQDGTIRFFIGVQVDVTAQSGQPGMDVPQWSRTKSQEVQTAKQGHQAATAISAALQTMGW





PANPWASIQGVVARQKPHKRGDRAFQALRELQEREGKLKLLHFRRIKQLGTGDVGNVDLVQLQGTEFRFA





MKTLDKLEMQERNKVQRVLTEEGILSHVDHPFLATLYCTIQTDTHLHFVMEFCDGGELYGLLNSQPKKRL





KEAHVQFYAAEVLLALQYLHLLGYIYRDLKPENILLQASGHVLLTDFDLSYAQGVTDVSLEKVVKRSRTG





KVVRRGAGIENYTLVAEPEARANSFVGTEEYLAPEVINASGHGSQVDWWSFGILIYELVYGFTPFRGSRR





DETFENILKRELTFPLKPEISPECKSLISALLVKDPTMRLGYKYGAEEIKKHPFFAGIVWPLLRHRAPPY





VVENQLPVGVPHANQHFDDY





SEQ ID NO: 117



>KT321742.1 Pediastrum duplex phototropin (PHOT) mRNA



ATGTCGCAACCAAGTGCATCGATACCAGCTGCGGCTGGGCAGCTGACCCAGGTGTTAGCTGGGCTGAAGC





ATACTTTCGTTGTGGCCGATGCAACGCTGCCAGACTGTCCCCTGGTGTTCGCTAGCGAAGGATTCTACCA





GATGACTGGCTATGGCCCTGATGAGGTTCTAGGGCACAACTGCCGCTTCTTGCAAGGAGAGGGCACTGAC





AAGAAGGAAGTTACAAAGCTGCGCCAAGCGATCAAGGATGGTGAGCCCATCAGCGTCCGTCTGCTGAACT





ACCGCAAGGATGGAACACCATTCTGGAACCTGCTGACCATGACCCCAATCAAGACACCTGATGGCAAGGT





GTCGAAGTTCGTGGGGGTGCAGGTGGATGTGACCAGTAAGACAGAGGGGAAGCTGCCCCACGAGAACCTG





CTGGTCAAGTATGATGCCCGCCTGCGTGACAACGTGGCCGTCAACATTGTAACAGACGTCACCAACGCTG





TGCAGAAGACAGAGACGGGGACCAACGCCCCGCTGAGTGTGATCCCTACAGGGATTGGGAAGCACGGCCC





CAAGGCGTTCCCCCGTGTGGCTATTGATCTGGCCACCACTGTGGAGCGCATCCAGCAGAACTTCTGTATC





TGTGACCCCACGCTACCGGATTGCCCTATTGTGTTTGCGTCTGATGCGTTCCTGGAGCTGACTGAGTATG





CTCGTGAGGAGGTGCTGGGCCGCAACTGCAGGTTCTTACAGGGCCCTGGCACAGACCCCAAGACCGTGCA





GGTGATCCGTGATGCCATCAAGACACGGGATGAGATCACGGTGCGCATCCTGAACTACACCCGCAGCGGG





AAGCCCTTCTGGAACATGTTCACCCTGGCCCCCATGAAGGACAGCAATGGGGAGACACGCTTCCTGGTGG





GAGTGCAGGTGGATGTGACTGCCCAGGGTGAAAAGGGTGACACCACCCTGCCCTCCTGGAACAAGACCAC





CAGTGAGGAGGTGGTGAAGGCGCAGCAGGGCAACCAGGCAGCCAGCCTTATCAGCAACGCACTGCAGAGC





ATGGGCTGGGGGGCCAACCCCTGGGCAGGCATCACAGGCACAGTTATGAGGAGGAAGCCTCACAAGGGTG





AGGACCAGGCCTATCAGACGCTGCTGAACCTCCAGGGGCGGGAGGGGAAGCTGAAGCTGGCTCACTTCAG





GCGGGTGAAGCAGCTGGGGGCGGGAGATGTGGGGCTGGTGGACCTGGTGCAGCTGCAGGGTACTGACTTG





AAGTTCGCCATGAAGACGCTGGACAAGTGGGAGATGCAGGAGCGCAACAAGGTGGCCCGCGTGCTGACGG





AGGAGAACATCCTGACTGTGGTGGACCACCCCTTCCTTGCCACCCTCTACTGCGCCATCCAGACAGACAC





ACACCTCCATTTCGTGATGGAGTACTGTGAGGGAGGGGAGCTGTATGGCCTGCTCAATGCACAGCCCAAG





AAGCGCTTGAAAGAGGCACATGTCAAGTTCTACGCTGCTGAGGTGCTGCTGGCTCTGCAGTACCTGCACC





TGCTGGGGTACATCTACCGCGACCTGAAGCCCGAGAACATCCTCCTCCACCACACTGGCCATGTACTGCT





CACTGACTTTGACCTCAGCTATGCACGTGGCACAGCCAGCGTTAAGATCCAGGCCACACCTAGTGAGGGG





GGCAAGCGGGTCAAATCTTCCAGCTGCACCAAGCCGCCAGAGGAGGCGGGGCCGGCACCGCATACTGCCC





CCAATGGGGACGAGCTGGTGCTGCTGGCAGAGCCTGCCGCCCGGGCGAACTCCTTTGTGGGGACAGAGGA





GTACCTGGCTCCTGAGGTCATTAATGCGGCTGGGCATGCAGCACCGGTGGATTGGTGGTCCTTTGGGATC





CTCATGTACGAGCTGCTGTATGGCTTCACGCCCTTCCGTGGTGCACGGCGTGAGGAGACGTTTGAGAACA





TCTTGCGTAATCCGCTGACCTTCCCCAGCAAGCCTGTGGTGTCGGAGGCTTGTCAAGATCTGATCCGGCA





GCTGCTGGTGAAGGACCCGGCAAAGCGGTTGGGGACGCGGGCGGGTGCGGAGGAGATCAAGAAGCATGAG





TTCTTCAAGGGGGTCAACTGGGCGCTGGTGCGGAATGAGCAGCCACCGTATGTGCCAAGAAAGGTGGCAG





CAGGAGGGAAGGAGGGCAGTAGTTTGAGTATGAATGCCAGTATGGATCAGGGGAGCGCTGGGTTTGACAA





CTACTGA





SEQ ID NO: 118



>ANC96867.1 phototropin [Pediastrum duplex]



MSQPSASIPAAAGQLTQVLAGLKHTFVVADATLPDCPLVFASEGFYQMTGYGPDEVLGHNCRFLQGEGTD





KKEVTKLRQAIKDGEPISVRLLNYRKDGTPFWNLLTMTPIKTPDGKVSKFVGVQVDVTSKTEGKLPHENL





LVKYDARLRDNVAVNIVTDVTNAVQKTETGTNAPLSVIPTGIGKHGPKAFPRVAIDLATTVERIQQNFCI





CDPTLPDCPIVFASDAFLELTEYAREEVLGRNCRFLQGPGTDPKTVQVIRDAIKTRDEITVRILNYTRSG





KPFWNMFTLAPMKDSNGETRFLVGVQVDVTAQGEKGDTTLPSWNKTTSEEVVKAQQGNQAASLISNALQS





MGWGANPWAGITGTVMRRKPHKGEDQAYQTLLNLQGREGKLKLAHFRRVKQLGAGDVGLVDLVQLQGTDL





KFAMKTLDKWEMQERNKVARVLTEENILTVVDHPFLATLYCAIQTDTHLHFVMEYCEGGELYGLLNAQPK





KRLKEAHVKFYAAEVLLALQYLHLLGYIYRDLKPENILLHHTGHVLLTDFDLSYARGTASVKIQATPSEG





GKRVKSSSCTKPPEEAGPAPHTAPNGDELVLLAEPAARANSFVGTEEYLAPEVINAAGHAAPVDWWSFGI





LMYELLYGFTPFRGARREETFENILRNPLTFPSKPVVSEACQDLIRQLLVKDPAKRLGTRAGAEEIKKHE





FFKGVNWALVRNEQPPYVPRKVAAGGKEGSSLSMNASMDQGSAGFDNY





SEQ ID NO: 119



>Volvox carteri f. nagariensis phototropin



ATGGCAGGGGTACCCTCCCCCGCCAGCCAGCTCACGAAGGTGCTGGCCGGCCTGCGGCATACGTTTGTCG





TTGCGGATGCAACACTCCCGGATTGCCCCCTGGTGTACGCCAGTGAAGGGTTCTACGCAATGACAGGATA





CGGTCCTGATGAGGTTCTTGGACATAACTGCCGGTTTCTGCAGGGCGAGGGTACGGACCCCAAGGAGGTT





CAAAAGATCCGCGAGGCCATCAAGAAGGGGGAGGCGTGCTCGGTGCGCCTGCTCAACTACCGCAAAGATG





GCACGCCGTTCTGGAACCTGCTCACGGTGACGCCCATCAAGACTCCGGACGGCAAGGTGTCCAAGTTTGT





GGGTGTGCAGGTCGATGTGACCAGCAAGACGGAGGGCAAGGCGCTCGCGGACAACTCCGGCGTGCCCCTG





CTCGTCAAGTACGACCACCGTTTGCGCGAAAACGTGGCCAAGAAGATTGTGGATGATGTCACCATTGCCG





TGGAGAAGGCGGAGGGTGTGGAACCTGGGGCAGCCTCGGCCGCCGCCACGGCGGCTGGTCAGGGAAAGCC





GCAGGGCGTCCGCGGCGCGGCCCCCAAGTCCTTTCCTCGTGTGGCTTTGGATCTGGCCACCACCGTGGAG





CGCATCCAGCAGAATTTCGTCATTTCAGATCCAACATTGCCGGACTGCCCCATCGTCTTTGCTTCGGATG





CATTTTTGGAGCTGACTGGCTATTCGCGCGAGGACGTGCTGGGACGTAACTGCCGCTTTCTACAGGGCCC





CGGTACTGATTCAGCCACCGTGGATCAGATCCGTGAGGCCATCCGCACGGGTACGGAGATCACGGTCCGC





ATCCTGAACTACACCAAGCAGGGCCGACCCTTCTGGAATATGTTCACCATGGCGCCCATGAGAGATCAGG





ACGGCTCAGTGCGCTTCTTTGTGGGGGTGCAGGTAGACGTGACTGCTCAGTCCGCGACGCCGGACAAGAC





TCCCACGTGGAACAAGACTCCCTCCGCGGAGGAGGAGAAGGCCAAGCAGGGAGCCGTGGCGGCGTCCATG





ATTAGCAGCGCGGTTATGGGCATGGCCACACCCATGGCCAGCAACCCCTGGGCCGCCATCAACGGGGAGG





TCATGCGGCGTAAGCCCCACAAGAGCGATGATAAGGCCTATCAGGCGCTGTTGGCGCTGCAGCAGCGTGA





CGGCAAGTTGAAGCTGATGCACTTCCGGCGTGTGAAGCAGCTAGGGGCGGGAGATGTGGGTCTGGTGGAC





CTGGTGCAGCTGCAGGGCACGGACTTCAAGTTCGCCATGAAGACCCTGGACAAGTTCGAGATGCAGGAGC





GCAACAAGGTGCCCCGTGTGCTGACCGAGTGCTCTATTCTGGCGGCTGTGGACCACCCCTTCCTGGCCAC





CCTCTACTGCACCATTCAGACCGACACGCACCTGCACTTCGTCATGGAGTACTGCGATGGTGGCGAGCTG





TACGGCCTGCTGAACAGTCAGCCCAAGAAGAGGCTCAAGGAGGAGCATGTCCGGTTTTACGCGGCGGAGG





TCCTCCTGGCCCTGCAGTACCTGCACCTACTCGGCTACGTGTACAGGGACCTAAAGCCCGAGAACATCCT





TCTTCACCACTCGGGGCACGTGCTATTGACGGACTTTGACTTGTCGTACAGCAAGGGCGTTACGACACCG





CGGCTAGAGCGCGTGGCGGCGCCGGACGGCAGCGGTGGCGGCTCGGCGCCGGCGCCGGCGGGGTCGGCGG





GGTCAAAGTCTTCGCGCAAGTCCTTCCTGCTGCTGGCGGAACCTGTGGCCCGTGCGAACAGTTTCGTGGG





CACCGAGGAGTACTTGGCACCGGAGGTCATCAACGCGGCGGGACACGGATCGGGTGTCGACTGGTGGTCG





CTAGGCATCTTGATCTACGAGCTGCTGTACGGCACTACACCCTTTCGTGGATCAAGGCGGGACGAGACCT





TTGACAACATCATCAAGTCACAGCTGCGCTTCCCGGCCAAACCTGCTGTCAGTGAGGAGGGCCGCGACCT





CATCGAGAAGCTTCTGGTCAAGGACGTGAGCCGTCGCCTCGGCAGTCGTACAGGGGCCAATGAGATTAAG





TCGCATCCCTGGTTCAAGAGCATCAATTGGGCGCTGCTGCGCAACGAGCCGCCGCCGTACGTGCCGCGCC





GGGCATCCAAGACGCAGGGCGGTGGTGGCGGCGGCGGCGGCGGCGCGGCGTTCGACAACTACTGA





SEQ ID NO: 120



>EFJ48666.1 phototropin [Volvox carteri f. nagariensis]



MAGVPSPASQLTKVLAGLRHTFVVADATLPDCPLVYASEGFYAMTGYGPDEVLGHNCRFLQGEGTDPKEV





QKIREAIKKGEACSVRLLNYRKDGTPFWNLLTVTPIKTPDGKVSKFVGVQVDVTSKTEGKALADNSGVPL





LVKYDHRLRENVAKKIVDDVTIAVEKAEGVEPGAASAAATAAGQGKPQGVRGAAPKSFPRVALDLATTVE





RIQQNFVISDPTLPDCPIVFASDAFLELTGYSREDVLGRNCRFLQGPGTDSATVDQIREAIRTGTEITVR





ILNYTKQGRPFWNMFTMAPMRDQDGSVRFFVGVQVDVTAQSATPDKTPTWNKTPSAEEEKAKQGAVAASM





ISSAVMGMATPMASNPWAAINGEVMRRKPHKSDDKAYQALLALQQRDGKLKLMHFRRVKQLGAGDVGLVD





LVQLQGTDFKFAMKTLDKFEMQERNKVPRVLTECSILAAVDHPFLATLYCTIQTDTHLHFVMEYCDGGEL





YGLLNSQPKKRLKEEHVRFYAAEVLLALQYLHLLGYVYRDLKPENILLHHSGHVLLTDFDLSYSKGVTTP





RLERVAAPDGSGGGSAPAPAGSAGSKSSRKSFLLLAEPVARANSFVGTEEYLAPEVINAAGHGSGVDWWS





LGILIYELLYGTTPFRGSRRDETFDNIIKSQLRFPAKPAVSEEGRDLIEKLLVKDVSRRLGSRTGANEIK





SHPWFKSINWALLRNEPPPYVPRRASKTQGGGGGGGGGAAFDNY





SEQ ID NO: 121



>KT321740.1 Tetradesmus dimorphus phototropin (PHOT) mRNA



ATGGCTGGACATGTCCCCGCTGCTGCATCGCAGCTGACACAAGTGCTGGCAAAGCTCAGGCACACCTTTG





TGGTGGCAGATGCTACGCTGCCTGACTGCCCTCTGGTGTATGCCAGTGAATCGTTCTACCAGATGACTGG





CTATGGGCCTGATGAGGTCCTGGGGCACAACTGCCGCTTCCTGCAAGGCGAGGGCACAGATCCGAAGGAG





GTGGCCAAGCTGCGCAATGCTATCAGGGCTGGCGAGCCGGTCAGCTGCAGGCTGCTCAATTACCGCAAGG





ATGGCACGCCCTTCTGGAACCTGCTGACAATGACACCCATCAAGACGCCTGATGGCAAGGTCTCCAAGTT





TGTGGGCGTGCAGGTGGATGTGACCAGCAAGACGGAGGGCAAGGTGGACAACAGCCACATGCTGGTCAAG





TACGATGCACGCCTGCGCGACAATGTGGCATCTGGCGTGGTGCAGGAGGTCACAGACACAGTGCAGATGA





CTGAGACGGGCACGCACATCAACCCTGGCATGATTCCCAGCGGCATCGGCAAGGTGGGGCCCAAGGCCTT





CCCCCGCGTGGCCATGGACCTGGCCACCACTGTGGAGCGCATCCAGCAGAACTTTGTCATCTGCGACCCC





AGCCTGCCGGACTGCCCGATTGTGTTTGCCAGTGATGCCTTCCTGGACCTGACGGAGTTCCCGCGCGAGG





AGGTGCTTGGGCGCAACTGCAGGTTCCTGCAGGGCCCGGGCACGGACCCCGGCACGGTGCAGACCATCCG





CGACGCGATCAAGAGCGGCGACGAGATCACCGTGCGCATCCTCAACTACAAGCGCAGCGGCACGCCCTTC





TGGAACATGTTCACGCTGGCGCCCATGAAGGACAGCGACGACACCATCCGCTTCCTGGTCGGCGTGCAGG





TGGACGTCACAGCGCAGGGCGCCGCCGGCGACACCGCCGCGCCAGCATGGACCAAGTCGCCCAGCGACGA





GGCCGAAAAGGTGCAGCAGGGCAACCAGGCAGCCTCCCTCATCAGCTCAGCGCTGCAGAACCTCGGCTGG





GGAGCCAGCCCCTGGGCTCAAATCAGCGGCAGCATTATGCGGGCGAAGCCGCACAAGGCCAGCGATGCAG





CCTTCCAGGCGCTGCTGCGGCTGCAGCAGCGCGAGGGGCAGCTGCGGCTGAACCACTTCCGGCGCGTGAA





GCAGCTGGGGGCGGGAGATGTGGGGCTGGTAGACCTGGTGCAGCTGCAGGGCACGGACATGAAGTTTGCC





ATGAAGACGCTGGACAAGTGGGAGATGCAGGAGCGCAACAAAGTGGCGCGCGTGCTGACAGAAGAAAGCA





TCCTCACAGCCATCGACCACCCCTTCCTGGCAACCTGCTACTGCTCCATCCAGACAGACTCCCACCTGCA





CTTTGTGATGGAATTCTGCGAGGGGGGCGAGCTGTACGGGCTGCTGAACGCGCAGCCACGCAAGCGGCTC





AAGGAGTCACACGTCAAGTTTTACGCTGCTGAGGTGCTCATCGCGCTGCAGTACCTGCACCTGCTGGGCT





ACATCTACCGCGACCTCAAGCCAGAGAACATCCTGCTGCACCACACCGGCCACGTGCTGCTGACAGACTT





TGACCTGAGCTACGCGCGCGGCACCACCACGCCGCGCATGCAGGCCACTAACGCGGAGTGCACGCCGCGC





CACAGCAGCAGCTGCACCAAGGTGGAGGAGCCGCTGCAGCCGGGCCAGGCGCCCAATGGCGACGAGCTGC





TGCTGCTGGCTGAGCCTGTGGCTCGCGCCAACAGCTTCGTGGGCACTGAGGAGTACCTGGCGCCCGAGGT





CATCAACGCAGCTGGCCACGCTGCGCCTGTTGACTGGTGGAGCTTTGGCATCCTCATCTACGAGCTCATG





TTTGGCACCACGCCCTTCAGGGGTGCGCGGCGCGAGGAGACGTTTGAAAACGTGCTGCGCAACCCGCTCA





CATTCCCTTCCAAGCCAGCCATCAGCCCAGAAGCGCAAGACCTCATGAGCCAGCTGCTCGCAAAGGACCC





GGCGCAGCGCTTGGGCACACGCGCAGGCGCAGAGGAGATCAAAAAGCACCCCTGGTTTGAGGGCATCAAT





TGGGTGCTTCTGCGGCACCAGCAGCCGCCGTATGTGCCGCGTATGTGCCGCGCCGCGCTGTTGCTGCTGC





TGCAAGTGGTGCTGCTGGCAGCGGCAACGCGAGCGCGGACGGCGTGCCGGGCGCGGCGGGCGGCGCCCGC





GGCG





SEQ ID NO: 122



>ANC96865.1[Tetradesmusdimorphus]



MAGHVPAAASQLTQVLAKLRHTFVVADATLPDCPLVYASESFYQMTGYGPDEVLGHNCRFLQGEGTDPKE





VAKLRNAIRAGEPVSCRLLNYRKDGTPFWNLLTMTPIKTPDGKVSKFVGVQVDVTSKTEGKVDNSHMLVK





YDARLRDNVASGVVQEVTDTVQMTETGTHINPGMIPSGIGKVGPKAFPRVAMDLATTVERIQQNFVICDP





SLPDCPIVFASDAFLDLTEFPREEVLGRNCRFLQGPGTDPGTVQTIRDAIKSGDEITVRILNYKRSGTPF





WNMFTLAPMKDSDDTIRFLVGVQVDVTAQGAAGDTAAPAWTKSPSDEAEKVQQGNQAASLISSALQNLGW





GASPWAQISGSIMRAKPHKASDAAFQALLRLQQREGQLRLNHFRRVKQLGAGDVGLVDLVQLQGTDMKFA





MKTLDKWEMQERNKVARVLTEESILTAIDHPFLATCYCSIQTDSHLHFVMEFCEGGELYGLLNAQPRKRL





KESHVKFYAAEVLIALQYLHLLGYIYRDLKPENILLHHTGHVLLTDFDLSYARGTTTPRMQATNAECTPR





HSSSCTKVEEPLQPGQAPNGDELLLLAEPVARANSFVGTEEYLAPEVINAAGHAAPVDWWSFGILIYELM





FGTTPFRGARREETFENVLRNPLTFPSKPAISPEAQDLMSQLLAKDPAQRLGTRAGAEEIKKHPWFEGIN





WVLLRHQQPPYVPRMCRAALLLLLQVVLLAAATRARTACRARRAAPAA





SEQ ID NO: 123



>KT321746.1 Pedinomonas tuberculata phototropin (PHOT) mRNA, partial cds



ATGCACAAACCGAATCTGGAGGGCGTGAAGGTCCAGCTTCCTCCCCAAGCTGGACAACTATCCAAATTAT





TAGAGGGCTTGAAGCATACATTCGTAGTGTCAGATGCTACCCTGCCTGACTGCCCGCTCGTTTTCGCTTC





GGAAAGTTTCTACAAAATGACCGGATTCAACGCTGATGAAATTCTCGGCAAAAATTGTCGTTTCCTACAA





GGAGAGCAAACAGATCGTGAAACAGTAGCAAAGATTCGAGCAGCAATTAACAAGGGGGATGGAATATCCT





GCCGCCTCCTGAACTACCGAAGGGACGGCACTCCCTTCTGGAACCTGCTCACCATCACCCCTATCAAGAA





CGCGCAGGGCAAGGTCACCAAATTCGTCGGAGTACAAGTAGACGTGACCTCGAAGACCGAGGGCAAAGTA





GAGACGGAGAGGTCGCTGGTGCACTACGATGACCGACTCCGTCAGACTGTGGCACATAAAGTAGTAACGG





ACGTCACTATGGCCGTAGAGGACGCTGAGATGTCTATGGAGGGAGGCAAGAAGGCCGCCCCTAAAGCGTT





CCCCCGTGTCGCTATTGATCTGGCCACCACTGTGGAACGTGCGCAGCAGAATTTCGTAATCGCGGACCCT





AAATTGCCCGATTGCCCTATCGTGTTCGCCTCCGATCAGTTCTTAGATTTGACTGGGTATGCACGAGAGG





AGGTGCTAGGGAGAAACTGCAGATTCCTACAGGGTCCTGATACTGACCCTAAGACCGTGGCTGAGATCAG





AGATGCCCTAGCTAACAATAAAGAGGTGACGGTGCGTATCCTCAACTACACAAAATCCGGCAAGCCCTTC





TGGAACTTGTTCACCTTAGCACCTATTCAAGATATCGATGGCACCGTAAGGTTCTTCGTGGGAGTCCAGG





TGGACGTGACTGATAAGGAGGCGCAGAAGGCGATGGAGGCTCAGGCTGAGGTGATGGCCCTGCAGTCCGC





AGTGAAGGACCTGCAGTCAGGCTGGAAGGACGATCCATGGAAGGGCCTCAGCACCGGGCTGTGTAAGAAC





AAGCCACATACCGGCGTTACAGAGCCCTACAAGGCCCTGGAGGCTATCCAGAAGCGTGACGGCGCTCTGG





GTCTGCAGCACTTCAAGCGTATTAAGCAGCTAGGCAATGGTGATGTGGGTATGGTGGACCTGGTCCAGCT





GGACGGTACCACCTTCAAATTCGCCATGAAAACTCTCGACAAAAGGGAGATGCTGGAGCGCAATAAGGTT





CACCGTGTGATGACTGAGATCAAGTGTCTAGGTATGGTCGACCACCCTTTTGTGGCCTGCATGTACGCCG





TGCTGCAGACCAAGACCCACCTGCACTTCATCCTCGAATACTGCGAGGGGGGCGAGGTATACTCCTTATT





GAACGCGCAGCCTAACAAGAGGCTCAAGGAGCAGCACGTCCAGTTCTATGCGGCCGAGGTACTTATCGCC





CTGCAGTACCTGCATCTGATGGGAATTATCTACAGAGATCTCAAGCCCGAGAACTTGCTTATCCGCGATG





ACGGCCACGTGATCATGACGGACTTCGATCTGTCTTATGTGAAGGGTACTCTGGAGTGCCGCGTGGATCA





GGTACAGACCTTCGTCCCAGCCAAGAACAACTCGAACCGAAAGATCAAGATCAACATACCCACACTGGTG





GCAGAGCCCAAGGCGCGGGCTAACTCGTTCGTTGGCACAGAGGAATACCTAGCCCCTGAGGTGATCAACG





CCGGGGGGCACTCCTCCGGGGTGGACTGGTGGTCGTTTGGTATCCTGATGTACGAGCTGCTGTATGGCAC





CACCCCTTTCCGCGGCCCCCGTCGAGACGACACGTTTGAGAACATCTTGTCAGCCCCCCTTAACTTCCCC





AGCAAGCCTCAGGTGTCGCCTCAGTGCATCGACCTGATCCAGCAGCTGCTACATAAGAACCCGGCTAAGA





GACTAGGAGCACAAAGAGGAGCAGAAGAAATCAAGGCTCATCCCTTCTGGAAGGGCATTAACTGGGCGCT





ATTGCGGAGAGAGAGGCCTCCCTTCGTGCCTAAGAAGGGAGGAGTGGGAGCGCCGGCAACCGGCGGCAGC





TCATCCTCGGGGGGAGTCCCCGGCCCGG





SEQ ID NO: 124



>ANC96871.1 phototropin, partial [Pedinomonastuberculata]



MHKPNLEGVKVQLPPQAGQLSKLLEGLKHTFVVSDATLPDCPLVFASESFYKMTGFNADEILGKNCRFLQ





GEQTDRETVAKIRAAINKGDGISCRLLNYRRDGTPFWNLLTITPIKNAQGKVTKFVGVQVDVTSKTEGKV





ETERSLVHYDDRLRQTVAHKVVTDVTMAVEDAEMSMEGGKKAAPKAFPRVAIDLATTVERAQQNFVIADP





KLPDCPIVFASDQFLDLTGYAREEVLGRNCRFLQGPDTDPKTVAEIRDALANNKEVTVRILNYTKSGKPF





WNLFTLAPIQDIDGTVRFFVGVQVDVTDKEAQKAMEAQAEVMALQSAVKDLQSGWKDDPWKGLSTGLCKN





KPHTGVTEPYKALEAIQKRDGALGLQHFKRIKQLGNGDVGMVDLVQLDGTTFKFAMKTLDKREMLERNKV





HRVMTEIKCLGMVDHPFVACMYAVLQTKTHLHFILEYCEGGEVYSLLNAQPNKRLKEQHVQFYAAEVLIA





LQYLHLMGIIYRDLKPENLLIRDDGHVIMTDFDLSYVKGTLECRVDQVQTFVPAKNNSNRKIKINIPTLV





AEPKARANSFVGTEEYLAPEVINAGGHSSGVDWWSFGILMYELLYGTTPFRGPRRDDTFENILSAPLNFP





SKPQVSPQCIDLIQQLLHKNPAKRLGAQRGAEEIKAHPFWKGINWALLRRERPPFVPKKGGVGAPATGGS





SSSGGVPGP





SEQ ID NO: 125



>XM_002506242.1 Micromonas commoda blue light receptor mRNA



ATGAGCGAGCCGGCTCCCGCCGTCGAGCCCTCGGCGGCTGCGCCTTCGGACGAGGTGCCAAAATTCGACG





AGACCAAGACGCACGAGAGCATCGACATCGGCTTCACGGTGGACGCCGGCGGCGGCATCAGCGCGCCGCA





GGCGAGCAAGGACCTGACCAACGCGCTGGCGTCGCTCCGTCACACCTTTACCGTGTGCGACCCGACGCTC





CCGGACTGCCCCATCGTCTACGCGTCGGACGGGTTCCTGAAGATGACCGGATACCCCGCCGAGGAGGTCC





TCAACCGCAACTGCAGGTTCCTCCAGGGGGAGGAGACGAACATGGACGACGTGCGCAAGATATCCGAGGC





GGTCAAGAAGGGCGAGAGGATCACCGTCCGCCTGCTCAATTACCGCAAGGATGGCCAGAAGTTCTGGAAC





CTGCTCACCGTCGCGCCGGTCAAGCTGCCGGACGGGACCGTCGCCAAGTTCATCGGCGTGCAGGTGGACG





TCAGCGACAGGACCGAGGGCAACGCGGATAACTCCGCGGCGATGAAGGACACCAAAGGTCTCCCCCTGCT





CGTCAAGTACGATCAGCGGTTGAAGGATCAGAACTTCAACAGGGTGGACGACGTGGAGAAGGCGGTGCTG





ACGGGCGAGGGCGTCGACCTCGACGCGAACCCGGTGGCGGCGAACAGAGGAGGCCTCGACATGGCCACCA





CCCTGGAGCGCATCCAGCAGTCCTTCGTCATCGCCGACCCGTCTTTGCCCGACTGCCCCATCGTGTTCGC





GTCTGACGGGTTTTTGGACTTCACCGGGTACACCCGCGAGGAGATCTTGGGGCGGAACTGCCGGTTCCTG





CAAGGTCCGCGGACCGATCGGAGCGCGGTGGCGGAGATTCGCAAGGCGATCGACGAGGGCAGCGAGTGCA





CCGTCCGGCTCTTAAACTACACCAAGCAGGGGAAGCCGTTTTGGAACATGTTCACCATGGCGCCCGTGCG





GGACGAGCAGGGAAACGTCCGTTTCTTCGCGGGGGTTCAGGTTGACGTCACGGTGTACACCCGCGAGGAG





GGCGAGAAGGACGCCACGAGCTTGGACCTCGTGAAGGAGTACGACAAGGACAGGGACGAGAGCTCGTTCG





ATCGACAGATGAAGGAGTACTCGAAGCAGACGGCGAGCGCGGTTGCGTCGGGGGTTGCCGGGCTTAAAGA





CGGGGATTTGCCCTGGAAGAACATGGTGGGCATCCTGCGGACGCCGCAGCCGCACCAGCGGCACGATCCC





AACTGGGTGGCGCTCAAGGCGCGAGTGGACAAGCACGAGGCGGAGGGCAAGGTTGGAAGGCTGTCGCCGG





ATGATTTCGTGCCGCTGAAGCGGCTAGGCAACGGCGACGTGGGCAGCGTCCACCTGGTCCAGCTCGCGGG





GACCAATCGGCTGTTCGCGATGAAGATACTGGTCAAGCAGGAGATGCACGAAAGGAACAAGCTGCACAGG





GTCCGGACGGAGGGTCAGATTTTGGAGACGGTGGATCACCCCTTCGTCGCGACGCTGTACGCCGCGTTTC





AGACTGACACGCACCTGTACTTTGTGCTCGAGTACTGCGAAGGCGGCGAGCTGTACGAGACGCTGCAGAA





GGAACCGGAGAAGCGATTTCCGGAGACGATCGCGAAGTTCTACGCCGCGGAGGTTCTCGTCGCGCTGCAG





TACCTCCACCTCATGGGATTCATCTACCGCGACCTCAAGCCGGAGAACATCCTCCTTCGCAGGGACGGGC





ACATCATCGTGACCGACTTTGACCTCAGCTATTGCGCCTCGTCCAGAGCGCACGTCATCATGAAGGAGGG





GCGAGCGCCCGGCGCGAGGGCGAGGAACCGCAGGGTTTCGCAGCGGCGGTCGTTCGCGGGAGGCGGGCGT





CCCTCCGTCGCCATCGATGTTGGAGGGAGCGGGAAGCCGCCCGGCGAAAACGCGTCAGGTCGGTCGCCCC





GACAATCGCAGATGTCCATCGACGCCACACACAACGGCGGCGTCGCCATACCCGGCGCGTCGCCAAAATC





CGCCGGCCCCGGGCTCGACATGATCGCGTGCGGCACGTTCCTGTCCCCGAACGGCGCCAACAAGTCGGGG





AAGTTTCCGCAGATCATCGCCGAGCCCTTCGCGTACACAAACTCTTTCGTCGGCACGGAGGAGTACCTGG





CGCCCGAGGTTCTCAACTCGACGGGTCACACGAGCTCGATCGACTGGTGGGAGCTCGGCATCTTCATCCA





CGAGATGGTGTTCGGGACGACGCCGTTTCGGGCGAACAAGCGCGAGCAGACCTTCCACAACATCGTCCAC





CAGCCCCTGGACTTTCCGTCGACGCCGCCGGTGAGCGGCGAGCTGAAGGATCTGCTTCGGCAGTTGCTCC





AGCGCGATCCCAGCGTCAGGTTGGGGACGCAGGGCGGCGCGGAGGAGGTCAAGGCGCACCCGTTCTTTCG





GAACGTGGACTGGGCGCTGCTGCGGTGGGCGAAGGCGCCGTTGGCGGAGAAGATCGCGAGGAGGATGGCG





AGGGCGAGCGGGGCGGAGGCGGCGAGCGCGGCGGTGGACGCAGGGGGCGGCGGCGACGACGACGAAATGT





TTCAGATGGACGTCGAGCAGTGA





SEQ ID NO: 126



>XP_002506288.1 Phototropin-Micromonas commoda



MSEPAPAVEPSAAAPSDEVPKFDETKTHESIDIGFTVDAGGGISAPQASKDLTNALASLRHTFTVCDPTL





PDCPIVYASDGFLKMTGYPAEEVLNRNCRFLQGEETNMDDVRKISEAVKKGERITVRLLNYRKDGQKFWN





LLTVAPVKLPDGTVAKFIGVQVDVSDRTEGNADNSAAMKDTKGLPLLVKYDQRLKDQNFNRVDDVEKAVL





TGEGVDLDANPVAANRGGLDMATTLERIQQSFVIADPSLPDCPIVFASDGFLDFTGYTREEILGRNCRFL





QGPRTDRSAVAEIRKAIDEGSECTVRLLNYTKQGKPFWNMFTMAPVRDEQGNVRFFAGVQVDVTVYTREE





GEKDATSLDLVKEYDKDRDESSFDRQMKEYSKQTASAVASGVAGLKDGDLPWKNMVGILRTPQPHQRHDP





NWVALKARVDKHEAEGKVGRLSPDDFVPLKRLGNGDVGSVHLVQLAGTNRLFAMKILVKQEMHERNKLHR





VRTEGQILETVDHPFVATLYAAFQTDTHLYFVLEYCEGGELYETLQKEPEKRFPETIAKFYAAEVLVALQ





YLHLMGFIYRDLKPENILLRRDGHIIVTDFDLSYCASSRAHVIMKEGRAPGARARNRRVSQRRSFAGGGR





PSVAIDVGGSGKPPGENASGRSPRQSQMSIDATHNGGVAIPGASPKSAGPGLDMIACGTFLSPNGANKSG





KFPQIIAEPFAYTNSFVGTEEYLAPEVLNSTGHTSSIDWWELGIFIHEMVFGTTPFRANKREQTFHNIVH





QPLDFPSTPPVSGELKDLLRQLLQRDPSVRLGTQGGAEEVKAHPFFRNVDWALLRWAKAPLAEKIARRMA





RASGAEAASAAVDAGGGGDDDEMFQMDVEQ






EXAMPLES

Certain embodiments of the invention will be described in more detail through the following examples. The examples are intended solely to aid in more fully describing selected embodiments of the invention, and should not be considered to limit the scope of the invention in any way.


Example 1
Growth of Chlamydomonas Reinhardtii


Chlamydomonas reinhardtii parental strains (cw15 and UV4) and the phototropin knockout (PHOT K/O) mutants (CW15 and A4) were grown at 25° C. in 250 mL Erlenmeyer flasks containing 100 mL of High-Salt (HS) or Tris-Acetate-Phosphate (TAP) media and shaken at 150 rpm (world wide web at chlamy.org/media.html). Cultures were typically inoculated from a log phase culture using 1 mL of cells. Flasks were illuminated using fluorescent light at the light intensities as indicated for each experiment.


Example 2
Measurement of Photoautotrophic Growth and Biomass Estimation

Photoautotrophic growth of the parent strains CW15 and UV4) and the phototropin knock out mutants (G5 and A4) was measured in environmental photobioreactors (“ePBRs”) (obtained from Phenometrics, Inc.) in 500 mL of liquid HS media. All experiments were done in triplicates for each time point and each treatment. Light intensity was programmed for a 12 h sinusoidal light period with a peak mid-day intensity of 2,000 μmol photons m−2 s−1. Temperature was a constant 25° C., and the ePBRs were stirred with a magnetic stir bar at 200 rpm. Filtered air was bubbled constantly through the growing cultures. The optical density of the cultures was monitored on a daily basis at 750 nm using a Cary 300 Bio UV—Vis spectrophotometer (Agilent). After completion of growth measurements, the total contents of individual ePBRs were harvested by centrifugation at 11,000 rpm for 15 min. Cell pellets were frozen immediately in liquid N2 and later freeze-dried using a Microprocessor Controlled Lyophilizer (Flexi-Dry). After drying, pellets were weighed for total biomass.


Example 3
Measurement of Chlorophyll Fluorescence

For Chl fluorescence induction analysis, cell suspensions of the parental wild-type and transgenic Chlamydomonas strains were adjusted to a Chl concentration of ˜2.5 pg/mL. Quenching of Chl fluorescence was measured using the FL-3500 fluorometer (Photon System Instruments) (Kaftan, Meszaros et al. 1999). The cells were dark adapted for 10 min prior to the measurement. Chl fluorescence was induced using non-saturating continuous illumination and Chl fluorescence levels were measured every 1 μs using a weak pulse-modulated measuring flash. For the state transition experiments, low light grown cultures were dark adapted or pre-illuminated with 715 nm light for 10 min prior to the induction of Chl fluorescence. The actinic flash duration for this experiment was set to 50 μs and Chl fluorescence was measured every 1 μs.


Example 4
Measurement of Photosynthetic Oxygen Evolution

CO2-supported rates of oxygen evolution were determined for low light (50 μmol photons m−2 s−1) HS grown log-phase cultures (0.4-0.6 OD750 nm) using a Clark-type oxygen electrode (Hansatech Instruments). Cells were re-suspended in 20 mM HEPES buffer (pH 7.4) and air-saturated rates of oxygen evolution were measured as a function of light intensity (650 nm) at 50, 150, 300, 450, 600, 750 and 850 μmol photons m−2 s−1. The same experiment was repeated in the presence of 10 mM NaHCO3. Light saturation curves were normalized on the basis of Chl as well as cell density (A750 nm). Chl was determined by method described by Arnon (Arnon 1949).


Example 5
Measurement of Pigment Content by HPLC


Chlamydomonas cultures were grown at low (50 μmol photons m31 2s−1) and high (saturating) light (500 μmol photons m31 2s−1) intensities for 5 days in HS media in shaker flasks. Cells were centrifuged at 3,000 rpm for 3 min and immediately frozen in liquid nitrogen and lyophilized. Carotenoids and chlorophylls were extracted with 100% acetone in the dark for 20 min. After incubation samples were centrifuged at 14,000 rpm for 2 min in a microfuge and the supernatant was transferred to a glass tube and dried under vacuum. The dried samples were re-suspended in 1 mL of acetonitrile:water:triethylamine (900:99:1, v/v/v) for HPLC analysis. Pigment separation and chromatographic analysis were performed on a Beckman HPLC equipped with a UV-Vis detector, using a C18 reverse phase column at a flow rate of 1.5 ml/min. Mobile phases were (A) acetonitrile/H20/triethylamine (900:99:1, v/v/v) and (B) ethyl acetate. Pigment detection was carried out at 445 nm with reference at 550 nm (Tian and DellaPenna 2001). Individual algal pigments were identified on the basis of their retention times and optical absorbance properties and quantified on the basis of their integrated absorbance peaks relative to known carotenoid standards. Carotenoid standards were purchased from DHI, Denmark. Pigments were standardized on the basis of dry weight of three replicates.


Example 7
Transmission Electron Microscopy

Cells were prepared for electron microscopy by immobilizing cells in 3% sodium alginate (w/v) and the alginate beads were then solidified by incubation in cold 30mM CaCl2 for 30min. We used alginate encapsulated algal cells to keep cells intact as well as to protect from direct and harmful effect of chemicals during fixation processes. These cells were fixed using 2% glutaraldehyde for 1.5-2 hours and after fixation, these cells were post fixed in buffered 2% osmium tetroxide for 1.5 hours. After dehydration these cells were embedded in Spurr's resin. Thin sections were stained with uranyl acetate and lead citrate. LEO 912 transmission electron microscope was used to view and collect images at 120 kv and a Proscan digital camera.


Example 8
Transcriptome Analysis

Total RNA was extracted from 100 mg of cells/sample, flash frozen in liquid nitrogen, grown at high light (500 μmol photons m31 2s−1) intensities for 5 days in HS media in shaker flasks) using the Direct-zol RNA-miniprep kit (ZYMO, P/N 2051) according to the manufacturer's instructions. Each total RNA sample was enriched for mRNA by hybridizing the poly(A) tail to oligo d(T)25 probes covalently coupled to magnetic beads, followed by elution (NEB, P/N S1419S). The enriched mRNA fractions were prepared for Illumina sequencing using the ScriptSeq V.2 RNA-seq Library Preparation Kit (Epicentre, P/N SSV21106) and sequenced on a Hi-Seq 2000 (2×150 bp), multiplexed at 6 samples per lane. The resultant sequence reads were trimmed for quality and mapped to the coding sequences present in version 9 of the Chlamydomonas reinhardtii genome annotation at web address phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Creinhardtii using bowtie2. The relative transcript abundance of each gene (mean of 3 biological samples) was determined using RSEM and differential expression values (UV4 vs A4) were calculated using EdgeR. All genes identified as differentially expressed were mapped to KEGG biochemical maps using the v.9 annotation assignments.


Example 9
Identification of Chlorella spp. Phototropin Coding Sequence

Phototropin genes were identified in three Chlorella species (herein designated as strain 1412, strain 1228 and Chlorella sorokiniana UTEX1230) and a Picochlorum soloecismus (DOE101) by conducting homologous BLASTp searches against the annotations of Chlorella species using Chlamydomonas reinhardtii phototropin genes/proteins (NP_851210) and Arabidopsis thaliana protein sequences (Accession #AED97002.1 and AEE78073) as query proteins. The Chlorella spp. and Picochlorum phototropin homologs were aligned to other phototropin amino acid sequences using CLUSTALW, then truncated based on conserved sequence alignments and phylogenetically analyzed using a Maximum-Likelihood algorithm. Each Chlorella strain contains two paralogous copies of photoropin and Picochlorum soloecismus. (DOE101) was found to contain 1 homolog of phototropin. These sequences are provided as SEQ ID Nos. 1-14. Additional phototropin sequences and functional homologs are provided in Table 1 and SEQ ID NO 51-66 and SEQ ID NO 69-128.


Example 10
Inducible Control of Phototropin Expression in Chlamydomonas Reinhardtii

One method to reduce expression of algal PHOT gene(s) is to use RNAi technology driving the expression of double stranded, fold-back RNA elements to reduce the PHOT expression. A strong gene promoter such as psaD or other strong constitutive gene promoters could be used to drive expression of the RNAi construct similar to methods used previously in Chlamydmonas for modulation of light harvesting antennae complex (Perrine, Negi et al. 2012).


Example 11
Production of a Chlorella Phototropin Minus Mutant

PHOT gene knockouts could be potentially generated by traditional mutagenesis approaches including chemical, UV, random insertional mutagenesis screened by TILLING (Comai, Young et al. 2004, Nieto, Piron et al. 2007), and by targeted knock outs using CRISPR/cas9 (Wang, Yang et al. 2013, Xiao, Wang et al. 2013, Dubrow 2014). Pooled PHOT-based PCR screening coupled with sequencing of PHOT PCR products could be used to screen for PHOT mutants.


Example 12
Chemical Mutagenesis for Production of a Phototropin K/O Mutant in Chlorella Sorokiniana

Classical chemical mutagenesis is carried out using N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). This mutagen makes nucleotide changes in the DNA and these changes, depending on their position, can have effects that are either positive or negative in the use of the strain being treated. By careful observation of phenotypes produced, as well as implementation of selective pressure, one selects mutants with improved traits for the desired purpose. This method has been applied to algae previously (Yan, Aruga et al. 2000).


Identifying strains of algae that grow rapidly and produce high starch is used as a selection marker for PHOT K/O mutants. Because this approach does not involve adding foreign DNA (in fact is focused only on existing genetic potential of the strain being mutagenized), strains generated by chemical mutagenesis are not considered to be “genetically modified”, allowing deployment in the field without additional government regulation.


N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was chosen based on its proven use for modifying blue-green algae, as well as its ability to eliminate toxicity by degradation in dilute acid. First, the conditions required to result in approximately 99% lethality for Chlorella protothecoides are determined; this degree of lethality generated optimal mutation frequency in blue-green algae (Chapman and Meeks 1987). Two treatments, exposure to 0.25 mg/mL MNNG for 30 minutes and 0.025 mg/mL MNNG for 60 minutes, result in approximately 99% lethality for this strain (unpublished data). Both treatments are used to generate mutagenized populations of Chlorella using enrichment strategies.


Approximately 108 cells are mutagenized with four concentrations of MNNG and incubated for three different durations. After rinsing out the mutagen, approximately 104 cells are spread plated on nutrient plates, and the number of colonies scored after 12 days. Treatments with approximately 100 surviving colonies, representing 99% lethality, are chosen as optimal for generating mutations.


PHOT K/O mutants are expected to be more rapidly growing and to produce excess sink molecules/material. In C. protothecoides the sink is lipid which could be used as a screen for selection of cells representing high lipid cells. Numerous methods are in the literature for such selection such as Nile red (Pick and Rachutin-Zalogin 2012) and BODIPY 493/503 (Ohsaki, Shinohara et al. 2010). High lipid cells are selected by flow cytometry and then placed in flask for cell culture. Rapid growing high lipid cells will dominate the culture and should be PHOT K/O as determined in this invention.


Example 13
Genome Editing Using CRISPR/cas9 to Reduce Expression of Phototropin in Chlamydomonas Reinhardtii

Recently, it has been demonstrated that CRISPR/cas9 genome editing techniques can be used to knock out genes of interest in Chlamydomonas when the Cas9 gene is expressed constitutively. By incorporating multiple guide RNA elements to specifically recognize the PHOT gene high efficiencies of gene mutagenesis can occur during miss-repair of the double stranded break in the target gene catalyzed by Cas/9 by the endogenous repair enzymes. By targeting repair of a recognized restriction endonuclease site, inhibition of the digestion of the PHOT-specific PCR product by the diagnostic restriction endonuclease can be used as an effective screen for PHOT mutants. Similarly, DNA repair mistakes that occur following double stranded DNA breaks in the PHOT gene generated by TALEN complexes can be used to generate PHOT-specific mutants.


REFERENCES CITED

The following references and others cited herein, to the extent that they provide exemplary procedural and other details supplementary to those set forth herein, are specifically incorporated herein by reference and include US published patent applications and published patents: US 20130116165; US 20140249295; US 20130330718; U.S. Pat. No. 8,859,232 and other patent related documents EP2682469; WO 2011133493; WO 201408626; and WO 2013056212 and other publications listed:


OTHER PUBLICATIONS



  • Arnon, D. I. (1949). “Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris.” Plant Physiol 24(1): 1-15.

  • Ausubel, F. M., R. Brent, R. Kingston, D. Moore, J. Seidman, J. Smith and K. Struhl (1997). Short Protocols in Molecular Biology. New York, Wiley.

  • Baena-Gonzalez, E., F. Rolland, J. M. Thevelein and J. Sheen (2007). “A central integrator of transcription networks in plant stress and energy signaling.” Nature 448(7156): 938-942.

  • Briggs, W. R. and M. A. Olney (2001). “Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome.” Plant Physiol 125(1): 85-88.

  • Chapman, J. and J. Meeks (1987). “Conditions for mutagenesis of the nitrogen-fixing cyanobacterium Anabaena variabilis.” J Gen Microbiol 131: 111-118.

  • Chen, M., J. Chory and C. Fankhauser (2004). “Light signal transduction in higher plants.” Annu Rev Genet 38: 87-117.

  • Comai, L., K. Young, B. J. Till, S. H. Reynolds, E. A. Greene, C. A. Codomo, L. C. Enns, J. E. Johnson, C. Burtner, A. R. Odden and S. Henikoff (2004). “Efficient discovery of DNA polymorphisms in natural populations by Ecotilling.” Plant J 37(5): 778-786.

  • Dubrow, Z. (2014). The development and application of the CRISPR/CAS system as a powerful new tool for genome editing: A case study.

  • Ermilova, E. V., Z. M. Zalutskaya, K. Huang and C. F. Beck (2004). “Phototropin plays a crucial role in controlling changes in chemotaxis during the initial phase of the sexual life cycle in Chlamydomonas.” Planta 219(3): 420-427.

  • Folta, K. M., E. J. Lieg, T. Durham and E. P. Spalding (2003). “Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light.” Plant Physiol 133(4): 1464-1470.

  • Fu, X., D. Wang, X. Yin, P. Du and B. Kan (2014). “Time course transcriptome changes in Shewanella algae in response to salt stress.” PLoS One 9(5): e96001.

  • Gaj, T., C. A. Gersbach and C. F. Barbas, 3rd (2013). “ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering.” Trends Biotechnol 31(7): 397-405.

  • Green, M. and J. Sambrook (2012). Molecular cloning: A laboratory manual. Cold Spring Habor, N.Y., Cold Spring Harbor Laboratory Press.

  • Grossman, A. R. (2005). “Paths toward Algal Genomics.” Plant Physiology 137(2): 410-427.

  • Huang, K. and C. F. Beck (2003). “Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii.” Proc Natl Acad Sci USA 100(10): 6269-6274.

  • Huang, K. and C. F. Beck (2003). “Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii.” Proceedings of the National Academy of Sciences 100(10): 6269-6274.

  • Huang, K., T. Kunkel and C. F. Beck (2004). “Localization of the blue-light receptor phototropin to the flagella of the green alga Chlamydomonas reinhardtii.” Mol Biol Cell 15(8): 3605-3614.

  • Hwang, Y. S., G. Jung and E. Jin (2008). “Transcriptome analysis of acclimatory responses to thermal stress in Antarctic algae.” Biochem Biophys Res Commun 367(3): 635-641.

  • Im, C. S., S. Eberhard, K. Huang, C. F. Beck and A. R. Grossman (2006). “Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii.” Plant J 48(1): 1-16.

  • Kaftan, D., T. Meszaros, J. Whitmarsh and L. Nedbal (1999). “Characterization of photosystem II activity and heterogeneity during the cell cycle of the green alga scenedesmus quadricauda.” Plant Physiol 120(2): 433-442.

  • Kagawa, T., M. Kimura and M. Wada (2009). “Blue Light-Induced Phototropism of Inflorescence Stems and Petioles is Mediated by Phototropin Family Members phot1 and phot2.” Plant and Cell Physiology 50(10): 1774-1785.

  • Kanehisa, M. and S. Goto (2000). “KEGG: kyoto encyclopedia of genes and genomes.” Nucleic Acids Res 28(1): 27-30.

  • Kanehisa, M., S. Goto, Y. Sato, M. Kawashima, M. Furumichi and M. Tanabe (2014). “Data, information, knowledge and principle: back to metabolism in KEGG.” Nucleic Acids Res 42(Database issue): D199-205.

  • Koid, A. E., Z. Liu, R. Terrado, A. C. Jones, D. A. Caron and K. B. Heidelberg (2014). “Comparative transcriptome analysis of four prymnesiophyte algae.” PLoS One 9(6): e97801.

  • Kozuka, T., S. G. Kong, M. Doi, K. Shimazaki and A. Nagatani (2011). “Tissue-autonomous promotion of palisade cell development by phototropin 2 in Arabidopsis.” Plant Cell 23(10): 3684-3695.

  • Matsuoka, D., T. Iwata, K. Zikihara, H. Kandori and S. Tokutomi (2007). “Primary processes during the light-signal transduction of phototropin.” Photochem Photobiol 83(1): 122-130.

  • Moni, A., A. Y. Lee, W. R. Briggs and I. S. Han (2015). “The blue light receptor Phototropin 1 suppresses lateral root growth by controlling cell elongation.” Plant Biol (Stuttg) 17(1): 34-40

  • Nieto, C., F. Piron, M. Dalmais, C. F. Marco, E. Moriones, M. L. Gomez-Guillamon, V. Truniger, P. Gomez, J. Garcia-Mas, M. A. Aranda and A. Bendahmane (2007). “EcoTILLING for the identification of allelic variants of melon elF4E, a factor that controls virus susceptibility.” BMC Plant Biol 7: 34.

  • Ohsaki, Y., Y. Shinohara, M. Suzuki and T. Fujimoto (2010). “A pitfall in using BODIPY dyes to label lipid droplets for fluorescence microscopy.” Histochem Cell Biol 133(4): 477-480.

  • Onodera, A., Kong, S-G, M. Doi, K.-I. Shimazaki, J. Christie, N. Mochizuki and A. Nagatani (2005). “Phototropin from Chlamydomonas reinhaardtii is functional in Arabidopsis thaliana.” Plant Cell Physiol 46(2): 367-374.

  • Perrine, Z., S. Negi and R. Sayre (2012). “Optimization of photosynthetic light energy utilization by microalgae.” Algal Res 134-142.

  • Pick, U. and T. Rachutin-Zalogin (2012). “Kinetic anomalies in the interactions of Nile red with microalgae.” Journal of microbiological methods 88(2): 189-196.

  • Reeck, G. R., C. de Haen, D. C. Teller, R. F. Doolittle, W. M. Fitch, R. E. Dickerson, P. Chambon, A. D. McLachlan, E. Margoliash, T. H. Jukes and et al. (1987). “”Homology” in proteins and nucleic acids: a terminology muddle and a way out of it.” Cell 50(5): 667.

  • Rismani-Yazdi, H., B. Z. Haznedaroglu, K. Bibby and J. Peccia (2011). “Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels.” BMC Genomics 12: 148.

  • Sambrook, J., E. Fritsch and T. Maniatis (1989). Molecular cloning: a laboratory manual. Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory Press.

  • Sethi, P., M. Prasad and S. Roy (2009). All-optical switching in LOV2-C250S protein mutant from Chlamydomonas reinhardtii green algae. Emerging Trends in Electronic and Photonic Devices & Systems, 2009. ELECTRO '09. International Conference on.

  • Sizova, I., A. Greiner, M. Awasthi, S. Kateriya and P. Hegemann (2013). “Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases.” Plant J 73(5): 873-882.

  • Salomon, Michael, Briggs, Winslow, and Christie, John (2000) “Photochemical and Mutational Analysis of the FMN-Binding Domains of the Plant Blue Light Receptor, Phototropin.” Biochemistry 39: 9401-9410.

  • Suetsugu, N. and M. Wada (2007). “Phytochrome-dependent Photomovement Responses Mediated by Phototropin Family Proteins in Cryptogram Plants†.” Photochemistry and Photobiology 83(1): 87-93.

  • Sullivan, S., C. E. Thomson, D. J. Lamont, M. A. Jones and J. M. Christie (2008). “In vivo phosphorylation site mapping and functional characterization of Arabidopsis phototropin 1.” Mol Plant 1(1): 178-194.

  • Takemiya, A., S. Inoue, M. Doi, T. Kinoshita and K. Shimazaki (2005). “Phototropins promote plant growth in response to blue light in low light environments.” Plant Cell 17(4): 1120-1127.

  • Tian, L. and D. DellaPenna (2001). “Characterization of a second carotenoid beta-hydroxylase gene from Arabidopsis and its relationship to the LUT1 locus.” Plant Mol Biol 47(3): 379-388.

  • Trippens, J., A. Greiner, J. Schellwat, M. Neukam, T. Rottmann, Y. Lu, S. Kateriya, P. Hegemann and G. Kreimer (2012). “Phototropin Influence on Eyespot Development and Regulation of Phototactic Behavior in Chlamydomonas reinhardtii.” The Plant Cell 24(11): 4687-4702.

  • Veetil, S. K., C. Mittal, P. Ranjan and S. Kateriya (2011). “A conserved isoleucine in the LOV1 domain of a novel phototropin from the marine alga Ostreococcus tauri modulates the dark state recovery of the domain.” Biochim Biophys Acta 1810(7): 675-682.

  • Wang, H., H. Yang, C. S. Shivalila, M. M. Dawlaty, A. W. Cheng, F. Zhang and R. Jaenisch (2013). “One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.” Cell 153(4): 910-918.

  • Xiao, A., Z. Wang, Y. Hu, Y. Wu, Z. Luo, Z. Yang, Y. Zu, W. Li, P. Huang, X. Tong, Z. Zhu, S. Lin and B. Zhang (2013). “Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish.” Nucleic Acids Res 41(14): e141.

  • Yan, X.-H., Y. Aruga and Y. Fujita (2000). “Induction and characterization of pigmentation mutants in Porphyra yezoensis (Bangiales, Rhodophyta).” Journal of Applied Phycology 12(1): 69-81.

  • Zorin, B., Y. Lu, I. Sizova and P. Hegemann (2009). “Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene.” Gene 432(1-2): 91-96.

  • Toivola, J., Nikkanen, L., Dahlström, K. M., Salminen , T. A., Lepistö, A., Vignols, F., and Rintamäki, E. (2013). “Overexpression of chloroplast NADPH dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains.” Frontiers in plant sciences doi: 10.3389/fpls.2013.00389

  • Takahashi F (2016) Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles. J Plant Res 129(2):189-97.


Claims
  • 1. A method for increasing a biomass productivity of an algal strain wherein the expression or function of a Chlamydomonas reinhardtii phototropin gene, a gene homologous to the Chlamydomonas reinhardtii phototropin gene or a gene sequence comprising a LOV domain and a Serine/Threonine kinase domain which gene sequence functions as a phototropin is reduced or eliminated as compared to the wild-type parental line.
  • 2. The method of claim 1, wherein the homologous gene has greater than 75% homology to the Chlamydomonas reinhardtii phototropin gene or a sequence identified in SEQ ID NO 1-14, 51-66 and 69-128.
  • 3. The method of claim 1, wherein the biomass productivity and photosynthetic efficiency of the algal strain is increased by greater than around 2-fold.
  • 4. The method of claim 1, wherein the biomass productivity of storage product(s) in the algal strain is increased by greater than around 2-fold.
  • 5. The method of claim 4, wherein the storage product(s) is selected from starch, lipid, pigments and other sink molecules.
  • 6. The method of claim 1, wherein the biomass productivity is increased for bioproducts or storage products selected from the group consisting of lipids, waxes, polysaccharides (e.g., starch, glycogen, mannans, glycans, cellulose, hemicellulose), photoprotective pigments (e.g., xanthophyll).
  • 7. The method of claim 1, wherein the expression of the Chlamydomonas reinhardtii phototropin gene, the gene homologous to the Chlamydomonas reinhardtii phototropin gene or the sequence homologous to SEQ ID NO 1-14, 51-66 and 69-128 is reduced by one or more of the following: chemical mutagenesis and selection, genome editing, inducible promoter and trans acting elements.
  • 8. An algal strain wherein relative to a wild-type parental line an expression of a phototropin gene. a homologous gene or a gene sequence comprising a LOV domain and a Serine/Threonine kinase domain is reduced,photosynthetic pigments making up an antenna complex are reduced,and a content of sink molecules is increased.
  • 9. The algal line of claim 8, wherein the phototropin gene, the homologous gene or the gene sequence comprising a LOV domain and a Serine/Threonine kinase domain are rendered to be non-functional.
  • 10. The algal line of claim 8, wherein the phototropin gene, the homologous gene or the gene sequence comprising a LOV domain and a Serine/Threonine kinase domain are substantially deleted.
  • 11. The algal line of claim 8, wherein the phototropin gene, the homologous gene or the gene sequence comprising a LOV domain and a Serine/Threonine kinase domain can be rendered to be non-functional on an inducible basis through an inducible promoter.
  • 12. The algal line of claim 8, wherein the phototropin gene deletion would generate sterile and stable diploid population of polyploid algae to avoid recombination of genetic material during sexual reproduction.
  • 13. The algal line of claim 8, wherein the phototropin gene deletion would be used to generate stable transgene-stacking traits in polyploid algal strains.
  • 14. The algal line of claim 8 wherein the phototropin gene or the homologous gene is selected from SEQ ID NO 1-14, 51-66 and 69-128.
  • 15. The method of claim 8, wherein the homologous gene has greater than 75% homology to a Chlamydomonas reinhardtii phototropin gene or the sequence identified in SEQ ID NO 1-14, 51-66 and 69-128.
  • 16. A method for increasing a biomass productivity of an algal strain wherein an expression or function of a Chlamydomonas reinhardtii NTR2 or NTRC gene, a gene homologous to a Arabidopsis NTR2 or NTRC gene or a sequence homologous to SEQ ID NO 35-50 and 67-68 is over expressed in the algal strain as compared to a wild-type parental line.
  • 17. The method of claim 16, wherein the homologous gene has greater than 75% homology to the Arabidopsis NTR2 or NTRC gene or the sequence identified in SEQ ID NO 35-50 and 67-68.
  • 18. The method of claim 16, wherein the biomass productivity of the algal strain is increased by greater than around 2-fold.
  • 19. The method of claim 16, wherein the biomass productivity of storage product(s) in the algal strain is increased by greater than around 2-fold.
  • 20. The method of claim 19, wherein the storage product(s) is selected from starch, lipid, pigments and other sink molecules.
  • 21. The method of claim 16, wherein the biomass productivity is increased for bioproducts or storage products selected from the group consisting of lipids, waxes, polysaccharides (e.g., starch, glycogen, mannans, glycans, cellulose, hemicellulose), photoprotective pigments (e.g., xanthophyll).
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 15/831,178, entitled “Productivity and Bioproduct Formation in Phototropin Knock/Out Mutants in Microalgae”, filed Dec. 4, 2017, which is a continuation of International Patent Application No. PCT/162016/054466, entitled “Improved Productivity and Bioproduct Formation in Phototropin Knock/Out Mutants in Microalgae”, filed on Jul. 26, 2016, which claims priority to and benefit of U.S. Provisional Patent Application No. 62/171,176 entitled “Improved Productivity and Bioproduct Formation in Phototropin Knock/out Mutants in Microalgae” filed on Jun. 4, 2015, and the specification and claims thereof are incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under grants Nos. Prime Contract No. DE-AC52-06NA25396 and NMC subcontract No. 277529. The U.S. government has certain rights in the invention.

Provisional Applications (1)
Number Date Country
62171176 Jun 2015 US
Continuations (1)
Number Date Country
Parent PCT/IB2016/054466 Jul 2016 US
Child 15831178 US
Continuation in Parts (1)
Number Date Country
Parent 15831178 Dec 2017 US
Child 16820062 US