Claims
- 1. A catalyst for olefin polymerization, comprising a Group 3-11 metal complex of a bidentate, tridentate, or tetradentate ligand, wherein said complex comprises at least one N-donor fragment of formula 1a or 1b;
- 2. The catalyst according to claim 1 wherein M is a Group 8-10 metal.
- 3. The catalyst according to claim 2, wherein M is nickel, and Q2 is sufficiently long to extend sufficiently close to the metal M to increase the catalyst productivity at elevated temperatures, or in the presence of hydrogen, or both, relative to an otherwise similar catalyst wherein Q2 is replaced by H, Me, or Ph.
- 4. The catalyst according to claim 2, wherein M is nickel, and Q2 is sufficiently long to extend sufficiently close to the metal M to increase the regioselectivity or stereoselectivity of comonomer incorporation, relative to an otherwise similar catalyst wherein Q2 is replaced by H, Me, or Ph.
- 5. The catalyst according to claim 2, wherein M is nickel, and Q2 is sufficiently long to extend sufficiently close to the metal M to decrease the amount of chain-running, relative to an otherwise similar catalyst wherein Q2 is replaced by H, Me, or Ph.
- 6. The catalyst according to claim 2, wherein M is palladium, and Q2 is sufficiently long to extend sufficiently close to the metal M to decrease the amount of chain-running, relative to an otherwise similar catalyst wherein Q2 is replaced by H, Me, or Ph.
- 7. The catalyst according to claim 2, wherein M is nickel, and Q2 is sufficiently long to extend sufficiently close to the metal M to increase the chain-running stereoselectivity, relative to an otherwise similar catalyst wherein Q2 is replaced by H, Me, or Ph.
- 8. The catalyst according to claim 2, wherein M is nickel, and Q2 is sufficiently long to extend sufficiently close to the metal M to decrease the rate of activation of the catalyst when an alkylaluminum reagent is used as cocatalyst, relative to an otherwise similar catalyst wherein Q2 is replaced by H, Me, or Ph.
- 9. The catalyst according to claim 2 which comprises a bidentate ligand selected from Set 1;
- 10. The catalyst according to claim 2, wherein M is iron or cobalt, the catalyst comprises a tridentate ligand, and Q2 which is sufficiently long to extend sufficiently close to the metal M to increase the catalyst productivity at elevated temperatures.
- 11. The catalyst according to claim 10, wherein said tridentate ligand is selected from Set 2;
- 12. The catalyst according to claim 1, comprising a titanium or zirconium complex of a bidentate ligand selected from Set 3;
- 13. The catalyst according to claim 1, further comprising a solid support.
- 14. The catalyst according to claim 13, which is attached to the solid support via a covalent bond to the group Ar1a.
- 15. A process for the polymerization of olefins, comprising contacting one or more olefins with the catalyst of claim 1.
- 16. The process according to claim 15, wherein at least one of said olefins is ethylene.
- 17. The process according to claim 15, wherein the olefin is ethylene, M is nickel, the temperature is at least 80° C., the pressure is less than about 800 psig, sufficient hydrogen is added to reduce the number average molecular weight of the polymer by at least 20% relative to an otherwise similar reaction conducted in the absence of hydrogen, the catalyst productivity is at least 500 kg polyethylene per g nickel, and the polymer has a DSC first cycle peak melting point greater than 131° C.
- 18. The process according to claim 17, wherein sufficient hydrogen is added to reduce the number average molecular weight of the polymer by at least 50% relative to an otherwise similar reaction conducted in the absence of hydrogen, and the polymer has a DSC first cycle peak melting point greater than 133° C.
- 19. The process according to claim 15, wherein at least one of the olefins is ethylene, M is palladium and the amount of chain running is reduced.
- 20. A bidentate, tridentate, or tetradentate ligand of Set 1, Set 2, or Set 3.
- 21. A process for the polymerization of olefins, comprising contacting one or more olefins with a catalyst comprising a Group 8-10 metal complex of a bidentate, N,N-donor ligand, wherein the first of said donor nitrogens, N1, is substituted by an aromatic or heteroaromatic ring wherein the ortho substituents are aryl or heteroaryl groups, and the second of said donor nitrogens, N2, is substituted by an aromatic or heteroaromatic ring wherein one or both of the ortho substituents are other than aryl or heteroaryl; wherein said catalyst is capable of homopolymerizing ethylene to produce a polymer with a number average molecular weight of at least 20,000 g/mole and at least 20 branch points per 1000 carbons with a catalyst productivity of at least 500 kg polyethylene per g of Group 8-10 metal at a temperature of at least 60° C. at a partial pressure of ethylene of at least 350 psia at a partial pressure of hydrogen of at least 2 psia.
- 22. The process according to claim 21, wherein said ligand is such that the calculated rate of olefin rotation in square planar complexes of the type (L)M(H)(R1aCH═CHR1b)n+, wherein n=0 or 1, M is nickel or palladium, L is said bidentate, N,N-donor ligand, R1a is H or Me, and R1b is Me, and R1aCH═CHR1b is trans to N′, is at least 2 times higher than the calculated rate of olefin rotation in the complex wherein R1aCH═CHR1b is cis to N1.
- 23. The process according to claim 22, wherein the calculated rate of olefin rotation in the complex wherein R1aCH═CHR1b is trans to N1 is at least 4 times higher than the calculated rate of olefin rotation in the complex wherein R1aCH═CHR1b is cis to N1.
- 24. The process according to claim 21, wherein the metal is nickel, N1 is substituted by a 2,6-diaryl substituted aryl group or a 2,5-diaryl substituted 1-pyrrolyl group, and N2 is substituted by an aromatic or heteroaromatic ring wherein one or both of the ortho substituents are other than aryl or heteroaryl.
- 25. The process according to claim 24, wherein N1 is substituted by a 2,6-diaryl substituted aryl group, N2 is substituted by an aromatic ring wherein one or both of the ortho substituents are other than aryl or heteroaryl, and the catalyst productivity is at least 500 kg polyethylene per g nickel at a temperature of at least 70° C.
- 26. The process according to claim 25, wherein N2 is substituted by an aromatic ring wherein one of the ortho substituents is aryl, heteroaryl or bromo, and the other ortho substituent is bromo.
- 27. The process according to claim 21, wherein the bidentate ligand is selected from Set 4;
- 28. A polymer prepared according to the process of claim 21.
- 29. The process according to claim 21 wherein the olefin is ethylene and the polymer is an ethylene homopolymer wherein the average spacing between branch points is such that there is at least a 10% excess of sequences of the type —CHR—(CH2)4n+2—CHR—, where R is alkyl and n is 0 or a positive integer, relative to sequences of the type —CHR—(CH2)2m—CHR—, where R is alkyl and m is a positive integer.
- 30. The process according to claim 21 wherein the olefin is ethylene, N2 is substituted by a 2-aryl-6-bromo-aryl group and the polymer is an ethylene homopolymer wherein there is an excess of isotactic sequences of the type —CHR1a—(CH2)4n+2—CHR1b, where R1 and R1b are hydrocarbyl or substituted hydrocarbyl branches and n is 0 or 1, relative to a random distribution.
- 31. A process for the polymerization of olefins, comprising contacting one or more olefins with a catalyst comprising a Group 8-10 metal complex of a bidentate, tridentate or multidentate ligand, wherein said catalyst is activated using an alkylaluminum compound, wherein said alkylaluminum compound is subsequently selectively deactivated before the bulk of said polymerization has occurred.
- 32. The process according to claim 31, wherein said alkylaluminum compound is selectively deactivated through the addition of a phenol or substituted phenol.
- 33. The process according to claim 31, wherein said Group 8-10 metal complex is a cationic nickel complex of a bidentate N,N-donor ligand.
- 34. The process according to claim 31, wherein said Group 8-10 metal complex is a cationic iron or cobalt complex of a tridentate ligand.
- 35. A catalyst for the polymerization of olefins, comprising a nickel complex of a ligand of formula 2a;
- 36. The catalyst according to claim 35, wherein R2x and R2y are linked by a bridging group.
- 37. A process for the polymerization of olefins comprising contacting ethylene and optionally other olefins with the catalyst of claim 35 in the presence of sufficient hydrogen to reduce the number average molecular weight of the polymer by at least 10% relative to an otherwise similar process carried out in the absence of hydrogen.
- 38. An ethylene homopolymer having a number average molecular weight of at least 10,000 g/mole, total branching of less than about 70 branches per 1000 carbons, at least 10% saturated hydrocarbon polymer chains, and a ratio of C5 and longer branches to methyl branches of at least 0.35.
- 39. The homopolymer according to claim 38, wherein the total branching is less than about 60 branches per 1000 carbons; at least 25% of the polymer chains are saturated hydrocarbon chains; and the ratio of C5 and longer branches to methyl branches is at least 0.40.
- 40. The homopolymer according to claim 38, wherein the total branching is less than about 60 branches per 1000 carbons; and the ratio of C5 and longer branches to methyl branches is at least 0.45.
- 41. The homopolymer according to claim 38, having a DSC curve that shows a bimodal melt endotherm on a second heat from the melt, with the area of the smaller of the two peaks representing at least 25% of the total melt endotherm.
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of the following applications under 35 USC § 120: application Ser. No. 09/507,492, filed Feb. 18, 2000, and application Ser. No. 09/563,812, filed May 3, 2000, the entire contents of which are incorporated herein by reference; and the benefit of the following applications under 35 USC § 119: Provisional Application No. 60/231,920, filed Sep. 11, 2000; Provisional Application No. 60/246,254, filed Nov. 6, 2000; Provisional Application No. 60/246,255, filed Nov. 6, 2000; Provisional Application No. 60/246,178, filed Nov. 6, 2000; and Provisional Application No. 60/298,893, filed Jun. 19, 2001, the entire contents of which are incorporated herein by reference.
Provisional Applications (5)
|
Number |
Date |
Country |
|
60231920 |
Sep 2000 |
US |
|
60246254 |
Nov 2000 |
US |
|
60246255 |
Nov 2000 |
US |
|
60246178 |
Nov 2000 |
US |
|
60298893 |
Jun 2001 |
US |
Continuation in Parts (2)
|
Number |
Date |
Country |
Parent |
09563812 |
May 2000 |
US |
Child |
09985614 |
Nov 2001 |
US |
Parent |
09507492 |
Feb 2000 |
US |
Child |
09563812 |
May 2000 |
US |