Products and Methods Relating to Micro RNAS and Cancer

Abstract
The invention encompasses products and methods relating to microRNAs involved in various cancers.
Description
FIELD OF THE INVENTION

The invention encompasses products and methods relating to microRNAs involved in various cancers.


BACKGROUND

MicroRNAs (miRNAs) mediate degradation (Baek et al. 2008) or translational repression (Selbach et al. 2008) of gene transcripts associated with an array of biological processes including many of the hallmarks of cancer (Dalmay and Edwards 2006; D Hanahan and R A Weinberg 2000; Douglas Hanahan and Robert A Weinberg 2011; Ruan et al. 2009). Not surprisingly, dysregulated miRNAs can be readily detected in tumor biopsies (Jiang et al. 2009) and are known to be diagnostic and prognostic indicators (Zen and Chen-Yu Zhang 2010). In some cases miRNAs have also been shown to be potential therapeutic targets (Garofalo and Croce 2011; Nana-Sinkam and Croce 2011). Conservative estimates suggest that each human miRNA regulates several hundred transcripts (Baek et al. 2008; Selbach et al. 2008) and thus miRNA mediated regulation results in statistically significant gene co-expression signatures that are readily discovered through transcriptome profiling (Brueckner et al. 2007; Ceppi et al. 2009; Tsung-Cheng Chang et al. 2007; Fasanaro et al. 2009; Frankel et al. 2008; Georges et al. 2008; Grimson et al. 2007; Lin He et al. 2007; Hendrickson et al. 2008; Charles D Johnson et al. 2007; Karginov et al. 2007; Lee P Lim et al. 2005; Linsley et al. 2007; Malzkorn et al. 2010; Ozen et al. 2008; Sengupta et al. 2008; Tan et al. 2009; Tsai et al. 2009; Valastyan et al. 2009; Wang-Xia Wang et al. 2010; Xiaowei Wang and Xiaohui Wang 2006; Frank Weber et al. 2006).


There are two commonly used strategies to identify the miRNA regulator(s) responsible for the observed co-expression of a set of genes: 1) enrichment of predicted 3′ UTR binding sites for a known miRNA (Betel et al. 2010, 2008; Friedman et al. 2009; Kertesz et al. 2007); or 2) de novo identification of a 3′ UTR motif that is complementary to a seed sequence of a miRNA in miRBase (Fan et al. 2009; Goodarzi et al. 2009; Kozomara and Griffiths-Jones 2011; Linhart et al. 2008). Algorithms utilizing the first strategy incorporate some combination of seed complementarity, cross-species conservation, and thermodynamic properties of the binding site. These algorithms include PITA (Kertesz et al. 2007), TargetScan (Friedman et al. 2009), and both miRanda (Betel et al. 2008) and miRSVR (Betel et al. 2010) from microlMA.org. While the combined modeling of two or more miRNA-binding properties within these algorithms boosts signal, the multiple hypotheses testing required to identify bona fide miRNA-binding sites unfortunately also simultaneously leads to high false negative rates (−32-52%) (Sethupathy et al. 2006).


Despite some progress in assessing the risk of cancer, a need exists for accurate methods of assessing such risks or developing conditions. Treatment of pre-cancer with drugs could postpone or prevent cancer; yet few pre-cancer patients are treated. A major reason is that no simple and unambiguous laboratory test exists to determine the actual risk of an individual to develop cancer. Thus, there remains a need in the art for methods of identifying, diagnosing, and treating these individuals.


BRIEF SUMMARY

The present application provides prognostic methods for determining risk for developing cancer or predicting progression of cancer, and for predicting response to a drug or treatment regimen; diagnostic methods for identifying type(s) of cancer and for identifying a response to a drug or monitor a treatment regimen; therapeutic methods for directing appropriate treatments for patients at risk of progression, for directing appropriate treatments for patients with an identified type of cancer, for administering a drug that increases a miRNA useful for the treatment of cancer and for administering a drug to inhibit a miRNA identified as being involved in causing or exacerbating cancer; computer systems based on algorithms useful in the prognostic, diagnostic and/or therapeutic methods; miRNA products (including, but not limited to, products useful as biomarkers) and panels (i.e., sets of miRNA products); and products (e.g., arrays or kits of reagents) to detect miRNAs or panels of miRNAs and methods of using the detection products.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1. Overview of Weeder-miRvestigator tandem developed to identify miRNAs driving co-expression of transcripts. Quantitative assays of the transcriptome are used to identify gene co-expression signatures comprised of genes with significantly similar gene expression profiles. The 3′ UTR sequences for the co-expressed genes are then extracted from the genome and used as input into the Weeder algorithm. The Weeder algorithm searches the 3′ UTR sequences for an over-represented motif which is turned into a miRvestigator hidden Markov model (HMM). All of the miRNA seed sequences from the miRNA repository miRBase are compared to the HMM model of the over-represented sequence motif using the Viterbi algorithm. The miRNA seed sequence with the most significant complementarity p-value is the most likely miRNA driving the co-expression signature and a hypothesis that can be tested experimentally.



FIG. 2. The sensitivity and specificity of the miRvestigator algorithm and framework is estimated using simulated datasets. A. The ROC AUC was computed by simulating miR-1 motifs across a range of motif entropies. Shown are the ROC AUC for the consensus matched to 8 bp miRNA seed sequences from miRBase using regular expression and the miRvestigator IIMM derived scoring metrics Viterbi P-value. B. We then tested the sensitivity and specificity of coupling de novo motif detection algorithm Weeder to the miRvestigator (FIG. 1) by applying them to 30 simulated sequences with varying levels of inserted miR-1 seed sequence (0 to 100%). C. Histogram of Weeder identified miRNA binding sites for whole transcripts where transcripts are centered on the stop codon (0 bp). Instances of miRNA binding sites were either stratified based upon their complementarity to the motif identified by Weeder (8 bp, 7 bp or 6 bp) or the combination of all complementarities. As described by the gene structure below the histogram upstream of the stop codon are the 5′ UTR and coding regulatory regions, and downstream is the 3′ UTR. In the gene structure below the histogram the coding sequences is a wider grey box, the start codon is a green arrow, and the stop codon is a red stop sign. D. Significance of the enrichment of miRNA binding sites per 1 Kbp was computed as a meta statistic are shown for each gene region and each stratified site complementarity.



FIG. 3. A. Determining the optimal method(s) (most sensitive and specific) to infer miRNA mediated regulation from co-expressed genes. The methods tested were: 1) Weeder coupled to miRvestigator (Weeder-miRvestigator) (black line), 2) enrichment of PITA predicted milMA target genes (blue line), 3) enrichment of TargetScan predicted target genes (green line), 4) enrichment of miRSVR predicted target genes (orange line), and 5) enrichment of miRanda predicted target genes (red line). B. Overlap of co-expression signatures between putative miRNA regulators predicted by the three methods (Weeder-miRvestigator, PITA and TargetScan) in FIRM. Pairwise overlap of co-expression signatures between methods is statistically significant (Weeder-miRvestigator vs. PITA=0.045; Weeder-miRvestigator vs. TargetScan=0.019; PITA vs. TargetScan=7.4×10−22). All three methods identified miRcustom-character29a/b/c as the regulator for the lung adenocarcinoma co-expression signature AD Lung Beer 31.



FIG. 4. Metastatic and cross cancer-miRNA regulatory networks. Hierarchy of filters applied to cancer-miRNA regulatory network to produce both the metastatic and cross cancer miRNA regulatory networks is depicted above the networks, and a legend for the networks can be found in the upper right corner. Nodes are cancers (purple octagons), co-expression signatures (orange circles), inferred miRNAs (red diamonds), or hallmarks of cancer (green parallelogram). Orange edges describe the cancer where a co-expression signature was observed, blue edges link a putative miRNA regulator to a co-expression signature (putative miRNA regulation from cancer miRNA regulatory network), and red edges link putative miRNAs to the hallmarks of cancer based upon functional enrichment of the co-expression signatures they regulate (GO term semantic similarity). Thicker dashed edges indicate experimental validation for the inferred relationship. A. Metastatic cancer-miRNA regulatory network was filtered for the sake of space to show only cancers with at least one predicted regulatory interactions that has been validated. B. Cross cancer-miRNA regulatory network was generated by identifying miRNAs with more than one co-expression signature that are functionally enriched for the same GO terms that are sufficiently similar to GO terms characterizing the hallmarks of cancer.



FIG. 5. Luciferase reporter assay validation of miRNA binding site predictions from FIRM. A. Deletion of miR-29 binding sites ablates response to miR-29a mimic. The wild type 3′ UTRs are MMP2 and SPARC. The miR-29 binding site deleted 3′ UTRs are MMP2 Δ and SPARC Δ. The deletions have a slight increase in normalized luminescence over their corresponding vector control which is similar to what is observed for the negative control HIST1H2AC which doesn't have a miR-29 binding site. B. Dose response curves for COL3A1 and SPARC titrating the amounts of miR-29a mimic (50 nM, 5 nM, 500 pM, 50 pM and 5 pM).



FIG. 6. Summary of FIRM predictions for the miR-29a/b/c and miR-767-5p cancer-miRNA regulatory subnetwork. This subnetwork is included in both the metastatic- and cross-cancer miRNA regulatory networks. The network is laid out hierarchically with from the top down cancers, miRNAs, co-expression signatures, genes that were experimentally validated through luciferase assays, significantly enriched GO biological process terms for the co-expression signature, and finally the GO terms associated hallmarks of cancers. On the left side we show the FIRM integration strategy which is a flow of information through this hierarchy where the red arrows indicate a FIRM prediction. The meanings of the FIRM predictions are described on the right side where inference of a miRNA regulating a cancer co-expression signature predicts that the miRNA is dysregulated in that cancer. This same inference predicts that the miRNA regulates the genes in the signature which can be tested experimentally. Functional enrichment of GO term annotations among the co-regulated genes predicts the effect of regulating this set of genes and association of the enriched GO terms with hallmarks of cancer predicts the oncogenic processes that might be affected.



FIG. 7 is a flowchart showing how cancer gene expression signatures are used to identify cancer miRNA regulatory networks according to various methods described herein.



FIG. 8 is a flow diagram representing an exemplary FIRM method 800.



FIG. 9 is a flow diagram representing an exemplary method 900 for performing de novo identification of one or more 3′ UTR motifs that are complementary to seed sequences of miRNA stored on a memory device (i.e., an exemplary method corresponding to the block 802).



FIG. 10 is a flow diagram representing an exemplary method 1000 for identifying enriched predicted miRNA binding sites (i.e., an exemplary method corresponding to the block 804).



FIG. 11 is a flowchart showing how the identification of cancer miRNA regulatory networks leads therapeutic options according to methods described herein.



FIG. 12 is a panel of miRNAs involved in oncogenic processes across diverse cancers.



FIG. 13 is a panel of miRNAs involved in cancer metastasis and tissue invasion.



FIG. 14 shows miRNAs variously involved in sustained angiogenesis, tumor-promoting inflammation, self-sufficiency in growth signals, reprogramming energy metabolism, evading apoptosis, genome instability and mutation, limitless replicative potential, evading immune detection, and insensitivity to anti-growth signals in a number of cancers.



FIG. 15 is an alignment of miR-767-5p, miR-29a, miR-29c and miR-29b.





DESCRIPTION

In a first aspect, a Framework for Inference of Regulation by miRNAs (FIRM) is provided. FIRM integrates three best performing algorithms to infer miRNA that mediate regulation from co-expression signatures. In an exemplary embodiment, FIRM limits the Weeder-miRvestigator method to only those inferences of miRNA mediated regulation with a perfect 7- or 8-mer miRvestigator complementarity p-value (p-value=6.1×10−5 or 1.5×10−5, respectively) to a miRNA seed in miRBase. Inferences of miRNA mediated regulation from the PITA and TargetScan enrichment of predicted miRNA target genes methods are filtered to include only those with Benjamini-Hochberg FDR=0.00. FIRM produces a listing (i.e., a panel) of all co-expression signatures predicted to be regulated by an miRNA. See also, the embodiments represented in FIGS. 7 and 11.


FIRM is, at the most basic level, an assemblage of methods combined to produce a data set of co-expression signatures predicted to be regulated by one or more miRNAs. The methods are performed by one or more computer processors executing one or more sets of instructions. The instructions may be hard-encoded into the processor, as in an application-specific integrated circuit (ASIC), may be semi-permanently encoded into the processor, as is the case in, for example, a field-programmable gate array (FPGA), or may be stored on a memory device and executed by a general purpose processor that, after retrieving the instructions from the memory device, becomes a special purpose processor programmed to perform the methods. Generally, the methods may be stored (or encoded, in hardware implementations such as ASICs and FPGAs) as one or more modules or routines. While described below with respect to three methods (and, accordingly, three modules or routines), the methods of which FIRM is comprised may form more than three routines or fewer than three routines. Additionally, individual steps of the methods need not necessarily be performed in the order described. That is, unless a data dependency exists between two steps, it is possible—as will be understood—for steps to be performed in orders other than those described. Further, any particular step may, as will also be understood, represent one or more sub-steps, operations, functions, etc. As but one illustrative example, any particular method step may include retrieving input data from memory, performing one or more processing steps on the data, and storing one or more outputs to the memory.



FIG. 8 depicts a flow diagram representing an exemplary FIRM method 800. Generally, the method 800 integrates algorithms to accurately identify the miRNA most likely implicated in the co-regulation of a set of genes represented in a set of genetic expression signatures. Using a first algorithm, the processor performs de novo identification of one or more 3′ UTR motifs that are complementary to seed sequences of miRNA stored on a memory device (block 802). Using a second algorithm, the processor also identifies enriched predicted miRNA binding sites determined from data produced by one or more (two, in an embodiment) of a variety of sub-algorithms such as PITA, TargetScan, miRanda, and miRSVR, etc. (block 804). The results of the blocks 802 and 804 are combined (block 806) as the union of the miRNA to gene co-expression signature predictions.


An interface is optionally provided to allow one or more users to access the combined results (block 808). In one embodiment, the interface takes the form of a Web page available via a network connection (e.g., the Internet), allowing one or more users to access, search, and filter the combined data from any web-enabled device (e.g., workstations, laptop computers, smart phones, tablet devices, etc.). In another embodiment, the interface takes the form of an additional routine operating on a processor (the same processor or a different processor) communicatively connected to a memory on which the combined results are stored. For example, the interface routine may execute on a computing device and, via a network, may access/retrieve the combined results from a database or memory device located remotely. Alternatively, the interface routine may execute on the processor executing the routines related to blocks 802-806.


In any event, the combined data may later be used for any purpose as generally described throughout the remainder of this application (block 810).



FIG. 9 depicts a flow diagram representing an exemplary method 900 for performing de novo identification of one or more 3′ UTR motifs that are complementary to seed sequences of miRNA stored on a memory device (i.e., an exemplary method corresponding to the block 802). The exemplary method 900 corresponds generally to the miRvestigator algorithm. Overrepresented miRNA binding sites in 3′ UTR of supposed miRNA co-regulated genes (“motifs”) are identified (block 902). For each miRNA seed, the probability describing the complementarity of the miRNA seed to a 3′ UTR motif is computed (block 904). The resulting 3′ UTR motifs are converted to a hidden Markov model (HMM) (block 906). The processor uses the Viterbi algorithm to provide a complementarity p-value by comparing the HMM to all potential seed sequences in a set (e.g., miRBase) (block 908). The complete distribution of complementarity probabilies for all potential miRNA k-mer seed sequences (k=6, 7, or 8 bp) is exhaustively computed (block 910). miRNAs having the smallest complementarity p-values (e.g., below a pre-determined threshold) are selected as most likely to regulate the set of transcripts from which the 3′ UTR motif was derived (block 912). In an embodiment, the threshold is based upon the smallest possible p-value given the size of the search space. For example, for an 8 bp motif, the smallest p-value is 1/48, or 1.5×10−5, for a 6 bp motif the smallest p-value would be 1/46, or 2.4×10−4, etc. The threshold is a quality metric that demonstrates the certainty that a particular miRNA is the driving factor for a particular hallmark of cancer. Other thresholds could be used depending on the type of study being conducted.



FIG. 10 depicts a flow diagram representing an exemplary method 1000 for identifying enriched predicted miRNA binding sites (i.e., an exemplary method corresponding to the block 804). Data produced by operation of one or more miRNA target gene prediction algorithms (e.g., PITA, TargetScan, miRanda, miRSVR) are analyzed by calculating the hypergeometric p-value for each miRNA in each set of data (block 1002). The sets of data may be stored locally on a memory device and/or may be stored remotely and accessed via a network connection. In any event, in FIG. 10, for example, hypergeometric p-values are calculated for each miRNA in the TargetScan and PITA data sets. The results are optionally filtered to control the false discovery rate (e.g., to be equal to or less than a predetermined value, e.g., 0.001) (block 1004). In an embodiment, the Benjamini-Hochberg False Discovery Rate Procedure (BHFDR) is implemented. Other methods may be used, alternatively or additionally, to control the false discovery rate. The results are optionally filtered to exclude results for which less than a pre-determined portion (e.g., 10 percent) of the genes are targeted by the specific miRNA (block 1006). Further, in some embodiments, the results are filtered based upon the presence of a particular miRNA in the tissue of interest. miRNAs having the smallest hypergeometic p-values (e.g., below a pre-determined threshold) are selected as most likely to regulate the signature (block 1008). Alternatively, in other embodiments the top set of results are selected. In still other embodiments, results with BHFDR corrected p-values below a threshold (e.g., below 0.05) could be selected. The individual miRNAs are sometimes referred to herein as “biomarkers” and sets of miRNAs identified are sometimes referred to as “panels” herein.


By “statistically significant”, it is meant that the inference is greater than what might be expected to happen by chance alone (which could be a “false positive”). Statistical significance can be determined by any method known in the art. Commonly used measures of significance include the p-value, which presents the probability of obtaining a result at least as extreme as a given data point, assuming the data point was the result of chance alone. A result is often considered highly significant at a p-value of 0.05 or less.


In another aspect, miRNAs are described herein as associated with particular cancers or cancer characteristics. The miRNAs can be measured in an individual and used to evaluate the risk that an individual will develop cancer in the future, for example, the risk that an individual will develop cancer in the next 1, 2, 2.5, 5, 7.5, or 10 years. As used herein, “measuring” includes at least “detecting” a biomarker, but can also include determining the level/quantity of a biomarker. Exemplary miRNAs are shown in the figures. The miRNAs can be employed for methods, kits, computer readable media, systems, and other aspects of the invention which employ individual miRNAs or sets of miRNAs. A panel of miRNAs may comprise one or more miRNAs. MicroRNAs are set out in FIGS. 12 (showing the miRNAs miR-29a/b/c, miR-130a, miR-296-5p, miR-338-5p, miR-369-5p, miR-656, miR-760, miR-767-5p, miR-890, miR-1275, miR-1276 and miR-1291 forming a cross-cancer miRNA regulatory network), 13 (showing the miRNAs forming a metastatic cancer miRNA regulatory network), and 14 (showing the miRNAs forming a sustained angiogenesis miRNA regulatory network, a tumor-promoting inflammation miRNA regulatory network, miRNAs involved in self-sufficiency in growth signals, miRNAs involved in reprogramming energy metabolism, miRNAs involved in evading apoptosis, miRNAs involved in genome instability and mutation, miRNAs involved in limitless replicative potential, miRNAs involved in evading immune detection and miRNAs involved in insensitivity to anti-growth signals).


In still another aspect, methods of calculating a risk score for developing cancer are provided, comprising (a) obtaining inputs about an individual comprising the level of biomarkers in at least one biological sample from said individual; and (b) calculating a cancer risk score from said inputs; wherein said biomarkers comprise one or more biomarkers selected from FIGS. 12, 13 and 14.


Cancers include, but are not limited to, cancers such as those set out in FIG. 14. These cancers include, but are not limited to, cancers of the bladder, brain, colon, blood, lung, skin, ovary, testes, breast, head, neck and prostate.


In yet another aspect of evaluating risk for developing cancer, the method comprises: (a) obtaining biomarker measurement data, wherein the biomarker measurement data is representative of measurements of biomarkers in at least one biological sample from an individual; and (b) evaluating risk for developing cancer based on an output from a model, wherein the model is executed based on an input of the biomarker measurement data; wherein the biomarkers comprise one or more biomarkers selected from FIGS. 12, 13 and 14.


In an additional aspect, the invention is method of evaluating risk for developing cancer comprising: obtaining biomarker measurements from at least one biological sample from an individual who is a subject that has not been previously diagnosed as having cancer, comparing the biomarker measurement to normal control levels; and evaluating the risk for the individual developing a cancer from the comparison; wherein the biomarkers are defined as set forth in the preceding paragraph.


Similarly, methods are provided of evaluating risk for developing cancer, the method comprising: obtaining biomarker measurement data, wherein the biomarker measurement data is representative of measurements of biomarkers in at least one biological sample from an individual; and evaluating risk for developing cancer based on an output from a model, wherein the model is executed based on an input of the biomarker measurement data; wherein said biomarkers are defined as above.


In some embodiments, the step of evaluating risk comprises computing an index value using the model based on the biomarker measurement data, wherein the index value is correlated with risk of developing cancer in the subject. In some embodiments, evaluating risk comprises normalizing the biomarker measurement data to reference values.


In another aspect, a method of calculating a risk score for cancer progression is provided, comprising (a) obtaining inputs about an individual suffering from cancer comprising the level of biomarkers in at least one biological sample from said individual; and (b) calculating a cancer risk score from said inputs; wherein said biomarkers comprise one or more biomarkers selected from FIGS. 12, 13 and 14.


In some embodiments of the methods disclosed herein, the obtaining biomarker measurement data step comprises measuring the level of at least one of the biomarkers in at least one biological sample from said individual. Optionally, the method includes a step (prior to the step of obtaining biomarker measurement data) of obtaining at least one biological sample from the individual.


In some embodiments, at least one biomarker input is obtained from one or more biological samples collected from the individual, such as from a blood sample, saliva sample, urine sample, cerebrospinal fluid sample, sample of another bodily fluid, or other biological sample including, but not limited to, those described herein.


In some embodiments, at least one biomarker input is obtained from a preexisting record, such as a record stored in a database, data structure, other electronic medical record, or paper, microfiche, or other non-electronic record.


In some embodiments, the biomarkers comprise at least one, at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, at least twelve, at least thirteen, or more (up to all or all) biomarkers selected from FIG. 12, 13 and/or 14.


In another aspect, the invention embraces a method comprising advising an individual of said individual's risk of developing cancer or risk of cancer progression, wherein said risk is based on factors comprising a cancer risk score, and wherein said cancer risk score is calculated as described above. The advising can be performed by a health care practitioner, including, but not limited to, a physician, nurse, nurse practitioner, pharmacist, pharmacist's assistant, physician's assistant, laboratory technician, dietician, or nutritionist, or by a person working under the direction of a health care practitioner. The advising can be performed by a health maintenance organization, a hospital, a clinic, an insurance company, a health care company, or a national, federal, state, provincial, municipal, or local health care agency or health care system. The health care practitioner or person working under the direction of a health care practitioner obtains the medical history of the individual from the individual or from the medical records of the individual. The advising can be done automatically, for example, by a computer, microprocessor, or dedicated device for delivering such advice. The advising can be done by a health care practitioner or a person working under the direction of a health care practitioner via a computer, such as by electronic mail or text message.


In some embodiments of the invention, the cancer risk score is calculated automatically. The cancer risk score can be calculated by a computer, a calculator, a programmable calculator, or any other device capable of computing, and can be communicated to the individual by a health care practitioner, including, but not limited to, a physician, nurse, nurse practitioner, pharmacist, pharmacist's assistant, physician's assistant, laboratory technician, dietician, or nutritionist, or by a person working under the direction of a health care practitioner, or by an organization such as a health maintenance organization, a hospital, a clinic, an insurance company, a health care company, or a national, federal, state, provincial, municipal, or local health care agency or health care system, or automatically, for example, by a computer, microprocessor, or dedicated device for delivering such advice.


In another embodiment, methods providing two or more cancer risk scores to a person, organization, or database are disclosed, where the two or more cancer risk scores are derived from biomarker information representing the biomarker status of the individual at two or more points in time. In any of the foregoing embodiments, the entity performing the method can receive consideration for performing any one or more steps of the methods described.


In another aspect, a method is provided of ranking or grouping a population of individuals, comprising obtaining a cancer risk score for individuals comprised within said population, wherein said cancer risk score is calculated as described above; and ranking individuals within the population relative to the remaining individuals in the population or dividing the population into at least two groups, based on factors comprising said obtained cancer risk scores. The ranking or grouping of the population of individuals can be utilized for one or more of the following purposes: to determine an individual's eligibility for health insurance; an individual's premium for health insurance; to determine an individual's premium for membership in a health care plan, health maintenance organization, or preferred provider organization; to assign health care practitioners to an individual in a health care plan, health maintenance organization, or preferred provider organization; to recommend therapeutic intervention or lifestyle intervention to an individual or group of individuals; to manage the health care of an individual or group of individuals; to monitor the health of an individual or group of individuals; or to monitor the health care treatment, therapeutic intervention, or lifestyle intervention for an individual or group of individuals.


In another aspect, a panel of biomarkers is provided comprising biomarkers selected from FIG. 12, 13 and/or 14. Exemplary panel embodiments contemplated are a panel comprising one, two or more (up to all or all) miRNAs in FIG. 12; a panel comprising one, two or more (up to all or all) miRNAs in claim 13; a panel comprising one, two or more (up to all or all) miRNAs in FIG. 14 associated with sustained angiogenesis; a panel comprising one, two or more (up to all or all) miRNAs in FIG. 14 associated with tumor-promoting inflammation; a panel comprising one, two or more (up to all or all) miRNAs in FIG. 14 associated with self-sufficiency in growth signals; a panel comprising one, two or more (up to all or all) miRNAs in FIG. 14 associated with reprogramming energy metabolism; a panel comprising one, two or more (up to all or all) miRNAs in FIG. 14 associated with evading apoptosis; a panel comprising one, two or more (up to all or all) miRNAs in FIG. 14 associated with genome instability and mutation; a panel comprising one, two or more (up to all or all) miRNAs in FIG. 14 associated with limitless replicative potential; a panel comprising one, two or more (up to all or all) miRNAs in FIG. 14 associated with evading immune detection; a panel comprising one, two or more (up to all or all) miRNAs in FIG. 14 associated with insensitivity to anti-growth signals; and panels including one, two or more (up to all or all) miRNAs in FIG. 14 respectively associated with a particular tissue or type of cancer [e.g., a panel comprising one, two or more (up to all or all) miRNAs in FIG. 14 associated with a colon cancer; or panel comprising one, two or more (up to all or all) miRNAs in FIG. 14 associated with a carcinoma]. Panels representing every possible combination of miRNAs in FIGS. 12, 13 and 14 are specifically contemplated.


In another aspect, one or more data structures or databases are provided comprising values for one or more biomarkers in FIGS. 12, 13 and 14. A machine-readable storage medium can comprise a data storage material encoded with machine readable data or data arrays which, when using a machine programmed with instructions for using said data, is capable of use for a variety of purposes, such as, without limitation, subject information relating to cancer risk factors over time or in response to cancer-modulating drug therapies, drug discovery, and the like. Measurements of effective amounts of the biomarkers of the invention and/or the resulting evaluation of risk from those biomarkers can implemented in computer programs executing on programmable computers, comprising, inter alia, a processor, a data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. Program code can be applied to input data to perform the functions described above and generate output information. The output information can be applied to one or more output devices, according to methods known in the art. The computer may be, for example, a personal computer, microcomputer, or workstation of conventional design.


In another aspect, diagnostic test systems are provided comprising (1) means for obtaining test results comprising levels of multiple biomarkers in at least one biological sample; (2) means for collecting and tracking test results for one or more individual biological sample; (3) means for calculating an index value from inputs, wherein said inputs comprise measured levels of biomarkers, and further wherein said measured levels of biomarkers comprise the levels of one or more biomarkers selected from FIGS. 12, 13 and 14; and (4) means for reporting said index value. In some embodiments, said index value is a cancer risk score; the cancer risk score can be calculated according to any of the methods described herein. The means for collecting and tracking test results for one or more individuals can comprise a data structure or database. The means for calculating a cancer risk score can comprise a computer, microprocessor, programmable calculator, dedicated device, or any other device capable of calculating the cancer risk score. The means for reporting the cancer risk score can comprise a visible display, an audio output, a link to a data structure or database, or a printer.


A diagnostic system is any system capable of carrying out the methods of the invention, including computing systems, environments, and/or configurations that may be suitable for use with the methods or system of the claims include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.


In some embodiments, a diagnostic test system comprises: means for obtaining test results data representing levels of multiple biomarkers in at least one biological sample; means for collecting and tracking test results data for one or more individual biological samples; means for computing an index value from biomarker measurement data, wherein said biomarker measurement data is representative of measured levels of biomarkers, and further wherein said measured levels of biomarkers comprise the levels of a set or panel of biomarkers as defined elsewhere herein; and means for reporting said index value. In some variations of the diagnostic test system, the index value is a cancer risk score. In some preferred variations, the cancer risk score is computed according to the methods described herein for computing such scores. In some variations, the means for collecting and tracking test results data representing for one or more individuals comprises a data structure or database. In some variations, the means for computing a cancer risk score comprises a computer or microprocessor. In some variations, the means for reporting the cancer risk score comprises a visible display, an audio output, a link to a data structure or database, or a printer.


In some embodiments, a medical diagnostic test system for evaluating risk for developing a cancer or risk for cancer progression, the system comprises: a data collection tool adapted to collect biomarker measurement data representative of measurements of biomarkers in at least one biological sample from an individual; and an analysis tool comprising a statistical analysis engine adapted to generate a representation of a correlation between a risk for developing a cancer and measurements of the biomarkers, wherein the representation of the correlation is adapted to be executed to generate a result; and an index computation tool adapted to analyze the result to determine the individual's risk for developing a cancer or for cancer progression, and represent the result as an index value; wherein said biomarkers are defined as a set or panel as described elsewhere herein. In some variations, the analysis tool comprises a first analysis tool comprising a first statistical analysis engine, the system further comprising a second analysis tool comprising a second statistical analysis engine adapted to select the representation of the correlation between the risk for developing a cancer or risk for cancer progression and measurements of the biomarkers from among a plurality of representations capable of representing the correlation. In some variations, the system further comprising a reporting tool adapted to generate a report comprising the index value.


In some embodiments, a system for diagnosing susceptibility to cancer in a human subject comprises (a) at least one processor; (b) at least one computer-readable medium; (c) a susceptibility database operatively coupled to a computer-readable medium of the system and containing information associating measurements of one or more biomarkers selected from FIGS. 12, 13 and 14 and cancer in a population of humans; (d) a measurement tool that receives an input about the human subject and generates information from the input about one or more biomarkers selected from FIGS. 12, 13 and 14 from the human subject; and (e) an analysis tool (routine) that (i) is operatively coupled to the susceptibility database and the measurement tool, (ii) is stored on a computer-readable medium of the system, (iii) is adapted to be executed on a processor of the system, to compare the information about the human subject with the information about the population in the susceptibility database and generate a conclusion with respect to susceptibility to cancer in the human subject.


In some embodiments, a system for diagnosing cancer in a human subject comprises (a) at least one processor; (b) at least one computer-readable medium; (c) a susceptibility database operatively coupled to a computer-readable medium of the system and containing information associating measurements of biomarkers selected from FIGS. 12, 13 and 14 and cancer in a population of humans; (d) a measurement tool that receives an input about the human subject and generates information from the input about one or more biomarkers selected from FIGS. 12, 13 and 14 from the human subject; and (e) an analysis tool (routine) that (i) is operatively coupled to the susceptibility database and the measurement tool, (ii) is stored on a computer-readable medium of the system, (iii) is adapted to be executed on a processor of the system, to compare the information about the human subject with the information about the population in the susceptibility database and generate a conclusion with respect to the presence of cancer in the human subject. In some embodiments, the biomarkers are measured by amplification or by hybridization to a microarray.


In the systems in the preceding two paragraphs, the input about the human subject can be a biological sample from the human subject, and the measurement tool comprises a tool to measure one or more biomarkers selected from FIGS. 12, 13 and 14 in the biological sample, thereby generating biomarker measurements from a human subject. In some embodiments, the systems further comprise a communication tool operatively coupled to the analysis tool, stored on a computer-readable medium of the system and adapted to be executed on a processor of the system to generate a communication for the human subject, or a medical practitioner for the subject, containing the conclusion with respect to cancer for the subject.


In some embodiments of systems comprising a communication tool operatively connected to the analysis tool or routine, the systems comprise a routine stored on a computer-readable medium of the system and adapted to be executed on a processor of the system, to: generate a communication containing the conclusion; and transmit the communication to the subject or the medical practitioner, or enable the subject or medical practitioner to access the communication.


In some embodiments, any of the systems comprise a medical protocol database operatively connected to a computer-readable medium of the system and containing information correlating the conclusion and medical protocols for human subjects at risk for or suffering from cancer; and a medical protocol tool (or routine), operatively connected to the medical protocol database and the analysis tool or routine, stored on a computer-readable medium of the system, and adapted to be executed on a processor of the system, to compare the conclusion from the analysis routine with respect to cancer for the subject and the medical protocol database, and generate a protocol report with respect to the probability that one or more medical protocols in the database will reduce susceptibility to cancer, delay onset of cancer, increase the likelihood of detecting cancer at an early stage to facilitate early treatment or treat the cancer. Where the communication tool is operatively connected to the medical protocol tool or routine, the system may generate a communication that further includes the protocol report.


Yet another aspect is a computer readable medium having computer executable instructions for evaluating risk for developing a cancer, the computer readable medium comprising: a routine, stored on the computer readable medium and adapted to be executed by a processor, to store biomarker measurement data representing a set or panel of biomarkers; and a routine stored on the computer readable medium and adapted to be executed by a processor to analyze the biomarker measurement data to evaluate a risk for developing a cancer or for risk of cancer progression. The panels of biomarkers are defined as described in any of the preceding paragraphs.


Still another aspect is a method developing a model for evaluation of risk for developing a cancer or for cancer progression, the method comprising: obtaining biomarker measurement data, wherein the biomarker measurement data is representative of measurements of biomarkers from a population and includes endpoints of the population; inputting the biomarker measurement data of at least a subset of the population into a model; training the model for endpoints using the inputted biomarker measurement data to derive a representation of a correlation between a risk of developing a cancer or for cancer progression and measurements of biomarkers in at least one biological sample from an individual; wherein said biomarkers for which measurement data is obtained comprise a set or panel of markers of the invention as defined elsewhere herein.


Another aspect is a kit comprising reagents for measuring a panel of biomarkers, wherein the panel of biomarkers are defined as described in any of the preceding paragraphs, or in a figures, or in other descriptions of preferred panels of markers found herein. In some embodiments, such reagents are packaged together. In some embodiments, the reagents are primers used to amplify miRNA(s) in a panel. In some embodiments, the reagents are DNA arrays that hybridize to miRNA(s) in a panel. In some embodiments, the kit further includes an analysis program for evaluating risk of an individual developing a cancer from measurements of the group of biomarkers from at least one biological sample from the individual.


In measuring miRNA, an amplification reaction using appropriate primers as reagents may be done quantitatively, and the amount of amplified RNA can then be determined with an appropriate probe with a detectable label. The probe may be an oligonucleotide including oligos with nonnative linkages such as phosphothiolate or phosphoramidate, or a peptide nucleic acid (PNA). Nonnative bases may also be included. Thus, a kit may comprise a reagent for an assay which reagent is specific for the miRNA(s), as well as additional reagents needed in order to quantitate the results. Specific miRNA levels can also be measured using general molecular biology techniques commonly known in the art such as Northern blot, quantitative reverse transcription polymerase chain reaction (qRT-PCR), next-generation sequencing or microarray. qRT-PCR is a more sensitive and efficient procedure detect specific messenger RNA or microRNA. The RNA sample is first reverse transcribed, the target sequences can then be amplified using thermostable DNA polymerase. The concentration of a particular RNA sequence in a sample can be determined by examining the amount of amplified products. Microarray technology allows simultaneous measurement of the concentrations of multiple RNA species. Oligonucleotides complementary to specific miRNA sequences are immobilized on solid support. The RNA in the sample is labeled with ColorMatrix™ or florescent dye. After subsequent hybridization of the labeled material to the solid support, the intensities of fluorescent for ColorMatrix™ dye remaining on the solid support determines the concentrations of specific RNA sequences in the samples. The concentration of specific miRNA species can also be determined by NanoString™ nCounter™ system which provides direct digital readout of the number of RNA molecules in the sample without the use of amplification. NanoString™ technology involves mixing the RNA sample with pairs of capture and reporter probes, tailored to each RNA sequence of interest. After hybridization and washing away excess probes, probe-bound target nucleic acids are stretched on a surface and scanned to detect fluorescent-barcodes of the reporter probes. This allows for up to 1000-plex measurement with high sensitivity and without amplification bias. Technologies such as electrochemical biosensor arrays, surface plasma resonance and other targeted capture assays can also be utilized to quantify molecular markers simultaneously by measuring changes in electro-current, light absorption, fluorescence, or enzymatic substrates reactions.


Another aspect includes methods for the prophylactic treatment of a subject at risk for a cancer according to procedures described herein. In some embodiments, the invention includes a method of prophylaxis for cancer comprising: obtaining risk score data representing a cancer risk score for an individual, wherein the cancer risk score is computed according to a method or improvement of the invention; and generating prescription treatment data representing a prescription for a treatment regimen to delay or prevent the onset of cancer to an individual identified by the cancer risk score as being at elevated risk for cancer. In some embodiments, a method of prophylaxis for cancer comprises: evaluating risk, for at least one subject, of developing a cancer according to the method or improvement of the invention; and treating a subject identified as being at elevated risk for a cancer with a treatment regimen to delay or prevent the onset of cancer.


Another aspect includes methods for the therapeutic treatment of a subject indentified as having a cancer according to procedures described herein.


In some embodiments, methods for the prophylactic or therapeutic treatment of a subject comprise administering a drug that increases the amount of a miRNA identified herein that is produced by the body to fight a cancer. In some embodiments, methods comprise administering a drug to inhibit a miRNA or decrease the amount of a miRNA identified herein that is part of the cause of or exacerbates a cancer. In some embodiments, methods comprise both administering a drug that increases the amount of a miRNA identified herein that is produced by the body to fight a cancer, and administering a drug to inhibit a miRNA or decrease the amount of a miRNA identified herein that is part of the cause of or exacerbates a cancer. In some embodiments, the subject is treated with the drug and also receives any other standard of care treatment for the cancer. A drug can be any product including, but not limited, to: small molecules; RNAs or vectors encoding RNAs, such as miRNAs (including miRNAs identified herein), snRNAs and antisense RNAs; peptides or polypeptides; and antibody products that penetrate cells.


A further aspect is a method of evaluating the current status of a cancer in an individual comprising obtaining biomarker measurement data and evaluating the current status of a cancer in the individual based on an output from a model, wherein the biomarkers are any biomarker of the invention.


The foregoing paragraphs are not intended to define every aspect of the invention, and additional aspects are described in other sections. This entire document is intended to be related as a unified disclosure, and it should be understood that all combinations of features described herein are contemplated, even if the combination of features are not found together in the same sentence, or paragraph, or section of this document. With respect to aspects of the invention described as a genus, all individual species are individually considered separate aspects of the invention. With respect to aspects described as a range, all sub-ranges and individual values are specifically contemplated.


Aspects and embodiments of the invention are illustrated by the following non-limiting example.


EXAMPLES

A generalized framework for the inference of regulation by miRNAs (FIRM) was constructed. In Example 1, a compendium of transcriptome profiles was compiled from studies that had interrogated differential expression of genes in response to targeted perturbation of specific miRNAs (Brueckner et al 2007; Ceppi et al. 2009; Tsung-Cheng Chang et al. 2007; Fasanaro et al. 2009; Frankel et al. 2008; Georges et al. 2008; Grimson et al. 2007; Lin He et al. 2007; Hendrickson et al. 2008; Charles D Johnson et al. 2007; Karginov et al. 2007; Lee P Lim et al. 2005; Linsley et al. 2007; Malzkorn et al. 2010; Ozen et al. 2008; Sengupta et al. 2008; Tan et al. 2009; Tsai et al. 2009; Valastyan et al. 2009; Wang-Xia Wang et al. 2010; Frank Weber et al. 2006). In Example 2, using this compendium of miRNA-perturbed transcriptomes it was demonstrated that functional miRNA binding sites (8 bp of complementarity) preferentially reside in the 3′ UTRs. Further, using preferential 3′ UTR localization as a heuristic was demonstrated to significantly increase sensitivity and specificity of miRNA-binding site discovery by Weeder-miRvestigator. In Example 3, using the compendium of miRNA-perturbed transcriptomes the best performing algorithms were identified and integrated into a generalized framework for inference of miRNA regulatory networks. Finally, the utility of this framework was demonstrated by applying it to a set of 2,240 co-expression signatures from 46 different cancers. The original study was able to associate only four signatures to putative regulation by a known miRNA (Goodarzi et al. 2009). In contrast, using the integrated framework 1,324 signatures were explained as potential outcomes of regulation by specific miRNAs in miRBase. By applying functional enrichment and semantic similarity identified within this expansive network specific miRNAs associated with hallmarks of cancer were identified. Further, filtering gene co-expression signatures for specific hallmarks of cancer such as “tissue invasion and metastasis” generated a metastatic cancer-miRNA regulatory network of 33 miRNAs. Importantly, this revealed that a relatively small subset of miRNAs regulate multiple oncogenic processes across different cancers. Through in depth analyses of data from prior studies as well as new data from targeted miRNA-perturbation experiments, the role of miR-29 family members in lung adenocarcinoma was validated and gene targets for regulation by the relatively unknown miR-767-5p were discovered. Example 4 relates to the use of the FIRM approach to identify other miRNAs associated with hallmarks of cancer. The discussion in Example 5 illustrates how these analyses and validations demonstrate how the cancer-miRNA regulatory network can be used to accelerate discovery of miRNA-based biomarkers and therapeutics.


Methods
De Novo Identification of 3′ UTR Motifs

Sequences and RefSeq gene definition files were downloaded from the UCSC genome browser FTP site (ftp://hgdownload.cse.ucsc.edulgoldenPath/currentGenomes/Homo_sapiens). Details can be found in the Supplementary Method section below. The Weeder de novo motif detection algoirthm (Pavesi et al. 2006) was then used to identify over-represented miRNA binding sites in the 3′ UTR of putatively miRNA co-regulated genes (Fan et al. 2009; Linhart et al. 2008).


miRvestigator Identification of Complementary miRNA for 3′ UTR Motif


MiRvestigator employs a hidden Markov model (BIMM) to align and compute a probability describing the complementarity of a specific miRNA seed to a 3′ UTR motif (Plaisier et al. 2011). The miRvestigator HIVIM is described in detail in the supplementary methods. The 3′ UTR motif is first converted to a miRvestigator HIVIM and the Viterbi algorithm is used to provide a complementarity p-value by comparing the HIVIM to all potential seed sequences from miRBase. There are different models for the base-pairing of miRNA seeds to the complementary protein coding transcript binding sites as described in FIG. 1 (Bartel 2009; Brennecke et al. 2005). The significance of the complementarity for a given miRNA is then calculated by exhaustively computing the complete distribution of complementarity probabilities for all potential miRNA k-mer seed sequences (where k=6, 7 or 8 bp). The miRNA(s) with the smallest complementarity p-value are considered the most likely to regulate the set of transcripts from which the 3′ UTR motif was derived.


Simulating Synthetic Motifs and 3′ UTRs Sequences

Motifs were simulated based upon the reverse complement of the 8 bp seed sequence 5′-UGGAAUGU-3′ for miR-1 (MIMAT0000416). The miRNA seed signal determined the percent that the seed nucleotide was given in each column of the PSSM and the remaining signal was distributed randomly to the other three nucleotides. We simulated motifs with different entropies by adding between 10 to 75% noise at a 5 percent interval to each seed nucleotide position. A seed nucleotide signal of 25 percent is the random case as one of the other three nucleotides is likely to have a higher frequency than the seed nucleotide. Thirty sequences were simulated by randomly sampling 8 mers from the distribution 8 mers in 3′ UTRs and inserting an instance of the reverse complement of the miR-1 seed sequence at varying proportions (0 to 100%). The reciever operating characteristic (ROC) area under the curve (AUC) was calculated using the ROCR package (Sing et al. 2005).


Assessing Bias in the Distribution of miRNA Binding Sites


Instances of Weeder motif binding sites from either full transcripts (5′ UTR, coding sequence (CDS), 3′ UTR) or just 3′ UTRs of genes matching to the perturbed miRNA were identified for the compendium of experimentally determined miRNA target gene sets. Significance for the normalized counts per 1 Kbp was calculated for the distribution of matches in each gene region and for each experimentally determined miRNA target gene set by comparison to 1,000,000 randomly sampled gene sets of the same size. A combined p-value was computed by using Stouffer's Z-score method. The ROCR package was again used to compute ROC curves and ROC AUCs for each method. The pROC package was used to calculate the 95% confidence interval and pairwise p-values to determine if there is a significant difference between the ROC curves of the methods (Robin et al. 2011).


Identifying Enriched Predicted miRNA Binding Sites


The PITA, TargetScan, miRanda and miRSVR miRNA target gene prediction databases were downloaded from their respective web sites. The significance for enrichment of genes with a predicted miRNA binding site was calculated using the hypergeometric p-value for each miRNA. The miRNA(s) with the smallest hypergeometric p-value are considered the most likely to regulate the signature. Multiple hypothesis testing correction was applied using the BenjaminHochberg approach for controlling the false discovery rate (FDR) equal to or less than 0.001 (FDR<0.001), and requiring at least 10% of the genes to be targeted by the specific miRNA.


Selecting Optimal Methods to Infer miRNA Regulatory Network


Each inference method was applied to the compendium of 50 miRNA target gene sets (Supplementary Table 2). The ROCR and pROC packages in R were used to compute ROC curves, ROC AUC and p-values between ROC curves.


miR2Disease Overlap


First, we created a mapping between the 46 cancer subtypes and the disease classifications in the manually curated miR2Disease database. Instances were then identified where an inferred miRNA regulator was previously observed to be dysregulated or causal in the same cancer type. Significance of the enrichment of overlap between miR2Disease and the cancer-miRNA regulatory network was calculated using a hypergeometric p-value in R.


Functional Enrichment and Semantic Similarity to Hallmarks of Cancer

Enrichment of GO biological process terms in each cancer co-expression signature were assessed using the topG0 package in R (Alexa et al. 2006) by computing a hypergeometric pvalue with Benjamini-Hochberg correction (FDR<0.05). All GO terms passing the significance threshold for a co-expression signature were included in downstream analyses. Semantic similarity between a significantly enriched GO term and each hallmark of cancer was assessed by using the Jiang and Conrath similarity measure as implemented in the R package GOSim (Fröhlich et al. 2007). For each co-expression signature the similarity scores between its enriched GO terms and the GO terms for each hallmark of cancer was computed, and the maximum for each hallmark was returned. Similarity scores gyeater than or equal to 0.8 were considered sufficient for inferring a link between the enriched GO terms for a co-expression signature and a hallmark of cancer. Random sampling of 1,000 GO terms and computing the Jiang and Conrath scores demonstrated that a similarity score greater than or equal to 0.8 resulted in a permuted p-value<5.1×10−4.


miR-29 Family Co-Expression Signature Overlaps


A hypergeometric p-value was used to test for significant overlap between the lung adenocarcinoma signature genes and the genes up-regulated by in vitro due to knock-down of miR-29 family milMAs.


Luciferase Reporter Assay

The 3′ UTRs for genes of interest were amplified from cDNA (primers in Supplementary Table 12) and cloned into the pmirGLO Dual-Luciferase miRNA target expression vector behind firefly luciferase. The sequence and orientation for all 3′ UTRs inserted into pmirGLO were verified by sequencing. HEK293 cells were plated at a density of 100,000 cells per well and cotransfected in 96 well plates 24 hours after plating. Cells were transfected using DharmaFect DUO (Dharmacon) with 75 ng of the 3′ UTR fused reporter vector and either 50 nM of miR-29a, miR-29b, miR-29c, miR-767-5p or cel-miR-67 (negative control) miRNA mimic (Dharmacon). Twenty-four hours after transfection firefly and renilla luciferase activities were measured using the Dual-Glo assay (Promega) on a Synergy 114 hybrid multi-mode microplate reader (BioTek) per manufacturer recommendations. Experiments were conducted in biological triplicates. Luminescence measurements were first background subtracted using a vehicle only control, and then firefly luminescence was normalized to renilla luminescence. Experimental comparisons are made to vector only controls. Student's T-test and fold-changes were calculated using standard methods. MiRNA binding sites for MMP2 and SPARC were deleted using recombinant PCR (primers in Supplementary Table 12). Dose response curves for COL3A1 and SPARC were conducted using 50 nM, 5 nM, 500 pM, 50 pM and 5 pM miRNA mimic concentrations.


Supplementary Methods
De Novo Identification of 3′ UTR Motifs

Sequences and RefSeq gene definition files were downloaded from the UCSC genome browser FTP site (ftp://hgdownload.cse.ucsc.edu/goldenPath/currentGenomes/Homo sapiens). To reduce overlap the set of RefSeq genes that mapped to an Entrez gene were collapsed and the regulatory regions were merged to include all potential regulatory sequences. The RefSeq to Entrez gene mapping was downloaded from NCBI Gene FTP site (ftp://ftp.ncbi.nih.gov/gene/DATA/gene2refseq.gz). To provide a 3′ untranslated region (UTR) for as many genes as possible we set the minimum 3′ UTR length to the median annotated 3′ UTR length of 844 bp (Kertesz et al. 2007). The same approach was used for the 5′ UTR with a minimum 5′ UTR length of 183 bp. The coding sequences were acquired as they were annotated, and were not filtered in anyway. All annotated introns were removed as they are present only transiently in expressed transcripts. The Weeder de novo motif detection algoirthm (Pavesi et al. 2006) was then used to identify over-represented miRNA binding sites in the 3′ UTR of putatively miRNA co-regulated genes (Fan et al. 2009; Linhart et al. 2008).


miRvestigator Hidden Markov Model (HMM) from Position Specific Scoring Matrix


Two general problems are faced when comparing an miRNA seed which is a string of nucleotides 8 base pairs long (and may be complementary for 6, 7 or 8 base pairs) to a PSSM (a matrix of 4 nucleotide probabilities that must sum to 1 in a column by a variable number of columns). First the miRNA seed sequence must be aligned to the PSSM, and second the certainty of the match between the miRNA seed and the PSSM must be computed. The Viterbi algorithm identifies the optimal path through an HMM for an observed sequence of events, and there can solve both of these problems simultaneously by turning the PSSM into an Hidden Markov Model (HMM) and the miRNA seed nucleotide sequence into the observed sequence of events. The overall structure of the miRvestigator HMM is described in FIG. 5. Each column n of the PSSM is converted into a hidden state PSSMn which emits the nucleotides A, G, C and T with the probability of each nucleotide in the PSSM column. There are also two non-matching states NM1 and NM2, which are used to buffer entry and exit respectively to and from the PSSM. The non-matching states emit nucleotides at a random frequency of 0.25 for each nucleotide, thus not favoring any nucleotide over another. This buffering allows for non-matching states at the start and end of the aligned seed to the PSSM, and do not allow for gapping. From the start state the transmission probability is evenly distributed to each PSSMn state and the NM1 state (1/(length of PSSM+1)). This allows the alignment to start with equal probability at any point in the miRvestigator HMM. If the alignment starts with NM1 the transition probability back to NMi is 0.01 and the transition to the next PSSM column state is 0.99. The transition between PSSMn column state and PSSMn+1 column state is 0.99, and 0.01 to the end buffering NM2 non-matching state. The last PSSMN state transitions to the end state with a probability of 1. The NM2 non-matching state transitions to itself and the end state with a probability of 1, therefore when an alignment transitions to the NM2 state it stays there till it transitions to the end state. The emitted observations are the miRNA seed sequence being fed into the miRvestigator HMM. The output from the Viterbi algorithm is the optimal state path (a path made up of the PSSMm, NM1, NM2, WOBBLEn states) through the mirvestigator HMM given the miRNA seed nucleotide sequence and a probability for this optimal alignment.


Significance of the Viterbi Optimal State Path Probability

The significance of a the Viterbi optimal state path probability for a given miRNA is then calculated by exhaustively computing the complete distribution of Viterbi optimal state path probabilities for all potential miRNA k-mer seed sequences (where k=6, 7 or 8 base pairs). Only k-mers which are present in the regulatory regions of the transcripts being investigated are included in the exhaustive computation. The complete distribution of Viterbi probabilities is then used to provide a p-value for each miRBase miRNA seed sequence by counting the number of k-mers with a Viterbi optimal state path probability greater than or equal to the miRNA seed of interest divided by the total number of potential k-mers. This provides a p-value for the alignment and match for each miRNA seed sequences to a PSSM identified from cis-regulatory regions. The miRNAs are then ranked based upon the Viterbi optimal state path p-values and the miRNA(s) with the smallest p-values is the most likely to regulate the set of transcripts.


Modeling Wobble Base-Pairing with miRvestigator HMM


Wobble base-pairing was included in the miRvestigator HMM for the case where a G=U wobble base-pairing defines the miRNA to protein coding transcript complementarity (Baek et al. 2008; Guo et al. 2010; Hendrickson et al. 2009; Selbach et al. 2008). The individual miRNA to protein coding transcript G=U wobble base-pairing is a problem that will need to be solved at the level of de novo motif identification. A wobble base-pairing state is added to the model only if a G and/or U have a nucleotide seed frequency of 25%. For the case where the G seed nucleotide frequency is greater than 25% and the U seed nucleotide frequency is below 25% the wobble state emits the nucleotide A with a probability of 1. For the case where the U seed nucleotide frequency is greater than 25% and the G seed nucleotide frequency is below 25% the wobble state emits the nucleotide C with a probability of 1. For the case where both the G and U seed nucleotide frequencies are greater than 25% the wobble state emits A and C with a probability of 0.5. When a wobble state is added the transition probability from the PSSMn state to the WOBBLEn+1 state is set to 0.19, the transition probability from the PSSMn state to the PSSMn+1 state is set to 0.8, and the transition probability from the PSSMn state to the NM2 state remains at 0.01. The transition probability from the wobble state WOBBLEn to PSSMn+1 is set to 1, which precludes a wobble base-pairing at the terminus of a state path for either transitioning to the NM2 state or to the end state.


Example 1

Inferring miRNA Mediated Regulation through Analysis of Co-Expressed Genes


The inference of a miRNA regulatory network can be accomplished in two ways. The first approach requires prior knowledge of genome-wide binding site locations for known miRNAs (Sethupathy et al. 2006). There are many algorithms that utilize this target enrichment strategy for inference of miRNA regulatory networks (Betel et al. 2010; Grimson et al. 2007; Linhart et al. 2008). The second approach performs the de novo discovery of conserved putative miRNA-binding sites within the 3′ UTRs of co-expressed genes. Weeder is one such algorithm that accurately discovers conserved cis-regulatory elements in 3′ UTRs (Fan et al. 2009; Linhart et al. 2008). The information of conserved cis-regulatory sequences can then be utilized for pattern matching to seed sequences of known miRNAs in miRBase. We had previously reported a web framework using the miRvestigator algorithm for performing such pattern matching (Plaisier et al. 2011). Here, we present results on the performance of Weeder and miRvestigator applied to simulated datasets. We then utilize a compendium of experimentally generated data from targeted miRNA perturbation studies to demonstrate that restricting Weeder's search space to 3′ UTRs sequences increases the sensitivity and specificity of Weeder-miRvestigator. Finally, we use the compendium to compare the performance of algorithms for the inference of miRNA regulation and combine the optimal methods into an integrated framework.


Weeder-miRvestigator

We constructed a framework for accurate inference of miRNA-mediated regulation using as input just the 3′ UTR sequences of co-expressed genes by coupling Weeder de novo motif detection and miRvestigator for subsequent association to known miRNA seeds (FIG. 1). We tested the sensitivity and specificity of miRvestigator independent of Weeder using synthetic 3′ UTR motifs. Starting with the seed sequence of miR-1 we computationally generated a set of synthetic motifs with increasing entropy. Using these synthetic motifs we computed the receiver operating characteristic (ROC) area under the curve (AUC) across a range of motif entropies. The ROC AUC is a standard approach to evaluate the sensitivity and specificity of classification or feature selection by an algorithm. This statistical analysis demonstrated that the miRvestigator scoring function (complementarity p-value metric) outperforms regular expression in both sensitivity and specificity for higher entropies (FIG. 2A, Supplementary Methods). Using the same approach we tested the performance of the integrated Weeder-miRvestigator framework in recovering the miR-1 seed sequence from a set of synthetic sequences into which it was inserted at a known frequency (0 to 100%). The results showed that by integrating the two algorithms we can sensitively and specifically recover the complementary miRNA seed (ROC AUC-0.9) even when it is present in just 40% of the query sequences (FIG. 2B). We conclude from these experiments that the integrated Weeder-miRvestigator approach is a sensitive and specific method for inference of miRNA mediated regulation from 3′ UTRs of coregulated genes.


Example 2

Restricting Searches to 3′ UTR Increases Sensitivity and Specificity of WeedermiRvestigator


MiRNA target prediction algorithms (including PITA, TargetScan, miRANDA, and miRSVR) improved their performance by restricting searches to the 3′ UTRs of transcripts where it has been demonstrated statistically that functional miRNA binding sites are preferentially located (Grimson et al. 2007). To determine the validity of this heuristic we investigated the distribution of functional miRNA binding sites within co-regulated transcripts by applying Weeder-miRvestigator to full transcript sequences (5′ UTR, coding sequence (CDS) and 3′ UTR). First, we compiled a compendium of miRNA target gene sets from 50 transcriptomes that were generated by perturbing specific miRNAs (22 independent studies, 41 unique mIRNAs, Supplementary Table 2). The analysis was then restricted to target gene sets in the compendium where Weeder-miRvestigator was able to identify the corresponding perturbed miRNA (27 of 50 sets). The 3′ UTRs were significantly enriched for miRNA-binding sites with 8 bp complementarity to the miRNA seed sequence (p-value=3.2×10-5, FIGS. 2C and D). Remarkably, none of the other transcript regions showed significant enrichment of miRNA-binding sites (p-value >1.5×10-4, p-value corrected for 27 miRNAs ×3 transcript regions ×4 instance complementarities to the miRNA seed (All, 8 bp, 7 bp and 6 bp complementarities)). This unbiased analysis has independently confirmed the observation of Grimson, et al. that functional miRNA binding sites preferentially reside in the 3′ UTRs. Next, we compared the sensitivity and specificity of searching full transcripts versus restricting the search space to the 3′ UTRs by computing ROC curves for Weeder-miRvestigator. Restricting the search space to 3′UTRs (ROC AUC=0.96) significantly increased the sensitivity and specificity of miRNA-binding site discovery by Weeder (p-value=1.8×10-2) relative to corresponding searches on full transcript sequences (ROC AUC=0.80). Therefore, all subsequent miRNA-binding site searches with Weeder were restricted to the 3′ UTR of putatively co-regulated gene sets.


Example 3

Selecting Optimal Methods to Infer a Comprehensive miRNA Regulatory Network


While multiple hypotheses testing correction procedures can reduce the number of false positives (incorrectly inferred regulatory interactions), it also results in a higher false negative rate (i.e. missing regulatory interactions). Therefore, we hypothesized that integrating results from multiple inference methods would construct a more comprehensive cancer-miRNA regulatory network as each method identifies a different subset of the miRNA regulatory network. To assess this we first identified the best performing network inference methods by computing a ROC curve from the predictions of applying each method to the compendium of experimentally determined miRNA target gene sets. In addition to Weeder-miRvestigator, we tested four additional algorithms that infer miRNA regulation through enrichment of predicted binding sites in 3′ UTRs of co-expressed genes: PITA, TargetScan, miRanda and miRSVR. This comparative analysis demonstrated that Weeder-miRvestigator, PITA and TargetScan are the best performing algorithms for inference of miRNA mediated regulation (FIG. 3A; ROC AUC±95% confidence interval=0.96±0.03, 0.94±0.04 and 0.90±0.05, respectively; Supplementary Table 3). Using cancer as an example, we explain in subsequent sections how the integration of these three best performing algorithms provides a generalizable framework for inference of regulation by miRNAs (FIRM) to infer comprehensive miRNA regulatory networks for complex diseases.


Constructing a Cancer-miRNA Regulatory Network Using FIRM

A previous study published by Goodarzi, et al. analyzed transcriptome profiles from 46 different cancers and identified 2,240 cancer-subtype characteristic co-expression signatures. Interestingly, the authors were able to associate only four of these signatures to regulation by a specific miRNA in miRBase (Goodarzi et al. 2009). We analyzed these co-expression signatures using FIRM with the intent of constructing a comprehensive cancer-miRNA regulatory network. Weeder-miRvestigator, PITA and TargetScan predicted miRNA regulators for 119, 662 and 1,029 co-expression signatures, respectively (Weeder-miRvestigator criteria: perfect 7-mer or 8-mer match, FDR<0.05, Supplementary Table 4; PITA and TargetScan criteria: FDR<0.001 and enrichment>10%, Supplementary Tables 5 and 6, respectively). There was significant overlap in pairwise comparisons of predictions for the same cancer (Weeder-miRvestigator vs. PITA=0.045, Weeder-miRvestigator vs. TargetScan=0.019 and PITA vs. TargetScan=7.4×10−22; FIG. 3B). While this significant overlap demonstrates concordance across the methods, a large fraction of the inferred miRNA regulation was unique to each method. This is not surprising given the high false negative rates of these methods and the different principles they use for identifying miRNA mediated regulation. In other words, predictions made by the three algorithms are mostly complementary. Combining results from all three methods in FIRM resulted in the construction of a comprehensive miRNA regulatory network that links 1,324 co-expression signatures to post-transcriptional regulation mediated by 608 miRNAs (Supplementary Table 7). Within this network 443 co-expression signatures were associated to miRNAs by more than one algorithm. Twenty co-expression signatures were independently associated to the same miRNA by two different algorithms (Supplementary Table 7). Interestingly, the only prediction that was consistent across all algorithms was that the miR-29 family regulates genes whose co-expression is observed in lung adenocarcinoma. In the following sections we investigate which miRNAs regulate oncogenic processes and the degree to which this network recapitulates known dysregulation of miRNAs in miR2Disease.


The Cancer-miRNA Network Recapitulates miR2Disease and Discovers miRNAs that are Causal in Cancers


We investigated whether the cancer-miRNA regulatory network was able to recapitulate miRNAs that are both dysregulated in tumors and causally linked to specific oncogenic processes. We performed this analysis by comparing the cancer-miRNA network to entries in miR2Disease, a manually curated database of miRNAs that are dysregulated and causally associated with 163 human diseases, including the 46 cancers in our study. Remarkably, there was significant enrichment of known dysregulated miRNAs in the cancer-miRNA network. Altogether 191 putative miRNA regulators in our inferred network were previously shown to be dysregulated in patient tumors of the same cancer type (p-value=2.1×10−91, Supplementary Table 7). Importantly, there were significant overlaps with predictions by each of the three algorithms (Weeder-miRvestigator p-value=0.029, PITA p-value=7.4×10−23 and TargetScan p-value=1.1×10−32). This result further demonstrates the value of combining the three algorithms in FIRM to infer a more comprehensive miRNA regulatory network.


Using miR2Disease, we further investigated whether the dysregulated miRNAs predicted by FIRM were also known to causally influence cancer phenotypes. It was striking that over a third of the putative miRNA regulators that were dysregulated were also known to causally affect cancer phenotypes (66 miRNAs, p-value=1.4×10−34, Supplementary Table 7). Among these, three of the most highly connected miRNAs (miR-29b, miR-200b and miR-296-5p) were dysregulated in at least 8 cancers and causal in at least 4 cancers. These results demonstrate that the network inferred by FIRM had captured disease-relevant miRNA regulation of cancer. It also suggests that the network contains novel testable hypotheses regarding the role of miRNAs in regulation of cancer beyond what is documented in miR2Disease. A key next step is the prioritization of these novel testable hypotheses by integrating orthogonal information.


Identifying miRNAs Regulating the Hallmarks of Cancer


Associating a miRNA to a co-expression signature in patient tumors does not by itself implicate it in the regulation of key oncogenic processes. However, the network enables the discovery of cancer-relevant miRNAs through analysis of target genes for functional enrichment of one or more hallmarks of cancer (Douglas Hanahan and Robert A Weinberg 2011; D Hanahan and R A Weinberg 2000): 1) “self sufficiency in growth signals”, 2) “insensitivity to antigrowth signals”, 3) “evading apoptosis”, 4) “limitless replicative potential”, 5) “sustained angiogenesis”, 6) “tissue invasion and metastasis”, 7) “genome instability and mutation”, 8) “tumor promoting inflammation”, 9) “reprogramming energy metabolism”, and 10) “evading immune detection”. We analyzed genes within each of the co-expression signatures for hallmarks of cancer through their associations to specific Gene Ontology (GO) biological process terms.


In total 627 of the 2,240 co-expression signatures were significantly enriched for GO terms (FDR<0.05), and 314 were associated with a putative miRNA in the regulatory network (Supplementary Table 8). To further filter this set and discover specific co-expression signatures associated with oncogenesis, we manually curated the lowest level GO terms for each of the 10 hallmarks of cancer (Supplementary Table 9), e.g. the hallmark of cancer “Evading Apoptosis” is associated with the GO term “Positive Regulation of Anti-Apoptosis”. Based on semantic similarity between GO terms we then associated 158 of the 314 putatively miRNA regulated co-expression signatures to one or more hallmarks of cancer (Jiang-Conrath Semantic Similarity Score>0.8, permuted p-value<5.1×10-4, Supplementary Table 8).


Metastatic potential is one of the defining features of malignant tumors making putative miRNA-regulators of “tissue invasion and metastasis” excellent biomarker candidates. As an initial filter we selected 85 of the 158 “hallmarks of cancer”-associated co-expression signatures that had significant overlap (p-value<0.05) between GO annotated- and putatively miRNAregulated genes. Next, we extracted from these 85 co-expression signatures a subnetwork of 33 miRNAs and their predicted regulatory influences on 47 co-expression signatures associated with “tissue invasion and metastasis”—i.e. the metastatic cancer miRNA-regulatory network (FIG. 4A, Supplementary Table 10). Notably, at least three miRNAs, miR-29a/b/c, miR199a/b-3p and miR-222 are known to be differentially expressed in the cancer type predicted by this subnetwork. While some of these prior studies had independently revealed phenotypic consequences of perturbing the miR-29 family on tumor invasiveness, FIRM proposes a mechanistic explanation by predicting that these miRNAs directly regulate specific genes involved in “tissue invasion and metastasis”. We have performed detailed experimental validations demonstrating the regulation of metastasis associated genes by the miR-29 miRNAs and results of these experiments are presented in a later section.


A Relatively Small Subset of miRNAs Regulate Oncogenic Processes in Diverse Cancers


Regulation of the same oncogenic process by the same miRNA across different cancers reinforces the likelihood that the inferred miRNA regulation is real. In the cancer-miRNA regulatory network the number of co-expression signatures regulated by a miRNA follows a power-law distribution (y=2.1±0.0; goodness of fit p-value<1.0×10-4) with each miRNA predicted to regulate on average 3.3±3.3 co-expression signatures (Barabasi and Albert 1999). This suggests that some miRNAs regulate common biological processes across multiple cancers. Therefore, we filtered the cancer-miRNA regulatory network for miRNAs predicted to regulate genes within two or more co-expression signatures enriched for the same GO term(s). This analysis recovered 24 miRNAs that were predicted to combinatorially regulate 74 non-redundant co-expression signatures. Again, using semantic similarity to the hallmarks of cancer we discovered a subnetwork of 38 co-expression signatures from 30 cancer types that are regulated by 13 highly connected miRNAs (miR-29a/b/c, miR-130a, miR-296-5p, miR-338-5p, miR-369-5p, miR-656, miR-760, miR-767-5p, miR-890, miR-939, miR-1275, miR-1276 and miR-1291)—i.e. a cross-cancer-miRNA regulatory network (FIG. 4B, Supplementary Table 11). Each of the 13 miRNAs putatively regulates the same oncogenic processes across two or more cancers (FIG. 4B). We have already discussed role of miR-29 family in regulation of “tissue invasion and metastasis”. Further, reversing down regulation of miR-130a in metastatic prostate cancer cell lines has been previously demonstrated to increase apoptosis (Boll et al. 2012). This independently validates the cancer-miRNA regulatory network predicted effect of miR-130a on “evading apoptosis”. Finally, the predicted role of miR-296-5p in “activating invasion and metastasis” has also been validated by an independent study that discovered down-regulation of this miRNA in metastases relative to primary tumors (Vaira et al. 2011). Notably, 5 of the 13 miRNAs (hsa-miR-29a/b/c, miR-296-5p, miR-760, miR-767-5p and miR-1276) were inferred for co-expression signatures where a significant fraction of genes are direct miRNA targets and have GO annotated functions in oncogenic processes (FIG. 4A). It is noteworthy that such filtering is too stringent and would have excluded known cancer-related miRNAs such as miR-130a. Therefore, the integration of co-expression, shared miRNA-binding sites, and GO annotations, together overcome the incompleteness and uncertainties across all of these orthogonal datasets to discover novel biologically-meaningful regulation by miRNAs. Thus, we contemplate that all of the 13 miRNAs are useful as general purpose cancer biomarkers.


Extracellular Matrix Genes Co-Regulated by miR-29 Family in Lung Adenocarcinoma


In both the metastatic and cross-cancer-miRNA regulatory network, the miR-29 family (miR-29a, miR-29b and miR-29c) was predicted to be responsible for 8 co-expression signatures, five of which were associated with four hallmarks of cancer, viz. “tissue invasion and metastasis”, “sustained angiogenesis”, “insensitivity to anti-growth signals” and “self sufficiency in growth signals” (FIG. 4A and 4B). Two of these co-expression signatures were from lung adenocarcinoma patient tumors, “AD Lung Beer 31” and “AD Lung Bhattacharjee 59” (Bhattacharjee et al. 2001; David G Beer et al. 2002). The miR-29 family was associated to the co-expression signature from “AD Lung Beer 31” by all three inference methods; on the other hand, only PITA picked miR-29 as the putative regulator responsible for the co-expression signature from “AD Lung Bhattacharjee 59”.


Two independent studies demonstrated that over-expression of miR-29a reduces the invasiveness of lung carcinoma cell lines (Muniyappa et al. 2009) and knock-down of miR-29b increases invasiveness (Rothschild et al. 2012). Serving as independent validation of the network predicted role of miR-29 family as regulators of “activating invasion and metastasis” in lung cancer. The direction of this association is concordant with a different set of studies which independently discovered that miR-29 family members were down-regulated in lung adenocarcinomas relative to normal lung (Landi et al. 2010; Yanaihara et al. 2006). Taken together these orthogonal sets of results strongly suggest that down-regulation of the miR-29 family increases tumor invasiveness thereby decreasing patient survival (Rothschild et al. 2012).


A major strength of the cancer-miRNA regulatory network is that it identifies specific genes that are directly regulated by a specific miRNA. For instance, miR-29 family is implicated in modulating metastatic potential of patient tumors because it is predicted to directly regulate 79 and 64 genes in two co-expression signatures—“AD Lung Beer 31” and “AD Lung Bhatacharjee 59”. Notably, the two co-expression signatures have a significant overlap of 32 genes (p-value=2.1×10−46). We assessed whether these genes were indeed targets for regulation by the miR-29 family by investigating if they were differentially regulated when endogenous miRNAs of the miR29 family were knocked-down in a fetal lung fibroblast cell line (Cushing et al. 2011). Sixteen genes from “AD Lung Beer 31”, and 9 genes from “AD Lung Bhattacharjee 59” were up-regulated in response to knock-down of the three miR-29 family members (p-values=6.1×10−14 and 1.5×10−8, respectively). Altogether 17 genes from both co-expression signatures were up-regulated in the Cushing et al. study (Table 1), and notably all of these genes contain one or more miR-29 family binding sites in their 3′ UTRs (Table 1).


Differential regulation of the seventeen genes in the Cushing et al. study does not demonstrate direct regulation by miR29 family miRNAs through physical interaction with predicted binding sites within 3′ UTRs of these genes. However, it is possible to demonstrate direct miRNA regulation by fusing the 3′ UTR of each putative target gene to a luciferase reporter, selectively deleting specific binding sites, and performing luciferase assays in cell lines that are co-transfected with the wildtype or mutated reporter-fusion construct and the synthetic miRNA mimic (at different concentrations) (Lal et al. 2011). We selected a total of 8 genes (COL3A1, COL4A1, COL4A2, FBN1, PDGFRB, SERP1NH1, and SPARC—see Table 1) to investigate using the aforementioned luciferase assay whether they were direct targets for regulation by miR29 family miRNAs (miR-29a, miR-29b and miR-29c). These genes were selected because they were predicted by the FIRM methods to (i) be in co-expression signatures regulated by the miR-29 family, (ii) contain miR-29 family binding sites, (iii) have functional association to “tissue invasion and metastasis” (e.g. collagens, metallo-proteases, etc.), and (iv) be up-regulated by miR-29 family knock-down in lung fibroblasts in the Cushing et al. study.


First, we used qRT-PCR to demonstrate that the miR-29a mimic significantly down regulates transcript levels of luciferase when it is fused to 3′ UTRs of either COL3 A1 or SPARC (COL3A1 p-value=3.2×10−2, fold-change=−3.9; SPARC p-value=4.2×10−2, fold-change=−1.7). This validates our central thesis that perturbing a miRNA results in observable changes in transcript levels of the predicted target transcripts with corresponding miRNA-binding sites in the 3′ UTR. We then assayed the effects of all three miR-29 mimics (miR-29a, miR-29b and miR-29c) on normalized luciferase activity relative to a control (i.e. no miRNA mimic). Significant reduction in normalized luciferase expression (p-value<0.05) was observed for 7 of the 8 genes tested (Table 2), and there was no consequence when luciferase was fused to the negative control 3′ UTR from HIST1H2AC (miR-29a: p-value=0.99, fold-change=1.2). Deletion of all the putative miR-29 binding sites from the 3′ UTRs of MMP2 and SPARC abolished down regulation of luciferase activity by the miR-29 family mimics, conclusively demonstrating that miR-29 directly regulates abundance of predicted target transcripts via binding to the predicted 3′ UTR sites (MMP2-deletion: 1 site deleted, fold-change=1.1, p-value=8.6×10−1; SPARC-deletion: 2 sites deleted, fold-change=1.4, p-value=1.0; FIG. 5A).


Finally, titration of the miR-29a mimic demonstrated it down regulates COL3A1 and SPARC in a dose-dependent manner (FIG. 5B).


miR-767-5p Regulates a Collagen-Specific Subset of miR-29 Target Genes


Analysis of predicted regulation by miR-29 demonstrates that the cancer-miRNA regulatory network makes accurate predictions that can be validated experimentally through a combination of miRNA perturbation and targeted mutagenesis of specific binding sites in the 3′ UTRs. We conducted further experimental analysis of predicted regulation by miR-767-5p to assess the specificity of using FIRM inferences to identify genes regulated by a miRNA. We selected miR-767-5p because this miRNA partially shares the miR-29 seed sequence. Specifically, both the metastatic and cross cancer-miRNA regulatory networks contain the PITA predictions that miR-767-5p regulates genes associated with four hallmarks of cancer (“insensitivity to antigrowth signals”, “self sufficiency in growth signals”, “sustained angiogenesis” and “tissue invasion and metastasis”) from four co-expression signatures (AD Ovarian Welsh 20, HSCC Head-Neck Chung 1, and SQ Bhattacharjee 18 and 44) across 3 cancer types (Bhattacharjee et al. 2001; Chung et al. 2004; Welsh et al. 2001).


Unlike the miR-29 family, miR-767-5p has not been previously associated with any oncogenic processes. Therefore, we first evaluated whether there is any evidence for expression of miR-767-5p in head and neck, lung, or ovarian cancers to support the prediction by the cancer-miRNA regulatory network. A scan of miRNA-seq data from The Cancer Genome Atlas (TCGA) shows that miR-767-5p is indeed expressed in lung squamous cell carcinoma, head and neck squamous cell carcinoma, and ovarian serous cystadenocarcinoma (data not shown). Additionally, the MirZ miRNA expression atlas identifies miR-767-5p expression in astrocytoma, osteosarcoma and teratocarcinoma cell lines (Hausser et al. 2009). Future studies with the completed TCGA data will be able to determine whether miR-767-5p is differentially expressed between tumor and normal and whether miR-767-5p is predictive of patient survival. Based on this evidence we proceeded to test the effect of perturbing miR-767-5p on transcript abundance of the PITA predicted targets. Over-expression of miR-767-5p using a miRNA mimic led to significant reduction (p-value<0.05) in the normalized luciferase activity for 3 of the 4 predicted miRNA target genes (COL3A1, COL5A2, COL10A1 and LOX; Table 2).


In addition to validating a novel oncogenesis-associated miRNA, the aforementioned rationale for selecting miR-767-5p was that it also shares 6 bp of similarity to the 8 bp seed region of the miR-29 family leading to a significant overlap between their predicted target genes (65% for PITA and 35% for TargetScan). This may explain why miR-767-5p and the miR-29 family are both predicted regulators of the HSCC Head-Neck Chung 1 co-expression signature. However, the two seed sequences have little similarity in the 3′ region (FIG. 15). The partial overlap in the miRNA seeds and their predicted targets provides an opportunity to test the specificity of using FIRM inferences to identify genes regulated by a miRNA. First, we tested all 11 3′ UTR luciferase fusions by over-expressing miR-29a, miR-29b, and miR-29c and miR-767-5p. Of the 22 regulatory interactions tested (Table 2) we observed only 1 false positive (miR-767-5p did not affect LOXtranscript levels) and 2 false negatives (the cancer-miRNA network did not predict the experimentally observed regulation of COL4A2 by miR-767-5p, and regulation of COL10,41 by the miR-29 family). Thus the false discovery rate was 7.1% -a significant improvement over previously published estimates (Sethupathy et al. 2006). Consistent with the cancer-miRNA network predictions, of the 11 genes that were tested only the five collagens were significantly regulated (p-value<0.05) by both miR-767-5p and miR-29 family. Despite sharing 6 bp of similarity in the seed sequence, miR-767-5p had no effect on transcript abundance of the other six bona fide miR-29 family targets to underscore the specificity of the cancer-miRNA regulatory network predictions filtered through FIRM.


Example 4

The FIRM approach was used to identify miRNAs regulating a number of hallmarks of cancer as described above as well as additional hallmarks of cancer. The miRNAs associated with additional hallmarks of cancer are set out in FIG. 14 along with their particular tissues and cancer types.


Example 5
Discussion

As genome-wide analyses for discovery of molecular signatures of complex disease becomes routine it is imperative that these data are integrated into predictive and actionable models that drive targeted hypothesis-driven discovery of diagnostics, prognostics and, ultimately, therapeutics. The systems integration of disparate kinds of information boosts signal to noise enabling the discovery of biologically meaningful patterns as we have demonstrated here through inference of a cancer miRNA regulatory network. The success of the FIRM approach depended not only on integration of three best performing algorithms that use complementary strategies for inference of miRNA regulatory networks, but also on the integration of disparate data types such as gene co-expression, and distributions of both known and de novo discovered miRNA binding sites (FIG. 6). This is a remarkable achievement given that the information for miRNA binding and regulation exists in a contiguous stretch of merely 6-8 nucleotides located within the expansive 3′ UTRs of >20,000 genes in a genome of 6 billion bps.


Further, we have also demonstrated that by incorporating the mechanistic basis of miRNA regulation, i.e. binding to complementary sequences in the 3′ UTRs of co-expressed genes, the network can be more easily assayed with targeted experimental and functional evaluation. In doing so we were able to demonstrate that the cancer-miRNA regulatory network had captured a significant proportion of known miRNA dysregulation and their causal influence on cancer phenotypes. In fact the network also made specific experimentally testable novel predictions regarding the role of 158 miRNAs in mediating co-expression of genes associated with oncogenic processes. Among these were 33 miRNAs that were predicted to regulate metastatic processes including a core set of 13 miRNAs that were predicted to regulate the same set of oncogenic processes across different cancer types. Our focused investigation of the role of miR-29 family in promoting metastasis in lung adenocarcinoma demonstrates how these network predictions can drive discovery of new biology.


As a generalizable framework for inferring miRNA mediated regulation, FIRM will also benefit from simultaneous measurement of changes in miRNA and mRNA levels in patient tumors. However, negative correlation with gene expression changes alone does not accurately identify bona fide targets for the miRNA (Tsunglin Liu et al. 2007; Ritchie et al. 2009; Liang Wang et al. 2009). Thus clustering of the gene expression data and subsequent analysis with FIRM will be necessary for the inference of accurate miRNA regulatory networks. Correlation with the putative miRNA regulators could be used post hoc as a secondary screen to filter the predicted list of targets, and prioritize miRNAs for further experimental validation. We have demonstrated the power of this approach by performing targeted experiments to test predictions from the cancer-miRNA regulatory network. These experiments have discovered novel regulation of specific oncogenesis-associated genes by miRNAs that are shared across different cancer types. Importantly, in addition to providing mechanistic linkages between a known tumor suppressor miRNA (miR-29) and regulation of specific genes with metastatic potential, we have also discovered a novel oncogenesis associated miRNA (miR-767-5p). The choice of miRNAs for validating network predictions has also helped to highlight the sensitivity and specificity of FIRM performance. As such, we have not only demonstrated the extraordinary value of the cancer-miRNA network in cancer research; but also the power of FIRM to construct from easily generated gene expression data similar miRNA regulatory networks for any disease.


We contemplate integrating inference of miRNA regulation into the clustering procedure. This will act as a constraint for accurate discovery of genes co-regulated by the same miRNA. The cMonkey biclustering algorithm already incorporates de novo discovery of transcription factor binding sites within gene promoters to limit the space of gene-gene associations to accurately discover sets of genes that are regulated by the same transcription factor (Reiss et al. 2006). The incorporation of constraints based on mechanisms of miRNA regulation will greatly improve the ability of cMonkey to model eukaryotic transcriptional regulatory networks. We contemplate that the ability of cMonkey to discover conditional coregulation of genes increases the sensitivity of FIRM and also provides the context (disease type, stage of progression, etc.) for regulatory influence of a miRNA.


Availability of miRvestigator, FIRM and Cancer-miRNA Regulatory Network


MiRvestigator was developed as an open source project using the Python programming language and is available both as a web service (http://mirvestigator.systemsbiology.net) and as source code (http://github.com/cplaisier/miRvestigator) (Plaisier et al. 2011). The FIRM and cancer-miRNA regulatory network are freely available at http://cmrn.systemsbiology.net


Data Access

To facilitate reader access and usability we have developed and hosted a freely available website (http://cmrn.systemsbiology.net) containing: 1) all data contained within the cancer-miRNA regulatory network, 2) including the compendium of 50 experimentally defined miRNA target gene sets, and 3) the FIRM framework to infer miRNA regulatory networks from gene coexpression information. Our hope is that this will provide cancer researchers with a usable interface to explore the cancer-miRNA regulatory network, computational biologists with a valuable resource to compare methods of inferring miRNA mediated regulation, and researchers with the tools to infer miRNA regulatory networks for their disease of interest.


While the present invention has been described in terms of various embodiments and examples, it is understood that variations and improvements will occur to those skilled in the art. Therefore, only such limitations as appear in the claims should be placed on the invention.


All documents referred to in this application, including priority documents, are hereby incorporated by reference in their entirety with particular attention to the content for which they are referred.


REFERENCES

Alexa A, Rahnenfiihrer J, and Lengauer T. 2006. Improved scoring of functional groups from gene expression data by decorrelating GO gaph structure. Bioinformatics 22: 1600-1607.


Baek D, Villén J, Shin C, Camargo F D, Gygi S P, and Bartel D P. 2008. The impact of microRNAs on protein output. Nature 455: 64-71.


Barabasi, and Albert. 1999. Emergence of scaling in random networks. Science 286: 509-512.


Bartel D P. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215-233.


Beer D G, Kardia SLR, Huang C-C, Giordano T J, Levin A M, Misek D E, Lin L, Chen G, Gharib T G, Thomas D G, et al. 2002. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8: 816-824.


Betel D, Koppal A, Agius P, Sander C, and Leslie C. 2010. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11: R90.


Betel D, Wilson Manda, Gabow A, Marks D S, and Sander C. 2008. The microlMA.org resource: targets and expression. Nucleic Acids Res. 36: D149-153.


Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, et al. 2001. Classification of human lung carcinomas by mRNA expressionprofiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. U.S.A. 98: 13790-13795.


Boll K, Reiche K, Kasack K, Morbt N, Kretzschmar A K, Tomm J M, Verhaegh G, Schalken J, von Bergen M, Horn F, et al. 2012. MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene. http://www.ncbi.nlm.nih.gov/pubmed/22391564 (Accessed Apr. 12, 2012).


Brennecke J, Stark A, Russell R B, and Cohen S M. 2005. Principles of microRNA-target recognition. PLoS Biol. 3: e85.


Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, Silltmann H, and Lyko F. 2007. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res. 67: 1419-1423.


Ceppi M, Pereira P M, Dunand-Sauthier I, Bums E, Reith W, Santos M A, and Pierre P. 2009. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc. Natl. Acad Sci. U.S.A. 106: 2735-2740.


Chang T-C, Wentzel E A, Kent O A, Ramachandran K, Mullendore M, Lee K H, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein C J, et al. 2007. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26: 745-752.


Chung C H, Parker J S, Karaca G, Wu Junyuan, Funkhouser W K, Moore D, Butterfoss D, Xiang D, Zanation A, Yin X, et al. 2004. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell 5: 489-500.


Cushing L, Kuang P P, Qian J, Shao F, Wu Junjie, Little F, Thannickal V J, Cardoso W V, and Lu J. 2011. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 45: 287-294.


Dalmay T, and Edwards D R. 2006. MicroRNAs and the hallmarks of cancer. Oncogene 25: 6170-6175.


Fan D, Bitterman P B, and Larsson 0.2009. Regulatory element identification in subsets of transcripts: comparison and integyation of current computational methods. RNA 15: 1469-1482.


Fasanaro P, Greco S, Lorenzi M, Pescatori M, Brioschi M, Kulshreshtha R, Banfi C, Stubbs A, Cahn George A, Ivan M, et al. 2009. An integyated approach for experimental target identification of hypoxia-induced miR-210. J. Biol. Chem. 284: 35134-35143.


Frankel L B, Christoffersen N R, Jacobsen A, Lindow M, Krogh A, and Lund All. 2008. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 283: 1026-1033.


Friedman R C, Farh K K-H, Burge C B, and Bartel D P. 2009. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19: 92-105.


Fröhlich 11, Speer N, Poustka A, and Beissbarth T. 2007. GOSim—an R-package for computation of information theoretic GO similarities between terms and gene products. BMC Bioinformatics 8: 166.


Garofalo M, and Croce C M. 2011. microRNAs: Master regulators as potential therapeutics in cancer. Annu. Rev. Pharmacol. Toxicol. 51: 25-43.


Georges S A, Biery M C, Kim S-Y, Schelter J M, Guo J, Chang A N, Jackson A L, Carleton M O, Linsley P S, Cleary M A, et al. 2008. Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Res. 68: 10105-10112.


Goodarzi II, Elemento 0, and Tavazoie S. 2009. Revealing global regulatory perturbations across human cancers. Mol. Cell 36: 900-911.


Grimson A, Farh K K-H, Johnston W K, Garrett-Engele P, Lim L P, and Bartel D P. 2007. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27: 91-105.


Hanahan D, and Weinberg R A. 2000. The hallmarks of cancer. Cell 100: 57-70.


Hausser J, Berninger P, Rodak C, Jantscher Y, Wirth S, and Zavolan M. 2009. MirZ: an integrated microRNA expression atlas and target prediction resource. Nucleic Acids Res. 37: W266-272.


He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al. 2007. A microRNA component of the p53 tumour suppressor network. Nature 447: 1130-1134.


Hendrickson D G, Hogan D J, Herschlag D, Ferrell J E, and Brown P O. 2008. Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS ONE 3: e2126.


Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, and Liu Y. 2009. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 37: D98-104.


Johnson C D, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson Mike, Wang Xiaowei, Shelton J, Shingara J, et al. 2007. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 67: 7713-7722.


Karginov F V, Conaco C, Xuan Z, Schmidt B H, Parker J S, Mandel G, and Hannon G J. 2007. A biochemical approach to identifying microRNA targets. Proc. Natl. Acad. Sci. U.S.A. 104: 19291-19296.


Kertesz M, lovino N, Unnerstall U, Gaul U, and Segal E. 2007. The role of site accessibility in microRNA target recognition. Nat. Genet. 39: 1278-1284.


Kozomara A, and Griffiths-Jones S. 2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39: D152-157.


Lal A, Thomas M P, Altschuler G, Navarro F, O′Day E, Li X L, Concepcion C, Han Y-C, Thiery J, Rajani D K, et al. 2011. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of gyowth factor signaling. PLoS Genet. 7: el 002363.


Landi M T, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen A W, Rubagotti M, Goldstein A M, Linnoila I, Marincola F M, et al. 2010. MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin. Cancer Res. 16: 430-441.


Lim L P, Lau N C, Garrett-Engele P, Grimson A, Schelter J M, Castle J, Bartel D P, Linsley P S, and Johnson J M. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769-773.


Linhart C, Halperin Y, and Shamir R. 2008. Transcription factor and microRNA motif discovery: the Amadeus platform and a compendium of metazoan target sets. Genome Res. 18: 1180-1189.


Linsley P S, Schelter J, Burchard J, Kibukawa M, Martin M M, Bartz S R, Johnson J M, Cummins J M, Raymond C K, Dai H, et al. 2007. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol. Cell. Biol. 27: 2240-2252.


Liu T, Papagiannakopoulos T, Puskar K, Qi S, Santiago F, Clay W, Lao K, Lee Y, Nelson S F, Komblum H I, et al. 2007. Detection of a microRNA signal in an in vivo expression set of mRNAs. PLoS ONE 2: e804.


Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stiihler K, Meyer H E, and Reifenberger G. 2010. Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol. 20: 539-550.


Muniyappa M K, Dowling P, Henry M, Meleady P, Doolan P, Gammell P, Clynes M, and Barron N. 2009. MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur. J. Cancer 45: 3104-3118.


Nana-Sinkam S P, and Croce C M. 2011. MicroRNAs as therapeutic targets in cancer. Transl Res 157: 216-225.


Ozen M, Creighton C J, Ozdemir M, and Ittmann M. 2008. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27: 1788-1793.


Pavesi G, Mereghetti P, Zambelli F, Stefani M, Mauri G, and Pesole G. 2006. MoD Tools: regulatory motif discovery in nucleotide sequences from co-regulated or homologous genes. Nucleic Acids Res. 34: W566-570.


Plaisier C L, Bare J C, and Baliga N S. 2011. miRvestigator: web application to identify miRNAs responsible for co-regulated gene expression patterns discovered through transcriptome profiling. Nucleic Acids Res. 39: W125-131.


Reiss D J, Baliga N S, and Bonneau R. 2006. Integrated biclustering of heterogeneous genomewide datasets for the inference of global regulatory networks. BMC Bioinformatics 7: 280.


Ritchie W, Rajasekhar M, Flamant S, and Rasko J E J. 2009. Conserved expression patterns predict microRNA targets. PLoS Comput. Biol. 5: e1000513.


Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, and Muller M. 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12: 77.


Rothschild S I, Tschan M P, Federzoni E A, Jaggi R, Fey M F, Gugger M, and Gautschi 0. 2012. MicroRNA-29b is involved in the Src-ID1 signaling pathway and is dysregulated in human lung adenocarcinoma. Oncogene. http://www.ncbi.nlm.nih.gov/pubmed/22249264 (Accessed Apr. 12, 2012).


Ruan K, Fang X, and Ouyang G. 2009. MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett. 285: 116-126.


Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, and Rajewsky N. 2008. Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58-63.


Sengupta S, den Boon J A, Chen I-H, Newton M A, Stanhope S A, Cheng Y-J, Chen C-J, Hildesheim A, Sugden B, and Ahlquist P. 2008. MicroRNA 29c is down-regulated innasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc. Natl. Acad. Sci. U.S.A. 105: 5874-5878.


Sethupathy P, Megraw M, and Hatzigeorgiou AG. 2006. A guide through present computational approaches for the identification of mammalian microRNA targets. Nat. Methods 3: 881-886.


Sing T, Sander 0, Beerenwinkel N, and Lengauer T. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21: 3940-3941.


Tan L P, Seinen E, Duns G, de Jong D, Sibon O C M, Poppema S, Kroesen B-J, Kok K, and van den Berg A. 2009. A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res. 37: el 37.


Tsai W-C, Hsu PW-C, Lai T-C, Chau G-Y, Lin C-W, Chen C-M, Lin C-D, Liao Y-L, Wang J-L, Chau Y-P, et al. 2009. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49: 1571-1582.


Vaira V, Faversani A, Dohi T, Montorsi M, Augello C, Gatti S, Coggi G, Alfieri D C, and Bosari S. 2011 miR-296 regulation of a cell polarity-cell plasticity module controls tumor progression. Oncogene. http://www.ncbi.nlm.nih.gov/pubmed/21613016 (Accessed Oct. 8, 2011).


Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz A M, Wang Z C, Brock J E, Richardson A L, and Weinberg Robert A. 2009. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137: 1032-1046.


Wang L, Oberg A L, Asmann Y W, Sicotte H, McDonnell S K, Riska S M, Liu W, Steer C J, Subramanian S, Cunningham J M, et al. 2009. Genome-wide transcriptional profiling reveals microRNA-correlated genes and biological processes in human lymphoblastoid cell lines. PLoS ONE 4: e5878.


Wang W-X, Wilfred B R, Hu Y, Stromberg A J, and Nelson P T. 2010. Anti-Argonaute RIP-Chip shows that miRNA transfections alter global patterns of mRNA recruitment to microribonucleoprotein complexes. RNA 16: 394-404.


Weber F, Teresi R E, Broelsch C E, Frilling A, and Eng C. 2006. A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J. Clin. Endocrinol. Metab. 91: 3584-3591.


Welsh J B, Zarrinkar P P, Sapinoso L M, Kern S G, Behling C A, Monk B J, Lockhart D J, Burger R A, and Hampton G M. 2001. Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc. Natl. Acad. Sci. U.S.A. 98: 1176-1181.


Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens R M, Okamoto A, Yokota J, Tanaka T, et al. 2006. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189-198.


Zen K, and Zhang C-Y. 2010. Circulating MicroRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev http://www.ncbi.nlm.nih.gov/pubmed/21064190 (Accessed Oct. 8, 2011).


SUPPLEMENTARY REFERENCES

Baek D, Villén J, Shin C, Camargo F D, Gygi S P, and Bartel D P. 2008. The impact of microRNAs on protein output. Nature 455: 64-71.


Fan D, Bitterman P B, and Larsson O. 2009. Regulatory element identification in subsets of transcripts: comparison and integration of current computational methods. RNA 15: 1469-1482.


Guo H, Ingolia N T, Weissman J S, and Bartel D P. 2010. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466: 835-840.


Hendrickson D G, Hogan D J, McCullough H L, Myers J W, Herschlag D, Ferrell J E, and Brown P O. 2009. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 7: e1000238.


Kertesz M, lovino N, Unnerstall U, Gaul U, and Segal E. 2007. The role of site accessibility in microRNA target recognition. Nat. Genet. 39: 1278-1284.


Linhart C, Halperin Y, and Shamir R. 2008. Transcription factor and microRNA motif discovery: the Amadeus platform and a compendium of metazoan target sets. Genome Res. 18: 1180-1189.


Pavesi G, Mereghetti P, Zambelli F, Stefani M, Mauri G, and Pesole G. 2006. MoD Tools: regulatory motif discovery in nucleotide sequences from co-regulated or homologous genes. Nucleic Acids Res. 34: W566-570.


Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, and Rajewsky N. 2008. Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58-63.









TABLE 1







Genes validated to be regulated by miR-29 family.









miR-29 Family Target Sites













Gene
Entrez
AD Lung
AD Lung
Weeder-




Symbols
Gene ID
Beer 31
Bhattacharjee 59
miRvestigator
PITA
TargetScan
















COL1A1
1277
Yes

a/b/c
a/b/c
a


COL1A2
1278

Yes

a/b/c
a


COL3A1
1281
Yes
Yes
a/b/c
a/b/c
b


COL4A1
1282
Yes
Yes
a/b/c
a/b/c
b


COL4A2
1284
Yes

a/b/c
a/b/c
a


COL5A1
1289
Yes

a/b/c
a/b/c
a


COL5A2
1290
Yes
Yes
a/b/c
a/b/c
a


COL15A1
1306
Yes
Yes
a/b/c
a/b/c
b


FBN1
2200
Yes
Yes
a/b/c
a/b/c
a


FSTL1
11167
Yes

a/b/c

a


LOXL2
4017
Yes

a/b/c

a


MMP2
4313
Yes

a/b/c
a/b/c
a


PDGFRB
5159
Yes
Yes
a/b/c
a/b/c
a


PPIC
5480
Yes

a/b/c

b


SERPINH1
871
Yes
Yes
a/b/c

b


SPARC
6678
Yes
Yes
a/b/c

a


TRIB2
28951
Yes

a/b/c
a/b/c
a





a = miR-29a, b = miR-29b, c = miR-29c.





















SUPPLEMENTARY TABLE 1









Free
Gene



miRNA
Cross-

Energy of
Expression



Seed
Species
Free
Secondary
miRNA


Inference
Comple-
Conser-
Energy of
mRNA
Perturbation


Method
mentarity
vation
Annealing
Structure
Experiments







PITA
X
X
X
X



TargetScan
X
X


miRanda
X
X
X


miRSVR
X
X
X

X























SUPPLEMENTARY TABLE 2





PMID
miRNA
Perturbation
System
Biological Model
Environment
Assay
Target Genes






















15685193
hsa-miR-1
miRNA
HeLa
Ovarian Cancer
in vitro
Transcriptomics
98


15685193
hsa-miR-124
miRNA
HeLa
Ovarian Cancer
in vitro
Transcriptomics
165


15685193
hsa-miR-hes-3 B
miRNA
HeLa
Ovarian Cancer
in vitro
Transcriptomics
61


16549876
hsa-miR-124
miRNA
HepG2
Liver Cancer
in vitro
Transcriptomics
13


16822819
hsa-miR-192
Patient GE &
Patients
Follicular Thyroid
in vivo
Transcriptomics
48




Microcosm

Cancer


16822819
hsa-miR-197
Patient GE &
Patients
Follicular Thyroid
in vivo
Transcriptomics
57




Microcosm

Cancer


16822819
hsa-miR-346
Patient GE &
Patients
Follicular Thyroid
in vivo
Transcriptomics
24




Microcosm

Cancer


17242205
hsa-miR-103
miRNA
HCT116 & DLD-1
Colon Cancer
in vitro
Transcriptomics
110


17242205
hsa-miR-106b
miRNA
HCT116 & DLD-1
Colon Cancer
in vitro
Transcriptomics
22


17242205
hsa-miR-107
miRNA
HCT116 & DLD-1
Colon Cancer
in vitro
Transcriptomics
81


17242205
hsa-miR-141
miRNA
HCT116 & DLD-1
Colon Cancer
in vitro
Transcriptomics
100


17242205
hsa-miR-15a
miRNA
HCT116 & DLD-1
Colon Cancer
in vitro
Transcriptomics
102


17242205
hsa-miR-15b
miRNA
HCT116 & DLD-1
Colon Cancer
in vitro
Transcriptomics
186


17242205
hsa-miR-16
miRNA
HCT116 & DLD-1
Colon Cancer
in vitro
Transcriptomics
64


17242205
hsa-miR-17
miRNA
HCT116 & DLD-1
Colon Cancer
in vitro
Transcriptomics
75


17242205
hsa-miR-192
miRNA
HCT116 & DLD-1
Colon Cancer
in vitro
Transcriptomics
483


17242205
hsa-miR-195
miRNA
HCT116 & DLD-1
Colon Cancer
in vitro
Transcriptomics
185


17242205
hsa-miR-20
miRNA
HCT116 & DLD-1
Colon Cancer
in vitro
Transcriptomics
65


17242205
hsa-miR-200a
miRNA
HCT116 & DLD-1
Colon Cancer
in vitro
Transcriptomics
89


17242205
hsa-miR-200b
miRNA
HCT116 & DLD-1
Colon Cancer
in vitro
Transcriptomics
68


17242205
hsa-miR-215
miRNA
HCT116 & DLD-1
Colon Cancer
in vitro
Transcriptomics
165


17242205
hsa-let-7c
miRNA
HCT116 & DLD-1
Colon Cancer
in vitro
Transcriptomics
52


17308078
hsa-let-7a
miRNA
A549, HeLa &
Lung, Ovarian
in vitro
Transcriptomics
195





HepG2
& Liver Cancer


17540599
hsa-miR-34a
miRNA
IMR90
Primary Normal
in vitro
Transcriptomics
100






Lung


17554337
hsa-miR-34a
miRNA
HCT116
Colon Cancer
in vitro
Transcriptomics
421


17612493
hsa-miR-7
miRNA
HeLa
Ovarian Cancer
in vitro
Transcriptomics
49


17612493
hsa-miR-9
miRNA
HeLa
Ovarian Cancer
in vitro
Transcriptomics
13


17612493
hsa-miR-122a
miRNA
HeLa
Ovarian Cancer
in vitro
Transcriptomics
33


17612493
hsa-miR-128
miRNA
HeLa
Ovarian Cancer
in vitro
Transcriptomics
34


17612493
hsa-miR-132
miRNA
HeLa
Ovarian Cancer
in vitro
Transcriptomics
60


17612493
hsa-miR-133a
miRNA
HeLa
Ovarian Cancer
in vitro
Transcriptomics
197


17612493
hsa-miR-142-3p
miRNA
HeLa
Ovarian Cancer
in vitro
Transcriptomics
81


17612493
hsa-miR-148b
miRNA
HeLa
Ovarian Cancer
in vitro
Transcriptomics
56


17612493
hsa-miR-181a
miRNA
HeLa
Ovarian Cancer
in vitro
Transcriptomics
19


17699775
hsa-let-7b
miRNA
HCT116
Colon Cancer
in vitro
Transcriptomics
197


17891175
hsa-miR-125a
Patient GE
Patients
Prostate Cacner
in vivo
Transcriptomics
25


17991735
hsa-miR-21
Anti-miR
MCF-7
Breast Cancer
in vitro
Transcriptomics
309


18042700
hsa-miR-124
RIP-Chip +
HEK293S
Human
in vitro
Transcriptomics
287




miRNA

Embryonic Kindey


18390668
hsa-miR-29c
miRNA
HeLa & HepG2
Ovarian Cancer
in vitro
Transcriptomics
12






& Human






Embryonic Kidney


18461144
hsa-miR-1
RIP-Chip +
HEK293T
Human
in vitro
Transcriptomics
68




miRNA

Embryonic Kindey


18461144
hsa-miR-124
RIP-Chip +
HEK293T
Human
in vitro
Transcriptomics
419




miRNA

Embryonic Kindey


19074876
hsa-miR-192
miRNA
HCT116
Colon Cancer
in vitro
Transcriptomics
18


19193853
hsa-miR-155
Anti-miR
Cultured
Moncyte Derived
in vitro
Transcriptomics
22





Dendritic Cells
Dendritic Cells


19296470
hsa-miR-122
miRNA
Mahlavu, HuH-7
Hepatocellular
in vitro
Transcriptomics
31





and SK-HEP-1
Carcinoma


19524507
hsa-miR-31
miRNA
MDA-MB-231
Breast Cancer
in vitro
Luciferase
16


19734348
hsa-miR-17-5p/
RIP-Chip +
L428 & L1236
Hodgkin
in vitro
Transcriptomics
84



20a/93/106a/
Anti-miR

Lymphoma



106b E


19775293
hsa-miR-184
miRNA &
A172 & T98G
Glioma
in vitro
Transcriptomics
17




miRBase


19826008
hsa-miR-210
Anti-miR
HUVEC
Human
in vitro
Transcriptomics
32






Umbilical Vein






Embryonic Cells


20042474
hsa-miR-124
RIP-Chip +
H4 & SH-SY5Y
Neuroblastoma
in vitro
Transcriptomics
10




miRNA


20042474
hsa-miR-128
RIP-Chip +
H4 & SH-SY5Y
Neuroblastoma
in vitro
Transcriptomics
11




miRNA
























SUPPLEMENTARY TABLE 4








Complementarity

P-value 


Dataset
Cluster
miRNAname
Model
Complementarity
Viterbi




















AC_Brain_Sun
4
hsa-miR-937
7mer-a1
CGCGCGGA
6.10E−05






_|||||||







-CGCGCCT






AC_Brain_Sun
5
hsa-miR-523
7mer-a1
CGCGCGTT
6.10E−05






_|||||||







-CGCGCAA






AC_Brain_Sun
17
hsa-miR-487b
7mer-a1
NGTANGAT
6.10E−05






_|||||||







-CATGCTA






AC_Brain_Sun
50
hsa-miR-1234
7mer-m8
TAGGCCNA
6.10E−05






_|||||||







-TCCGGCT






AD_Lung_Beer
19
hsa-miR-487b
7mer-a1
GTANNATC
6.10E−05






|||||||_







CATGCTA-






AD_Lung_Beer
31
hsa-miR-29b  
8mer
TGGTGCTA
1.53E−05




hsa-miR-29c

||||||||





hsa-miR-29a

ACCACGAT






AD_Lung_Bhattacharjee
6
hsa-miR-941
8mer
GCCGGGTG
1.53E−05






||||||||







CGGCCCAC






AD_Lung_Bhattacharjee
27
hsa-miR-487b
7mer-a1
CGTACGAT
6.10E−05






_|||||||







-CATGCTA






AD_Lung_Bhattacharjee
44
hsa-miR-655
7mer-a1
CTGTATTA
6.10E−05






_|||||||







-ACATAAT






AD_Lung_Bhattacharjee
64
hsa-miR-150
7mer-a1
GTTGGGAG
6.10E−05






_|||||||







-AACCCTC






AD_Lung_Bhattacharjee
65
hsa-miR-3177
7mer-a1
CGCCSTGC
6.10E−05






_|||||||







-CGGCACG






AD_Lung_Stearman
29
hsa-miR-598
7mer-m8
TGANNTAT
6.10E−05






|||||||_







ACTGCAT-






AD_Ovarian_Welsh
6
hsa-let-7e-3p
8mer
CYNTATAG
1.53E−05






||||||||







GGCATATC






AD_Ovarian_Welsh
13
hsa-miR-3178
7mer-a1
TCNCGCCC
6.10E−05






_|||||||







-GCGCGGG






AD_Ovarian_Welsh
24
hsa-miR-1469
7mer-a1
GCGCCGAT
6.10E−05






|||||||_







CGCGGCT-






AD_Ovarian_Welsh
29
hsa-miR-3194
7mer-m8
GCTGGCCN
6.10E−05






|||||||_







CGACCGG-






AD_Pancreas_Logsdon
3
hsa-miR-3178
7mer-m8
GCGCCCCG
6.10E−05






|||||||_







CGCGGGG-






AD_Pancreas_Logsdon
10
hsa-miR-1273
7mer-m8
GGTCKCCC
6.10E−05






_|||||||







-CAGCGGG






AD_Pancreas_Logsdon
12
hsa-let-7f hsa-miR-98
7mer-a1
CTNCCTCN
6.10E−05




hsa-let-7b hsa-let-7c

|||||||_





hsa-let-7a hsa-let-7g

GATGGAG-





hsa-let-7e hsa-let-7i







hsa-let-7d








AO_Brain_Bredel
10
hsa-miR-4285
7mer-m8
TCNCCNCA
6.10E−05






|||||||_







AGCGGCG-






B-CLL_Leukemia_Haslinger
54
hsa-miR-937
7mer-a1
CGCGCGGA
6.10E−05






_|||||||







-CGCGCCT






B-CLL_Leukemia_Haslinger
58
hsa-miR-337
7mer-m8
CNCCNTTC
6.10E−05






_|||||||







-CGGCAAG






B-CLL_Leukemia_Haslinger
69
hsa-miR-450a
7mer-a1
ATNNCAAA
6.10E−05






_|||||||







-AGCGTTT






BPH_Prostate_Dhanasekaran
13
hsa-miR-423-3p
7mer-a1
GACNGAGC
6.10E−05






_|||||||







-TGGCTCG






CA_Bladder_Dyrskjot
13
hsa-miR-548k
7mer-a1
NNTACTTT
6.10E−05






_|||||||







-CATGAAA






CA_Bladder_Dyrskjot
17
hsa-miR-885-3p
7mer-a1
CNCTGCCN
6.10E−05






|||||||_







GCGACGG-






CA_Bladder_Dyrskjot
26
hsa-miR-194
7mer-m8
TGTTANAA
6.10E−05






|||||||_







ACAATGT-






CA_Bladder_Dyrskjot
35
hsa-miR-1469
7mer-a1
GCGCCGAT
6.10E−05






|||||||_







CGCGGCT-






CA_Breast_Richardson
15
hsa-let-7d-3p
7mer-a1
TNNTATAC
6.10E−05






|||||||_







AGCATAT-






CA_Breast_Richardson
17
hsa-miR-566
7mer-m8
TGGNNCCC
6.10E−05






_|||||||







-CCGCGGG






CA_Breast_Richardson
46
hsa-miR-487b
7mer-m8
TANNATTA
6.10E−05






|||||||_







ATGCTAA-






CA_Breast_Sorlie
24
hsa-miR-1538
8mer
CCGGGCCN
1.53E−05






||||||||







GGCCCGGC






CA_Colon_Graudens
11
hsa-miR-523
8mer
GCGCNTTC
1.53E−05






||||||||







CGCGCAAG






CCC_Ovarian_Hendrix
11
hsa-miR-638
7mer-a1
CCNNTCCC
6.10E−05






_|||||||







-GCTAGGG






CCC_Ovarian_Hendrix
23
hsa-miR-523
7mer-a1
GCGCKTTA
6.10E−05






|||||||_







CGCGCAA-






CCC_Ovarian_Hendrix
55
hsa-miR-1471
7mer-a1
TACGCGGG
6.10E−05






_|||||||







-TGCGCCC






COID_Lung_Bhattacharjee
10
hsa-miR-138-2-3p
7mer-m8
AAATAGNN
6.10E−05






|||||||_







TTTATCG-






COID_Lung_Bhattacharjee
48
hsa-miR-886
7mer-a1
CCNACCCA
6.10E−05






|||||||_







GGCTGGG-






COID_Lung_Bhattacharjee
84
hsa-miR-615
7mer-m8
CNACCCCC
6.10E−05






_|||||||







-CTGGGGG






COID_Lung_Bhattacharjee
87
hsa-miR-1181
7mer-m8
GNGACGGA
6.10E−05






|||||||_







CGCTGCC-






DLBCL_Lymphoma_Alizadeh
5
hsa-miR-132-3p
7mer-m8
ACCACNGT
6.10E−05






_|||||||







-GGTGCCA






END_Ovarian_Hendrix
0
hsa-miR-598
8mer
ATGANNTA
1.53E−05






||||||||







TACTGCAT






END_Ovarian_Hendrix
18
hsa-miR-487b
7mer-a1
NGTACGAT
6.10E−05






_|||||||







-CATGCTA






END_Ovarian_Hendrix
19
hsa-miR-3195
7mer-a1
ACCGGCGC
6.10E−05






_|||||||







-GGCCGCG






END_Ovarian_Hendrix
45
hsa-miR-1471
7mer-a1
TACGCGGG
6.10E−05






_|||||||







-TGCGCCC






END_Ovarian_Hendrix
47
hsa-miR-1471
7mer-m8
CGCGGGCG
6.10E−05






|||||||_







GCGCCCG-






END_Ovarian_Hendrix
52
hsa-miR-1538
7mer-a1
CNNGGCCT
6.10E−05






|||||||_







GGCCCGG-






END_Ovarian_Hendrix
58
hsa-miR-621
7mer-m8
GCTAGCNG
6.10E−05






|||||||_







CGATCGG-






END_Ovarian_Hendrix
82
hsa-let-7d-3p
7mer-a1
GTNNTATA
6.10E−05






_|||||||







-AGCATAT






FL_Lymphoma_Alizadeh
2
hsa-miR-425-3p
7mer-a1
TTCCNGAC
6.10E−05






|||||||_







AAGGGCT-






FL_Lymphoma_Alizadeh
4
hsa-miR-4261
7mer-a1
TGTTTCCC
6.10E−05






|||||||_







ACAAAGG-






GBM_Brain_Liang
14
hsa-miR-496
7mer-a1
CAATACTC
6.10E−05






||||||||







-TTATGAG






GBM_Brain_Liang
17
hsa-miR-361
7mer-a1
TCTGATAG
6.10E−05






|||||||_







AGACTAT-






GBM_Brain_Liang
18
hsa-miR-369
7mer-a1
GTNGATNG
6.10E−05






|||||||_







CAGCTAG-






GCT_Seminoma_Korkola
3
hsa-miR-324
8mer
GGGATGNG
1.53E−05






||||||||







CCCTACGC






GCT_Seminoma_Korkola
42
hsa-miR-1181
8mer
GGNGASGG
1.53E−05






||||||||







CCGCTGCC






GCT_Seminoma_Korkola
75
hsa-miR-25  
7mer-a1
NNTGCAAT
6.10E−05




hsa-miR-32

_|||||||





hsa-miR-92a 

-CACGTTA





hsa-miR-92b  







hsa-miR-363







hsa-miR-367








GL_Brain_Bredel
15
hsa-miR-126
8mer
CGGTANGA
1.53E−05






||||||||







GCCATGCT






GL_Brain_Bredel
18
hsa-miR-187
8mer
AGACANGA
1.53E−05






||||||||







TCTGTGCT






GL_Brain_Bredel
24
hsa-miR-516b
7mer-a1
ACTCCAGA
6.10E−05






_|||||||







-GAGGTCT






GL_Brain_Bredel
48
hsa-miR-2277
7mer-a1
CGCTGTCN
6.10E−05






|||||||_







GCGACAG-






GL_Brain_Bredel
66
hsa-miR-223
7mer-a1
AACTGACT
6.10E−05






|||||||_







TTGACTG-






GL_Brain_Bredel
78
hsa-miR-126
8mer
CGGTAMGA
1.53E−05






||||||||







GCCATGCT






GL_Brain_Rickman
2
hsa-miR-718
7mer-a1
GGNGGAAC
6.10E−05






|||||||_







CCGCCTT-






GL_Brain_Rickman
26
hsa-miR-1469
7mer-a1
GCGCCSAT
6.10E−05






|||||||_







CGCGGCT-






GLB_Brain_Sun
29
hsa-miR-1181
7mer-m8
CGCGACGG
6.10E−05






_|||||||







-CGCTGCC






GLB_Brain_Sun
64
hsa-let-7e-3p
7mer-a1
CCNTATAC
6.10E−05






|||||||_







GGCATAT-






HSCC_Head-Neck_Chung
1
hsa-miR-29b 
7mer-m8
NNGTGCTA
6.10E−05




hsa-miR-29c 

_|||||||





hsa-miR-29a

-CCACGAT






IDC_Breast_Radvanyi
8
hsa-miR-604
7mer-a1
CNCAGCCN
6.10E−05






|||||||_







GCGTCGG-






IDC_Breast_Radvanyi
14
hsa-miR-590-3p
7mer-a1
ATAAAATT
6.10E−05






_|||||||







-ATTTTAA






IDC_Breast_Radvanyi
23
hsa-miR-376a-3p
7mer-a1
NNAATCTA
6.10E−05






_|||||||







-CTTAGAT






IDC_Breast_Radvanyi
50
hsa-miR-1247
7mer-m8
CGACGGGT
6.10E−05






_|||||||







-CTGCCCA






IDC_Breast_Radvanyi
59
hsa-miR-1469
7mer-a1
GCGCCGAC
6.10E−05






|||||||_







CGCGGCT-






ILC_Breast_Radvanyi
6
hsa-let-7d-3p
7mer-a1
TNNTATAC
6.10E−05






|||||||_







AGCATAT-






ILC_Breast_Radvanyi
11
hsa-miR-483
7mer-a1
TCCCNTCT
6.10E−05






_|||||||







-GGGCAGA






ME_Melanoma_Hoek
3
hsa-miR-4285
8mer
CTCGCCGC
1.53E−05






||||||||







GAGCGGCG






ML_Melanoma_Talantov
13
hsa-miR-337
7mer-m8
GCCNTTCG
6.10E−05






|||||||_







CGGCAAG-






ML_Melanoma_Talantov
19
hsa-miR-302c-3p
7mer-m8
TKTTAAAT
6.10E−05






|||||||_







ACAATTT-






ML_Melanoma_Talantov
28
hsa-miR-3175
7mer-m8
NCTCCCCN
6.10E−05






_|||||||







-GAGGGGC






ML_Melanoma_Talantov
34
hsa-miR-548c-3p
7mer-a1
ANATTTTT
6.10E−05






_|||||||







-CTAAAAA






MPC_Prostate_Dhanasekaran
0
hsa-miR-3074
7mer-a1
GCTGATAT
6.10E−05






_|||||||







-GACTATA






MPC_Prostate_Dhanasekaran
42
hsa-miR-582-3p
7mer-a1
TACCAGTT
6.10E−05






_|||||||







-TGGTCAA






MPM_Mesothelioma_Gordon
9
hsa-miR-219
7mer-a1
NNACAATC
6.10E−05






_|||||||







-CTGTTAG






MPM_Mesothelioma_Gordon
13
hsa-miR-1250
7mer-m8
CNCACCGT
6.10E−05






_|||||||







-CGTGGCA






MPM_Mesothelioma_Gordon
19
hsa-miR-615
7mer-m8
CSACCCCC
6.10E−05






_|||||||







-CTGGGGG






MPM_Mesothelioma_Gordon
22
hsa-miR-1284
7mer-m8
NGTATAGA
6.10E−05






_|||||||







-CATATCT






MPM_Mesothelioma_Gordon
40
hsa-miR-3178
7mer-a1
TCNCNCCC
6.10E−05






_|||||||







-GCGCGGG






MUC_Ovarian_Hendrix
42
hsa-miR-1181
7mer-m8
GNGACGGT
6.10E−05






|||||||_







CGCTGCC-






MUC_Ovarian_Hendrix
56
hsa-miR-508-3p
7mer-a1
TACAATNN
6.10E−05






|||||||_







ATGTTAG-






OD_Brain_Bredel
5
hsa-miR-423-3p
7mer-a1
TACCNAGC
6.10E−05






_|||||||







-TGGCTCG






OD_Brain_Bredel
16
hsa-miR-1181
8mer
GGNGANGG
1.53E−05






||||||||







CCGCTGCC






OD_Brain_Bredel
19
hsa-miR-551a 
7mer-m8
CGGGTCGC
6.10E−05




hsa-miR-551b

_|||||||







-CCCAGCG






OD_Brain_Bredel
37
hsa-miR-29a-3p
7mer-m8
AATCAGTA
6.10E−05






|||||||_







TTAGTCA-






ODGL_Brain_Sun
37
hsa-miR-126
8mer
CGGTACGA
1.53E−05






||||||||







GCCATGCT






ODGL_Brain_Sun
38
hsa-miR-1469
7mer-a1
GCGCCGAT
6.10E−05






|||||||_







CGCGGCT-






PDC_Pancreas_Ishikawa
3
hsa-miR-369
7mer-a1
GTNGATCG
6.10E−05






|||||||_







CAGCTAG-






PPC_Prostate_Dhanasekaran
19
hsa-miR-101-3p
7mer-a1
AGATAACT
6.10E−05






_|||||||







-CTATTGA






RCCC_Renal_Boer
7
hsa-miR-32  
7mer-m8
TGCAATAC
6.10E−05




hsa-miR-92a

|||||||_





hsa-miR-92b

ACGTTAT-






RCCC_Renal_Lenburg
2
hsa-miR-487b
8mer
GTANNATT
1.53E−05






||||||||







CATGCTAA






RCCC_Renal_Lenburg
3
hsa-miR-548f 
7mer-m8
TANTTTTT
6.10E−05




hsa-miR-548e 

_|||||||





hsa-miR-548x

-TCAAAAA






SMCL_Lung_Bhattacharjee
16
hsa-miR-339-3p
7mer-a1
CGGCGCTC
6.10E−05






_|||||||







-CCGCGAG






SMCL_Lung_Bhattacharjee
23
hsa-miR-3183
7mer-m8
GAGAGGCC
6.10E−05






|||||||_







CTCTCCG-






SMCL_Lung_Bhattacharjee
51
hsa-miR-1273
8mer
TGTNNCCC
1.53E−05






||||||||







ACAGCGGG






SMCL_Lung_Bhattacharjee
60
hsa-miR-671-3p
7mer-a1
GAACCKGC
6.10E−05






|||||||_







CTTGGCC-






SQ_Lung_Bhattacharjee
8
hsa-miR-1203
7mer-a1
CNCTCCGG
6.10E−05






_|||||||







-CGAGGCC






SQ_Lung_Bhattacharjee
34
hsa-miR-718
8mer
GGNGGAAG
1.53E−05






||||||||







CCGCCTTC






SQ_Lung_Bhattacharjee
35
hsa-miR-449c-3p
7mer-m8
GCTAGCAA
6.10E−05






_|||||||







-GATCGTT






SQ_Lung_Bhattacharjee
44
hsa-miR-4285
7mer-m8
TCNCCGCG
6.10E−05






|||||||_







AGCGGCG-






SRS_Ovarian_Hendrix
67
hsa-miR-886
7mer-a1
CCNACCCT
6.10E−05






|||||||_







GGCTGGG-






SRS_Ovarian_Hendrix
75
hsa-miR-937
7mer-a1
CGCGCGGA
6.10E−05






_|||||||







-CGCGCCT






SRS_Ovarian_Hendrix
81
hsa-miR-3135
7mer-a1
CCTAGGNN
6.10E−05






|||||||_







GGATCCG-






TU_Prostate_Lapointe
14
hsa-miR-138-1-3p
7mer-a1
NNAAGTAG
6.10E−05






_|||||||







-CTTCATC






TU_Prostate_Lapointe
24
hsa-miR-487b
8mer
GTANNATT
1.53E−05






||||||||







CATGCTAA






TU_Prostate_Lapointe
26
hsa-miR-566
7mer-m8
GGCGCCCG
6.10E−05






|||||||_







CCGCGGG-






TU_Prostate_Lapointe
40
hsa-miR-369
7mer-a1
GTNGATCG
6.10E−05






|||||||_







CAGCTAG-





















SUPPLEMENTARY TABLE 5








Uncorrected



Dataset
Cluster
miRNA
P-value
miR2Disease



















AC Brain Sun
4
hsa-mir-222
0.000357084
glioma


AC Brain Sun
6
hsa-mir-1284
4.83E−06



AC Brain Sun
7
hsa-mir-582-3p
1.18E−05



AC Brain Sun
12
hsa-mir-485-3p
2.89E−06



AC Brain Sun
19
hsa-mir-218
3.23E−05



AC Brain Sun
32
hsa-mir-1266
0.000659312



AC Brain Sun
39
hsa-mir-1266
0.00017731 



AC Brain Sun
46
hsa-mir-548c-3p
4.75E−09



AC Brain Sun
50
hsa-mir-32
0.000138143



AC Brain Sun
51
hsa-mir-922
0.000626124



AD Lung Beer
1
hsa-mir-766
2.26E−05



AD Lung Beer
3
hsa-mir-338
3.66E−05
lung cancer


AD Lung Beer
7
hsa-mir-548b hsa-mir-548a hsa-mir-548d hsa-mir-548i
2.53E−05





hsa-mir-548j hsa-mir-548c hsa-mir-548h


AD Lung Beer
8
hsa-mir-939
9.03E−05



AD Lung Beer
9
hsa-mir-548k
1.61E−05



AD Lung Beer
11
hsa-mir-9
0.000564437
lung cancer|lung cancer|non-small






cell lung cancer (NSCLC)


AD Lung Beer
12
hsa-mir-1208
7.53E−05



AD Lung Beer
14
hsa-mir-571
4.68E−06



AD Lung Beer
18
hsa-mir-876-3p
0.00023225 



AD Lung Beer
24
hsa-mir-770
2.97E−05



AD Lung Beer
27
hsa-mir-320 hsa-mir-320a hsa-mir-320b hsa-mir-320d
0.000120148



AD Lung Beer
28
hsa-mir-147
0.00058663 



AD Lung Beer
29
hsa-mir-661
0.000210827



AD Lung Beer
31
hsa-mir-29 hsa-mir-29a hsa-mir-29b
5.80E−06
lung cancer|lung cancer


AD Lung Beer
32
hsa-mir-656
0.000276057



AD Lung Beer
33
hsa-mir-380
0.000197824



AD Lung Beer
34
hsa-mir-193b
0.000113204



AD Lung Beer
35
hsa-mir-222
0.000175181
non-small cell lung cancer (NSCLC)


AD Lung Beer
40
hsa-mir-320 hsa-mir-320a hsa-mir-320b hsa-mir-320d
4.80E−05



AD Lung Beer
44
hsa-mir-484
3.38E−05



AD Lung Beer
46
hsa-mir-874
2.07E−05



AD Lung Beer
51
hsa-mir-1202
0.00026996 



AD Lung Beer
52
hsa-mir-372
0.000455224
non-small cell lung cancer (NSCLC)


AD Lung Beer
53
hsa-mir-581
3.77E−06



AD Lung Bhattacharjee
2
hsa-mir-645
0.000246382



AD Lung Bhattacharjee
7
hsa-mir-570
3.97E−05



AD Lung Bhattacharjee
14
hsa-mir-517 hsa-mir-517a
6.67E−05



AD Lung Bhattacharjee
19
hsa-mir-1322
0.00026893 



AD Lung Bhattacharjee
20
hsa-mir-599
8.73E−05



AD Lung Bhattacharjee
22
hsa-mir-875-3p
2.47E−05



AD Lung Bhattacharjee
28
hsa-mir-122
0.00016338 



AD Lung Bhattacharjee
30
hsa-mir-607
1.31E−05



AD Lung Bhattacharjee
33
hsa-mir-892a
0.000442944



AD Lung Bhattacharjee
39
hsa-mir-525-3p hsa-mir-524-3p
0.000313314



AD Lung Bhattacharjee
42
hsa-mir-760
0.000234775



AD Lung Bhattacharjee
44
hsa-mir-633
9.95E−06



AD Lung Bhattacharjee
46
hsa-mir-548a-3p hsa-mir-548e hsa-mir-548f
4.38E−07



AD Lung Bhattacharjee
47
hsa-mir-409-3p
1.02E−05



AD Lung Bhattacharjee
49
hsa-mir-567
0.000411819



AD Lung Bhattacharjee
53
hsa-mir-146b hsa-mir-146a
0.000204499
lung cancer


AD Lung Bhattacharjee
58
hsa-mir-655
2.48E−05



AD Lung Bhattacharjee
59
hsa-mir-29 hsa-mir-29a hsa-mir-29b
6.04E−07
lung cancer|lung cancer


AD Lung Bhattacharjee
60
hsa-mir-190b hsa-mir-190
9.50E−06



AD Lung Bhattacharjee
67
hsa-mir-361
0.000188291



AD Lung Bhattacharjee
69
hsa-mir-23b hsa-mir-23a
2.83E−06



AD Lung Bhattacharjee
72
hsa-mir-507 hsa-mir-557
5.02E−05



AD Lung Bhattacharjee
75
hsa-mir-1270 hsa-mir-620
0.000200137



AD Lung Bhattacharjee
76
hsa-mir-371-3p
3.23E−05



AD Lung Stearman
0
hsa-mir-518a hsa-mir-527
7.85E−06



AD Lung Stearman
7
hsa-mir-1269
8.43E−05



AD Lung Stearman
9
hsa-mir-548g
0.000161471



AD Lung Stearman
13
hsa-mir-455
0.000102984



AD Lung Stearman
18
hsa-mir-1257
0.000200203



AD Lung Stearman
25
hsa-mir-200a hsa-mir-141
0.000459035
cancer|lung cancer


AD Lung Stearman
33
hsa-mir-196b hsa-mir-196a
9.42E−05



AD Ovarian Welsh
0
hsa-mir-510
0.000176975



AD Ovarian Welsh
2
hsa-mir-122
0.00027714 



AD Ovarian Welsh
3
hsa-mir-1283
2.12E−05



AD Ovarian Welsh
5
hsa-mir-188-3p
0.000360695



AD Ovarian Welsh
7
hsa-mir-650
0.00037885 



AD Ovarian Welsh
11
hsa-mir-1323 hsa-mir-548o
0.00020088 



AD Ovarian Welsh
15
hsa-mir-1282
6.41E−06



AD Ovarian Welsh
20
hsa-mir-767
0.000326469



AD Ovarian Welsh
21
hsa-mir-96
0.000127997



AD Ovarian Welsh
25
hsa-mir-572
6.54E−06
ovarian cancer (OC)


AD Ovarian Welsh
26
hsa-mir-210
8.63E−05



AD Ovarian Welsh
29
hsa-mir-1280
1.97E−06



AD Ovarian Welsh
30
hsa-mir-1207
2.62E−05



AD Ovarian Welsh
31
hsa-mir-380
0.000597339



AD Pancreas Logsdon
13
hsa-mir-486
0.000129758



AD Pancreas Logsdon
14
hsa-mir-517 hsa-mir-517a
4.15E−05



AD Pancreas Logsdon
15
hsa-mir-556-3p
9.44E−05



AD Pancreas Logsdon
16
hsa-mir-561
0.000136915



AO Brain Bredel
11
hsa-mir-608
1.92E−05



AO Brain Bredel
13
hsa-mir-506
0.000219864



AO Brain Bredel
17
hsa-mir-191
3.22E−05



AO Brain Bredel
20
hsa-mir-324
0.000220545



AO Brain Bredel
30
hsa-mir-1255b hsa-mir-1255a
0.000171809



AO Brain Bredel
33
hsa-mir-450b
0.000452261



AO Brain Bredel
35
hsa-mir-939
0.000489612



B-CLL Leukemia Haslinger
15
hsa-mir-338
6.09E−05



B-CLL Leukemia Haslinger
21
hsa-mir-429 hsa-mir-200b hsa-mir-200
5.23E−09
cancer


B-CLL Leukemia Haslinger
25
hsa-mir-1237
9.44E−05



B-CLL Leukemia Haslinger
27
hsa-mir-760
1.19E−07



B-CLL Leukemia Haslinger
29
hsa-mir-520f
0.000157234



B-CLL Leukemia Haslinger
30
hsa-mir-654-3p
0.000489152



B-CLL Leukemia Haslinger
34
hsa-mir-492
4.95E−05



B-CLL Leukemia Haslinger
35
hsa-mir-1294
2.05E−06



B-CLL Leukemia Haslinger
37
hsa-mir-545
2.30E−05



B-CLL Leukemia Haslinger
40
hsa-mir-582-3p
0.000202998



B-CLL Leukemia Haslinger
46
hsa-mir-1249
0.000175139



B-CLL Leukemia Haslinger
48
hsa-mir-520d hsa-mir-524
0.000143885



B-CLL Leukemia Haslinger
49
hsa-mir-660
0.000361137



B-CLL Leukemia Haslinger
52
hsa-mir-323-3p
0.000171267



B-CLL Leukemia Haslinger
53
hsa-mir-513a-3p
5.06E−05



B-CLL Leukemia Haslinger
55
hsa-mir-1323 hsa-mir-548o
2.12E−07



B-CLL Leukemia Haslinger
59
hsa-mir-636
1.65E−05



B-CLL Leukemia Haslinger
62
hsa-mir-515
2.65E−05



B-CLL Leukemia Haslinger
64
hsa-mir-1278
0.000299993



B-CLL Leukemia Haslinger
68
hsa-mir-377
0.000193905



B-CLL Leukemia Haslinger
69
hsa-mir-532
0.000295895



BPH Prostate Dhanasekaran
4
hsa-mir-543
1.06E−05



BPH Prostate Dhanasekaran
5
hsa-mir-1283
0.000141737



BPH Prostate Dhanasekaran
6
hsa-mir-648
0.000281772



BPH Prostate Dhanasekaran
7
hsa-mir-508
0.000256525



BPH Prostate Dhanasekaran
8
hsa-mir-891b
7.31E−05



BPH Prostate Dhanasekaran
10
hsa-mir-1290
0.000500185



BPH Prostate Dhanasekaran
11
hsa-mir-520d hsa-mir-524
5.08E−05



BPH Prostate Dhanasekaran
12
hsa-mir-33b hsa-mir-33a
0.000395585



BPH Prostate Dhanasekaran
15
hsa-mir-770
2.71E−05



BPH Prostate Dhanasekaran
16
hsa-mir-548e
4.60E−05



CA Bladder Dyrskjot
0
hsa-mir-607
6.23E−05



CA Bladder Dyrskjot
1
hsa-mir-940
1.95E−05



CA Bladder Dyrskjot
8
hsa-mir-140-3p
0.000606179



CA Bladder Dyrskjot
9
hsa-mir-452
6.57E−08
bladder cancer


CA Bladder Dyrskjot
12
hsa-mir-607
0.000333178



CA Bladder Dyrskjot
16
hsa-mir-1205
4.42E−05



CA Bladder Dyrskjot
19
hsa-mir-659
0.00021994 



CA Bladder Dyrskjot
21
hsa-mir-590-3p
0.000292988



CA Bladder Dyrskjot
25
hsa-mir-550
0.000110985



CA Bladder Dyrskjot
26
hsa-mir-1224
9.15E−06



CA Bladder Dyrskjot
27
hsa-mir-365
1.19E−05



CA Bladder Dyrskjot
31
hsa-mir-520d hsa-mir-524
0.000672309



CA Bladder Dyrskjot
32
hsa-mir-320 hsa-mir-320a hsa-mir-320b hsa-mir-320d
3.19E−06



CA Bladder Dyrskjot
36
hsa-mir-548n
2.24E−07



CA Bladder Dyrskjot
42
hsa-mir-1183
4.30E−05



CA Bladder Dyrskjot
47
hsa-mir-331
1.08E−05



CA Bladder Dyrskjot
51
hsa-mir-1276
0.000118306



CA Bladder Dyrskjot
53
hsa-mir-1206
3.97E−05



CA Bladder Dyrskjot
56
hsa-mir-335
8.82E−06



CA Bladder Dyrskjot
64
hsa-mir-590-3p
3.58E−12



CA Bladder Dyrskjot
66
hsa-mir-1827
0.00059065 



CA Bladder Dyrskjot
71
hsa-mir-633
4.25E−05



CA Bladder Dyrskjot
75
hsa-mir-487a
0.000410448



CA Bladder Dyrskjot
79
hsa-mir-147b
4.66E−05



CA Bladder Dyrskjot
81
hsa-mir-455-3p
0.000167082



CA Bladder Dyrskjot
82
hsa-mir-519d
0.000101549



CA Breast Richardson
2
hsa-mir-590-3p
9.05E−05



CA Breast Richardson
4
hsa-mir-433
5.10E−05



CA Breast Richardson
13
hsa-mir-590-3p
8.34E−05



CA Breast Richardson
32
hsa-mir-1245
3.51E−05



CA Breast Richardson
33
hsa-mir-876
0.000262306



CA Breast Richardson
34
hsa-mir-410
2.79E−07



CA Breast Richardson
38
hsa-mir-1271
5.68E−05



CA Breast Richardson
43
hsa-mir-1246
0.000277995



CA Breast Richardson
45
hsa-mir-181d hsa-mir-181b
0.000100856
breast cancer


CA Breast Richardson
46
hsa-mir-323-3p
3.35E−05



CA Breast Richardson
53
hsa-mir-548m
1.84E−05



CA Breast Richardson
55
hsa-mir-130b hsa-mir-301a hsa-mir-301b hsa-mir-130a
0.000665578





hsa-mir-454


CA Breast Richardson
56
hsa-mir-146b hsa-mir-146a
0.000198109
breast cancer


CA Breast Sorlie
2
hsa-mir-653
0.000159728



CA Breast Sorlie
5
hsa-mir-220
0.000125447



CA Breast Sorlie
8
hsa-mir-494
0.000325493



CA Breast Sorlie
10
hsa-mir-23b hsa-mir-23a
0.000228613



CA Breast Sorlie
11
hsa-mir-33a
0.000170146



CA Breast Sorlie
12
hsa-mir-548c-3p
0.00053872 



CA Breast Sorlie
14
hsa-mir-632
0.000123817



CA Breast Sorlie
18
hsa-mir-490-3p
0.000434944



CA Breast Sorlie
19
hsa-mir-155
6.17E−05
breast cancer|breast cancer|breast






cancer|breast cancer


CA Breast Sorlie
20
hsa-mir-1279
9.67E−07



CA Colon Graudens
2
hsa-mir-551b hsa-mir-551a
2.41E−05



CA Colon Graudens
3
hsa-mir-552
0.000397074



CA Colon Graudens
8
hsa-mir-595
0.000150353



CA Colon Graudens
9
hsa-mir-338-3p
0.000383018



CA Colon Graudens
14
hsa-mir-1244
0.000207966



CA Colon Graudens
17
hsa-mir-642
0.000254189



CA Colon Graudens
19
hsa-mir-148a
6.28E−05



CA Colon Graudens
24
hsa-mir-381 hsa-mir-300
1.03E−05



CA Colon Graudens
25
hsa-mir-202
0.000193429



CA Colon Graudens
28
hsa-mir-566
0.000134232



CA Colon Graudens
29
hsa-mir-337-3p
0.00025569 



CA Colon Graudens
30
hsa-mir-125b hsa-mir-125a
0.000141991
colorectal cancer|colorectal cancer


CA Colon Graudens
35
hsa-mir-325
1.27E−06



CA Colon Graudens
36
hsa-mir-576
0.000293879



CA Colon Graudens
38
hsa-mir-320 hsa-mir-320a hsa-mir-320b hsa-mir-320d
9.49E−06
colorectal cancer|colorectal cancer


CA Colon Graudens
39
hsa-mir-873
1.14E−05



CA Colon Graudens
40
hsa-mir-507 hsa-mir-557
0.000113046



CA Colon Graudens
41
hsa-mir-1243
9.02E−05



CA Renal Higgins
1
hsa-mir-590-3p
0.000514794



CA Renal Higgins
10
hsa-mir-875-3p
3.13E−05



CA Renal Higgins
13
hsa-mir-423
4.95E−06



CA Renal Higgins
14
hsa-mir-140
0.000244645



CCC Ovarian Hendrix
1
hsa-mir-1200
0.000441527



CCC Ovarian Hendrix
4
hsa-mir-194
2.92E−06



CCC Ovarian Hendrix
7
hsa-mir-532
0.000214675



CCC Ovarian Hendrix
11
hsa-mir-29 hsa-mir-29a hsa-mir-29b
3.61E−07
ovarian cancer (OC)


CCC Ovarian Hendrix
12
hsa-mir-876
1.89E−05



CCC Ovarian Hendrix
13
hsa-mir-143
1.94E−05
epithelial ovarian cancer (EOC)


CCC Ovarian Hendrix
23
hsa-mir-105
0.00057308 
epithelial ovarian cancer (EOC)


CCC Ovarian Hendrix
24
hsa-mir-19b hsa-mir-19a
0.000228998



CCC Ovarian Hendrix
25
hsa-mir-183
2.99E−05
ovarian cancer (OC)


CCC Ovarian Hendrix
30
hsa-mir-590
6.39E−05



CCC Ovarian Hendrix
33
hsa-mir-127
0.000208615
cancer|epithelial ovarian cancer (EOC)


CCC Ovarian Hendrix
35
hsa-mir-1283
0.000100312



CCC Ovarian Hendrix
37
hsa-mir-1302
9.90E−05



CCC Ovarian Hendrix
42
hsa-mir-590-3p
3.94E−05



CCC Ovarian Hendrix
45
hsa-mir-382
0.000105777



CCC Ovarian Hendrix
47
hsa-mir-548p
4.74E−05



CCC Ovarian Hendrix
51
hsa-mir-1279
0.000323532



CCC Ovarian Hendrix
56
hsa-mir-409-3p
0.000166079



CCC Ovarian Hendrix
59
hsa-mir-552
2.65E−05



CCC Ovarian Hendrix
60
hsa-mir-105
1.20E−06
epithelial ovarian cancer (EOC)


CLL Lymphoma Alizadeh
0
hsa-mir-1283
9.53E−05



CLL Lymphoma Alizadeh
3
hsa-mir-513b
1.11E−05



CLL Lymphoma Alizadeh
7
hsa-mir-1263
9.63E−05



CLL Lymphoma Alizadeh
8
hsa-mir-222
0.000378332



CLL Lymphoma Alizadeh
10
hsa-mir-21 hsa-mir-590
6.63E−05
chronic lymphocytic leukemia (CLL)


COID Lung Bhattacharjee
0
hsa-mir-663
9.57E−05



COID Lung Bhattacharjee
2
hsa-mir-548d-3p
0.000222684



COID Lung Bhattacharjee
3
hsa-mir-940
7.85E−05



COID Lung Bhattacharjee
5
hsa-mir-361
0.000204845



COID Lung Bhattacharjee
7
hsa-mir-431
6.94E−05



COID Lung Bhattacharjee
8
hsa-mir-607
0.000109642



COID Lung Bhattacharjee
9
hsa-mir-622
0.000578648



COID Lung Bhattacharjee
10
hsa-mir-513a-3p
9.27E−06



COID Lung Bhattacharjee
11
hsa-mir-501
0.000106934



COID Lung Bhattacharjee
12
hsa-mir-509 hsa-mir-509-3
0.00045535 



COID Lung Bhattacharjee
17
hsa-mir-885-3p
2.71E−07



COID Lung Bhattacharjee
19
hsa-mir-553
2.94E−05



COID Lung Bhattacharjee
21
hsa-mir-590-3p
0.000341529



COID Lung Bhattacharjee
25
hsa-mir-1276
1.52E−05



COID Lung Bhattacharjee
28
hsa-mir-758
0.000192537



COID Lung Bhattacharjee
31
hsa-mir-331-3p
0.000462838



COID Lung Bhattacharjee
40
hsa-mir-1181
2.31E−05



COID Lung Bhattacharjee
41
hsa-mir-1303
0.000150263



COID Lung Bhattacharjee
44
hsa-mir-504
3.96E−05



COID Lung Bhattacharjee
47
hsa-mir-574-3p
2.48E−05



COID Lung Bhattacharjee
60
hsa-mir-505
0.00037429 



COID Lung Bhattacharjee
61
hsa-mir-494
1.43E−05



COID Lung Bhattacharjee
67
hsa-mir-512-3p
0.000326325



COID Lung Bhattacharjee
71
hsa-mir-1237
0.000255541



COID Lung Bhattacharjee
73
hsa-mir-1262
0.000380974



COID Lung Bhattacharjee
74
hsa-mir-513a-3p
4.85E−06



COID Lung Bhattacharjee
75
hsa-mir-1300
0.000178305



COID Lung Bhattacharjee
78
hsa-mir-920
0.000256218



COID Lung Bhattacharjee
81
hsa-mir-369-3p
3.12E−05



COID Lung Bhattacharjee
86
hsa-mir-580
5.05E−05



COID Lung Bhattacharjee
89
hsa-mir-1254
0.000134399



COID Lung Bhattacharjee
91
hsa-mir-1275
5.25E−06



DLBCL Lymphoma Alizadeh
1
hsa-mir-138
3.63E−05



DLBCL Lymphoma Alizadeh
5
hsa-mir-198
0.000115292



DLBCL Lymphoma Alizadeh
6
hsa-mir-542
1.20E−05



DLBCL Lymphoma Alizadeh
7
hsa-mir-532-3p
3.78E−05



DLBCL Lymphoma Alizadeh
9
hsa-mir-892b
0.000231852



DLBCL Lymphoma Alizadeh
10
hsa-mir-325
0.00021668 



DLBCL Lymphoma Alizadeh
11
hsa-mir-1203
6.38E−05



END Ovarian Hendrix
3
hsa-mir-510
1.61E−06



END Ovarian Hendrix
4
hsa-mir-608
2.66E−05
ovarian cancer (OC)


END Ovarian Hendrix
6
hsa-mir-29 hsa-mir-29a hsa-mir-29b
6.95E−05
ovarian cancer (OC)


END Ovarian Hendrix
7
hsa-mir-1302
1.69E−05



END Ovarian Hendrix
8
hsa-mir-200a hsa-mir-141
0.000119842
cancer|epithelial ovarian cancer






(EOC)|ovarian cancer (OC)|ovarian






cancer (OC)|ovarian cancer (OC)


END Ovarian Hendrix
13
hsa-mir-1276
0.000413656



END Ovarian Hendrix
18
hsa-mir-890
6.81E−05



END Ovarian Hendrix
22
hsa-mir-15b hsa-mir-15a hsa-mir-16 hsa-mir-497
0.000286656
ovarian cancer (OC)




hsa-mir-195


END Ovarian Hendrix
23
hsa-mir-1259
0.000453022



END Ovarian Hendrix
25
hsa-mir-653
0.000151323



END Ovarian Hendrix
26
hsa-mir-548c-3p
1.03E−05



END Ovarian Hendrix
32
hsa-mir-802
0.000186055



END Ovarian Hendrix
35
hsa-mir-1276
9.71E−20



END Ovarian Hendrix
38
hsa-mir-944
0.000151186



END Ovarian Hendrix
39
hsa-mir-508
0.000310807
ovarian cancer (OC)


END Ovarian Hendrix
48
hsa-mir-125a-3p
0.000130068



END Ovarian Hendrix
50
hsa-mir-539
3.78E−05



END Ovarian Hendrix
51
hsa-mir-130b hsa-mir-301a hsa-mir-301b hsa-mir-130a
6.35E−05





hsa-mir-454


END Ovarian Hendrix
60
hsa-mir-580
1.92E−06



END Ovarian Hendrix
69
hsa-mir-607
0.000218523



END Ovarian Hendrix
82
hsa-mir-505
8.54E−06



FL Lymphoma Alizadeh
4
hsa-mir-1295
1.54E−05



FL Lymphoma Alizadeh
6
hsa-mir-338
0.000302415
follicular lymphoma (FL)


FL Lymphoma Alizadeh
9
hsa-mir-767-3p
0.000117612



FL Lymphoma Alizadeh
11
hsa-mir-148a hsa-mir-148b hsa-mir-152
0.000429493



GBM Brain Liang
12
hsa-mir-520g hsa-mir-520h
0.000557506



GBM Brain Liang
14
hsa-mir-125a-3p
0.000424903



GBM Brain Liang
15
hsa-mir-144
0.000662353



GBM Brain Liang
17
hsa-mir-600
0.00022619 



GCT Seminoma Korkola
6
hsa-mir-34b
0.000166029



GCT Seminoma Korkola
8
hsa-mir-940
1.62E−05



GCT Seminoma Korkola
14
hsa-mir-1323 hsa-mir-548o
3.12E−05



GCT Seminoma Korkola
20
hsa-mir-632
4.09E−05



GCT Seminoma Korkola
21
hsa-mir-548k
4.81E−06



GCT Seminoma Korkola
25
hsa-mir-105
0.000213709



GCT Seminoma Korkola
26
hsa-mir-138
0.000182637



GCT Seminoma Korkola
31
hsa-mir-22
3.97E−06



GCT Seminoma Korkola
36
hsa-mir-196b hsa-mir-196a
0.000488975



GCT Seminoma Korkola
37
hsa-mir-106b hsa-mir-17 hsa-mir-106a hsa-mir-93
7.12E−05





hsa-mir-20b hsa-mir-20a


GCT Seminoma Korkola
38
hsa-mir-370
0.000160824



GCT Seminoma Korkola
39
hsa-mir-769
2.72E−05



GCT Seminoma Korkola
40
hsa-mir-577
0.000614553



GCT Seminoma Korkola
42
hsa-mir-149
0.000282927



GCT Seminoma Korkola
47
hsa-mir-485
0.000532439



GCT Seminoma Korkola
56
hsa-mir-499-3p
0.000181753



GCT Seminoma Korkola
62
hsa-mir-548m
7.00E−07



GCT Seminoma Korkola
66
hsa-mir-532-3p
0.000274953



GCT Seminoma Korkola
72
hsa-mir-490-3p
8.74E−07



GCT Seminoma Korkola
74
hsa-let-7f hsa-let-7g hsa-let-7a hsa-let-7b hsa-let-7d
1.23E−06





hsa-let-7i hsa-mir-98 hsa-let-7


GCT Seminoma Korkola
75
hsa-mir-664
0.000114433



GCT Seminoma Korkola
76
hsa-mir-220b
5.80E−05



GCT Seminoma Korkola
80
hsa-mir-623
8.85E−05



GCT Seminoma Korkola
87
hsa-mir-1179
4.11E−05



GCT Seminoma Korkola
88
hsa-mir-129
7.94E−05



GCT Seminoma Korkola
89
hsa-mir-568
0.00034329 



GCT Seminoma Korkola
90
hsa-mir-362
3.27E−06



GCT Seminoma Korkola
93
hsa-mir-193a
0.000207726



GCT Seminoma Korkola
95
hsa-mir-1283
3.81E−07



GCT Seminoma Korkola
98
hsa-mir-224
0.000173618



GCT Seminoma Korkola
100
hsa-mir-486-3p
0.000207588



GCT Seminoma Korkola
102
hsa-mir-125b hsa-mir-125a
5.68E−06



GCT Seminoma Korkola
105
hsa-mir-34a hsa-mir-34c hsa-mir-449a hsa-mir-449b
0.000332836



GCT Seminoma Korkola
107
hsa-mir-199b-3p hsa-mir-199a-3p
0.000212588
cancer


GCT Seminoma Korkola
108
hsa-mir-570
0.000279799



GCT Seminoma Korkola
109
hsa-mir-548p
5.74E−06



GCT Seminoma Korkola
110
hsa-mir-18a hsa-mir-18b
2.70E−05



GCT Seminoma Korkola
112
hsa-mir-590-3p
5.49E−06



GL Brain Bredel
0
hsa-mir-1208
9.31E−05



GL Brain Bredel
9
hsa-mir-549
0.000116643



GL Brain Bredel
11
hsa-mir-542-3p
0.000201348



GL Brain Bredel
12
hsa-mir-384
0.000466337



GL Brain Bredel
15
hsa-mir-654-3p
6.04E−07



GL Brain Bredel
20
hsa-mir-487b
0.000468745



GL Brain Bredel
21
hsa-mir-633
6.38E−05



GL Brain Bredel
24
hsa-mir-1245
0.000261253



GL Brain Bredel
25
hsa-mir-338
0.000377267



GL Brain Bredel
33
hsa-mir-625
0.000450263



GL Brain Bredel
36
hsa-mir-661
0.00010024 



GL Brain Bredel
37
hsa-mir-544
0.000666316



GL Brain Bredel
39
hsa-mir-363
0.000215653



GL Brain Bredel
40
hsa-mir-526b
0.000108823



GL Brain Bredel
41
hsa-mir-484
0.000147486



GL Brain Bredel
46
hsa-mir-154
0.000413209



GL Brain Bredel
54
hsa-mir-582-3p
5.64E−05



GL Brain Bredel
57
hsa-mir-769-3p hsa-mir-450b-3p
5.61E−05



GL Brain Bredel
59
hsa-mir-125a-3p
2.04E−06



GL Brain Bredel
60
hsa-mir-513a
0.000188295



GL Brain Bredel
61
hsa-mir-572
5.05E−06



GL Brain Bredel
64
hsa-mir-220b
9.88E−05



GL Brain Bredel
65
hsa-mir-532
0.000243031



GL Brain Bredel
71
hsa-mir-651
0.000504986



GL Brain Bredel
75
hsa-mir-889
0.000677584



GL Brain Rickman
1
hsa-mir-493
3.61E−05



GL Brain Rickman
4
hsa-mir-302f
3.04E−05



GL Brain Rickman
9
hsa-mir-1207
0.000100819



GL Brain Rickman
11
hsa-mir-653
8.21E−05



GL Brain Rickman
13
hsa-mir-486-3p
0.000165893



GL Brain Rickman
14
hsa-mir-149
0.000224784
glioblastoma multiforme (GBM)


GL Brain Rickman
21
hsa-mir-624
8.28E−05



GL Brain Rickman
22
hsa-mir-542-3p
5.93E−05



GL Brain Rickman
23
hsa-mir-490
1.28E−05



GL Brain Rickman
29
hsa-mir-544
3.71E−06



GL Brain Rickman
31
hsa-let-7e hsa-let-7f hsa-let-7g hsa-let-7a hsa-let-7b
1.86E−05





hsa-let-7d hsa-let-7i hsa-mir-98 hsa-let-7


GL Brain Rickman
34
hsa-mir-125a-3p
5.67E−05



GLB Brain Sun
1
hsa-mir-767
9.57E−05



GLB Brain Sun
2
hsa-mir-577
0.000325921



GLB Brain Sun
8
hsa-mir-140-3p
6.49E−07



GLB Brain Sun
10
hsa-mir-588
2.76E−05



GLB Brain Sun
12
hsa-mir-924
0.000279414



GLB Brain Sun
14
hsa-mir-1299
0.0006165 



GLB Brain Sun
15
hsa-mir-582-3p
6.42E−06



GLB Brain Sun
17
hsa-mir-621
4.22E−05



GLB Brain Sun
18
hsa-mir-655
2.74E−05



GLB Brain Sun
20
hsa-mir-556-3p
1.56E−05



GLB Brain Sun
21
hsa-mir-188
0.000650779



GLB Brain Sun
24
hsa-mir-381 hsa-mir-300
6.92E−05



GLB Brain Sun
27
hsa-mir-590-3p
0.000472328



GLB Brain Sun
28
hsa-mir-369-3p
5.05E−05



GLB Brain Sun
31
hsa-mir-936
1.07E−05



GLB Brain Sun
40
hsa-mir-1274a
0.000402526



GLB Brain Sun
41
hsa-mir-760
7.71E−09



GLB Brain Sun
43
hsa-mir-331
5.34E−05



GLB Brain Sun
50
hsa-mir-664
6.69E−05



GLB Brain Sun
51
hsa-mir-28-3p
0.000446009



GLB Brain Sun
54
hsa-mir-548m
5.72E−06



GLB Brain Sun
62
hsa-mir-216a
0.000157554



GLB Brain Sun
67
hsa-mir-544
4.07E−07



GLB Brain Sun
68
hsa-mir-888
7.93E−05



GLB Brain Sun
69
hsa-mir-1288
0.000168213



GLB Brain Sun
71
hsa-mir-1182
0.000395608



GLB Brain Sun
72
hsa-mir-571
6.09E−05



GLB Brain Sun
76
hsa-mir-561
3.82E−05



HSCC Head-Neck Chung
1
hsa-mir-767
9.70E−05



HSCC Head-Neck Chung
2
hsa-mir-148a hsa-mir-148b hsa-mir-152
0.000575605
head and neck squamous cell






carcinoma (HNSCC)|Oral Squamous






Cell Carcinoma (OSCC)


HSCC Head-Neck Chung
7
hsa-mir-487a
4.23E−05



HSCC Head-Neck Chung
10
hsa-mir-1226
0.000450182



HSCC Head-Neck Cromer
3
hsa-mir-496
2.71E−05



HSCC Head-Neck Cromer
11
hsa-mir-129
4.13E−05



HSCC Head-Neck Cromer
12
hsa-mir-1297 hsa-mir-26a hsa-mir-26b
3.36E−05
Oral Squamous Cell Carcinoma (OSCC)


HSCC Head-Neck Cromer
13
hsa-mir-875-3p
1.98E−05



HSCC Head-Neck Cromer
18
hsa-mir-214
0.000212009
head and neck squamous cell






carcinoma (HNSCC)


HSCC Head-Neck Cromer
20
hsa-mir-543
0.000173579



HSCC Head-Neck Cromer
22
hsa-mir-218
0.000659831



HSCC Head-Neck Cromer
23
hsa-mir-380
0.000341454



HSCC Head-Neck Cromer
25
hsa-mir-1264
7.12E−05



HSCC Head-Neck Cromer
26
hsa-mir-199a hsa-mir-199b
0.000146104
cancer|Oral Squamous Cell Carcinoma






(OSCC)|Oral Squamous Cell






Carcinoma (OSCC)|Oral Squamous






Cell Carcinoma (OSCC)


IDC Breast Radvanyi
4
hsa-mir-661
0.00019994 
breast cancer


IDC Breast Radvanyi
5
hsa-mir-1274a
9.35E−05



IDC Breast Radvanyi
6
hsa-mir-652
4.44E−06



IDC Breast Radvanyi
8
hsa-mir-1273
1.23E−05



IDC Breast Radvanyi
14
hsa-mir-556
0.000534734



IDC Breast Radvanyi
15
hsa-mir-182
2.40E−05
breast cancer


IDC Breast Radvanyi
16
hsa-mir-9
0.000460178
breast cancer|breast cancer|breast






cancer


IDC Breast Radvanyi
21
hsa-mir-493
0.000515054



IDC Breast Radvanyi
22
hsa-mir-1274a
0.000321613



IDC Breast Radvanyi
34
hsa-mir-532
6.62E−05



IDC Breast Radvanyi
35
hsa-mir-488
0.000481039



IDC Breast Radvanyi
41
hsa-mir-361-3p
5.52E−05



IDC Breast Radvanyi
44
hsa-mir-548a-3p
0.000104312



IDC Breast Radvanyi
47
hsa-mir-760
0.000124285



IDC Breast Radvanyi
48
hsa-mir-630
0.000196602



IDC Breast Radvanyi
51
hsa-mir-5481
0.000143163



IDC Breast Radvanyi
54
hsa-mir-1277
0.000645264



IDC Breast Radvanyi
56
hsa-mir-216b
0.00013594 



IDC Breast Radvanyi
60
hsa-mir-923
4.22E−05



ILC Breast Radvanyi
4
hsa-mir-122
1.22E−06



ILC Breast Radvanyi
5
hsa-mir-501
0.000523698



ILC Breast Radvanyi
19
hsa-mir-663b
3.73E−05



ILC Breast Radvanyi
22
hsa-mir-508-3p
0.000193266



MCA Breast Radvanyi
7
hsa-mir-595
0.000118204



MCA Breast Radvanyi
12
hsa-mir-489
0.000319697



MCA Breast Radvanyi
21
hsa-mir-626
0.000107826



ME Melanoma Hoek
0
hsa-mir-34b
9.82E−05
malignant melanoma


ME Melanoma Hoek
3
hsa-mir-1308
9.97E−05



ME Melanoma Hoek
6
hsa-mir-410
6.65E−05



ME Melanoma Hoek
9
hsa-mir-106b hsa-mir-17 hsa-mir-106a hsa-mir-93
0.000626339
malignant melanoma




hsa-mir-20b hsa-mir-20a


ME Melanoma Hoek
12
hsa-mir-892a
2.65E−05



ME Melanoma Hoek
15
hsa-mir-217
5.33E−05



ME Melanoma Hoek
23
hsa-mir-32
0.000286963



ME Melanoma Hoek
35
hsa-mir-200b hsa-mir-200
4.37E−05
cancer|malignant melanoma


ME Melanoma Hoek
39
hsa-mir-212 hsa-mir-132
9.98E−05



ME Melanoma Hoek
41
hsa-mir-938
4.28E−08



ME Melanoma Hoek
44
hsa-mir-1299
3.96E−05



ME Melanoma Hoek
47
hsa-mir-549
5.91E−05



ME Melanoma Hoek
50
hsa-mir-548c-3p
0.000144326



ML Melanoma Talantov
0
hsa-mir-603
0.000216878



ML Melanoma Talantov
3
hsa-mir-181a hsa-mir-181
2.83E−06
malignant melanoma


ML Melanoma Talantov
7
hsa-mir-125b hsa-mir-125a
4.64E−05
malignant melanoma


ML Melanoma Talantov
9
hsa-mir-151-3p
0.000153257



ML Melanoma Talantov
10
hsa-mir-623
4.85E−05



ML Melanoma Talantov
12
hsa-mir-125b hsa-mir-125a
0.000126841
malignant melanoma


ML Melanoma Talantov
14
hsa-mir-519a hsa-mir-519c-3p hsa-mir-519b-3p
2.70E−07



ML Melanoma Talantov
19
hsa-mir-421
0.000150563



ML Melanoma Talantov
22
hsa-mir-520d hsa-mir-524
3.48E−05



ML Melanoma Talantov
23
hsa-mir-548p
7.57E−06



ML Melanoma Talantov
25
hsa-mir-606
0.000376617



ML Melanoma Talantov
26
hsa-mir-607
5.50E−05



ML Melanoma Talantov
34
hsa-mir-767-3p
3.81E−06



MM Myeloma Zhan
1
hsa-mir-519e
0.000195242



MM Myeloma Zhan
2
hsa-mir-587
0.00038156 



MM Myeloma Zhan
3
hsa-mir-590-3p
2.57E−08



MM Myeloma Zhan
4
hsa-mir-361-3p
0.00038289 



MM Myeloma Zhan
6
hsa-mir-516b
5.95E−05



MM Myeloma Zhan
7
hsa-mir-510
0.000138587



MM Myeloma Zhan
9
hsa-mir-9
0.000100248



MM Myeloma Zhan
13
hsa-mir-655
7.50E−05



MM Myeloma Zhan
17
hsa-mir-320 hsa-mir-320a hsa-mir-320b hsa-mir-320d
8.23E−06



MM Myeloma Zhan
20
hsa-mir-1226
3.53E−05



MM Myeloma Zhan
21
hsa-mir-183
0.000548746



MM Myeloma Zhan
22
hsa-mir-1236
0.000330323



MM Myeloma Zhan
24
hsa-mir-140-3p
4.31E−05
multiple myeloma (MM)


MM Myeloma Zhan
25
hsa-mir-188
0.000241687



MM Myeloma Zhan
29
hsa-mir-760
1.88E−08



MM Myeloma Zhan
30
hsa-mir-588
0.000131928



MM Myeloma Zhan
31
hsa-mir-597
0.000240387



MM Myeloma Zhan
32
hsa-mir-212 hsa-mir-132
0.000138448



MM Myeloma Zhan
35
hsa-mir-650
0.000432285



MM Myeloma Zhan
40
hsa-mir-382
0.000167046



MM Myeloma Zhan
43
hsa-mir-23b hsa-mir-23a
1.74E−05



MM Myeloma Zhan
45
hsa-mir-595
0.00024781 



MM Myeloma Zhan
46
hsa-mir-425
5.54E−05



MM Myeloma Zhan
47
hsa-mir-875-3p
0.000422238



MPC Prostate Dhanasekaran
0
hsa-mir-1323 hsa-mir-548o
6.62E−07



MPC Prostate Dhanasekaran
7
hsa-mir-330 hsa-mir-326
6.20E−05
prostate cancer


MPC Prostate Dhanasekaran
9
hsa-mir-190b hsa-mir-190
2.92E−06



MPC Prostate Dhanasekaran
12
hsa-mir-139
7.63E−07



MPC Prostate Dhanasekaran
13
hsa-mir-1257
8.37E−06



MPC Prostate Dhanasekaran
14
hsa-mir-133b hsa-mir-133a
0.00010216 



MPC Prostate Dhanasekaran
16
hsa-mir-944
7.22E−07



MPC Prostate Dhanasekaran
19
hsa-mir-661
1.85E−05



MPC Prostate Dhanasekaran
21
hsa-mir-498
0.000467932
prostate cancer


MPC Prostate Dhanasekaran
22
hsa-mir-105
2.03E−05



MPC Prostate Dhanasekaran
26
hsa-mir-935
0.000148827



MPC Prostate Dhanasekaran
30
hsa-mir-659
0.000152617



MPC Prostate Dhanasekaran
34
hsa-mir-544
6.81E−07



MPC Prostate Dhanasekaran
35
hsa-mir-203
0.000205357



MPC Prostate Dhanasekaran
44
hsa-mir-1323 hsa-mir-548o
1.10E−06



MPC Prostate Dhanasekaran
45
hsa-mir-490-3p
1.70E−06



MPM Mesothelioma Gordon
7
hsa-mir-526b
7.16E−05



MPM Mesothelioma Gordon
11
hsa-mir-491-3p
3.42E−05



MPM Mesothelioma Gordon
14
hsa-mir-361-3p
1.00E−04



MPM Mesothelioma Gordon
16
hsa-mir-548m
3.90E−08



MPM Mesothelioma Gordon
27
hsa-mir-1301
4.84E−05



MPM Mesothelioma Gordon
35
hsa-mir-371
0.000204415



MPM Mesothelioma Gordon
38
hsa-mir-1276
8.53E−06



MPM Mesothelioma Gordon
41
hsa-mir-519e
0.000107989



MPM Mesothelioma Gordon
42
hsa-mir-183
0.00048608 



MPM Mesothelioma Gordon
48
hsa-mir-561
0.000418507



MPM Mesothelioma Gordon
51
hsa-mir-605
6.36E−05



MPM Mesothelioma Gordon
53
hsa-mir-1182
0.00019028 



MPM Mesothelioma Gordon
56
hsa-mir-595
4.65E−05
Malignant mesothelioma (MM)


MPM Mesothelioma Gordon
61
hsa-mir-545
5.77E−05



MPM Mesothelioma Gordon
62
hsa-mir-1279
0.000304825



MPM Mesothelioma Gordon
63
hsa-mir-548b hsa-mir-548a hsa-mir-548d hsa-mir-548i
3.47E−06





hsa-mir-548j hsa-mir-548c hsa-mir-548h


MPM Mesothelioma Gordon
65
hsa-mir-590-3p
0.00046845 



MUC Ovarian Hendrix
0
hsa-mir-556-3p
1.09E−05



MUC Ovarian Hendrix
2
hsa-mir-22
0.00025469 



MUC Ovarian Hendrix
7
hsa-mir-607
0.000283493



MUC Ovarian Hendrix
8
hsa-mir-1226
4.84E−05



MUC Ovarian Hendrix
14
hsa-mir-148a hsa-mir-148b hsa-mir-152
8.43E−05
epithelial ovarian cancer (EOC)


MUC Ovarian Hendrix
15
hsa-mir-340
1.89E−05



MUC Ovarian Hendrix
18
hsa-mir-548n
0.000222366



MUC Ovarian Hendrix
21
hsa-mir-216b
0.000279976



MUC Ovarian Hendrix
25
hsa-mir-548c-3p
1.02E−05



MUC Ovarian Hendrix
41
hsa-mir-34a hsa-mir-34c hsa-mir-449a hsa-mir-449b
0.000165758
ovarian cancer (OC)|ovarian cancer






(OC)


MUC Ovarian Hendrix
44
hsa-mir-217
0.000155736



MUC Ovarian Hendrix
45
hsa-mir-765
8.97E−05



MUC Ovarian Hendrix
57
hsa-mir-766
0.000194385



MUC Ovarian Hendrix
60
hsa-mir-369-3p
0.000117663



MUC Ovarian Hendrix
61
hsa-mir-940
2.22E−05



MUC Ovarian Hendrix
63
hsa-mir-184
3.31E−05
epithelial ovarian cancer (EOC)


MUC Ovarian Hendrix
67
hsa-mir-1224-3p
0.000283759



MUC Ovarian Hendrix
68
hsa-mir-606
8.68E−06



MUC Ovarian Hendrix
71
hsa-mir-361-3p
0.00031521 



MUC Ovarian Hendrix
74
hsa-mir-27a hsa-mir-27b
0.000125726



MUC Ovarian Hendrix
76
hsa-mir-144
9.98E−05



OD Brain Bredel
2
hsa-mir-768
2.72E−05



OD Brain Bredel
3
hsa-mir-615-3p
0.000123587



OD Brain Bredel
8
hsa-mir-651
0.000193833



OD Brain Bredel
9
hsa-mir-548e
0.000425304



OD Brain Bredel
12
hsa-mir-588
9.48E−05



OD Brain Bredel
18
hsa-mir-1261
0.00060741 



OD Brain Bredel
19
hsa-mir-487a
0.000532445



OD Brain Bredel
21
hsa-mir-369-3p
6.82E−05



OD Brain Bredel
24
hsa-mir-193a-3p
0.000341762



OD Brain Bredel
25
hsa-mir-512-3p
0.000343389



OD Brain Bredel
33
hsa-mir-1231
4.51E−05



OD Brain Bredel
41
hsa-mir-1276
5.88E−05



OD Brain Bredel
43
hsa-mir-412
0.000207539



OD Brain Bredel
45
hsa-mir-324
0.000220545



OD Brain Bredel
52
hsa-mir-325
0.000190267



OD Brain Bredel
56
hsa-mir-126
1.37E−05



OD Brain Bredel
57
hsa-mir-148b hsa-mir-152
1.28E−05



ODGL Brain Sun
9
hsa-mir-142-3p
2.46E−05



ODGL Brain Sun
18
hsa-mir-1274b
4.99E−05



ODGL Brain Sun
20
hsa-mir-570
1.84E−05



ODGL Brain Sun
25
hsa-mir-548p
2.43E−05



ODGL Brain Sun
26
hsa-mir-622
0.000200859



ODGL Brain Sun
31
hsa-mir-490-3p
0.00051022 



ODGL Brain Sun
33
hsa-mir-335
4.85E−05



ODGL Brain Sun
36
hsa-mir-361-3p
5.23E−06



ODGL Brain Sun
39
hsa-mir-218
0.000131483



ODGL Brain Sun
41
hsa-mir-374b hsa-mir-374a
1.52E−05



ODGL Brain Sun
44
hsa-mir-1276
0.00049542 



ODGL Brain Sun
50
hsa-mir-548c-3p
3.15E−05



ODGL Brain Sun
52
hsa-mir-1270 hsa-mir-620
6.91E−05



ODGL Brain Sun
53
hsa-mir-548m
9.39E−05



ODGL Brain Sun
58
hsa-mir-181d hsa-mir-181b
2.72E−05
glioma


ODGL Brain Sun
60
hsa-mir-556-3p
0.000290266



ODGL Brain Sun
64
hsa-mir-539
0.00028035 



ODGL Brain Sun
65
hsa-mir-340
3.02E−06



PPC Prostate Dhanasekaran
0
hsa-mir-558
0.000302978



PPC Prostate Dhanasekaran
1
hsa-mir-520d hsa-mir-524
0.000129964



PPC Prostate Dhanasekaran
2
hsa-mir-217
0.000339362



PPC Prostate Dhanasekaran
3
hsa-mir-624
0.000227035



PPC Prostate Dhanasekaran
4
hsa-mir-760
0.000111326



PPC Prostate Dhanasekaran
9
hsa-mir-153
1.70E−06



PPC Prostate Dhanasekaran
10
hsa-mir-421
0.000113825



PPC Prostate Dhanasekaran
11
hsa-mir-628-3p
4.46E−05



PPC Prostate Dhanasekaran
14
hsa-mir-34a hsa-mir-34c hsa-mir-449a hsa-mir-449b
0.000448451
prostate cancer


PPC Prostate Dhanasekaran
19
hsa-mir-548e
4.34E−07



PPC Prostate Dhanasekaran
22
hsa-mir-802
1.01E−05



PPC Prostate Dhanasekaran
23
hsa-mir-376
8.08E−05



PPC Prostate Dhanasekaran
27
hsa-mir-654-3p
0.000130064



PPC Prostate Dhanasekaran
28
hsa-mir-544
1.12E−10



PPC Prostate Dhanasekaran
41
hsa-mir-18a hsa-mir-18b
1.28E−05



RCCC Renal Boer
0
hsa-mir-140-3p
0.000185774



RCCC Renal Boer
3
hsa-mir-217
0.000238884



RCCC Renal Boer
4
hsa-mir-1262
0.0004252 



RCCC Renal Boer
8
hsa-mir-1206
0.000348303



RCCC Renal Boer
9
hsa-mir-1256
0.000206072



RCCC Renal Boer
12
hsa-mir-760
0.000652786



RCCC Renal Boer
13
hsa-mir-200a hsa-mir-141
6.74E−05
cancer


RCCC Renal Boer
14
hsa-mir-590-3p
0.000647061



RCCC Renal Boer
15
hsa-mir-548k
0.000242163



RCCC Renal Lenburg
6
hsa-mir-651
0.000604766



RCCC Renal Lenburg
8
hsa-mir-660
3.63E−05



SMCL Lung Bhattacharjee
1
hsa-mir-1237
0.00015325 



SMCL Lung Bhattacharjee
2
hsa-mir-1266
0.000383019



SMCL Lung Bhattacharjee
9
hsa-mir-362-3p hsa-mir-329
0.000160237



SMCL Lung Bhattacharjee
10
hsa-mir-720
0.000354772



SMCL Lung Bhattacharjee
15
hsa-mir-216b
0.000194459



SMCL Lung Bhattacharjee
16
hsa-mir-1274a
0.000233435



SMCL Lung Bhattacharjee
17
hsa-mir-888
0.000289329



SMCL Lung Bhattacharjee
18
hsa-mir-624
6.67E−06



SMCL Lung Bhattacharjee
21
hsa-mir-570
0.000277837



SMCL Lung Bhattacharjee
22
hsa-mir-548n
0.000215679



SMCL Lung Bhattacharjee
25
hsa-mir-101
0.000395032
lung cancer|lung cancer


SMCL Lung Bhattacharjee
29
hsa-mir-513a-3p
1.00E−05



SMCL Lung Bhattacharjee
30
hsa-mir-548n
4.80E−06



SMCL Lung Bhattacharjee
34
hsa-mir-1207
3.88E−05



SMCL Lung Bhattacharjee
41
hsa-mir-512-3p
0.000567462



SMCL Lung Bhattacharjee
45
hsa-mir-432
0.000596485



SMCL Lung Bhattacharjee
46
hsa-mir-499
8.39E−05



SMCL Lung Bhattacharjee
52
hsa-mir-483-3p
3.55E−05



SMCL Lung Bhattacharjee
55
hsa-mir-590-3p
0.000205653



SMCL Lung Bhattacharjee
56
hsa-mir-888
0.00034326 



SQ Lung Bhattacharjee
4
hsa-mir-423
0.000143527
lung cancer


SQ Lung Bhattacharjee
15
hsa-mir-96
4.75E−05
non-small cell lung cancer (NSCLC)


SQ Lung Bhattacharjee
16
hsa-mir-802
0.000178602



SQ Lung Bhattacharjee
18
hsa-mir-767
2.17E−06



SQ Lung Bhattacharjee
19
hsa-mir-423
3.84E−05
lung cancer


SQ Lung Bhattacharjee
22
hsa-mir-548n
0.000156966



SQ Lung Bhattacharjee
28
hsa-mir-616
0.000166731



SQ Lung Bhattacharjee
32
hsa-mir-532-3p
0.000103573



SQ Lung Bhattacharjee
33
hsa-mir-339
3.36E−06
lung cancer


SQ Lung Bhattacharjee
37
hsa-mir-770
0.000210707



SQ Lung Bhattacharjee
41
hsa-mir-885-3p
5.21E−05



SQ Lung Bhattacharjee
42
hsa-mir-637
8.30E−06



SQ Lung Bhattacharjee
43
hsa-mir-597
4.56E−05



SQ Lung Bhattacharjee
44
hsa-mir-767
0.000168025



SQ Lung Bhattacharjee
46
hsa-mir-650
0.0001481 



SQ Lung Bhattacharjee
52
hsa-mir-411
0.000356853



SRS Ovarian Hendrix
1
hsa-mir-641
5.26E−05



SRS Ovarian Hendrix
2
hsa-mir-505
8.02E−06



SRS Ovarian Hendrix
11
hsa-mir-361
1.61E−05
ovarian cancer (OC)


SRS Ovarian Hendrix
15
hsa-mir-1293
1.58E−05



SRS Ovarian Hendrix
22
hsa-mir-624
0.000609064



SRS Ovarian Hendrix
27
hsa-mir-362
3.10E−05



SRS Ovarian Hendrix
30
hsa-mir-424
5.59E−07
ovarian cancer (OC)


SRS Ovarian Hendrix
41
hsa-mir-650
7.93E−06



SRS Ovarian Hendrix
45
hsa-mir-146b-3p
0.000287347



SRS Ovarian Hendrix
52
hsa-mir-626
0.000199193



SRS Ovarian Hendrix
53
hsa-mir-376b hsa-mir-376a
9.72E−08
epithelial ovarian cancer (EOC)


SRS Ovarian Hendrix
54
hsa-mir-448
0.00035465 



SRS Ovarian Hendrix
55
hsa-mir-548l
4.93E−05



SRS Ovarian Hendrix
57
hsa-mir-561
5.83E−05



SRS Ovarian Hendrix
60
hsa-mir-188-3p
0.000485917



SRS Ovarian Hendrix
66
hsa-mir-892b
6.69E−06



SRS Ovarian Hendrix
69
hsa-mir-330-3p
9.80E−09



SRS Ovarian Hendrix
70
hsa-mir-641
3.14E−07



SRS Ovarian Hendrix
72
hsa-mir-1276
2.59E−10



SRS Ovarian Hendrix
73
hsa-mir-340
3.32E−06



TU Prostate Lapointe
0
hsa-mir-874
5.58E−05



TU Prostate Lapointe
1
hsa-mir-1297 hsa-mir-26a hsa-mir-26b
0.000505563
prostate cancer|prostate cancer


TU Prostate Lapointe
4
hsa-mir-532-3p
3.70E−07



TU Prostate Lapointe
9
hsa-mir-208a hsa-mir-208b
1.34E−05



TU Prostate Lapointe
17
hsa-mir-96
0.000125874
prostate cancer


TU Prostate Lapointe
18
hsa-mir-760
6.17E−05



TU Prostate Lapointe
24
hsa-mir-496
3.93E−06



TU Prostate Lapointe
31
hsa-mir-631
0.000651307



TU Prostate Lapointe
33
hsa-mir-802
9.41E−05



TU Prostate Lapointe
35
hsa-mir-758
1.84E−05



TU Prostate Lapointe
37
hsa-mir-199b-3p hsa-mir-199a-3p
0.000280073
cancer|prostate cancer


TU Prostate Lapointe
38
hsa-mir-1264
0.000492613



TU Prostate Lapointe
39
hsa-mir-590-3p
1.58E−05





















SUPPLEMENTRY TABLE 6








Uncorrected



Dataset
Cluster
miRNA
P-value
miR2Disease



















IDC Breast Radvanyi
9
hsa-mir-661
1.62E−05
breast cancer


CA Breast Richardson
16
hsa-mir-18a
3.62E−06
breast cancer


IDC Breast Radvanyi
28
hsa-mir-149
2.94E−05
breast cancer


ILC Breast Radvanyi
20
hsa-mir-328
0.000540368
breast cancer


MCA Breast Radvanyi
18
hsa-mir-663
3.07E−05
breast cancer|breast cancer


CA Breast Richardson
27
hsa-mir-663
2.76E−06
breast cancer|breast cancer


MCA Breast Radvanyi
2
hsa-mir-204
0.000170357
breast cancer|breast cancer


CA Breast Richardson
68
hsa-mir-663
1.21E−06
breast cancer|breast cancer


IDC Breast Radvanyi
15
hsa-mir-205
6.43E−06
breast cancer|breast cancer|breast cancer


MCA Breast Radvanyi
19
hsa-mir-210
0.00017588 
breast cancer|breast cancer|breast cancer


B-CLL Leukemia Haslinger
44
hsa-mir-200b
0.000562281
cancer


OD Brain Bredel
12
hsa-mir-200a
1.77E−05
cancer


MPM Mesothelioma Gordon
31
hsa-mir-127
0.000264768
cancer


MPC Prostate Dhanasekaran
0
hsa-mir-200b
4.80E−05
cancer


B-CLL Leukemia Haslinger
55
hsa-mir-200b
3.75E−07
cancer


CA Renal Higgins
3
hsa-mir-199a-3p
0.000230566
cancer


AD Ovarian Welsh
0
hsa-mir-200b
1.65E−06
cancer|epithelial ovarian cancer (EOC)|ovarian cancer (OC)|ovarian






cancer (OC)


MUC Ovarian Hendrix
49
hsa-mir-200b
3.93E−06
cancer|epithelial ovarian cancer (EOC)|ovarian cancer (OC)|ovarian






cancer (OC)


SRS Ovarian Hendrix
68
hsa-mir-200b
4.92E−06
cancer|epithelial ovarian cancer (EOC)|ovarian cancer (OC)|ovarian cancer






(OC)|serous ovarian cancer


ME Melanoma Hoek
35
hsa-mir-200b
1.13E−06
cancer|malignant melanoma


B-CLL Leukemia Haslinger
69
hsa-mir-146a
0.000450962
chronic lymphocytic leukemia (CLL)


CLL Lymphoma Alizadeh
4
hsa-mir-29b
0.000197019
chronic lymphocytic leukemia (CLL)|chronic lymphocytic leukemia






(CLL)|chronic lymphocytic leukemia (CLL)


CA Colon Graudens
32
hsa-mir-296
1.18E−06
colorectal cancer


CA Colon Graudens
2
hsa-mir-451
1.16E−05
colorectal cancer


CA Colon Graudens
37
hsa-mir-32
0.000107611
colorectal cancer


CA Colon Graudens
15
hsa-mir-140
0.00034922 
colorectal cancer


CA Colon Graudens
38
hsa-mir-96
1.79E−05
colorectal cancer|colorectal cancer


SRS Ovarian Hendrix
60
hsa-mir-184
0.000490759
epithelial ovarian cancer (EOC)


SRS Ovarian Hendrix
64
hsa-mir-377
0.000266561
epithelial ovarian cancer (EOC)


END Ovarian Hendrix
66
hsa-mir-101
4.40E−06
epithelial ovarian cancer (EOC)


CCC Ovarian Hendrix
20
hsa-mir-495
2.23E−05
epithelial ovarian cancer (EOC)


END Ovarian Hendrix
28
hsa-mir-495
1.97E−05
epithelial ovarian cancer (EOC)


CCC Ovarian Hendrix
61
hsa-mir-145
0.000153611
epithelial ovarian cancer (EOC)|epithelial ovarian cancer (EOC)


END Ovarian Hendrix
49
hsa-mir-145
0.000588653
epithelial ovarian cancer (EOC)|epithelial ovarian cancer (EOC)


SRS Ovarian Hendrix
15
hsa-let-7d
0.000397689
epithelial ovarian cancer (EOC)|epithelial ovarian cancer (EOC)|ovarian






cancer (OC)


END Ovarian Hendrix
37
hsa-mir-125b
0.000475101
epithelial ovarian cancer (EOC)|ovarian cancer (OC)


END Ovarian Hendrix
78
hsa-mir-125a
0.000362188
epithelial ovarian cancer (EOC)|ovarian cancer (OC)


FL Lymphoma Alizadeh
2
hsa-mir-149
2.16E−05
follicular lymphoma (FL)


GBM Brain Liang
7
hsa-mir-323
5.85E−05
glioblastoma multiforme (GBM)


GL Brain Bredel
60
hsa-mir-25
9.54E−05
glioblastoma|glioma


ODGL Brain Sun
57
hsa-mir-296
9.53E−06
glioma


GL Brain Bredel
32
hsa-mir-15a
0.000311239
glioma


OD Brain Bredel
14
hsa-mir-296
7.12E−06
glioma


AO Brain Bredel
1
hsa-mir-181a
0.000168423
glioma


AO Brain Bredel
28
hsa-mir-296
7.75E−06
glioma


AC Brain Sun
12
hsa-mir-210
6.54E−05
glioma


HSCC Head-Neck Cromer
22
hsa-mir-30b
3.14E−05
head and neck squamous cell carcinoma (HNSCC)


RCCC Renal Lenburg
0
hsa-mir-489
2.02E−05
kidney cancer


RCCC Renal Boer
7
hsa-mir-106b
0.000251281
kidney cancer


SMCL Lung Bhattacharjee
58
hsa-mir-423
0.000179756
lung cancer


AD Lung Beer
18
hsa-mir-19a
5.85E−07
lung cancer


AO Lung Bhattacharjee
0
hsa-mir-338
1.12E−06
lung cancer


SMCL Lung Bhattacharjee
20
hsa-mir-423
7.09E−06
lung cancer


AD Lung Stearman
29
hsa-mir-425
3.76E−05
lung cancer


SQ Lung Bhattacharjee
4
hsa-mir-214
7.88E−05
lung cancer


COID Lung Bhattacharjee
78
hsa-mir-27b
0.000262632
lung cancer


AD Lung Bhattacharjee
27
hsa-mir-451
0.000277652
lung cancer


COID Lung Bhattacharjee
30
hsa-mir-423
0.000201932
lung cancer


COID Lung Bhattacharjee
40
hsa-mir-93
0.000170538
lung cancer


SMCL Lung Bhattacharjee
35
hsa-mir-212
0.000352999
lung cancer


SMCL Lung Bhattacharjee
45
hsa-mir-125a
0.000506289
lung cancer|lung cancer


SQ Lung Bhattacharjee
32
hsa-mir-210
0.000299713
lung cancer|lung cancer


AD Lung Beer
31
hsa-mir-29b
1.59E−06
lung cancer|lung cancer


COID Lung Bhattacharjee
10
hsa-mir-101
7.34E−07
lung cancer|lung cancer


SMCL Lung Bhattacharjee
53
hsa-mir-20a
2.42E−05
lung cancer|lung cancer|lung cancer


AD Lung Bhattacharjee
52
hsa-let-7a
0.000427939
lung cancer|lung cancer|lung cancer|lung cancer|lung cancer|lung






cancer|non-small cell lung cancer (NSCLC)|non-small cell lung cancer






(NSCLC)


AD Lung Beer
0
hsa-let-7d
8.49E−05
lung cancer|non-small cell lung cancer (NSCLC)


AD Lung Stearman
7
hsa-mir-16
6.72E−05
lung cancer|non-small cell lung cancer (NSCLC)


ME Melanoma Hoek
20
hsa-mir-331
0.000508693
malignant melanoma


ML Melanoma Talantov
8
hsa-mir-199b
3.48E−05
malignant melanoma


ML Melanoma Talantov
27
hsa-mir-96
0.000474947
malignant melanoma


MPM Mesothelioma Gordon
59
hsa-mir-423
7.33E−06
Malignant mesothelioma (MM)


MPM Mesothelioma Gordon
19
hsa-mir-423
0.000166269
Malignant mesothelioma (MM)


SQ Lung Bhattacharjee
49
hsa-mir-34a
0.000184016
non-small cell lung cancer (NSCLC)


SRS Ovarian Hendrix
24
hsa-mir-635
0.000119101
ovarian cancer (OC)


MUC Ovarian Hendrix
28
hsa-mir-296
8.33E−06
ovarian cancer (OC)


AD Ovarian Welsh
25
hsa-mir-572
0.000107609
ovarian cancer (OC)


MUC Ovarian Hendrix
30
hsa-mir-635
0.000153945
ovarian cancer (OC)


SRS Ovarian Hendrix
83
hsa-mir-637
1.65E−06
ovarian cancer (OC)


SRS Ovarian Hendrix
20
hsa-mir-296
0.000493587
ovarian cancer (OC)


SRS Ovarian Hendrix
67
hsa-mir-608
6.23E−07
ovarian cancer (OC)


MUC Ovarian Hendrix
26
hsa-mir-296
6.09E−05
ovarian cancer (OC)


MUC Ovarian Hendrix
48
hsa-mir-608
8.32E−05
ovarian cancer (OC)


SRS Ovarian Hendrix
78
hsa-mir-206
0.000254763
ovarian cancer (OC)


END Ovarian Hendrix
15
hsa-mir-542-3p
3.11E−05
ovarian cancer (OC)


END Ovarian Hendrix
17
hsa-mir-30e
0.000158264
ovarian cancer (OC)


AD Ovarian Welsh
4
hsa-mir-424
9.76E−06
ovarian cancer (OC)


TU Prostate Lapointe
10
hsa-mir-32
9.82E−06
prostate cancer


PPC Prostate Dhanasekaran
34
hsa-mir-149
0.000124363
prostate cancer


TU Prostate Lapointe
13
hsa-mir-497
0.000100169
prostate cancer


TU Prostate Lapointe
23
hsa-mir-25
0.00024991 
prostate cancer


TU Prostate Lapointe
19
hsa-mir-296
6.89E−07
prostate cancer


MPC Prostate Dhanasekaran
11
hsa-mir-34a
0.000291101
prostate cancer


MPC Prostate Dhanasekaran
7
hsa-mir-296
4.29E−06
prostate cancer


PPC Prostate Dhanasekaran
17
hsa-mir-34a
0.000201155
prostate cancer


PPC Prostate Dhanasekaran
32
hsa-mir-296
1.77E−06
prostate cancer


MPC Prostate Dhanasekaran
16
hsa-mir-101
2.53E−06
prostate cancer|prostate cancer|prostate cancer


RCCC Renal Boer
0
hsa-mir-494
4.34E−06
renal clear cell carcinoma


GCT Seminoma Korkola
87
hsa-mir-371
8.90E−07
testicular germ cell tumor


GCT Seminoma Korkola
101
hsa-mir-372
3.92E−07
testicular germ cell tumor|testicular germ cell tumor


MUC Ovarian Hendrix
21
hsa-mir-520d
3.10E−05



MUC Ovarian Hendrix
19
hsa-mir-548g
1.81E−05



AD Lung Bhattacharjee
55
hsa-mir-1286
5.31E−05



GL Brain Bredel
22
hsa-mir-657
0.000105499



GLB Brain Sun
36
hsa-mir-423
2.03E−07



COID Lung Bhattacharjee
58
hsa-mir-23a
0.000106957



AD Ovarian Welsh
1
hsa-mir-548d-3p
6.48E−07



CA Colon Graudens
24
hsa-mir-522
1.62E−06



SMCL Lung Bhattacharjee
18
hsa-mir-513
4.74E−05



ME Melanoma Hoek
26
hsa-mir-577
0.00015717 



B-CLL Leukemia Haslinger
38
hsa-mir-548g
8.13E−05



SMCL Lung Bhattacharjee
6
hsa-mir-1201
0.000464237



AD Lung Beer
38
hsa-mir-933
2.88E−05



BPH Prostate Dhanasekaran
18
hsa-mir-513a-3p
1.76E−05



GCT Seminoma Korkola
89
hsa-mir-1257
5.15E−06



MPM Mesothelioma Gordon
64
hsa-mir-655
6.39E−06



GCT Seminoma Korkola
28
hsa-mir-146a
0.000148787



HSCC Head-Neck Chung
9
hsa-mir-708
0.000132985



GLB Brain Sun
72
hsa-mir-1294
6.36E−05



B-CLL Leukemia Haslinger
36
hsa-mir-587
0.000191245



CA Breast Sorlie
20
hsa-mir-590-3p
3.24E−07



GCT Seminoma Korkola
112
hsa-mir-548n
7.79E−15



AD Lung Stearman
13
hsa-mir-23a
5.53E−05



COID Lung Bhattacharjee
51
hsa-mir-656
3.16E−09



CA Breast Richardson
28
hsa-mir-765
0.000106308



AD Lung Bhattacharjee
30
hsa-mir-548c-3p
9.03E−14



ILC Breast Radvanyi
2
hsa-mir-423-3p
0.000203181



MPM Mesotheiioma Gordon
29
hsa-mir-1265
0.000313362



ML Melanoma Talantov
26
hsa-mir-664
2.21E−05



CA Bladder Dyrskjot
39
hsa-mir-486-3p
0.000214753



GLB Brain Sun
18
hsa-mir-498
6.03E−09



PPC Prostate Dhanasekaran
29
hsa-mir-509-3p
0.000145973



CA Breast Richardson
33
hsa-mir-1251
0.000477316



CA Breast Richardson
3
hsa-mir-578
8.26E−06



GCT Seminoma Korkola
37
hsa-mir-519a
1.33E−09



GL Brain Rickman
22
hsa-mir-374b
4.01E−07



CA Bladder Dyrskjot
1
hsa-mir-637
6.92E−11



SRS Ovarian Hendrix
16
hsa-mir-548k
1.82E−06



AD Lung Bhattacharjee
81
hsa-mir-516b
1.26E−05



FL Lymphoma Alizadeh
0
hsa-mir-92a
1.01E−07



MPC Prostate Dhanasekaran
29
hsa-mir-663
6.65E−05



AD Lung Beer
43
hsa-mir-1275
0.000105766



CA Bladder Dyrskjot
3
hsa-mir-1308
8.73E−07



SRS Ovarian Hendrix
10
hsa-mir-34c-3p
4.69E−07



MPC Prostate Dhanasekaran
26
hsa-mir-548j
0.000385787



CCC Ovarian Hendrix
44
hsa-mir-548m
1.07E−05



CA Bladder Dyrskjot
53
hsa-mir-944
1.08E−06



GCT Seminoma Korkola
31
hsa-mir-891a
0.000233697



COID Lung Bhattacharjee
25
hsa-mir-361
6.17E−05



MM Myeloma Zhan
50
hsa-mir-28
7.86E−05



AD Ovarian Welsh
10
hsa-mir-921
6.01E−06



SMCL Lung Bhattacharjee
46
hsa-mir-891b
0.000383258



RCCC Renal Boer
1
hsa-mir-371
0.000530325



PPC Prostate Dhanasekaran
1
hsa-mir-561
1.34E−05



GCT Seminoma Korkola
80
hsa-mir-573
3.65E−06



CCC Ovarian Hendrix
14
hsa-mir-1276
1.06E−05



GL Brain Bredel
17
hsa-mir-877
0.000266194



END Ovarian Hendrix
32
hsa-mir-548d-3p
6.61E−11



COID Lung Bhattacharjee
48
hsa-mir-886
0.00018962 



CA Bladder Dyrskjot
23
hsa-mir-211
8.07E−07



MPM Mesothelioma Gordon
56
hsa-mir-590-3p
9.29E−06



BPH Prostate Dhanasekaran
7
hsa-mir-380
4.14E−06



SRS Ovarian Hendrix
75
hsa-mir-372
1.97E−08



COID Lung Bhattacharjee
5
hsa-mir-548o
2.41E−05



GL Brain Bredel
78
hsa-mir-424
0.000301626



BPH Prostate Dhanasekaran
9
hsa-mir-574
0.000269626



FL Lymphoma Alizadeh
11
hsa-mir-614
0.000529183



GCT Seminoma Korkola
63
hsa-mir-889
3.04E−06



END Ovarian Hendrix
77
hsa-mir-590-3p
4.95E−09



DLBCL Lymphoma Alizadeh
3
hsa-mir-744
1.82E−05



MPM Mesothelioma Gordon
52
hsa-mir-606
8.63E−08



SQ Lung Bhattacharjee
30
hsa-mir-1233
0.000445813



CA Bladder Dyrskjot
25
hsa-mir-1204
2.52E−05



GCT Seminoma Korkola
73
hsa-mir-675
0.000190634



MUC Ovarian Hendrix
55
hsa-mir-486-3p
1.46E−05



SMCL Lung Bhattacharjee
2
hsa-mir-940
1.23E−05



GCT Seminoma Korkola
3
hsa-mir-296
2.40E−07



CCC Ovarian Hendrix
37
hsa-mir-1237
0.000328049



AC Brain Sun
46
hsa-mir-590-3p
9.16E−09



PPC Prostate Dhanasekaran
28
hsa-mir-944
3.15E−12



HSCC Head-Neck Cromer
20
hsa-mir-567
4.16E−07



MUC Ovarian Hendrix
23
hsa-mir-486-3p
2.97E−07



GLB Brain Sun
73
hsa-mir-187
5.00E−06



ME Melanoma Hoek
16
hsa-mir-631
0.000590804



COID Lung Bhattacharjee
64
hsa-mir-661
6.54E−07



COID Lung Bhattacharjee
75
hsa-mir-874
7.97E−05



CA Breast Richardson
58
hsa-mir-889
6.58E−05



CA Breast Richardson
53
hsa-mir-486
3.46E−05



GCT Seminoma Korkola
85
hsa-mir-181
0.000115903



ODGL Brain Sun
11
hsa-mir-219-1-3p
0.000228608



CA Breast Richardson
65
hsa-mir-1254
4.75E−05



AD Ovarian Welsh
21
hsa-mir-606
8.71E−05



MPC Prostate Dhanasekaran
48
hsa-mir-625
0.000326443



SMCL Lung Bhattacharjee
11
hsa-mir-1321
0.000308592



HSCC Head-Neck Chung
10
hsa-mir-607
3.02E−05



GBM Brain Liang
13
hsa-mir-1278
0.000208092



GL Brain Rickman
23
hsa-mir-935
9.26E−06



AC Brain Sun
28
hsa-mir-539
4.32E−05



GLB Brain Sun
1
hsa-mir-324
3.16E−05



DLBCL Lymphoma Alizadeh
7
hsa-mir-1301
0.000173451



SRS Ovarian Hendrix
21
hsa-mir-944
4.95E−07



ODGL Brain Sun
63
hsa-mir-410
0.000134983



AD Lung Beer
15
hsa-mir-586
0.000587308



MUC Ovarian Hendrix
72
hsa-mir-409
0.00020328 



CA Breast Richardson
51
hsa-mir-633
1.08E−05



GCT Seminoma Korkola
83
hsa-mir-1254
0.000197016



CCC Ovarian Hendrix
43
hsa-mir-1247
2.38E−07



B-CLL Leukemia Haslinger
31
hsa-mir-1321
0.000537156



MM Myeloma Zhan
39
hsa-mir-647
0.000511455



CA Breast Richardson
25
hsa-mir-1252
0.000611632



BPH Prostate Dhanasekaran
20
hsa-mir-1224-3p
9.26E−06



GCT Seminoma Korkola
72
hsa-mir-760
4.02E−05



SRS Ovarian Hendrix
55
hsa-mir-338
1.40E−06



IDC Breast Radvanyi
7
hsa-mir-450b-3p
0.000288602



MUC Ovarian Hendrix
34
hsa-mir-1291
0.000213025



MUC Ovarian Hendrix
56
hsa-mir-548c-3p
2.02E−10



OD Brain Bredel
57
hsa-mir-423
2.25E−06



TU Prostate Lapointe
0
hsa-mir-219-2-3p
7.92E−05



SMCL Lung Bhattacharjee
28
hsa-mir-744
9.04E−05



TU Prostate Lapointe
17
hsa-mir-219
0.000106525



END Ovarian Hendrix
20
hsa-mir-663b
9.77E−05



GCT Seminoma Korkola
96
hsa-mir-29a
8.00E−05



B-CLL Leukemia Haslinger
53
hsa-mir-513a-3p
1.99E−05



CCC Ovarian Hendrix
7
hsa-mir-382
0.000180447



CA Bladder Dyrskjot
9
hsa-mir-548c-3p
1.50E−14



CA Bladder Dyrskjot
65
hsa-mir-888
1.94E−05



END Ovarian Hendrix
76
hsa-mir-888
8.60E−06



GLB Brain Sun
54
hsa-mir-921
2.44E−08



GCT Seminoma Korkola
40
hsa-mir-548n
0.000170776



GLB Brain Sun
0
hsa-mir-637
3.57E−05



RCCC Renal Boer
13
hsa-mir-1279
1.39E−06



MUC Ovarian Hendrix
76
hsa-mir-573
7.31E−08



AD Lung Bhattacharjee
22
hsa-mir-619
0.000399164



END Ovarian Hendrix
9
hsa-mir-486-3p
2.89E−06



AD Lung Bhattacharjee
75
hsa-mir-637
2.83E−06



ME Melanoma Hoek
0
hsa-mir-582
4.80E−05



MUC Ovarian Hendrix
73
hsa-mir-361-3p
4.66E−10



CA Breast Richardson
61
hsa-mir-1271
0.000378242



AC Brain Sun
17
hsa-mir-617
0.000105979



TU Prostate Lapointe
34
hsa-mir-886
0.000346316



MUC Ovarian Hendrix
13
hsa-mir-1280
0.000351255



DLBCL Lymphoma Alizadeh
2
hsa-mir-660
0.000277854



GLB Brain Sun
31
hsa-mir-501-3p
0.000148691



MUC Ovarian Hendrix
15
hsa-mir-944
7.48E−12



GCT Seminoma Korkola
102
hsa-mir-34a
9.24E−05



HSCC Head-Neck Cromer
10
hsa-mir-520a
0.000571699



ODGL Brain Sun
0
hsa-mir-637
0.000354231



MPM Mesothelioma Gordon
27
hsa-mir-128
0.000309287



GL Brain Bredel
57
hsa-mir-193a-3p
0.000180522



CA Bladder Dyrskjot
42
hsa-mir-362
9.61E−05



MPC Prostate Dhanasekaran
22
hsa-mir-382
5.46E−06



ILC Breast Radvanyi
4
hsa-mir-548a-3p
0.000525313



CA Bladder Dyrskjot
13
hsa-mir-548c-3p
6.28E−07



AD Lung Bhattacharjee
35
hsa-mir-133a
1.57E−05



MUC Ovarian Hendrix
27
hsa-mir-423
0.000146228



MUC Ovarian Hendrix
18
hsa-mir-606
5.19E−05



GCT Seminoma Korkola
25
hsa-mir-607
1.21E−08



MPM Mesothelioma Gordon
51
hsa-mir-376a
0.000159942



GLB Brain Sun
20
hsa-mir-331
3.35E−05



AD Lung Bhattacharjee
44
hsa-mir-1284
6.45E−06



GCT Seminoma Korkola
21
hsa-mir-520f
2.04E−08



SRS Ovarian Hendrix
66
hsa-mir-548c-3p
8.80E−09



CA Breast Richardson
59
hsa-mir-608
1.67E−05



AD Lung Bhattacharjee
10
hsa-mir-1321
6.35E−06



DLBCL Lymphoma Alizadeh
6
hsa-mir-483-3p
0.000603016



END Ovarian Hendrix
38
hsa-mir-944
3.49E−09



CCC Ovarian Hendrix
51
hsa-mir-499-3p
0.000444328



MPC Prostate Dhanasekaran
17
hsa-mir-1266
3.02E−06



END Ovarian Hendrix
34
hsa-mir-1826
3.03E−05



RCCC Renal Lenburg
8
hsa-mir-889
6.31E−06



END Ovarian Hendrix
11
hsa-mir-940
9.79E−05



GL Brain Bredel
72
hsa-mir-760
0.000219694



AD Lung Bhattacharjee
17
hsa-mir-491
4.14E−05



COID Lung Bhattacharjee
52
hsa-mir-154
0.000584551



GCT Seminoma Korkola
75
hsa-mir-708
3.60E−05



ML Melanoma Talantov
23
hsa-mir-1259
2.73E−07



ME Melanoma Hoek
9
hsa-mir-494
4.40E−05



ML Melanoma Talantov
14
hsa-mir-548c-3p
4.53E−14



AD Lung Stearman
36
hsa-mir-1269
1.34E−05



ILC Breast Radvanyi
24
hsa-mir-340
0.000381565



ODGL Brain Sun
47
hsa-mir-1204
1.23E−05



CCC Ovarian Hendrix
9
hsa-mir-1291
5.79E−05



B-CLL Leukemia Haslinger
68
hsa-mir-520g
0.000419055



GLB Brain Sun
68
hsa-mir-299
0.000302475



BPH Prostate Dhanasekaran
13
hsa-mir-922
3.12E−05



OD Brain Bredel
3
hsa-mir-195
0.00018012 



MUC Ovarian Hendrix
3
hsa-mir-1205
0.000111582



SQ Lung Bhattacharjee
15
hsa-mir-569
3.55E−07



AD Lung Beer
6
hsa-mir-548c-3p
1.66E−05



CA Renal Higgins
17
hsa-mir-663
3.57E−07



CCC Ovarian Hendrix
10
hsa-mir-615
2.06E−05



SRS Ovarian Hendrix
30
hsa-mir-582
2.24E−07



CA Renal Higgins
13
hsa-mir-663
4.59E−05



CA Breast Richardson
50
hsa-mir-380
1.42E−05



CA Bladder Dyrskjot
71
hsa-mir-662
0.000356281



SMCL Lung Bhattacharjee
5
hsa-mir-1321
0.000105392



SRS Ovarian Hendrix
17
hsa-mir-193b
0.000508028



RCCC Renal Boer
9
hsa-mir-502-3p
0.000234434



SQ Lung Bhattacharjee
19
hsa-mir-647
9.65E−06



END Ovarian Hendrix
31
hsa-mir-1253
0.000484638



MPM Mesothelioma Gordon
36
hsa-mir-487a
3.08E−06



CA Breast Richardson
15
hsa-mir-494
1.40E−06



MM Myeloma Zhan
4
hsa-mir-185
6.20E−06



CA Colon Graudens
40
hsa-mir-369-3p
4.96E−06



CA Breast Richardson
18
hsa-mir-135a
3.32E−06



ILC Breast Radvanyi
10
hsa-mir-548c-3p
0.000529657



MUC Ovarian Hendrix
8
hsa-mir-486-3p
2.29E−05



GL Brain Rickman
32
hsa-mir-889
0.000162082



AD Lung Bhattacharjee
34
hsa-mir-296
1.13E−05



GCT Seminoma Korkola
52
hsa-mir-508
1.79E−05



GLB Brain Sun
3
hsa-mir-320a
0.000334921



CA Breast Richardson
46
hsa-mir-607
8.39E−07



MPM Mesothelioma Gordon
15
hsa-mir-1229
0.000201101



CA Colon Graudens
31
hsa-mir-548o
4.28E−06



PPC Prostate Dhanasekaran
2
hsa-mir-641
0.000166542



END Ovarian Hendrix
65
hsa-mir-331-3p
0.000108718



SRS Ovarian Hendrix
59
hsa-mir-656
0.000449134



MM Myeloma Zhan
34
hsa-mir-147b
0.000550706



CA Bladder Dyrskjot
22
hsa-mir-663
9.26E−07



CCC Ovarian Hendrix
13
hsa-mir-500
0.000239274



ME Melanoma Hoek
15
hsa-mir-1292
0.000135688



CA Bladder Dyrskjot
10
hsa-mir-597
7.62E−05



AC Brain Sun
31
hsa-mir-1280
5.32E−05



GCT Seminoma Korkola
16
hsa-mir-1183
4.57E−05



SMCL Lung Bhattacharjee
47
hsa-mir-302e
0.000548428



GL Brain Bredel
47
hsa-mir-1236
0.000346282



GCT Seminoma Korkola
32
hsa-mir-608
0.000145012



CCC Ovarian Hendrix
0
hsa-mir-194
6.00E−06



MUC Ovarian Hendrix
65
hsa-mir-380
2.65E−05



GLB Brain Sun
59
hsa-mir-1252
3.13E−05



AC Brain Sun
18
hsa-mir-1305
0.000570172



GCT Seminoma Korkola
69
hsa-mir-296
0.000405059



END Ovarian Hendrix
43
hsa-mir-590-3p
1.16E−05



MM Myeloma Zhan
26
hsa-mir-1321
5.01E−06



MPM Mesothelioma Gordon
2
hsa-mir-1207
0.000107599



HSCC Head-Neck Chung
4
hsa-mir-548l
5.28E−05



CA Bladder Dyrskjot
36
hsa-mir-548c-3p
5.69E−13



AD Lung Bhattacharjee
19
hsa-mir-1247
0.000325418



CA Bladder Dyrskjot
16
hsa-mir-939
9.40E−07



SRS Ovarian Hendrix
11
hsa-mir-590-3p
0.000114458



MUC Ovarian Hendrix
66
hsa-mir-889
0.000101883



AD Lung Stearman
6
hsa-mir-380
9.21E−05



BPH Prostate Dhanasekaran
4
hsa-mir-1278
0.000153909



CA Breast Richardson
29
hsa-mir-1302
5.51E−05



AD Ovarian Welsh
11
hsa-mir-1225
0.000597055



COID Lung Bhattacharjee
20
hsa-mir-615-3p
0.000534605



MPM Mesothelioma Gordon
54
hsa-mir-548h
0.000153669



GCT Seminoma Korkola
34
hsa-mir-136
9.69E−10



CA Colon Graudens
5
hsa-mir-548h
0.000122758



CA Breast Richardson
45
hsa-mir-513a-3p
7.34E−10



TU Prostate Lapointe
11
hsa-mir-152
1.30E−05



OD Brain Bredel
47
hsa-mir-219-1-3p
0.000375423



SMCL Lung Bhattacharjee
50
hsa-mir-664
5.89E−14



MPM Mesothelioma Gordon
33
hsa-mir-768
0.000220019



MPC Prostate Dhanasekaran
8
hsa-mir-219-1-3p
0.000270967



CCC Ovarian Hendrix
33
hsa-mir-770
0.000104352



GLB Brain Sun
49
hsa-mir-340
5.60E−05



END Ovarian Hendrix
48
hsa-mir-1304
1.80E−05



CA Bladder Dyrskjot
72
hsa-mir-296
1.00E−10



AD Lung Beer
42
hsa-mir-651
0.000137443



MM Myeloma Zhan
15
hsa-mir-922
2.66E−05



SRS Ovarian Hendrix
26
hsa-mir-325
9.20E−05



CA Colon Graudens
14
hsa-mir-886
0.00042904 



MPC Prostate Dhanasekaran
36
hsa-mir-942
4.86E−05



GL Brain Bredel
66
hsa-mir-27a
0.000131506



ILC Breast Radvanyi
26
hsa-mir-486-3p
1.82E−06



SRS Ovarian Hendrix
35
hsa-mir-220a
6.69E−06



PPC Prostate Dhanasekaran
27
hsa-mir-1279
2.59E−05



COID Lung Bhattacharjee
11
hsa-mir-513b
1.56E−05



MUC Ovarian Hendrix
50
hsa-mir-889
4.39E−06



ME Melanoma Hoek
12
hsa-mir-935
8.40E−06



SQ Lung Bhattacharjee
24
hsa-mir-889
9.55E−06



ODGL Brain Sun
20
hsa-mir-548e
2.16E−06



ODGL Brain Sun
25
hsa-mir-548l
3.21E−08



ODGL Brain Sun
2
hsa-mir-939
1.10E−11



COID Lung Bhattacharjee
69
hsa-mir-765
0.000160635



END Ovarian Hendrix
3
hsa-mir-1279
0.000316131



END Ovarian Hendrix
61
hsa-mir-342
4.60E−05



SQ Lung Bhattacharjee
45
hsa-mir-654
9.06E−05



MPC Prostate Dhanasekaran
34
hsa-mir-1279
3.65E−08



AD Lung Bhattacharjee
12
hsa-mir-590-3p
0.000565441



AD Pancreas Logsdon
18
hsa-mir-939
9.11E−05



B-CLL Leukemia Haslinger
41
hsa-mir-483
0.000426084



ML Melanoma Talantov
36
hsa-mir-663
7.10E−09



GCT Seminoma Korkola
106
hsa-mir-513b
0.000341133



SQ Lung Bhattacharjee
50
hsa-mir-607
6.96E−05



GCT Seminoma Korkola
111
hsa-mir-296
0.000178861



SQ Lung Bhattacharjee
27
hsa-mir-940
8.78E−05



MM Myeloma Zhan
47
hsa-mir-662
7.87E−05



END Ovarian Hendrix
40
hsa-mir-944
8.92E−07



IDC Breast Radvanyi
4
hsa-mir-608
0.000192757



SRS Ovarian Hendrix
6
hsa-mir-185
0.000528828



GL Brain Rickman
9
hsa-mir-1207
4.71E−06



GL Brain Bredel
0
hsa-mir-548i
0.000241782



B-CLL Leukemia Haslinger
65
hsa-mir-1247
0.000436296



AD Lung Bhattacharjee
6
hsa-mir-602
0.000348747



SRS Ovarian Hendrix
32
hsa-mir-331-3p
1.37E−05



END Ovarian Hendrix
72
hsa-mir-548d-3p
8.31E−06



CA Bladder Dyrskjot
40
hsa-mir-548d-3p
0.000121089



ME Melanoma Hoek
39
hsa-mir-944
3.30E−06



GCT Seminoma Korkola
39
hsa-mir-639
9.46E−05



GCT Seminoma Korkola
98
hsa-mir-203
5.28E−08



SRS Ovarian Hendrix
48
hsa-mir-1278
7.16E−05



END Ovarian Hendrix
60
hsa-mir-570
2.61E−09



GL Brain Rickman
15
hsa-mir-487a
0.000117352



AD Lung Beer
53
hsa-mir-548d-3p
1.04E−06



MUC Ovarian Hendrix
63
hsa-mir-1247
6.75E−05



COID Lung Bhattacharjee
23
hsa-mir-1228
0.000222914



SMCL Lung Bhattacharjee
61
hsa-mir-331-3p
3.73E−06



MUC Ovarian Hendrix
0
hsa-mir-410
5.36E−08



COID Lung Bhattacharjee
12
hsa-mir-494
8.53E−06



ME Melanoma Hoek
41
hsa-mir-451
0.000175004



MUC Ovarian Hendrix
69
hsa-mir-579
5.8SE−05



MUC Ovarian Hendrix
60
hsa-mir-574-3p
3.68E−05



END Ovarian Hendrix
50
hsa-mir-548c-3p
2.18E−10



PPC Prostate Dhanasekaran
33
hsa-mir-548e
9.16E−06



GLB Brain Sun
25
hsa-mir-600
6.06E−06



MM Myeloma Zhan
11
hsa-mir-658
0.00033622 



IDC Breast Radvanyi
41
hsa-mir-939
6.12E−06



CA Breast Richardson
37
hsa-mir-1289
0.000579338



SRS Ovarian Hendrix
79
hsa-mir-944
5.09E−05



AD Pancreas Logsdon
12
hsa-mir-933
0.000128551



SRS Ovarian Hendrix
9
hsa-mir-1297
0.000150331



RCCC Renal Lenburg
9
hsa-mir-1238
0.000381766



AC Brain Sun
37
hsa-mir-569
0.000257268



MPC Prostate Dhanasekaran
12
hsa-mir-340
5.22E−11



IDC Breast Radvanyi
14
hsa-mir-323-3p
0.000103181



PPC Prostate Dhanasekaran
37
hsa-mir-553
0.000599727



CA Bladder Dyrskjot
15
hsa-mir-1323
2.35E−07



END Ovarian Hendrix
82
hsa-mir-320b
1.53E−05



HSCC Head-Neck Chung
7
hsa-mir-573
4.02E−05



MM Myeloma Zhan
13
hsa-mir-770
3.53E−05



B-CLL Leukemia Haslinger
35
hsa-mir-486-3p
5.55E−09



CA Bladder Dyrskjot
54
hsa-mir-491
6.59E−06



SRS Ovarian Hendrix
61
hsa-mir-1224-3p
0.000355435



AO Brain Bredel
22
hsa-mir-663
3.41E−06



IDC Breast Radvanyi
56
hsa-mir-576
0.000441942



B-CLL Leukemia Haslinger
21
hsa-mir-548c-3p
1.93E−14



MUC Ovarian Hendrix
7
hsa-mir-590-3p
1.46E−10



B-CLL Leukemia Haslinger
52
hsa-mir-302a
0.000364911



GL Brain Rickman
34
hsa-mir-1274a
4.31E−05



ML Melanoma Talantov
9
hsa-mir-493
0.000491063



MPC Prostate Dhanasekaran
40
hsa-mir-220
9.77E−06



CA Breast Sorlie
23
hsa-mir-423
0.000106954



AD Lung Bhattacharjee
82
hsa-mir-647
0.000162289



AD Ovarian Welsh
9
hsa-mir-524
3.48E−05



GL Brain Rickman
27
hsa-mir-182
7.81E−05



CA Bladder Dyrskjot
80
hsa-mir-616
7.12E−05



FL Lymphoma Alizadeh
5
hsa-mir-581
0.000111755



TU Prostate Lapointe
32
hsa-mir-608
6.56E−07



SRS Ovarian Hendrix
73
hsa-mir-340
1.71E−08



B-CLL Leukemia Haslinger
51
hsa-mir-448
0.000227269



CA Bladder Dyrskjot
24
hsa-mir-663
2.33E−05



ODGL Brain Sun
7
hsa-mir-548k
0.000124326



ODGL Brain Sun
41
hsa-mir-26b
5.24E−05



AD Lung Beer
28
hsa-mir-1245
0.000608297



CA Breast Sorlie
17
hsa-mir-640
0.000265634



SMCL Lung Bhattacharjee
7
hsa-mir-615
0.00025691 



CA Bladder Dyrskjot
29
hsa-mir-548c-3p
1.79E−06



CA Breast Richardson
2
hsa-mir-590-3p
8.86E−05



PPC Prostate Dhanasekaran
20
hsa-mir-1207
0.000191478



SRS Ovarian Hendrix
57
hsa-mir-548d-3p
5.11E−06



OD Brain Bredel
54
hsa-mir-1275
7.51E−05



MUC Ovarian Hendrix
68
hsa-mir-1305
1.03E−05



MPM Mesothelioma Gordon
32
hsa-mir-541
0.000130877



AD Lung Stearman
27
hsa-mir-300
5.00E−06



RCCC Renal Boer
15
hsa-mir-300
0.000145597



MPC Prostate Dhanasekaran
2
hsa-mir-548c-3p
2.35E−06



CA Bladder Dyrskjot
64
hsa-mir-590-3p
1.06E−25



AC Brain Sun
3
hsa-mir-1205
2.84E−05



CA Breast Richardson
54
hsa-mir-361-3p
2.22E−12



B-CLL Leukemia Haslinger
28
hsa-mir-376
0.000318075



B-CLL Leukemia Haslinger
54
hsa-mir-1321
3.27E−05



SMCL Lung Bhattacharjee
31
hsa-mir-513a-3p
1.28E−08



AD Lung Bhattacharjee
41
hsa-mir-296
6.11E−05



AD Lung Stearman
32
hsa-mir-588
0.00048611 



GCT Seminoma Korkola
0
hsa-mir-1251
3.03E−05



AD Lung Bhattacharjee
14
hsa-mir-938
0.000464954



GCT Seminoma Korkola
108
hsa-mir-590
0.000599626



ODGL Brain Sun
65
hsa-mir-495
3.90E−08



B-CLL Leukemia Haslinger
16
hsa-mir-1285
8.55E−08



AD Ovarian Welsh
31
hsa-mir-548c-3p
1.17E−06



GLB Brain Sun
37
hsa-mir-1256
0.000394523



IDC Breast Radvanyi
18
hsa-mir-1207-3p
0.000171598



AD Lung Bhattacharjee
8
hsa-mir-1324
2.99E−05



IDC Breast Radvanyi
65
hsa-mir-802
3.44E−17



CCC Ovarian Hendrix
56
hsa-mir-587
0.000320898



SQ Lung Bhattacharjee
23
hsa-mir-586
0.000126996



GLB Brain Sun
27
hsa-mir-889
4.14E−06



CA Bladder Dyrskjot
32
hsa-mir-1270
1.86E−06



CA Bladder Dyrskjot
58
hsa-mir-328
0.000324179



COID Lung Bhattacharjee
74
hsa-mir-513a-3p
1.46E−07



B-CLL Leukemia Haslinger
43
hsa-mir-483-3p
6.86E−05



HSCC Head-Neck Cromer
26
hsa-mir-885
1.44E−05



GLB Brain Sun
35
hsa-mir-922
0.000367795



ML Melanoma Talantov
10
hsa-mir-1180
0.000368404



AD Ovarian Welsh
8
hsa-mir-1260
3.07E−05



CCC Ovarian Hendrix
58
hsa-mir-586
3.47E−08



AC Brain Sun
50
hsa-mir-483-3p
0.000171585



BPH Prostate Dhanasekaran
1
hsa-mir-579
0.00020642 



ODGL Brain Sun
27
hsa-mir-136
0.000113816



COID Lung Bhattacharjee
43
hsa-mir-658
7.50E−05



GL Brain Rickman
17
hsa-mir-146b-3p
0.000528862



CA Breast Richardson
19
hsa-mir-586
0.000229107



SRS Ovarian Hendrix
4
hsa-mir-1250
1.87E−05



CA Breast Sorlie
16
hsa-mir-579
3.19E−05



HSCC Head-Neck Cromer
18
hsa-mir-615-3p
0.000195451



MPM Mesothelioma Gordon
62
hsa-mir-708
0.000307699



ML Melanoma Talantov
40
hsa-mir-296
4.56E−06



MUC Ovarian Hendrix
54
hsa-mir-921
1.11E−05



CA Bladder Dyrskjot
12
hsa-mir-1244
0.000260354



TU Prostate Lapointe
33
hsa-mir-548c-3p
1.75E−07



MPC Prostate Dhanasekaran
27
hsa-mir-1271
0.000148676



CA Renal Higgins
4
hsa-mir-34b
2.00E−07



END Ovarian Hendrix
4
hsa-mir-612
0.00056313 



MPM Mesothelioma Gordon
44
hsa-mir-338
8.55E−05



B-CLL Leukemia Haslinger
17
hsa-mir-590-3p
1.39E−13



CA Bladder Dyrskjot
48
hsa-mir-520b
0.000475673



CCC Ovarian Hendrix
46
hsa-mir-340
7.26E−09



HSCC Head-Neck Chung
1
hsa-mir-450b
3.20E−05



COID Lung Bhattacharjee
6
hsa-mir-874
4.15E−05



CA Bladder Dyrskjot
37
hsa-mir-548n
9.02E−08



CA Bladder Dyrskjot
14
hsa-mir-944
3.76E−05



SRS Ovarian Hendrix
44
hsa-mir-584
0.000486209



ODGL Brain Sun
22
hsa-mir-423
7.28E−09



AD Lung Bhattacharjee
46
hsa-mir-548c-3p
3.06E−06



AD Lung Stearman
19
hsa-mir-370
2.85E−06



GL Brain Rickman
8
hsa-mir-634
0.000383758



SRS Ovarian Hendrix
3
hsa-mir-146b-3p
0.000175563



CA Bladder Dyrskjot
56
hsa-mir-1238
2.31E−06



IDC Breast Radvanyi
43
hsa-mir-1224
5.00E−05



ILC Breast Radvanyi
19
hsa-mir-338-3p
0.000520796



SMCL Lung Bhattacharjee
22
hsa-mir-548n
9.61E−05



SRS Ovarian Hendrix
53
hsa-mir-576
3.87E−05



CA Bladder Dyrskjot
6
hsa-mir-939
1.03E−05



AD Lung Bhattacharjee
7
hsa-mir-1305
2.19E−11



AD Lung Beer
8
hsa-mir-637
3.07E−05



CA Bladder Dyrskjot
49
hsa-mir-432
8.72E−06



BPH Prostate Dhanasekaran
15
hsa-mir-1259
9.49E−05



OD Brain Bredel
21
hsa-mir-548c-3p
0.000226458



TU Prostate Lapointe
38
hsa-mir-633
9.66E−05



AD Ovarian Welsh
5
hsa-mir-455
9.98E−05



GL Brain Rickman
29
hsa-mir-568
3.23E−08



IDC Breast Radvanyi
2
hsa-mir-513a-3p
3.57E−05



GL Brain Bredel
31
hsa-mir-615-3p
2.09E−05



AC Brain Sun
8
hsa-mir-196a
0.000415339



SRS Ovarian Hendrix
19
hsa-mir-135a
6.95E−06



ML Melanoma Talantov
29
hsa-mir-1257
0.00027138 



AD Lung Stearman
0
hsa-mir-369-3p
2.30E−06



CA Bladder Dyrskjot
47
hsa-mir-197
7.26E−07



COID Lung Bhattacharjee
72
hsa-mir-548n
9.38E−06



AD Ovarian Welsh
30
hsa-mir-1204
0.000439516



GLB Brain Sun
58
hsa-mir-1287
0.000103913



SQ Lung Bhattacharjee
43
hsa-mir-635
0.000124798



AC Brain Sun
34
hsa-mir-223
2.97E−05



AD Lung Stearman
18
hsa-mir-1257
0.000397558



GCT Seminoma Korkola
68
hsa-mir-1182
6.01E−05



COID Lung Bhattacharjee
45
hsa-mir-615
5.02E−06



GL Brain Bredel
25
hsa-mir-513b
0.000419468



ML Melanoma Talantov
19
hsa-mir-548c-3p
7.99E−10



MUC Ovarian Hendrix
32
hsa-mir-490-3p
9.00E−05



BPH Prostate Dhanasekaran
8
hsa-mir-1246
7.27E−06



B-CLL Leukemia Haslinger
5
hsa-mir-622
6.58E−05



PPC Prostate Dhanasekaran
39
hsa-mir-139-3p
0.000138404



AD Pancreas Logsdon
1
hsa-mir-1247
1.53E−05



CCC Ovarian Hendrix
2
hsa-mir-423
1.48E−06



SQ Lung Bhattacharjee
40
hsa-mir-339-3p
0.000101826



GL Brain Bredel
30
hsa-mir-342
3.60E−07



MCA Breast Radvanyi
7
hsa-mir-324-3p
3.23E−06



B-CLL Leukemia Haslinger
0
hsa-mir-409
0.000378892



TU Prostate Lapointe
25
hsa-mir-130a
3.79E−05



MPM Mesothelioma Gordon
65
hsa-mir-548n
2.71E−09



SRS Ovarian Hendrix
43
hsa-mir-299-3p
5.54E−06



B-CLL Leukemia Haslinger
56
hsa-mir-548b-3p
0.000133402



MM Myeloma Zhan
14
hsa-mir-548l
0.000147742



AD Lung Beer
14
hsa-mir-542
0.000318042



SRS Ovarian Hendrix
80
hsa-mir-324
4.34E−05



OD Brain Bredel
40
hsa-mir-216b
9.25E−05



END Ovarian Hendrix
35
hsa-mir-1276
0.000277741



CCC Ovarian Hendrix
12
hsa-mir-508-3p
3.68E−05



MM Myeloma Zhan
43
hsa-mir-124
2.37E−05



END Ovarian Hendrix
16
hsa-mir-588
3.82E−06



MPM Mesothelioma Gordon
13
hsa-mir-585
4.85E−05



HSCC Head-Neck Cromer
12
hsa-mir-513a-3p
2.34E−05



COID Lung Bhattacharjee
24
hsa-mir-342
7.55E−05



IDC Breast Radvanyi
27
hsa-mir-323
0.000569837



ODGL Brain Sun
50
hsa-mir-217
0.000123791



AD Lung Bhattacharjee
24
hsa-mir-608
1.22E−06



GCT Seminoma Korkola
71
hsa-mir-361-3p
4.76E−07



AD Lung Beer
12
hsa-mir-378
0.000355275



SQ Lung Bhattacharjee
29
hsa-mir-486-3p
8.12E−06



MM Myeloma Zhan
35
hsa-mir-129
0.000200071



CCC Ovarian Hendrix
4
hsa-mir-194
1.45E−05



AD Ovarian Welsh
16
hsa-mir-548l
0.000120211



AD Lung Beer
34
hsa-mir-646
0.00025737 



GBM Brain Liang
2
hsa-mir-548c-3p
0.000318973



OD Brain Bredel
30
hsa-mir-1306
0.000381469



END Ovarian Hendrix
75
hsa-mir-489
0.000119996



AD Lung Beer
10
hsa-mir-600
1.44E−06



MPC Prostate Dhanasekaran
18
hsa-mir-1263
1.48E−05



PPC Prostate Dhanasekaran
35
hsa-mir-663b
0.000144273



MPM Mesothelioma Gordon
61
hsa-mir-1287
2.33E−05



AO Brain Bredel
32
hsa-mir-564
5.13E−06



CA Bladder Dyrskjot
75
hsa-mir-513
7.29E−05



CA Colon Graudens
28
hsa-mir-508
0.000295908



ML Melanoma Talantov
3
hsa-mir-548n
4.08E−06



GCT Seminoma Korkola
30
hsa-mir-588
0.000275648



PPC Prostate Dhanasekaran
31
hsa-mir-515-3p
0.000197799



ODGL Brain Sun
49
hsa-mir-423
1.08E−05



CA Bladder Dyrskjot
62
hsa-mir-637
1.36E−05



CA Bladder Dyrskjot
46
hsa-mir-342
3.59E−08



HSCC Head-Neck Cromer
19
hsa-mir-548l
1.75E−07



AD Lung Beer
40
hsa-mir-561
7.29E−05



CCC Ovarian Hendrix
18
hsa-mir-326
7.22E−06



MUC Ovarian Hendrix
61
hsa-mir-410
4.05E−06



AC Brain Sun
19
hsa-mir-485
1.27E−05



COID Lung Bhattacharjee
14
hsa-mir-557
0.000108663



CA Bladder Dyrskjot
38
hsa-mir-1281
0.000191838



CLL Lymphoma Alizadeh
0
hsa-mir-548j
0.000459332



SMCL Lung Bhattacharjee
29
hsa-mir-548c-3p
9.77E−08



SQ Lung Bhattacharjee
21
hsa-mir-455
0.000112719



MM Myeloma Zhan
9
hsa-mir-185
7.75E−05



HSCC Head-Neck Cromer
8
hsa-mir-142
1.01E−07



CA Bladder Dyrskjot
18
hsa-mir-1291
2.29E−05



PPC Prostate Dhanasekaran
4
hsa-mir-939
9.40E−06



DLBCL Lymphoma Alizadeh
1
hsa-mir-16
8.17E−05



PPC Prostate Dhanasekaran
14
hsa-mir-1202
0.000130297



SRS Ovarian Hendrix
1
hsa-mir-409-3p
9.82E−05



COID Lung Bhattacharjee
66
hsa-mir-507
9.71E−06



MM Myeloma Zhan
10
hsa-mir-1305
6.75E−06



ME Melanoma Hoek
37
hsa-mir-380
1.50E−07



OOGL Brain Sun
62
hsa-mir-1294
6.05E−05



CA Bladder Dyrskjot
21
hsa-mir-944
2.51E−06



COID Lung Bhattacharjee
0
hsa-mir-518d
2.57E−05



CA Colon Graudens
6
hsa-mir-658
8.78E−05



GCT Seminoma Korkola
88
hsa-mir-338
3.32E−08



AD Lung Stearman
35
hsa-mir-668
0.000306085



B-CLL Leukemia Haslinger
45
hsa-mir-889
9.32E−06



HSCC Head-Neck Cramer
27
hsa-mir-615
5.07E−06



GCT Seminoma Korkola
66
hsa-mir-1291
1.92E−05



AD Lung Beer
22
hsa-mir-525
0.000251267



AO Brain Bredel
0
hsa-mir-635
9.52E−05



MUC Ovarian Hendrix
75
hsa-mir-512-3p
1.28E−06



SQ Lung Bhattacharjee
14
hsa-mir-486-3p
5.23E−06



MPC Prostate Dhanasekaran
23
hsa-mir-302f
0.000532122



IDC Breast Radvanyi
46
hsa-mir-675
0.000483213



CA Bladder Dyrskjot
35
hsa-mir-486-3p
0.000273385



CCC Ovarian Hendrix
45
hsa-mir-1250
2.30E−05



ODGL Brain Sun
1
hsa-mir-647
1.96E−05



CA Breast Richardson
62
hsa-mir-622
0.000211265



OD Brain Bredel
15
hsa-mir-765
0.000578248



B-CLL Leukemia Haslinger
8
hsa-mir-939
9.79E−06



CA Breast Sorlie
8
hsa-mir-1255a
3.53E−05



GLB Brain Sun
50
hsa-mir-548c-3p
2.66E−06



GCT Seminoma Korkola
82
hsa-mir-576
0.000285312



END Ovarian Hendrix
23
hsa-mir-22
6.91E−05



OD Brain Bredel
62
hsa-let-7f
0.000585924



MM Myeloma Zhan
36
hsa-mir-1273
0.000403952



CA Colon Graudens
0
hsa-mir-138
6.29E−05



GCT Seminoma Korkola
29
hsa-mir-548c-3p
3.74E−08



B-CLL Leukemia Haslinger
15
hsa-mir-654-3p
2.08E−05



ILC Breast Radvanyi
6
hsa-mir-579
8.72E−06



MUC Ovarian Hendrix
12
hsa-mir-658
0.000144043



TU Prostate Lapointe
1
hsa-mir-590-3p
3.15E−07



HSCC Head-Neck Cromer
25
hsa-mir-495
1.15E−06



CLL Lymphoma Alizadeh
1
hsa-mir-1204
3.50E−05



AO Brain Bredel
18
hsa-mir-497
0.000198786



TU Prostate Lapointe
31
hsa-mir-339-3p
5.79E−05



CA Breast Richardson
55
hsa-mir-544
1.29E−06



HSCC Head-Neck Chung
8
hsa-mir-410
4.98E−05



IDC Breast Radvanyi
26
hsa-mir-886
0.000540903



SRS Ovarian Hendrix
28
hsa-mir-186
1.67E−06



BPH Prostate Dhanasekaran
11
hsa-mir-369-3p
0.000568201



SQ Lung Bhattacharjee
7
hsa-mir-765
5.75E−05



ML Melanoma Talantov
7
hsa-mir-296
6.02E−07



ME Melanoma Hoek
33
hsa-mir-1265
0.000457688



GCT Seminoma Korkola
50
hsa-mir-376
2.33E−06



END Ovarian Hendrix
22
hsa-mir-944
1.00E−05



MUC Ovarian Hendrix
22
hsa-mir-1293
5.80E−05



AC Brain Sun
7
hsa-mir-548l
1.20E−07



AC Brain Sun
16
hsa-mir-655
1.38E−06



HSCC Head-Neck Chung
5
hsa-mir-1202
0.000335288



PPC Prostate Dhanasekaran
23
hsa-mir-518a
7.91E−05



GLB Brain Sun
55
hsa-mir-32
0.000230839



MUC Ovarian Hendrix
31
hsa-mir-342
2.61E−05



END Ovarian Hendrix
69
hsa-mir-186
6.88E−06



ODGL Brain Sun
48
hsa-mir-384
0.000253138



TU Prostate Lapointe
4
hsa-mir-185
0.000290147



AD Lung Beer
5
hsa-mir-1292
9.07E−05



PPC Prostate Dhanasekaran
10
hsa-mir-889
8.82E−06



CA Bladder Dyrskjot
82
hsa-mir-656
1.37E−06



AD Lung Bhattacharjee
4
hsa-mir-1321
3.68E−07



IDC Breast Radvanyi
24
hsa-mir-1291
4.64E−05



B-CLL Leukemia Haslinger
37
hsa-mir-323-3p
6.95E−10



MPM Mesothelioma Gordon
17
hsa-mir-1296
0.000161062



AC Brain Sun
6
hsa-mir-139
0.000306314



GLB Brain Sun
4
hsa-mir-542
4.28E−07



ODGL Brain Sun
30
hsa-mir-483
0.000412141



ODGL Brain Sun
60
hsa-let-7d
0.000130896



COID Lung Bhattacharjee
80
hsa-mir-548l
6.43E−13



ODGL Brain Sun
32
hsa-mir-153
2.80E−06



GCT Seminoma Korkola
17
hsa-mir-615
2.79E−07



B-CLL Leukemia Haslinger
25
hsa-mir-548c-3p
7.95E−06



AC Brain Sun
22
hsa-mir-185
3.82E−05



BPH Prostate Dhanasekaran
12
hsa-mir-939
8.80E−05



CA Bladder Dyrskjot
63
hsa-mir-372
1.77E−07



B-CLL Leukemia Haslinger
13
hsa-mir-892b
0.000527397



GL Brain Bredel
46
hsa-mir-548l
1.16E−05



MPM Mesothelioma Gordon
41
hsa-mir-381
0.000443852



ODGL Brain Sun
10
hsa-mir-208a
0.000136267



MPC Prostate Dhanasekaran
44
hsa-mir-576-3p
9.02E−05



CA Colon Graudens
10
hsa-mir-1225
0.000267591



PPC Prostate Dhanasekaran
38
hsa-mir-607
2.03E−05



GLB Brain Sun
29
hsa-mir-1275
9.58E−09



SQ Lung Bhattacharjee
13
hsa-mir-296
2.05E−08



END Ovarian Hendrix
62
hsa-mir-571
6.37E−05



AC Brain Sun
23
hsa-mir-1207-3p
0.000547066



CA Bladder Dyrskjot
7
hsa-mir-361
0.000142136



ODGL Brain Sun
39
hsa-mir-1283
3.48E−05



CLL Lymphoma Alizadeh
13
hsa-mir-423
0.000349636



CCC Ovarian Hendrix
25
hsa-mir-744
0.000564266



SQ Lung Bhattacharjee
18
hsa-mir-410
2.12E−05



TU Prostate Lapointe
39
hsa-mir-656
3.01E−07



GL Brain Bredel
79
hsa-mir-340
2.04E−18



PPC Prostate Dhanasekaran
41
hsa-mir-369-3p
3.86E−06



MUC Ovarian Hendrix
20
hsa-mir-640
0.000235199



PPC Prostate Dhanasekaran
9
hsa-mir-661
1.10E−05



MUC Ovarian Hendrix
52
hsa-mir-541
0.00046487 



GBM Brain Liang
5
hsa-mir-939
0.00056305 



FL Lymphoma Alizadeh
7
hsa-mir-1282
0.000138941



AD Lung Bhattacharjee
47
hsa-mir-1245
2.22E−06



B-CLL Leukemia Haslinger
62
hsa-mir-548c-3p
8.00E−10



CCC Ovarian Hendrix
60
hsa-mir-1305
3.35E−05



B-CLL Leukemia Haslinger
29
hsa-mir-1270
0.000171591



HSCC Head-Neck Chung
3
hsa-mir-1286
9.91E−06



MM Myeloma Zhan
16
hsa-mir-134
8.11E−05



GCT Seminoma Korkola
60
hsa-mir-551a
6.95E−05



COID Lung Bhattacharjee
21
hsa-mir-944
8.19E−10



IDC Breast Radvanyi
8
hsa-mir-631
0.000564379



CA Bladder Dyrskjot
70
hsa-mir-502
2.29E−05



CA Breast Richardson
23
hsa-mir-544
0.000153218



AO Brain Bredel
38
hsa-mir-1282
0.000299426



ODGL Brain Sun
53
hsa-mir-548n
5.14E−09



MUC Ovarian Hendrix
24
hsa-mir-361-3p
0.000241059



GLB Brain Sun
5
hsa-mir-515
0.000373578



MPM Mesothelioma Gordon
24
hsa-mir-361-3p
0.000101355



AD Ovarian Welsh
17
hsa-mir-1321
1.68E−05



HSCC Head-Neck Chung
6
hsa-mir-590-3p
1.29E−05



MM Myeloma Zhan
3
hsa-mir-548c-3p
2.85E−14



CA Colon Graudens
17
hsa-mir-597
7.44E−05



B-CLL Leukemia Haslinger
46
hsa-mir-1247
0.000479165



CA Bladder Dyrskjot
79
hsa-mir-508-3p
0.00023817 



CCC Ovarian Hendrix
47
hsa-mir-122
7.65E−06



RCCC Renal Lenburg
3
hsa-mir-888
0.00018121 



AD Ovarian Welsh
29
hsa-mir-1225-3p
0.000495059



ML Melanoma Talantov
18
hsa-mir-513a-3p
1.30E−08



MPM Mesothelioma Gordon
38
hsa-mir-145
8.33E−05



CA Breast Sorlie
19
hsa-mir-129
8.52E−06



CA Renal Higgins
10
hsa-mir-483-3p
0.000138161



MPM Mesothelioma Gordon
42
hsa-mir-539
3.04E−05



ME Melanoma Hoek
25
hsa-mir-26a
2.11E−05



GL Brain Rickman
4
hsa-mir-361
3.19E−05



GLB Brain Sun
28
hsa-mir-323-3p
4.84E−05



GL Brain Rickman
10
hsa-mir-648
3.05E−06



AD Lung Beer
33
hsa-mir-379
6.19E−05



MPC Prostate Dhanasekaran
5
hsa-mir-211
0.000182393



TU Prostate Lapointe
29
hsa-mir-522
2.97E−11



END Ovarian Hendrix
13
hsa-mir-23a
6.11E−07



CA Bladder Dyrskjot
31
hsa-mir-656
1.34E−05



AD Lung Stearman
25
hsa-mir-519a
8.68E−05



GL Brain Bredel
77
hsa-mir-744
1.44E−05



COID Lung Bhattacharjee
16
hsa-mir-376a
0.000262419



MPM Mesothelioma Gordon
1
hsa-mir-1224
2.48E−05



RCCC Renal Lenburg
10
hsa-mir-1273
0.000324812



ILC Breast Radvanyi
3
hsa-mir-383
0.000402616



ML Melanoma Talantov
12
hsa-mir-324-3p
6.94E−05



MCA Breast Radvanyi
17
hsa-mir-219
1.57E−07



B-CLL Leukemia Haslinger
66
hsa-mir-939
3.01E−10



GL Brain Bredel
27
hsa-mir-181
0.000133619



B-CLL Leukemia Haslinger
10
hsa-mir-454
1.68E−05



OD Brain Bredel
52
hsa-mir-411
0.000409711



MPM Mesothelioma Gordon
16
hsa-mir-590-3p
9.51E−17



CA Bladder Dyrskjot
45
hsa-mir-608
4.60E−07



CA Bladder Dyrskjot
59
hsa-mir-374a
8.54E−06



SQ Lung Bhattacharjee
22
hsa-mir-607
1.71E−06



MPC Prostate Dhanasekaran
14
hsa-mir-502
0.000300801



B-CLL Leukemia Haslinger
49
hsa-mir-1227
0.00034531 



B-CLL Leukemia Haslinger
9
hsa-mir-1245
0.000110184



PPC Prostate Dhanasekaran
19
hsa-mir-144
3.07E−06



GBM Brain Liang
1
hsa-mir-423
7.21E−07



CA Bladder Dyrskjot
67
hsa-mir-630
0.000123706



MPC Prostate Dhanasekaran
35
hsa-mir-203
1.86E−06



GLB Brain Sun
8
hsa-mir-501
3.42E−06



MM Myeloma Zhan
0
hsa-mir-1207
3.32E−06



AC Brain Sun
4
hsa-mir-371-3p
8.52E−05



CCC Ovarian Hendrix
27
hsa-mir-556
0.000258408



SQ Lung Bhattacharjee
5
hsa-mir-595
5.58E−05



COID Lung Bhattacharjee
60
hsa-mir-516a-3p
5.94E−05



MPC Prostate Dhanasekaran
42
hsa-mir-331
2.97E−05



COID Lung Bhattacharjee
8
hsa-mir-340
7.24E−07



MUC Ovarian Hendrix
25
hsa-mir-582
3.54E−06



AD Lung Bhattacharjee
28
hsa-mir-548a-3p
5.98E−06



AD Lung Bhattacharjee
64
hsa-mir-765
2.85E−06



MPM Mesothelioma Gordon
28
hsa-mir-590-3p
0.000287627



MPM Mesothelioma Gordon
63
hsa-mir-548c-3p
2.51E−09



B-CLL Leukemia Haslinger
23
hsa-mir-548o
0.000480335



MPM Mesothelioma Gordon
6
hsa-mir-192
0.000120946



TU Prostate Lapointe
24
hsa-mir-548g
1.22E−06



OD Brain Bredel
7
hsa-mir-23b
2.03E−06



COID Lung Bhattacharjee
68
hsa-mir-1272
0.00018659 



PDC Pancreas Ishikawa
2
hsa-mir-448
8.41E−05



GLB Brain Sun
62
hsa-mir-495
0.000134046



MM Myeloma Zhan
40
hsa-mir-612
0.000176116



CA Breast Richardson
17
hsa-mir-423
2.85E−12



ML Melanoma Talantov
28
hsa-mir-1207
1.66E−07



CA Renal Higgins
20
hsa-mir-1261
0.000372363



ML Melanoma Talantov
4
hsa-mir-146b-3p
0.000174949



ODGL Brain Sun
17
hsa-mir-548l
1.04E−07



GLB Brain Sun
10
hsa-mir-409
6.77E−05



MM Myeloma Zhan
33
hsa-mir-507
4.95E−06



TU Prostate Lapointe
21
hsa-mir-608
2.73E−06



RCCC Renal Lenburg
2
hsa-mir-499
4.25E−06



ME Melanoma Hoek
6
hsa-mir-186
1.22E−05



SMCL Lung Bhattacharjee
52
hsa-mir-939
8.05E−05



GLB Brain Sun
63
hsa-mir-939
0.000398514



MM Myeloma Zhan
32
hsa-mir-379
0.000580382



AD Lung Stearman
33
hsa-mir-1293
1.13E−05



CCC Ovarian Hendrix
42
hsa-mir-590-3p
4.63E−06



GL Brain Bredel
39
hsa-mir-572
0.000290782



HSCC Head-Neck Chung
2
hsa-mir-944
0.00016901 



ODGL Brain Sun
28
hsa-mir-219-2-3p
0.000579468



COID Lung Bhattacharjee
19
hsa-mir-615
0.000145391



SQ Lung Bhattacharjee
0
hsa-mir-662
5.74E−05



MPM Mesothelioma Gordon
5
hsa-mir-603
0.000121912



AC Brain Sun
2
hsa-mir-548c-3p
3.42E−07



GCT Seminoma Korkola
104
hsa-mir-557
0.000174051



CA Bladder Dyrskjot
43
hsa-mir-939
6.16E−05



FL Lymphoma Alizadeh
9
hsa-mir-942
0.000136728



GL Brain Rickman
1
hsa-mir-1283
0.000424966



PPC Prostate Dhanasekaran
8
hsa-mir-340
0.000508247



CA Breast Richardson
67
hsa-mir-889
8.08E−06



HSCC Head-Neck Cromer
2
hsa-mir-374b
9.21E−06



ODGL Brain Sun
61
hsa-mir-142
0.000296262



BPH Prostate Dhanasekaran
16
hsa-mir-302f
1.09E−05



CA Bladder Dyrskjot
27
hsa-mir-129
6.69E−05



HSCC Head-Neck Cromer
5
hsa-mir-486-3p
4.46E−05



MM Myeloma Zhan
17
hsa-mir-495
3.10E−07



ODGL Brain Sun
58
hsa-mir-889
2.02E−06



COID Lung Bhattacharjee
86
hsa-mir-410
1.85E−06



HSCC Head-Neck Cromer
13
hsa-mir-622
0.000123772



COID Lung Bhattacharjee
92
hsa-mir-920
0.000526041



AD Lung Bhattacharjee
60
hsa-mir-495
2.46E−06



END Ovarian Hendrix
6
hsa-mir-890
2.65E−06



SRS Ovarian Hendrix
70
hsa-mir-433
1.13E−06



SMCL Lung Bhattacharjee
32
hsa-mir-582
1.16E−05



ILC Breast Radvanyi
15
hsa-mir-518b
0.000273711



ML Melanoma Talantov
34
hsa-mir-548n
6.91E−09



AD Lung Bhattacharjee
33
hsa-mir-490
5.05E−05



CCC Ovarian Hendrix
57
hsa-mir-590
0.000391567



GCT Seminoma Korkola
4
hsa-mir-376
0.000177892



MM Myeloma Zhan
6
hsa-mir-600
0.000129022



GCT Seminoma Korkola
42
hsa-mir-637
0.000565519



AC Brain Sun
44
hsa-mir-939
4.50E−09



GL Brain Bredel
38
hsa-mir-486-3p
2.00E−07



CA Renal Higgins
14
hsa-mir-549
2.84E−05



CA Breast Richardson
34
hsa-mir-186
1.78E−13



PPC Prostate Dhanasekaran
22
hsa-mir-561
5.02E−08



CCC Ovarian Hendrix
11
hsa-mir-602
0.000244248



AD Lung Bhattacharjee
9
hsa-mir-154
0.000580128



SRS Ovarian Hendrix
36
hsa-mir-890
0.000614411



COID Lung Bhattacharjee
7
hsa-mir-608
0.000285439



AD Lung Beer
44
hsa-mir-452
0.000208474



AD Lung Beer
46
hsa-mir-606
1.91E−05



CA Bladder Dyrskjot
28
hsa-mir-296
2.19E−05



AC Brain Sun
11
hsa-mir-574-3p
6.73E−05



AD Lung Bhattacharjee
65
hsa-mir-486-3p
0.000152303



COID Lung Bhattacharjee
36
hsa-mir-890
0.000161298



GLB Brain Sun
76
hsa-mir-139
3.32E−05



COID Lung Bhattacharjee
85
hsa-mir-1180
0.000353754



CA Breast Richardson
38
hsa-mir-103
1.94E−07



PPC Prostate Dhanasekaran
7
hsa-mir-1202
0.000547775



GCT Seminoma Korkola
6
hsa-mir-448
5.34E−05



CA Bladder Dyrskjot
68
hsa-mir-550
0.000398159



COID Lung Bhattacharjee
18
hsa-mir-663b
0.000354525



ME Melanoma Hoek
44
hsa-mir-1183
5.26E−08



DLBCL Lymphoma Alizadeh
4
hsa-mir-297
0.000102804



SRS Ovarian Hendrix
38
hsa-mir-17
8.61E−05



GCT Seminoma Korkola
62
hsa-mir-144
9.85E−06



SMCL Lung Bhattacharjee
36
hsa-mir-296
1.79E−06



AD Lung Bhattacharjee
16
hsa-mir-361-3p
6.21E−06



CCC Ovarian Hendrix
29
hsa-mir-636
0.000218326



AD Lung Bhattacharjee
20
hsa-mir-1245
4.94E−07



GLB Brain Sun
15
hsa-mir-219-1-3p
6.29E−06



GLB Brain Sun
57
hsa-mir-921
7.38E−05



AD Lung Beer
4
hsa-mir-1183
1.54E−05



GLB Brain Sun
67
hsa-mir-544
3.10E−07



B-CLL Leukemia Haslinger
61
hsa-mir-588
0.000290466



COID Lung Bhattacharjee
67
hsa-mir-181d
0.000603461



MUC Ovarian Hendrix
35
hsa-mir-340
1.91E−08



CA Colon Graudens
4
hsa-mir-144
2.99E−06



AD Lung Beer
9
hsa-mir-548k
1.83E−07



GCT Seminoma Korkola
48
hsa-mir-455
0.000192751



GCT Seminoma Korkola
14
hsa-mir-340
1.72E−06



MPC Prostate Dhanasekaran
10
hsa-mir-554
0.000168264



ODGL Brain Sun
23
hsa-mir-1225
0.000182529



AC Brain Sun
1
hsa-mir-642
4.72E−05



MPM Mesothelioma Gordon
21
hsa-mir-548c-3p
5.39E−10



TU Prostate Lapointe
7
hsa-mir-579
2.35E−09



CA Breast Richardson
31
hsa-mir-376a
0.000581498



IDC Breast Radvanyi
51
hsa-mir-548n
2.37E−07



GLB Brain Sun
60
hsa-mir-548f
3.12E−07



CA Breast Richardson
7
hsa-mir-590-3p
2.62E−05



GCT Seminoma Korkola
92
hsa-mir-564
1.88E−05



MM Myeloma Zhan
38
hsa-mir-652
0.000174084



OD Brain Bredel
5
hsa-mir-1180
0.000184744



AD Pancreas Logsdon
4
hsa-mir-22
0.000277647



PDC Pancreas Ishikawa
1
hsa-mir-106b
0.000224128



SRS Ovarian Hendrix
69
hsa-mir-29b
5.50E−06



END Ovarian Hendrix
70
hsa-mir-939
1.49E−07



CA Bladder Dyrskjot
26
hsa-mir-486
7.83E−07



GLB Brain Sun
13
hsa-mir-744
0.000603573



AD Pancreas Logsdon
15
hsa-mir-130b
0.000605398



AD Ovarian Welsh
14
hsa-mir-338
2.13E−06



ML Melanoma Talantov
33
hsa-mir-605
1.62E−05



SRS Ovarian Hendrix
42
hsa-mir-1298
9.78E−06



GCT Seminoma Korkola
10
hsa-mir-153
0.00019375 



MPM Mesothelioma Gordon
11
hsa-mir-889
9.17E−07



RCCC Renal Boer
11
hsa-mir-659
0.000194706



MM Myeloma Zhan
7
hsa-mir-645
0.000256879



PPC Prostate Dhanasekaran
12
hsa-mir-342-3p
6.39E−05



GL Brain Bredel
52
hsa-mir-516a-3p
1.62E−06



CA Breast Richardson
63
hsa-mir-561
7.97E−06



CA Colon Graudens
36
hsa-mir-512-3p
3.64E−07



TU Prostate Lapointe
35
hsa-mir-548a
5.28E−05



SRS Ovarian Hendrix
12
hsa-mir-125a-3p
5.25E−05



ML Melanoma Talantov
22
hsa-mir-570
1.67E−05



MM Myeloma Zhan
49
hsa-mir-138
0.000244706



GBM Brain Liang
16
hsa-mir-663
2.49E−05



GCT Seminoma Korkola
15
hsa-mir-1323
0.000155769



SMCL Lung Bhattacharjee
30
hsa-mir-655
4.15E−08



GCT Seminoma Korkola
110
hsa-mir-1306
3.03E−05



BPH Prostate Dhanasekaran
5
hsa-mir-1290
4.31E−05



SQ Lung Bhattacharjee
9
hsa-mir-891a
2.16E−05



CA Bladder Dyrskjot
8
hsa-mir-331
5.47E−05



IDC Breast Radvanyi
12
hsa-mir-590-3p
4.83E−05



SMCL Lung Bhattacharjee
57
hsa-mir-448
1.38E−09



OD Brain Bredel
50
hsa-mir-1254
0.00026912 



TU Prostate Lapointe
26
hsa-mir-663
6.26E−07



GCT Seminoma Korkola
26
hsa-mir-374a
2.65E−05



OD Brain Bredel
36
hsa-mir-326
0.000315988



GL Brain Rickman
16
hsa-mir-586
4.77E−05



AC Brain Sun
27
hsa-mir-612
0.000162631



GCT Seminoma Korkola
2
hsa-mir-661
3.65E−05



B-CLL Leukemia Haslinger
59
hsa-mir-1228
0.000144933



MM Myeloma Zhan
41
hsa-mir-339
1.98E−05



GCT Seminoma Korkola
95
hsa-mir-548c-3p
6.76E−11



COID Lung Bhattacharjee
61
hsa-mir-34c-3p
2.25E−05



END Ovarian Hendrix
29
hsa-mir-944
0.000347953



GLB Brain Sun
42
hsa-mir-602
0.000127309



CA Breast Sorlie
4
hsa-mir-611
4.29E−05



GCT Seminoma Korkola
35
hsa-mir-18a
0.000590569



AD Ovarian Welsh
22
hsa-mir-1207
0.000144063



B-CLL Leukemia Haslinger
11
hsa-mir-34c-3p
0.000384596



GCT Seminoma Korkola
45
hsa-mir-183
0.000103017



DLBCL Lymphoma Alizadeh
9
hsa-mir-1277
0.000225187



CA Bladder Dyrskjot
19
hsa-mir-331-3p
4.56E−07



HSCC Head-Neck Cromer
6
hsa-mir-1275
0.000221713



END Ovarian Hendrix
26
hsa-mir-656
3.57E−08



B-CLL Leukemia Haslinger
1
hsa-mir-487a
5.33E−09



RCCC Renal Lenburg
5
hsa-mir-515-3p
9.30E−05



SMCL Lung Bhattacharjee
43
hsa-mir-671-3p
0.000437915



GCT Seminoma Korkola
58
hsa-mir-595
1.51E−06



B-CLL Leukemia Haslinger
50
hsa-mir-296
0.000233149



TU Prostate Lapointe
6
hsa-mir-876-3p
0.000324998



MM Myeloma Zhan
24
hsa-mir-1259
0.000330827



PPC Prostate Dhanasekaran
3
hsa-mir-578
1.16E−05



AD Lung Bhattacharjee
50
hsa-mir-642
5.69E−05



AD Lung Bhattacharjee
74
hsa-mir-543
7.59E−05



GL Brain Rickman
21
hsa-mir-495
3.72E−05



CLL Lymphoma Alizadeh
10
hsa-mir-590
0.000327927



IDC Breast Radvanyi
42
hsa-mir-766
0.000456161



AD Lung Bhattacharjee
69
hsa-mir-522
4.93E−10



OD Brain Bredel
61
hsa-mir-937
0.000101996



MM Myeloma Zhan
31
hsa-mir-512-3p
8.13E−05



IDC Breast Radvanyi
39
hsa-mir-125a-3p
0.000512311



AD Lung Bhattacharjee
45
hsa-mir-340
6.92E−08



AD Lung Bhattacharjee
58
hsa-mir-655
7.25E−09



GCT Seminoma Korkola
93
hsa-mir-640
5.11E−06



HSCC Head-Neck Cromer
4
hsa-mir-662
0.000280826



MPM Mesothelioma Gordon
8
hsa-mir-1180
1.21E−06



AD Lung Stearman
5
hsa-mir-342-3p
1.18E−06



GL Brain Rickman
3
hsa-mir-182
1.60E−05



GCT Seminoma Korkola
67
hsa-mir-1266
2.88E−05



COID Lung Bhattacharjee
39
hsa-mir-608
0.000130832



GCT Seminoma Korkola
1
hsa-mir-1234
4.72E−05



GCT Seminoma Korkola
5
hsa-mir-1204
0.000522965



CA Bladder Dyrskjot
77
hsa-mir-620
0.00055255 



ODGL Brain Sun
29
hsa-mir-509-3
0.000305758



B-CLL Leukemia Haslinger
12
hsa-mir-1302
0.000390653



AC Brain Sun
5
hsa-mir-637
0.000149584



GLB Brain Sun
74
hsa-mir-369-3p
7.86E−05



COID Lung Bhattacharjee
42
hsa-mir-671
4.57E−05



CA Bladder Dyrskjot
0
hsa-mir-643
0.000314026



GLB Brain Sun
2
hsa-mir-577
4.84E−05



MPC Prostate Dhanasekaran
33
hsa-mir-886
0.000278531



ODGL Brain Sun
9
hsa-mir-186
3.31E−06



ODGL Brain Sun
3
hsa-mir-889
6.19E−07



GCT Seminoma Korkola
20
hsa-mir-495
5.27E−07



MUC Ovarian Hendrix
47
hsa-mir-654
0.000586378



CCC Ovarian Hendrix
59
hsa-mir-1258
7.38E−05



IDC Breast Radvanyi
63
hsa-mir-548h
0.000316845



GCT Seminoma Korkola
9
hsa-mir-296
4.54E−11



GLB Brain Sun
24
hsa-mir-494
7.74E−06



COID Lung Bhattacharjee
79
hsa-mir-508-3p
0.000523991



GCT Seminoma Korkola
56
hsa-mir-548m
7.53E−06



MUC Ovarian Hendrix
40
hsa-mir-618
2.30E−05



TU Prostate Lapointe
37
hsa-mir-509-3p
1.50E−05



CCC Ovarian Hendrix
35
hsa-mir-607
4.23E−05



RCCC Renal Boer
5
hsa-mir-374a
0.000225536



END Ovarian Hendrix
41
hsa-mir-338
3.20E−06



SMCL Lung Bhattacharjee
59
hsa-mir-340
8.26E−06



GCT Seminoma Korkola
70
hsa-mir-939
5.97E−09



CA Breast Richardson
56
hsa-mir-34b
9.69E−06



MPM Mesothelioma Gordon
48
hsa-mir-606
4.93E−05



AO Brain Bredel
21
hsa-mir-1203
0.000359483



COID Lung Bhattacharjee
28
hsa-mir-608
0.000125912



SRS Ovarian Hendrix
14
hsa-mir-1290
0.000463364



ML Melanoma Talantov
21
hsa-mir-450b
7.89E−05



BPH Prostate Dhanasekaran
10
hsa-mir-624
2.78E−05
























SUPPLEMENTARY TABLE 7









miRvestigator

PITA

TargetScan



















miR2Disease

miR2Disease

miR2Disease



Dataset
Signature
miRNA
Validation
miRNA
Validation
miRNA
Validation
Overlap


















GL Brain Rickman
9


hsa-mir-1207-5p

hsa-mir-1207-5p

1


CA Bladder Dyrskjot
64


hsa-mir-590-3p

hsa-mir-590-3p

1


GLB Brain Sun
67


hsa-mir-544

hsa-mir-544

1






hsa-mir-544b

hsa-mir-544b


GLB Brain Sun
2


hsa-mir-577

hsa-mir-577

1


CA Breast Richardson
2


hsa-mir-590-3p

hsa-mir-590-3p

1


B-CLL Leukemia Haslinger
53


hsa-mir-513a-3p

hsa-mir-513a-3p

1


AD Lung Beer
9


hsa-mir-548k

hsa-mir-548k

1


AD Lung Beer
31
hsa-mir-29b
Causal
hsa-mir-29b
Causal
hsa-mir-29b
Causal
1




hsa-mir-29c

hsa-mir-29c




hsa-mir-29a

hsa-mir-29a


AD Lung Bhattacharjee
58


hsa-mir-655

hsa-mir-655

1


COID Lung Bhattacharjee
74


hsa-mir-513a-3p

hsa-mir-513a-3p

1


SMCL Lung Bhattacharjee
22


hsa-mir-548n

hsa-mir-548n

1


AD Lung Stearman
18


hsa-mir-1257

hsa-mir-1257

1


CLL Lymphoma Alizadeh
10


hsa-mir-21
Dysregulated
hsa-mir-590-5p

1






hsa-mir-590-5p


ME Melanoma Hoek
35


hsa-mir-200b
Causal
hsa-mir-200b
Causal
1






hsa-mir-200c






hsa-mir-200a


AD Ovarian Welsh
25


hsa-mir-572
Dysregulated
hsa-mir-572
Dysregulated
1


CCC Ovarian Hendrix
42


hsa-mir-590-3p

hsa-mir-590-3p

1


CCC Ovarian Hendrix
4


hsa-mir-194

hsa-mir-194

1


SRS Ovarian Hendrix
73


hsa-mir-340

hsa-mir-340

1


END Ovarian Hendrix
35


hsa-mir-1276

hsa-mir-1276

1


MPC Prostate Dhanasekaran
35


hsa-mir-203

hsa-mir-203

1


TU Prostate Lapointe
39


hsa-mir-590-3p

hsa-mir-656

0


CA Bladder Dyrskjot
56


hsa-mir-335

hsa-mir-1238

0


CA Bladder Dyrskjot
36


hsa-mir-548n

hsa-mir-548c-3p

0


CA Bladder Dyrskjot
51


hsa-mir-1276



0


TU Prostate Lapointe
13




hsa-mir-497
Dysregulated
0


CA Bladder Dyrskjot
22




hsa-mir-663b

0








hsa-mir-663


CA Bladder Dyrskjot
45




hsa-mir-608

0


TU Prostate Lapointe
14
hsa-mir-138-1*





0


TU Prostate Lapointe
17


hsa-mir-96
Dysregulated
hsa-mir-219-5p

0


TU Prostate Lapointe
33


hsa-mir-802

hsa-mir-548c-3p

0


TU Prostate Lapointe
18


hsa-mir-760



0


TU Prostate Lapointe
31


hsa-mir-631

hsa-mir-339-3p

0


CA Bladder Dyrskjot
53


hsa-mir-1206

hsa-mir-944

0


TU Prostate Lapointe
37


hsa-mir-199b-3p
Causal
hsa-mir-509-3p

0






hsa-mir-199a-3p

hsa-mir-509-3-5p


CA Bladder Dyrskjot
67




hsa-mir-630

0


CA Bladder Dyrskjot
82


hsa-mir-519d

hsa-mir-656

0


TU Prostate Lapointe
19




hsa-mir-296-5p
Dysregulated
0


CA Bladder Dyrskjot
81


hsa-mir-455-3p



0


CA Bladder Dyrskjot
14




hsa-mir-944

0


CA Bladder Dyrskjot
24




hsa-mir-663b

0








hsa-mir-663


CA Bladder Dyrskjot
25


hsa-mir-550b

hsa-mir-1204

0






hsa-mir-550a


CA Bladder Dyrskjot
26
hsa-mir-194

hsa-mir-1224-5p

hsa-mir-486-5p

0


CA Bladder Dyrskjot
27


hsa-mir-365

hsa-mir-129-5p

0


CA Bladder Dyrskjot
21


hsa-mir-590-3p

hsa-mir-944

0


CA Bladder Dyrskjot
48




hsa-mir-520b

0


CA Bladder Dyrskjot
49




hsa-mir-432

0


CA Bladder Dyrskjot
46




hsa-mir-342-5p

0


CA Bladder Dyrskjot
47


hsa-mir-331-5p

hsa-mir-197

0


CA Bladder Dyrskjot
42


hsa-mir-1183

hsa-mir-362-5p

0


CA Bladder Dyrskjot
28




hsa-mir-296-5p

0


CA Bladder Dyrskjot
43




hsa-mir-939

0


CA Bladder Dyrskjot
40




hsa-mir-548d-3p

0


CA Bladder Dyrskjot
1


hsa-mir-940

hsa-mir-637

0


CA Bladder Dyrskjot
0


hsa-mir-607

hsa-mir-643

0


CA Renal Higgins
10


hsa-mir-875-3p

hsa-mir-483-3p

0


CA Renal Higgins
13


hsa-mir-423-5p

hsa-mir-663b

0








hsa-mir-663


CA Bladder Dyrskjot
7




hsa-mir-361-5p

0


CA Bladder Dyrskjot
6




hsa-mir-939

0


CA Renal Higgins
14


hsa-mir-140-5p

hsa-mir-549

0


CA Bladder Dyrskjot
8


hsa-mir-140-3p

hsa-mir-331-5p

0


CA Bladder Dyrskjot
68




hsa-mir-550b

0








hsa-mir-550a


CA Bladder Dyrskjot
79


hsa-mir-147

hsa-mir-508-3p

0






hsa-mir-147b


RCCC Renal Boer
11




hsa-mir-659

0


CA Bladder Dyrskjot
13
hsa-mir-548k



hsa-mir-548c-3p

0


RCCC Renal Boer
13


hsa-mir-200a
Causal
hsa-mir-1279

0






hsa-mir-141


RCCC Renal Boer
12


hsa-mir-760



0


CA Bladder Dyrskjot
75


hsa-mir-487a

hsa-mir-513c

0








hsa-mir-513b








hsa-mir-513a-5p


RCCC Renal Boer
14


hsa-mir-590-3p



0


CA Bladder Dyrskjot
72




hsa-mir-296-5p

0


CA Bladder Dyrskjot
71


hsa-mir-633

hsa-mir-662

0


RCCC Renal Boer
3


hsa-mir-217



0


CA Bladder Dyrskjot
15




hsa-mir-1323

0


CA Bladder Dyrskjot
32


hsa-mir-320e

hsa-mir-1270

0






hsa-mir-320d






hsa-mir-320c






hsa-mir-320b






hsa-mir-320a


RCCC Renal Boer
4


hsa-mir-1262



0


RCCC Renal Boer
7
hsa-mir-32



hsa-mir-106b
Dysregulated
0




hsa-mir-92a




hsa-mir-92b


CA Bladder Dyrskjot
10




hsa-mir-597

0


RCCC Renal Boer
9


hsa-mir-1256

hsa-mir-502-3p

0


RCCC Renal Boer
8


hsa-mir-1206



0


CA Bladder Dyrskjot
63




hsa-mir-372

0


CA Bladder Dyrskjot
58




hsa-mir-328

0


CA Bladder Dyrskjot
17
hsa-mir-885-3p





0


CA Bladder Dyrskjot
16


hsa-mir-1205

hsa-mir-939

0


CA Bladder Dyrskjot
19


hsa-mir-659

hsa-mir-331-3p

0


RCCC Renal Lenburg
3
hsa-mir-548f



hsa-mir-888

0




hsa-mir-548e




hsa-mir-548x


RCCC Renal Lenburg
2
hsa-mir-487b



hsa-mir-499a-5p

0








hsa-mir-499-5p


CA Bladder Dyrskjot
23




hsa-mir-211

0


CA Bladder Dyrskjot
37




hsa-mir-548n

0


CA Bladder Dyrskjot
35
hsa-mir-1469



hsa-mir-486-3p

0


RCCC Renal Lenburg
9




hsa-mir-1238

0


RCCC Renal Lenburg
8


hsa-mir-660

hsa-mir-889

0


CA Bladder Dyrskjot
54




hsa-mir-491-5p

0


GCT Seminoma Korkola
25


hsa-mir-105

hsa-mir-607

0


CA Bladder Dyrskjot
31


hsa-mir-520d-5p

hsa-mir-656

0






hsa-mir-524-5p


ODGL Brain Sun
0




hsa-mir-637

0


GCT Seminoma Korkola
20


hsa-mir-632

hsa-mir-495

0


GCT Seminoma Korkola
21


hsa-mir-548k

hsa-mir-520f

0


GBM Brain Liang
13




hsa-mir-1278

0


GBM Brain Liang
12


hsa-mir-520g



0






hsa-mir-520h


GBM Brain Liang
15


hsa-mir-144



0


GBM Brain Liang
14
hsa-mir-496

hsa-mir-125a-3p



0


GBM Brain Liang
17
hsa-mir-361-5p

hsa-mir-600



0


GCT Seminoma Korkola
4




hsa-mir-376a

0








hsa-mir-376b








hsa-mir-376c


GBM Brain Liang
18
hsa-mir-369-5p





0


GBM Brain Liang
1




hsa-mir-423-5p

0


GCT Seminoma Korkola
58




hsa-mir-595

0


GBM Brain Liang
2




hsa-mir-548c-3p

0


TU Prostate Lapointe
35


hsa-mir-758

hsa-mir-548am

0








hsa-mir-548ab








hsa-mir-548aa








hsa-mir-548ag








hsa-mir-548ak








hsa-mir-548aj








hsa-mir-548ai








hsa-mir-548ah








hsa-mir-548an








hsa-mir-548al








hsa-mir-548ae








hsa-mir-548ad








hsa-mir-548a-5p








hsa-mir-548ac


GCT Seminoma Korkola
56


hsa-mir-499-3p

hsa-mir-548m

0


GBM Brain Liang
7




hsa-mir-323-5p
Dysregulated
0








hsa-mir-323b-5p


TU Prostate Lapointe
38


hsa-mir-1264

hsa-mir-633

0


GCT Seminoma Korkola
52




hsa-mir-508-5p

0


GCT Seminoma Korkola
88


hsa-mir-129-5p

hsa-mir-338-5p

0


GCT Seminoma Korkola
89


hsa-mir-568

hsa-mir-1257

0


GCT Seminoma Korkola
111




hsa-mir-296-5p

0


GCT Seminoma Korkola
110


hsa-mir-18a

hsa-mir-1306

0






hsa-mir-18b


GCT Seminoma Korkola
112


hsa-mir-590-3p

hsa-mir-548n

0


OD Brain Bredel
19
hsa-mir-551a

hsa-mir-487a



0




hsa-mir-551b


OD Brain Bredel
62




hsa-let-7f

0


GCT Seminoma Korkola
80


hsa-mir-623

hsa-mir-573

0


OD Brain Bredel
52


hsa-mir-325

hsa-mir-411
Dysregulated
0


OD Brain Bredel
24


hsa-mir-193a-3p



0


OD Brain Bredel
25


hsa-mir-512-3p



0


GCT Seminoma Korkola
85




hsa-mir-181d

0








hsa-mir-181a








hsa-mir-181b








hsa-mir-181c


GCT Seminoma Korkola
3
hsa-mir-324-5p



hsa-mir-296-5p

0


OD Brain Bredel
21


hsa-mir-369-3p

hsa-mir-548c-3p

0


GCT Seminoma Korkola
109


hsa-mir-548p



0


GCT Seminoma Korkola
102


hsa-mir-125b

hsa-mir-34a

0






hsa-mir-125a-5p


GCT Seminoma Korkola
67




hsa-mir-1266

0


GCT Seminoma Korkola
100


hsa-mir-486-3p



0


GCT Seminoma Korkola
101




hsa-mir-372
Causal
0


OD Brain Bredel
45


hsa-mir-324-5p



0


GCT Seminoma Korkola
107


hsa-mir-199b-3p
Causal


0






hsa-mir-199a-3p


OD Brain Bredel
43


hsa-mir-412



0


GCT Seminoma Korkola
105


hsa-mir-34a



0






hsa-mir-34c-5p






hsa-mir-449a






hsa-mir-449b


GCT Seminoma Korkola
39


hsa-mir-769-5p

hsa-mir-639

0


GCT Seminoma Korkola
38


hsa-mir-370



0


TU Prostate Lapointe
11




hsa-mir-152

0


OD Brain Bredel
3


hsa-mir-615-3p

hsa-mir-195
Dysregulated
0


GCT Seminoma Korkola
31


hsa-mir-22

hsa-mir-891a

0


OD Brain Bredel
5
hsa-mir-423-3p



hsa-mir-1180

0


GCT Seminoma Korkola
37


hsa-mir-106b

hsa-mir-519a

0






hsa-mir-17






hsa-mir-106a






hsa-mir-93






hsa-mir-20b






hsa-mir-20a


GCT Seminoma Korkola
36


hsa-mir-196b



0






hsa-mir-196a


GCT Seminoma Korkola
35




hsa-mir-18a

0


OD Brain Bredel
9


hsa-mir-548e



0


OD Brain Bredel
8


hsa-mir-651



0


OD Brain Bredel
56


hsa-mir-126



0


GCT Seminoma Korkola
62


hsa-mir-548m

hsa-mir-144

0


GCT Seminoma Korkola
63




hsa-mir-889

0


OD Brain Bredel
12


hsa-mir-588

hsa-mir-200a
Causal
0


GCT Seminoma Korkola
66


hsa-mir-532-3p

hsa-mir-1291

0


CA Renal Higgins
20




hsa-mir-1261

0


GCT Seminoma Korkola
68




hsa-mir-1182

0


GCT Seminoma Korkola
69




hsa-mir-296-5p

0


GCT Seminoma Korkola
2




hsa-mir-661

0


GCT Seminoma Korkola
6


hsa-mir-34b

hsa-mir-448

0


GCT Seminoma Korkola
98


hsa-mir-224

hsa-mir-203

0


GCT Seminoma Korkola
90


hsa-mir-362-5p



0


OD Brain Bredel
16
hsa-mir-1181





0


OD Brain Bredel
33


hsa-mir-1231



0


GCT Seminoma Korkola
95


hsa-mir-1283

hsa-mir-548c-3p

0


OD Brain Bredel
57


hsa-mir-148b

hsa-mir-423-5p

0






hsa-mir-152


OD Brain Bredel
37
hsa-mir-29a*





0


TU Prostate Lapointe
10




hsa-mir-32
Dysregulated
0


GCT Seminoma Korkola
10




hsa-mir-153

0


GCT Seminoma Korkola
15




hsa-mir-1323

0


GCT Seminoma Korkola
14


hsa-mir-1323

hsa-mir-340

0






hsa-mir-548o


GCT Seminoma Korkola
17




hsa-mir-615-5p

0


GL Brain Bredel
30




hsa-mir-342-5p
Dysregulated
0


GL Brain Bredel
54


hsa-mir-582-3p



0


GL Brain Bredel
37


hsa-mir-544



0






hsa-mir-544b


GCT Seminoma Korkola
48




hsa-mir-455-5p

0


GCT Seminoma Korkola
47


hsa-mir-485-5p



0


GL Brain Bredel
61


hsa-mir-572



0


GCT Seminoma Korkola
45




hsa-mir-183

0


GCT Seminoma Korkola
42
hsa-mir-1181

hsa-mir-149

hsa-mir-637

0


GCT Seminoma Korkola
40


hsa-mir-577

hsa-mir-548n

0


GL Brain Bredel
66
hsa-mir-223
Dysregulated


hsa-mir-27a
Dysregulated
0


GCT Seminoma Korkola
1




hsa-mir-1234

0


CA Renal Higgins
1


hsa-mir-590-3p



0


GCT Seminoma Korkola
9




hsa-mir-296-5p

0


GL Brain Bredel
52




hsa-mir-516a-3p

0


GL Brain Bredel
24
hsa-mir-516b

hsa-mir-1245b-5p



0






hsa-mir-1245


GCT Seminoma Korkola
75
hsa-mir-25
Dysregulated
hsa-mir-664

hsa-mir-708

0




hsa-mir-32




hsa-mir-92a




hsa-mir-92b




hsa-mir-363




hsa-mir-367


GCT Seminoma Korkola
74


hsa-let-7f



0






hsa-let-7g






hsa-let-7a






hsa-let-7b






hsa-let-7d






hsa-let-7i






hsa-mir-98






hsa-let-7c






hsa-let-7e


GL Brain Bredel
27




hsa-mir-181d
Dysregulated
0








hsa-mir-181a








hsa-mir-181b








hsa-mir-181c


GL Brain Bredel
20


hsa-mir-487b
Dysregulated


0


GL Brain Bredel
21


hsa-mir-633



0


GL Brain Bredel
48
hsa-mir-2277-5p





0


GCT Seminoma Korkola
0




hsa-mir-1251

0


GL Brain Bredel
46


hsa-mir-154

hsa-mir-548l

0


CA Renal Higgins
3




hsa-mir-199a-3p
Causal
0


GL Brain Bredel
40


hsa-mir-526b



0


GL Brain Bredel
41


hsa-mir-484



0


GL Brain Bredel
0


hsa-mir-1208

hsa-mir-548i

0


GL Brain Bredel
9


hsa-mir-549



0


GL Brain Bredel
78
hsa-mir-126



hsa-mir-424
Dysregulated
0


CA Renal Higgins
4




hsa-mir-34b

0


GL Brain Bredel
33


hsa-mir-625



0


GL Brain Bredel
39


hsa-mir-363

hsa-mir-572

0


GL Brain Bredel
77




hsa-mir-744

0


GL Brain Bredel
75


hsa-mir-889



0


GL Brain Bredel
72




hsa-mir-760

0


GL Brain Bredel
71


hsa-mir-651



0


GL Brain Bredel
59


hsa-mir-125a-3p



0


GL Brain Bredel
38




hsa-mir-486-3p

0


GL Brain Bredel
79




hsa-mir-340

0


GL Brain Bredel
11


hsa-mir-542-3p



0


CA Breast Richardson
43


hsa-mir-1246



0


GL Brain Bredel
12


hsa-mir-384



0


GL Brain Bredel
15
hsa-mir-126

hsa-mir-654-3p



0


GL Brain Bredel
17




hsa-mir-877

0


GL Brain Bredel
32




hsa-mir-15a
Dysregulated
0


GL Brain Bredel
31




hsa-mir-615-3p

0


GL Brain Bredel
36


hsa-mir-661



0


GL Brain Bredel
18
hsa-mir-187





0


GL Brain Bredel
57


hsa-mir-769-3p

hsa-mir-193a-3p

0






hsa-mir-450b-3p


GL Brain Bredel
65


hsa-mir-532-5p



0


AO Brain Bredel
20


hsa-mir-324-5p



0


AO Brain Bredel
21




hsa-mir-1203

0


AO Brain Bredel
22




hsa-mir-663b

0








hsa-mir-663


AO Brain Bredel
28




hsa-mir-296-5p
Causal
0


GCT Seminoma Korkola
83




hsa-mir-1254

0


AO Brain Bredel
1




hsa-mir-181a
Causal
0


AO Brain Bredel
0




hsa-mir-635

0


GBM Brain Liang
5




hsa-mir-939

0


AO Brain Bredel
38




hsa-mir-1282

0


AO Brain Bredel
11


hsa-mir-608



0


AO Brain Bredel
10
hsa-mir-4285





0


AO Brain Bredel
13


hsa-mir-506



0


AO Brain Bredel
17


hsa-mir-191



0


CA Renal Higgins
17




hsa-mir-663b

0








hsa-mir-663


AO Brain Bredel
18




hsa-mir-497

0


AO Brain Bredel
30


hsa-mir-1255b



0






hsa-mir-1255a


AO Brain Bredel
35


hsa-mir-939



0


AO Brain Bredel
33


hsa-mir-450b-5p



0


AO Brain Bredel
32




hsa-mir-564

0


GL Brain Rickman
26
hsa-mir-1469





0


GL Brain Rickman
27




hsa-mir-182

0


GL Brain Rickman
21


hsa-mir-624

hsa-mir-495

0


GL Brain Rickman
22


hsa-mir-542-3p

hsa-mir-374b

0


GL Brain Rickman
23


hsa-mir-490-5p

hsa-mir-935

0


GL Brain Rickman
29


hsa-mir-544

hsa-mir-568

0






hsa-mir-544b


GL Brain Rickman
1


hsa-mir-493

hsa-mir-1283

0


GL Brain Rickman
3




hsa-mir-182

0


GL Brain Rickman
2
hsa-mir-718





0


GL Brain Rickman
4


hsa-mir-302f

hsa-mir-361-5p

0


GL Brain Rickman
8




hsa-mir-634

0


GL Brain Rickman
11


hsa-mir-653



0


GL Brain Rickman
10




hsa-mir-648

0


GL Brain Rickman
13


hsa-mir-486-3p



0


GL Brain Rickman
15




hsa-mir-487a

0


GL Brain Rickman
14


hsa-mir-149
Dysregulated


0


GL Brain Rickman
17




hsa-mir-146b-3p

0


GL Brain Rickman
16




hsa-mir-586

0


GL Brain Rickman
31


hsa-let-7e
Dysregulated


0






hsa-let-7f






hsa-let-7g






hsa-let-7a






hsa-let-7b






hsa-let-7d






hsa-let-7i






hsa-mir-98






hsa-let-7c


GL Brain Rickman
34


hsa-mir-125a-3p



0


GL Brain Rickman
32




hsa-mir-889

0


ODGL Brain Sun
30




hsa-mir-483-5p

0


RCCC Renal Boer
15


hsa-mir-548k

hsa-mir-300

0


ODGL Brain Sun
22




hsa-mir-423-5p

0


ODGL Brain Sun
29




hsa-mir-509-3p

0








hsa-mir-509-3-5p


ODGL Brain Sun
60


hsa-mir-556-3p

hsa-let-7d

0


ODGL Brain Sun
61




hsa-mir-142-5p

0


ODGL Brain Sun
62




hsa-mir-1294

0


ODGL Brain Sun
63




hsa-mir-410
Dysregulated
0


ODGL Brain Sun
64


hsa-mir-539



0


ODGL Brain Sun
53


hsa-mir-548m

hsa-mir-548n

0


ODGL Brain Sun
52


hsa-mir-1270



0






hsa-mir-620


ODGL Brain Sun
23




hsa-mir-1225-5p

0


ODGL Brain Sun
25


hsa-mir-548p

hsa-mir-548l

0


ODGL Brain Sun
26


hsa-mir-622



0


ODGL Brain Sun
27




hsa-mir-136
Dysregulated
0


ODGL Brain Sun
20


hsa-mir-570

hsa-mir-548e

0


RCCC Renal Boer
1




hsa-mir-371b-5p

0








hsa-mir-371-5p


ODGL Brain Sun
48




hsa-mir-384

0


ODGL Brain Sun
49




hsa-mir-423-5p

0


ODGL Brain Sun
47




hsa-mir-1204

0


ODGL Brain Sun
44


hsa-mir-1276



0


RCCC Renal Boer
0


hsa-mir-140-3p

hsa-mir-494
Dysregulated
0


ODGL Brain Sun
28




hsa-mir-219-2-3p

0


ODGL Brain Sun
41


hsa-mir-374b

hsa-mir-26b

0






hsa-mir-374a


ODGL Brain Sun
1




hsa-mir-647

0


CA Bladder Dyrskjot
70




hsa-mir-502-5p

0


ODGL Brain Sun
3




hsa-mir-889

0


ODGL Brain Sun
2




hsa-mir-939

0


ODGL Brain Sun
7




hsa-mir-548k

0


ODGL Brain Sun
9


hsa-mir-142-3p
Dysregulated
hsa-mir-186

0


ODGL Brain Sun
50


hsa-mir-548c-3p

hsa-mir-217

0


ODGL Brain Sun
58


hsa-mir-181d
Causal
hsa-mir-889

0






hsa-mir-181b


ODGL Brain Sun
11




hsa-mir-219-1-3p

0


ODGL Brain Sun
10




hsa-mir-208a

0


ODGL Brain Sun
39


hsa-mir-218
Dysregulated
hsa-mir-1283

0


ODGL Brain Sun
38
hsa-mir-1469





0


ODGL Brain Sun
17




hsa-mir-548l

0


ODGL Brain Sun
33


hsa-mir-335



0


ODGL Brain Sun
57




hsa-mir-296-5p
Causal
0


ODGL Brain Sun
36


hsa-mir-361-3p



0


ODGL Brain Sun
37
hsa-mir-126





0


ODGL Brain Sun
32




hsa-mir-153

0


ODGL Brain Sun
31


hsa-mir-490-3p



0


ODGL Brain Sun
65


hsa-mir-340

hsa-mir-495

0


AC Brain Sun
51


hsa-mir-922



0


AC Brain Sun
34




hsa-mir-223
Dysregulated
0


CA Bladder Dyrskjot
38




hsa-mir-1281

0


AC Brain Sun
27




hsa-mir-612

0


AC Brain Sun
23




hsa-mir-1207-3p

0


AC Brain Sun
46


hsa-mir-548c-3p

hsa-mir-590-3p

0


AC Brain Sun
44




hsa-mir-939

0


OD Brain Bredel
54




hsa-mir-1275

0


RCCC Renal Lenburg
10




hsa-mir-1273

0








hsa-mir-1273c








hsa-mir-1273d








hsa-mir-1273e








hsa-mir-1273f








hsa-mir-1273g


AC Brain Sun
1




hsa-mir-642a

0








hsa-mir-642b


AC Brain Sun
3




hsa-mir-1205

0


AC Brain Sun
2




hsa-mir-548c-3p

0


AC Brain Sun
5
hsa-mir-523



hsa-mir-637

0


AC Brain Sun
4
hsa-mir-937

hsa-mir-222
Causal
hsa-mir-371-3p

0


AC Brain Sun
7


hsa-mir-582-3p

hsa-mir-548l

0


AC Brain Sun
6


hsa-mir-1284

hsa-mir-139-5p
Dysregulated
0


AC Brain Sun
8




hsa-mir-196a

0


AC Brain Sun
28




hsa-mir-539

0


AC Brain Sun
12


hsa-mir-485-3p
Dysregulated
hsa-mir-210
Dysregulated
0


AC Brain Sun
11




hsa-mir-574-3p

0


CA Bladder Dyrskjot
66


hsa-mir-1827



0


AC Brain Sun
39


hsa-mir-1266



0


AC Brain Sun
22




hsa-mir-185

0


AC Brain Sun
17
hsa-mir-487b
Dysregulated


hsa-mir-617

0


AC Brain Sun
16




hsa-mir-655

0


AC Brain Sun
19


hsa-mir-218
Dysregulated
hsa-mir-485-5p

0


AC Brain Sun
18




hsa-mir-1305

0


AC Brain Sun
31




hsa-mir-1280

0


AC Brain Sun
37




hsa-mir-569

0


AC Brain Sun
32


hsa-mir-1266



0


AC Brain Sun
50
hsa-mir-1234

hsa-mir-32

hsa-mir-483-3p

0


GLB Brain Sun
58




hsa-mir-1287

0


RCCC Renal Lenburg
5




hsa-mir-515-3p

0


GLB Brain Sun
36




hsa-mir-423-5p

0


GLB Brain Sun
54


hsa-mir-548m

hsa-mir-921

0


GLB Brain Sun
51


hsa-mir-28-3p



0


GLB Brain Sun
43


hsa-mir-331-5p



0


GLB Brain Sun
60




hsa-mir-548f

0


GLB Brain Sun
62


hsa-mir-216a

hsa-mir-495

0


GLB Brain Sun
63




hsa-mir-939

0


GLB Brain Sun
64
hsa-let-7e*





0


GLB Brain Sun
68


hsa-mir-888

hsa-mir-299-5p
Dysregulated
0


GLB Brain Sun
69


hsa-mir-1288



0


RCCC Renal Lenburg
6


hsa-mir-651



0


GLB Brain Sun
24


hsa-mir-381
Dysregulated
hsa-mir-494

0






hsa-mir-300


GLB Brain Sun
25




hsa-mir-600

0


GLB Brain Sun
27


hsa-mir-590-3p

hsa-mir-889

0


GLB Brain Sun
20


hsa-mir-556-3p

hsa-mir-331-5p

0


GLB Brain Sun
21


hsa-mir-188-5p



0


GLB Brain Sun
49




hsa-mir-340

0


GLB Brain Sun
42




hsa-mir-602

0


GLB Brain Sun
28


hsa-mir-369-3p

hsa-mir-323-3p

0


GLB Brain Sun
29
hsa-mir-1181



hsa-mir-1275

0


GLB Brain Sun
41


hsa-mir-760



0


GLB Brain Sun
1


hsa-mir-767-5p

hsa-mir-324-5p

0


GLB Brain Sun
0




hsa-mir-637

0


GLB Brain Sun
3




hsa-mir-320a

0


GLB Brain Sun
5




hsa-mir-515-5p

0


GLB Brain Sun
4




hsa-mir-542-5p

0


CA Bladder Dyrskjot
12


hsa-mir-607

hsa-mir-1244

0


GLB Brain Sun
8


hsa-mir-140-3p

hsa-mir-501-5p

0


GLB Brain Sun
13




hsa-mir-744

0


GCT Seminoma Korkola
26


hsa-mir-138

hsa-mir-374a

0


GLB Brain Sun
12


hsa-mir-924



0


GLB Brain Sun
73




hsa-mir-187

0


GLB Brain Sun
72


hsa-mir-571

hsa-mir-1294

0


GLB Brain Sun
71


hsa-mir-1182



0


CA Bladder Dyrskjot
65




hsa-mir-888

0


GLB Brain Sun
59




hsa-mir-1252

0


GLB Brain Sun
10


hsa-mir-588

hsa-mir-409-5p

0


GLB Brain Sun
15


hsa-mir-582-3p

hsa-mir-219-1-3p

0


GLB Brain Sun
14


hsa-mir-1299



0


GLB Brain Sun
17


hsa-mir-621



0


GLB Brain Sun
31


hsa-mir-936

hsa-mir-501-3p

0


GLB Brain Sun
37




hsa-mir-1256

0


GLB Brain Sun
50


hsa-mir-664

hsa-mir-548c-3p

0


GLB Brain Sun
35




hsa-mir-922

0


CA Colon Graudens
15




hsa-mir-140-5p
Causal
0


GLB Brain Sun
55




hsa-mir-32

0


GLB Brain Sun
74




hsa-mir-369-3p

0


GLB Brain Sun
18


hsa-mir-655

hsa-mir-498

0


GLB Brain Sun
57




hsa-mir-921

0


CA Breast Sorlie
24
hsa-mir-1538





0


CA Breast Sorlie
20


hsa-mir-1279

hsa-mir-590-3p

0


GCT Seminoma Korkola
28




hsa-mir-146a

0


CA Breast Sorlie
2


hsa-mir-653



0


CA Breast Sorlie
4




hsa-mir-611

0


CA Breast Sorlie
8


hsa-mir-494

hsa-mir-1255a

0


CA Breast Sorlie
11


hsa-mir-33a



0


CA Breast Sorlie
10


hsa-mir-23b



0






hsa-mir-23a


CA Breast Sorlie
12


hsa-mir-548c-3p



0


CA Breast Sorlie
14


hsa-mir-632



0


CA Breast Sorlie
17




hsa-mir-640

0


CA Breast Sorlie
16




hsa-mir-579

0


CA Breast Sorlie
19


hsa-mir-155
Causal
hsa-mir-129-5p

0


CA Breast Sorlie
18


hsa-mir-490-3p



0


GCT Seminoma Korkola
34




hsa-mir-136

0


GCT Seminoma Korkola
8


hsa-mir-940



0


CA Breast Richardson
61




hsa-mir-1271

0


CA Breast Richardson
62




hsa-mir-622

0


CA Breast Richardson
63




hsa-mir-561

0


CA Breast Richardson
53


hsa-mir-548m

hsa-mir-486-5p

0


CA Breast Richardson
67




hsa-mir-889

0


CA Breast Richardson
68




hsa-mir-663b
Dysregulated
0








hsa-mir-663


CA Breast Richardson
34


hsa-mir-410

hsa-mir-186

0


CA Breast Richardson
25




hsa-mir-1252

0


CA Breast Richardson
27




hsa-mir-663b
Dysregulated
0








hsa-mir-663


CA Breast Richardson
46
hsa-mir-487b

hsa-mir-323-3p

hsa-mir-607

0


CA Breast Richardson
45


hsa-mir-181d
Dysregulated
hsa-mir-513a-3p

0






hsa-mir-181b


CA Breast Richardson
29




hsa-mir-1302

0


CA Breast Richardson
3




hsa-mir-578

0


CA Breast Richardson
4


hsa-mir-433



0


CA Breast Richardson
28




hsa-mir-765

0


CA Breast Richardson
56


hsa-mir-146b-5p
Causal
hsa-mir-34b

0






hsa-mir-146a


CA Breast Richardson
7




hsa-mir-590-3p

0


CA Breast Richardson
33


hsa-mir-876-5p

hsa-mir-1251

0


CA Breast Richardson
38


hsa-mir-1271

hsa-mir-103b

0








hsa-mir-103a


CA Breast Richardson
15
hsa-let-7d*



hsa-mir-494

0


CA Breast Richardson
32


hsa-mir-1245b-5p



0






hsa-mir-1245


CA Breast Richardson
58




hsa-mir-889

0


CA Breast Richardson
13


hsa-mir-590-3p



0


CA Breast Richardson
59




hsa-mir-608

0


CA Breast Richardson
17
hsa-mir-566



hsa-mir-423-5p

0


CA Breast Richardson
16




hsa-mir-18a
Dysregulated
0


CA Breast Richardson
19




hsa-mir-586

0


CA Breast Richardson
18




hsa-mir-135a

0


CA Breast Richardson
23




hsa-mir-544

0








hsa-mir-544b


CA Breast Richardson
51




hsa-mir-633

0


CA Breast Richardson
50




hsa-mir-380

0


CA Breast Richardson
55


hsa-mir-130b

hsa-mir-544

0






hsa-mir-301a

hsa-mir-544b






hsa-mir-301b






hsa-mir-130a






hsa-mir-454


CA Breast Richardson
54




hsa-mir-361-3p

0


CA Breast Richardson
31




hsa-mir-376a

0


CA Breast Richardson
65




hsa-mir-1254

0


OD Brain Bredel
30




hsa-mir-1306

0


MCA Breast Radvanyi
21


hsa-mir-626



0


MCA Breast Radvanyi
2




hsa-mir-204
Causal
0


MCA Breast Radvanyi
7


hsa-mir-595

hsa-mir-324-3p

0


COID Lung Bhattacharjee
71


hsa-mir-1237



0


MCA Breast Radvanyi
12


hsa-mir-489



0


OD Brain Bredel
36




hsa-mir-326

0


MCA Breast Radvanyi
17




hsa-mir-219-5p

0


MCA Breast Radvanyi
19




hsa-mir-210
Causal
0


MCA Breast Radvanyi
18




hsa-mir-663b
Dysregulated
0








hsa-mir-663


ILC Breast Radvanyi
24




hsa-mir-340

0


ILC Breast Radvanyi
26




hsa-mir-486-3p

0


ILC Breast Radvanyi
20




hsa-mir-328
Dysregulated
0


ILC Breast Radvanyi
22


hsa-mir-508-3p



0


GCT Seminoma Korkola
82




hsa-mir-576-5p

0


ILC Breast Radvanyi
3




hsa-mir-383

0


ILC Breast Radvanyi
2




hsa-mir-423-3p

0


ILC Breast Radvanyi
5


hsa-mir-501-5p



0


ILC Breast Radvanyi
4


hsa-mir-122
Dysregulated
hsa-mir-548a-3p

0


MM Myeloma Zhan
14




hsa-mir-548l

0


ILC Breast Radvanyi
6
hsa-let-7d*



hsa-mir-579

0


ILC Breast Radvanyi
11
hsa-mir-483-5p





0


ILC Breast Radvanyi
10




hsa-mir-548c-3p

0


ILC Breast Radvanyi
15




hsa-mir-518b

0


ILC Breast Radvanyi
19


hsa-mir-663b
Dysregulated
hsa-mir-338-3p

0






hsa-mir-663


IDC Breast Radvanyi
56


hsa-mir-216b

hsa-mir-576-5p

0


IDC Breast Radvanyi
54


hsa-mir-1277



0


IDC Breast Radvanyi
48


hsa-mir-630



0


IDC Breast Radvanyi
43




hsa-mir-1224-5p

0


GCT Seminoma Korkola
87


hsa-mir-1179

hsa-mir-371b-5p
Dysregulated
0








hsa-mir-371-5p


IDC Breast Radvanyi
63




hsa-mir-548h

0


IDC Breast Radvanyi
65




hsa-mir-802

0


CA Bladder Dyrskjot
80




hsa-mir-616

0


IDC Breast Radvanyi
42




hsa-mir-766

0


IDC Breast Radvanyi
24




hsa-mir-1291

0


IDC Breast Radvanyi
23
hsa-mir-376a*





0


IDC Breast Radvanyi
27




hsa-mir-323-5p

0








hsa-mir-323b-5p


GBM Brain Liang
16




hsa-mir-663b

0








hsa-mir-663


IDC Breast Radvanyi
21


hsa-mir-493



0


GCT Seminoma Korkola
29




hsa-mir-548c-3p

0


IDC Breast Radvanyi
47


hsa-mir-760



0


IDC Breast Radvanyi
44


hsa-mir-548a-3p



0


IDC Breast Radvanyi
28




hsa-mir-149
Dysregulated
0


IDC Breast Radvanyi
41


hsa-mir-361-3p

hsa-mir-939

0


IDC Breast Radvanyi
2




hsa-mir-513a-3p

0


IDC Breast Radvanyi
4


hsa-mir-661
Causal
hsa-mir-608

0


IDC Breast Radvanyi
7




hsa-mir-450b-3p

0


GCT Seminoma Korkola
108


hsa-mir-570

hsa-mir-590-5p

0


IDC Breast Radvanyi
9




hsa-mir-661
Causal
0


IDC Breast Radvanyi
8
hsa-mir-604

hsa-mir-1273

hsa-mir-631

0






hsa-mir-1273c






hsa-mir-1273d






hsa-mir-1273e






hsa-mir-1273f






hsa-mir-1273g


IDC Breast Radvanyi
15


hsa-mir-182
Causal
hsa-mir-205
Causal
0


IDC Breast Radvanyi
14
hsa-mir-590-3p

hsa-mir-556-5p

hsa-mir-323-3p

0


IDC Breast Radvanyi
39




hsa-mir-125a-3p

0


IDC Breast Radvanyi
12




hsa-mir-590-3p

0


IDC Breast Radvanyi
59
hsa-mir-1469





0


IDC Breast Radvanyi
16


hsa-mir-9
Causal


0


IDC Breast Radvanyi
51


hsa-mir-548l

hsa-mir-548n

0


IDC Breast Radvanyi
35


hsa-mir-488



0


IDC Breast Radvanyi
34


hsa-mir-532-5p



0


OD Brain Bredel
47




hsa-mir-219-1-3p

0


IDC Breast Radvanyi
18




hsa-mir-1207-3p

0


IDC Breast Radvanyi
50
hsa-mir-1247





0


CA Colon Graudens
28


hsa-mir-566

hsa-mir-508-5p

0


CA Colon Graudens
29


hsa-mir-337-3p



0


CA Colon Graudens
24


hsa-mir-381

hsa-mir-522

0






hsa-mir-300


CA Colon Graudens
25


hsa-mir-202



0


GCT Seminoma Korkola
106




hsa-mir-513b

0


CA Colon Graudens
40


hsa-mir-507

hsa-mir-369-3p

0






hsa-mir-557


CA Colon Graudens
41


hsa-mir-1243



0


CA Colon Graudens
0




hsa-mir-138

0


CA Colon Graudens
3


hsa-mir-552



0


CA Colon Graudens
2


hsa-mir-551b

hsa-mir-451b
Causal
0






hsa-mir-551a

hsa-mir-451


GCT Seminoma Korkola
104




hsa-mir-557

0


CA Colon Graudens
4




hsa-mir-144

0


CA Colon Graudens
6




hsa-mir-658

0


CA Colon Graudens
9


hsa-mir-338-3p



0


CA Colon Graudens
8


hsa-mir-595



0


CA Colon Graudens
39


hsa-mir-873



0


CA Colon Graudens
11
hsa-mir-523





0


CA Colon Graudens
10




hsa-mir-1225-5p

0


CA Colon Graudens
38


hsa-mir-320e
Dysregulated
hsa-mir-96
Dysregulated
0






hsa-mir-320d






hsa-mir-320c






hsa-mir-320b






hsa-mir-320a


OD Brain Bredel
41


hsa-mir-1276



0


CA Colon Graudens
14


hsa-mir-1244



0


CA Colon Graudens
17


hsa-mir-642a

hsa-mir-597

0






hsa-mir-642b


RCCC Renal Lenburg
0




hsa-mir-489
Dysregulated
0


CA Colon Graudens
32




hsa-mir-296-5p
Dysregulated
0


CA Colon Graudens
31




hsa-mir-548o

0


CA Colon Graudens
30


hsa-mir-125b
Dysregulated


0






hsa-mir-125a-5p


CA Colon Graudens
37




hsa-mir-32
Dysregulated
0


CA Colon Graudens
36


hsa-mir-576-5p

hsa-mir-512-3p

0


CA Colon Graudens
35


hsa-mir-325



0


CA Colon Graudens
19


hsa-mir-148a



0


H5CC Head-Neck Cromer
25


hsa-mir-1264

hsa-mir-495

0


H5CC Head-Neck Cromer
26


hsa-mir-199a-5p
Dysregulated
hsa-mir-885-5p

0






hsa-mir-199b-5p


H5CC Head-Neck Cromer
27




hsa-mir-615-5p

0


HSCC Head-Neck Cromer
20


hsa-mir-543

hsa-mir-567

0


HSCC Head-Neck Cromer
22


hsa-mir-218

hsa-mir-30b
Dysregulated
0


HSCC Head-Neck Cromer
23


hsa-mir-380



0


HSCC Head-Neck Cromer
3


hsa-mir-496



0


HSCC Head-Neck Cromer
2




hsa-mir-374b
Dysregulated
0


HSCC Head-Neck Cromer
5




hsa-mir-486-3p

0


HSCC Head-Neck Cromer
4




hsa-mir-662

0


GCT Seminoma Korkola
30




hsa-mir-588

0


HSCC Head-Neck Cromer
6




hsa-mir-1275

0


HSCC Head-Neck Cromer
8




hsa-mir-142-5p

0


HSCC Head-Neck Cromer
11


hsa-mir-129-5p



0


HSCC Head-Neck Cromer
10




hsa-mir-520a-5p

0


HSCC Head-Neck Cromer
13


hsa-mir-875-3p

hsa-mir-622

0


HSCC Head-Neck Cromer
12


hsa-mir-1297
Dysregulated
hsa-mir-513a-3p

0






hsa-mir-26a






hsa-mir-26b


MM Myeloma Zhan
10




hsa-mir-1305

0


OD Brain Bredel
7




hsa-mir-23b

0


HSCC Head-Neck Cromer
18


hsa-mir-214
Dysregulated
hsa-mir-615-3p

0


HSCC Head-Neck Chung
10


hsa-mir-1226

hsa-mir-607

0


HSCC Head-Neck Chung
1
hsa-mir-29b
Dysregulated
hsa-mir-767-5p

hsa-mir-450b-5p

0




hsa-mir-29c




hsa-mir-29a


IDC Breast Radvanyi
6


hsa-mir-652



0


HSCC Head-Neck Chung
3




hsa-mir-1286

0


HSCC Head-Neck Chung
2


hsa-mir-148a
Dysregulated
hsa-mir-944

0






hsa-mir-148b






hsa-mir-152


HSCC Head-Neck Chung
5




hsa-mir-1202

0


HSCC Head-Neck Chung
4




hsa-mir-548l

0


HSCC Head-Neck Chung
7


hsa-mir-487a

hsa-mir-573

0


HSCC Head-Neck Chung
6




hsa-mir-590-3p

0


HSCC Head-Neck Chung
9




hsa-mir-708

0


HSCC Head-Neck Chung
8




hsa-mir-410

0


B-CLL Leukemia Haslinger
30


hsa-mir-654-3p



0


B-CLL Leukemia Haslinger
28




hsa-mir-376a

0








hsa-mir-376b








hsa-mir-376c


GCT Seminoma Korkola
60




hsa-mir-551a

0


B-CLL Leukemia Haslinger
36




hsa-mir-587

0


B-CLL Leukemia Haslinger
61




hsa-mir-588

0


B-CLL Leukemia Haslinger
62


hsa-mir-515-5p

hsa-mir-548c-3p

0


B-CLL Leukemia Haslinger
64


hsa-mir-1278



0


B-CLL Leukemia Haslinger
65




hsa-mir-1247

0


B-CLL Leukemia Haslinger
66




hsa-mir-939

0


B-CLL Leukemia Haslinger
68


hsa-mir-377

hsa-mir-520g

0


B-CLL Leukemia Haslinger
69
hsa-mir-450a

hsa-mir-532-5p

hsa-mir-146a
Dysregulated
0


B-CLL Leukemia Haslinger
52


hsa-mir-323-3p

hsa-mir-302a

0


B-CLL Leukemia Haslinger
25


hsa-mir-1237

hsa-mir-548c-3p

0


B-CLL Leukemia Haslinger
27


hsa-mir-760



0


B-CLL Leukemia Haslinger
21


hsa-mir-429
Causal
hsa-mir-548c-3p

0






hsa-mir-200b






hsa-mir-200c






hsa-mir-200a


B-CLL Leukemia Haslinger
48


hsa-mir-520d-5p



0






hsa-mir-524-5p


B-CLL Leukemia Haslinger
23




hsa-mir-548o

0


B-CLL Leukemia Haslinger
46


hsa-mir-1249

hsa-mir-1247

0


B-CLL Leukemia Haslinger
44




hsa-mir-200b
Causal
0


B-CLL Leukemia Haslinger
45




hsa-mir-889

0


B-CLL Leukemia Haslinger
29


hsa-mir-520f

hsa-mir-1270

0


B-CLL Leukemia Haslinger
40


hsa-mir-582-3p



0


B-CLL Leukemia Haslinger
41




hsa-mir-483-5p

0


B-CLL Leukemia Haslinger
1




hsa-mir-487a

0


B-CLL Leukemia Haslinger
0




hsa-mir-409-5p

0


B-CLL Leukemia Haslinger
5




hsa-mir-622

0


B-CLL Leukemia Haslinger
9




hsa-mir-1245b-5p

0








hsa-mir-1245


B-CLL Leukemia Haslinger
8




hsa-mir-939

0


B-CLL Leukemia Haslinger
56




hsa-mir-548b-3p

0


B-CLL Leukemia Haslinger
43




hsa-mir-483-3p

0


B-CLL Leukemia Haslinger
35


hsa-mir-1294

hsa-mir-486-3p

0


END Ovarian Hendrix
77




hsa-mir-590-3p

0


B-CLL Leukemia Haslinger
15


hsa-mir-338-5p

hsa-mir-654-3p

0


B-CLL Leukemia Haslinger
58
hsa-mir-337-5p





0


B-CLL Leukemia Haslinger
11




hsa-mir-34c-3p

0


B-CLL Leukemia Haslinger
10




hsa-mir-454

0


B-CLL Leukemia Haslinger
13




hsa-mir-892b

0


B-CLL Leukemia Haslinger
38




hsa-mir-548g

0


B-CLL Leukemia Haslinger
59


hsa-mir-636

hsa-mir-1228

0


B-CLL Leukemia Haslinger
17




hsa-mir-590-3p

0


B-CLL Leukemia Haslinger
16




hsa-mir-1285

0


B-CLL Leukemia Haslinger
54
hsa-mir-937



hsa-mir-1321

0


B-CLL Leukemia Haslinger
49


hsa-mir-660

hsa-mir-1227

0


B-CLL Leukemia Haslinger
51




hsa-mir-448

0


B-CLL Leukemia Haslinger
50




hsa-mir-296-5p

0


B-CLL Leukemia Haslinger
34


hsa-mir-492



0


B-CLL Leukemia Haslinger
55


hsa-mir-1323

hsa-mir-200b
Causal
0






hsa-mir-548o


B-CLL Leukemia Haslinger
37


hsa-mir-545

hsa-mir-323-3p

0


B-CLL Leukemia Haslinger
31




hsa-mir-1321

0


AD Lung Beer
51


hsa-mir-1202



0


AD Lung Beer
22




hsa-mir-525-5p

0


AD Lung Beer
34


hsa-mir-193b

hsa-mir-646

0


AD Lung Beer
53


hsa-mir-581

hsa-mir-548d-3p

0


AD Lung Beer
24


hsa-mir-770-5p



0


OD Brain Bredel
15




hsa-mir-765

0


AD Lung Beer
27


hsa-mir-320e



0






hsa-mir-320d






hsa-mir-320c






hsa-mir-320b






hsa-mir-320a


GLB Brain Sun
76


hsa-mir-561

hsa-mir-139-5p
Dysregulated
0


AD Lung Beer
46


hsa-mir-874

hsa-mir-606

0


AD Lung Beer
44


hsa-mir-484

hsa-mir-452

0


AD Lung Beer
42




hsa-mir-651

0


AD Lung Beer
43




hsa-mir-1275

0


AD Lung Beer
40


hsa-mir-320e

hsa-mir-561

0






hsa-mir-320d






hsa-mir-320c






hsa-mir-320b






hsa-mir-320a


AD Lung Beer
1


hsa-mir-766



0


AD Lung Beer
0




hsa-let-7d
Causal
0


AD Lung Beer
3


hsa-mir-338-5p
Dysregulated


0


GCT Seminoma Korkola
93


hsa-mir-193a-5p

hsa-mir-640

0


AD Lung Beer
5




hsa-mir-1292

0


AD Lung Beer
4




hsa-mir-1183

0


AD Lung Beer
7


hsa-mir-548b-5p



0






hsa-mir-548am






hsa-mir-548ab






hsa-mir-548aa






hsa-mir-548ag






hsa-mir-548ak






hsa-mir-548aj






hsa-mir-548ai






hsa-mir-548ah






hsa-mir-548an






hsa-mir-548al






hsa-mir-548ae






hsa-mir-548ad






hsa-mir-548a-5p






hsa-mir-548ac






hsa-mir-548d-5p






hsa-mir-548i






hsa-mir-548j






hsa-mir-548c-5p






hsa-mir-548h


AD Lung Beer
6




hsa-mir-548c-3p

0


AD Lung Beer
8


hsa-mir-939

hsa-mir-637

0


AD Lung Beer
28


hsa-mir-147

hsa-mir-1245b-5p

0






hsa-mir-147b

hsa-mir-1245


AD Lung Beer
38




hsa-mir-933

0


AD Lung Beer
29


hsa-mir-661



0


AD Lung Beer
11


hsa-mir-9
Dysregulated


0


OD Brain Bredel
18


hsa-mir-1261



0


AD Lung Beer
12


hsa-mir-1208

hsa-mir-378b

0








hsa-mir-378c








hsa-mir-378f








hsa-mir-378g








hsa-mir-378d








hsa-mir-378e








hsa-mir-378h








hsa-mir-378i








hsa-mir-378


AD Lung Beer
15




hsa-mir-586

0


AD Lung Beer
14


hsa-mir-571

hsa-mir-542-5p

0


AD Lung Beer
32


hsa-mir-656



0


MUC Ovarian Hendrix
35




hsa-mir-340

0


AD Lung Beer
35


hsa-mir-222
Causal


0


AD Lung Beer
52


hsa-mir-372
Causal


0


AD Lung Beer
19
hsa-mir-487b





0


AD Lung Beer
18


hsa-mir-876-3p

hsa-mir-19a
Causal
0


AD Lung Beer
33


hsa-mir-380

hsa-mir-379

0


GCT Seminoma Korkola
96




hsa-mir-29a

0


CA Bladder Dyrskjot
18




hsa-mir-1291

0


AD Lung Bhattacharjee
60


hsa-mir-190b

hsa-mir-495

0






hsa-mir-190


AD Lung Bhattacharjee
82




hsa-mir-647

0


AD Lung Bhattacharjee
64
hsa-mir-150
Dysregulated


hsa-mir-765

0


AD Lung Bhattacharjee
65
hsa-mir-3177-5p



hsa-mir-486-3p

0


AD Lung Bhattacharjee
67


hsa-mir-361-5p



0


AD Lung Bhattacharjee
69


hsa-mir-23b

hsa-mir-522

0






hsa-mir-23a


AD Lung Bhattacharjee
81




hsa-mir-516b

0


AD Lung Bhattacharjee
24




hsa-mir-608

0


HSCC Head-Neck Cromer
19




hsa-mir-548l

0


AD Lung Bhattacharjee
27
hsa-mir-487b



hsa-mir-451b
Dysregulated
0








hsa-mir-451


AD Lung Bhattacharjee
20


hsa-mir-599

hsa-mir-1245b-5p

0








hsa-mir-1245


AD Lung Bhattacharjee
22


hsa-mir-875-3p

hsa-mir-619

0


AD Lung Bhattacharjee
46


hsa-mir-548a-3p

hsa-mir-548c-3p

0






hsa-mir-548e






hsa-mir-548f


AD Lung Bhattacharjee
47


hsa-mir-409-3p

hsa-mir-1245b-5p

0








hsa-mir-1245


AD Lung Bhattacharjee
44
hsa-mir-655

hsa-mir-633

hsa-mir-1284

0


AD Lung Bhattacharjee
45




hsa-mir-340

0


AD Lung Bhattacharjee
42


hsa-mir-760



0


AD Lung Bhattacharjee
41




hsa-mir-296-5p

0


AD Lung Bhattacharjee
0




hsa-mir-338-5p
Dysregulated
0


OD Brain Bredel
61




hsa-mir-937

0


AD Lung Bhattacharjee
2


hsa-mir-645



0


AD Lung Bhattacharjee
4




hsa-mir-1321

0


AD Lung Bhattacharjee
7


hsa-mir-570

hsa-mir-1305

0


AD Lung Bhattacharjee
6
hsa-mir-941



hsa-mir-602

0


AD Lung Bhattacharjee
9




hsa-mir-154

0


AD Lung Bhattacharjee
8




hsa-mir-1324

0


AD Lung Bhattacharjee
52




hsa-let-7a
Causal
0


AD Lung Bhattacharjee
28


hsa-mir-122

hsa-mir-548a-3p

0


AD Lung Bhattacharjee
49


hsa-mir-567



0


GCT Seminoma Korkola
16




hsa-mir-1183

0


AD Lung Bhattacharjee
39


hsa-mir-525-3p



0






hsa-mir-524-3p


AD Lung Bhattacharjee
35




hsa-mir-133a

0


AD Lung Bhattacharjee
76


hsa-mir-371-3p



0


AD Lung Bhattacharjee
75


hsa-mir-1270

hsa-mir-637

0






hsa-mir-620


AD Lung Bhattacharjee
74




hsa-mir-543

0


AD Lung Bhattacharjee
72


hsa-mir-507



0






hsa-mir-557


MPC Prostate Dhanasekaran
36




hsa-mir-942

0


AD Lung Bhattacharjee
10




hsa-mir-1321

0


GL Brain Bredel
22




hsa-mir-657

0


AD Lung Bhattacharjee
59


hsa-mir-29b
Causal


0






hsa-mir-29c






hsa-mir-29a


AD Lung Bhattacharjee
14


hsa-mir-517c

hsa-mir-938

0






hsa-mir-517b






hsa-mir-517a


AD Lung Bhattacharjee
17




hsa-mir-491-5p

0


GCT Seminoma Korkola
50




hsa-mir-376a

0








hsa-mir-376b








hsa-mir-376c


AD Lung Bhattacharjee
33


hsa-mir-892a

hsa-mir-490-5p

0


AD Lung Bhattacharjee
30


hsa-mir-607

hsa-mir-548c-3p

0


AD Lung Bhattacharjee
50




hsa-mir-642a

0








hsa-mir-642b


AD Lung Bhattacharjee
53


hsa-mir-146b-5p
Dysregulated


0






hsa-mir-146a


AD Lung Bhattacharjee
34




hsa-mir-296-5p

0


AD Lung Bhattacharjee
19


hsa-mir-1322

hsa-mir-1247

0


AD Lung Bhattacharjee
55




hsa-mir-1286

0


AD Lung Bhattacharjee
12




hsa-mir-590-3p

0


GL Brain Bredel
60


hsa-mir-513a-5p

hsa-mir-25
Dysregulated
0


COID Lung Bhattacharjee
24




hsa-mir-342-5p

0


COID Lung Bhattacharjee
25


hsa-mir-1276

hsa-mir-361-5p

0


COID Lung Bhattacharjee
20




hsa-mir-615-3p

0


COID Lung Bhattacharjee
21


hsa-mir-590-3p

hsa-mir-944

0


COID Lung Bhattacharjee
23




hsa-mir-1228

0


COID Lung Bhattacharjee
28


hsa-mir-758

hsa-mir-608

0


COID Lung Bhattacharjee
0


hsa-mir-663b

hsa-mir-518d-5p

0






hsa-mir-663


COID Lung Bhattacharjee
8


hsa-mir-607

hsa-mir-340

0


COID Lung Bhattacharjee
58




hsa-mir-23a

0


CA Colon Graudens
5




hsa-mir-548h

0


COID Lung Bhattacharjee
51




hsa-mir-656

0


COID Lung Bhattacharjee
52




hsa-mir-154

0


COID Lung Bhattacharjee
89


hsa-mir-1254



0


COID Lung Bhattacharjee
80




hsa-mir-548l

0


COID Lung Bhattacharjee
81


hsa-mir-369-3p



0


COID Lung Bhattacharjee
86


hsa-mir-580

hsa-mir-410

0


COID Lung Bhattacharjee
87
hsa-mir-1181





0


COID Lung Bhattacharjee
84
hsa-mir-615-5p





0


COID Lung Bhattacharjee
85




hsa-mir-1180

0


COID Lung Bhattacharjee
3


hsa-mir-940



0


COID Lung Bhattacharjee
7


hsa-mir-431

hsa-mir-608

0


COID Lung Bhattacharjee
39




hsa-mir-608

0


COID Lung Bhattacharjee
31


hsa-mir-331-3p



0


COID Lung Bhattacharjee
30




hsa-mir-423-5p
Dysregulated
0


CA Bladder Dyrskjot
29




hsa-mir-548c-3p

0


COID Lung Bhattacharjee
36




hsa-mir-890

0


COID Lung Bhattacharjee
60


hsa-mir-505

hsa-mir-516a-3p

0


COID Lung Bhattacharjee
61


hsa-mir-494

hsa-mir-34c-3p

0


GCT Seminoma Korkola
5




hsa-mir-1204

0


COID Lung Bhattacharjee
64




hsa-mir-661

0


COID Lung Bhattacharjee
66




hsa-mir-507

0


COID Lung Bhattacharjee
67


hsa-mir-512-3p

hsa-mir-181d

0


COID Lung Bhattacharjee
68




hsa-mir-1272

0


COID Lung Bhattacharjee
69




hsa-mir-765

0


COID Lung Bhattacharjee
2


hsa-mir-548d-3p



0


COID Lung Bhattacharjee
6




hsa-mir-874

0


COID Lung Bhattacharjee
91


hsa-mir-1275



0


COID Lung Bhattacharjee
92




hsa-mir-920

0


COID Lung Bhattacharjee
11


hsa-mir-501-5p

hsa-mir-513b

0


COID Lung Bhattacharjee
10
hsa-mir-138-2*

hsa-mir-513a-3p

hsa-mir-101
Dysregulated
0


COID Lung Bhattacharjee
12


hsa-mir-509-5p

hsa-mir-494

0






hsa-mir-509-3p






hsa-mir-509-3-5p


COID Lung Bhattacharjee
14




hsa-mir-557

0


COID Lung Bhattacharjee
17


hsa-mir-885-3p



0


COID Lung Bhattacharjee
16




hsa-mir-376a

0


COID Lung Bhattacharjee
19


hsa-mir-553

hsa-mir-615-5p

0


COID Lung Bhattacharjee
18




hsa-mir-663b

0








hsa-mir-663


GL Brain Bredel
25


hsa-mir-338-5p
Dysregulated
hsa-mir-513b

0


COID Lung Bhattacharjee
47


hsa-mir-574-3p



0


COID Lung Bhattacharjee
44


hsa-mir-504



0


COID Lung Bhattacharjee
45




hsa-mir-615-5p

0


COID Lung Bhattacharjee
42




hsa-mir-671-5p

0


COID Lung Bhattacharjee
43




hsa-mir-658

0


COID Lung Bhattacharjee
40


hsa-mir-1181

hsa-mir-93
Causal
0


COID Lung Bhattacharjee
41


hsa-mir-1303



0


COID Lung Bhattacharjee
5


hsa-mir-361-5p

hsa-mir-548o

0


COID Lung Bhattacharjee
9


hsa-mir-622



0


GCT Seminoma Korkola
73




hsa-mir-675

0


COID Lung Bhattacharjee
75




hsa-mir-874

0


COID Lung Bhattacharjee
73


hsa-mir-1262



0


COID Lung Bhattacharjee
72




hsa-mir-548n

0


GCT Seminoma Korkola
72


hsa-mir-490-3p

hsa-mir-760

0


COID Lung Bhattacharjee
79




hsa-mir-508-3p

0


COID Lung Bhattacharjee
78


hsa-mir-920

hsa-mir-27b
Dysregulated
0


SQ Lung Bhattacharjee
41


hsa-mir-885-3p



0


SQ Lung Bhattacharjee
22


hsa-mir-548n

hsa-mir-607

0


SQ Lung Bhattacharjee
35
hsa-mir-449c*





0


SQ Lung Bhattacharjee
34
hsa-mir-718





0


SQ Lung Bhattacharjee
23




hsa-mir-586

0


SQ Lung Bhattacharjee
24




hsa-mir-889

0


GCT Seminoma Korkola
70




hsa-mir-939

0


SQ Lung Bhattacharjee
27




hsa-mir-940

0


SQ Lung Bhattacharjee
21




hsa-mir-455-5p

0


SQ Lung Bhattacharjee
49




hsa-mir-34a
Causal
0


SQ Lung Bhattacharjee
46


hsa-mir-650



0


SQ Lung Bhattacharjee
44
hsa-mir-4285

hsa-mir-767-5p



0


SQ Lung Bhattacharjee
45




hsa-mir-654-5p

0


SQ Lung Bhattacharjee
28


hsa-mir-616



0


SQ Lung Bhattacharjee
29




hsa-mir-486-3p

0


SQ Lung Bhattacharjee
40




hsa-mir-339-3p

0


SQ Lung Bhattacharjee
42


hsa-mir-637



0


SQ Lung Bhattacharjee
0




hsa-mir-662

0


GL Brain Bredel
47




hsa-mir-1236

0


SQ Lung Bhattacharjee
5




hsa-mir-595

0


SQ Lung Bhattacharjee
4


hsa-mir-423-5p
Dysregulated
hsa-mir-214
Dysregulated
0


SQ Lung Bhattacharjee
7




hsa-mir-765

0


SQ Lung Bhattacharjee
9




hsa-mir-891a

0


SQ Lung Bhattacharjee
8
hsa-mir-1203





0


SQ Lung Bhattacharjee
43


hsa-mir-597

hsa-mir-635

0


SQ Lung Bhattacharjee
13




hsa-mir-296-5p

0


SQ Lung Bhattacharjee
15


hsa-mir-96
Dysregulated
hsa-mir-569

0


SQ Lung Bhattacharjee
14




hsa-mir-486-3p

0


SQ Lung Bhattacharjee
16


hsa-mir-802



0


SQ Lung Bhattacharjee
19


hsa-mir-423-5p
Dysregulated
hsa-mir-647

0


SQ Lung Bhattacharjee
18


hsa-mir-767-5p

hsa-mir-410

0


SQ Lung Bhattacharjee
30




hsa-mir-1233

0


SQ Lung Bhattacharjee
37


hsa-mir-770-5p



0


SQ Lung Bhattacharjee
50




hsa-mir-607

0


SQ Lung Bhattacharjee
52


hsa-mir-411



0


SQ Lung Bhattacharjee
33


hsa-mir-339-5p
Dysregulated


0


SQ Lung Bhattacharjee
32


hsa-mir-532-3p

hsa-mir-210
Dysregulated
0


SMCL Lung Bhattacharjee
30


hsa-mir-548n

hsa-mir-655

0


SMCL Lung Bhattacharjee
36




hsa-mir-296-5p

0


SMCL Lung Bhattacharjee
60
hsa-mir-671-3p





0


SMCL Lung Bhattacharjee
61




hsa-mir-331-3p

0


SMCL Lung Bhattacharjee
35




hsa-mir-212
Dysregulated
0


SMCL Lung Bhattacharjee
32




hsa-mir-582-5p

0


MUC Ovarian Hendrix
13




hsa-mir-1280

0


SMCL Lung Bhattacharjee
25


hsa-mir-101
Dysregulated


0


SMCL Lung Bhattacharjee
20




hsa-mir-423-5p
Dysregulated
0


SMCL Lung Bhattacharjee
21


hsa-mir-570



0


SMCL Lung Bhattacharjee
46


hsa-mir-499a-5p

hsa-mir-891b

0






hsa-mir-499-5p


SMCL Lung Bhattacharjee
23
hsa-mir-3183





0


SMCL Lung Bhattacharjee
45


hsa-mir-432

hsa-mir-125a-5p
Causal
0


SMCL Lung Bhattacharjee
28




hsa-mir-744

0


SMCL Lung Bhattacharjee
43




hsa-mir-671-3p

0


SMCL Lung Bhattacharjee
41


hsa-mir-512-3p



0


SMCL Lung Bhattacharjee
1


hsa-mir-1237



0


SMCL Lung Bhattacharjee
2


hsa-mir-1266

hsa-mir-940

0


SMCL Lung Bhattacharjee
5




hsa-mir-1321

0


SMCL Lung Bhattacharjee
7




hsa-mir-615-5p

0


SMCL Lung Bhattacharjee
9


hsa-mir-362-3p



0






hsa-mir-329


SMCL Lung Bhattacharjee
34


hsa-mir-1207-5p



0


SMCL Lung Bhattacharjee
47




hsa-mir-302e

0


SMCL Lung Bhattacharjee
15


hsa-mir-216b
Dysregulated


0


SMCL Lung Bhattacharjee
29


hsa-mir-513a-3p

hsa-mir-548c-3p

0


SMCL Lung Bhattacharjee
11




hsa-mir-1321

0


SMCL Lung Bhattacharjee
10


hsa-mir-720



0


SMCL Lung Bhattacharjee
59




hsa-mir-340

0


SMCL Lung Bhattacharjee
58




hsa-mir-423-5p
Dysregulated
0


SMCL Lung Bhattacharjee
17


hsa-mir-888



0


SMCL Lung Bhattacharjee
55


hsa-mir-590-3p



0


SMCL Lung Bhattacharjee
57




hsa-mir-448

0


SMCL Lung Bhattacharjee
56


hsa-mir-888



0


SMCL Lung Bhattacharjee
51
hsa-mir-1273





0




hsa-mir-1273c




hsa-mir-1273d




hsa-mir-1273e




hsa-mir-1273f




hsa-mir-1273g


SMCL Lung Bhattacharjee
50




hsa-mir-664

0


SMCL Lung Bhattacharjee
53




hsa-mir-20a
Causal
0


SMCL Lung Bhattacharjee
52


hsa-mir-483-3p

hsa-mir-939

0


SMCL Lung Bhattacharjee
16
hsa-mir-339-3p





0


SMCL Lung Bhattacharjee
18


hsa-mir-624

hsa-mir-513c

0








hsa-mir-513b








hsa-mir-513a-5p


SMCL Lung Bhattacharjee
31




hsa-mir-513a-3p

0


AD Lung Stearman
25


hsa-mir-200a
Causal
hsa-mir-519a

0






hsa-mir-141


AD Lung Stearman
27




hsa-mir-300

0


AD Lung Stearman
29
hsa-mir-598



hsa-mir-425
Dysregulated
0


CA Breast Richardson
37




hsa-mir-1289

0


AD Lung Stearman
0


hsa-mir-518a-5p

hsa-mir-369-3p

0






hsa-mir-527


AD Lung Stearman
5




hsa-mir-342-3p

0


AD Lung Stearman
7


hsa-mir-1269b

hsa-mir-16
Causal
0






hsa-mir-1269


AD Lung Stearman
6




hsa-mir-380

0


AD Lung Stearman
9


hsa-mir-548g



0


AD Lung Stearman
13


hsa-mir-455-5p

hsa-mir-23a

0


AD Lung Stearman
19




hsa-mir-370

0


AD Lung Stearman
36




hsa-mir-1269b

0








hsa-mir-1269


AD Lung Stearman
35




hsa-mir-668

0


AD Lung Stearman
33


hsa-mir-196b

hsa-mir-1293

0






hsa-mir-196a


AD Lung Stearman
32




hsa-mir-588

0


FL Lymphoma Alizadeh
11


hsa-mir-148a

hsa-mir-614

0






hsa-mir-148b






hsa-mir-152


FL Lymphoma Alizadeh
0




hsa-mir-92a
Dysregulated
0


FL Lymphoma Alizadeh
2
hsa-mir-425*



hsa-mir-149
Dysregulated
0


FL Lymphoma Alizadeh
5




hsa-mir-581

0


FL Lymphoma Alizadeh
4
hsa-mir-4261

hsa-mir-1295



0


FL Lymphoma Alizadeh
7




hsa-mir-1282

0


FL Lymphoma Alizadeh
6


hsa-mir-338-5p
Dysregulated


0


FL Lymphoma Alizadeh
9


hsa-mir-767-3p

hsa-mir-942

0


DLBCL Lymphoma Alizadeh
11


hsa-mir-1203



0


DLBCL Lymphoma Alizadeh
10


hsa-mir-325



0


DLBCL Lymphoma Alizadeh
1


hsa-mir-138

hsa-mir-16

0


DLBCL Lymphoma Alizadeh
3




hsa-mir-744

0


DLBCL Lymphoma Alizadeh
2




hsa-mir-660

0


DLBCL Lymphoma Alizadeh
5
hsa-mir-132*

hsa-mir-198



0


DLBCL Lymphoma Alizadeh
4




hsa-mir-297

0


DLBCL Lymphoma Alizadeh
7


hsa-mir-532-3p

hsa-mir-1301

0


DLBCL Lymphoma Alizadeh
6


hsa-mir-542-5p

hsa-mir-483-3p

0


DLBCL Lymphoma Alizadeh
9


hsa-mir-892b

hsa-mir-1277

0


CLL Lymphoma Alizadeh
13




hsa-mir-423-5p

0


CLL Lymphoma Alizadeh
1




hsa-mir-1204

0


CLL Lymphoma Alizadeh
0


hsa-mir-1283

hsa-mir-548j

0


CLL Lymphoma Alizadeh
3


hsa-mir-513b



0


CLL Lymphoma Alizadeh
4




hsa-mir-29b
Causal
0


CLL Lymphoma Alizadeh
7


hsa-mir-1263



0


CLL Lymphoma Alizadeh
8


hsa-mir-222



0


ME Melanoma Hoek
25




hsa-mir-26a

0


ME Melanoma Hoek
26




hsa-mir-577

0


ME Melanoma Hoek
20




hsa-mir-331-5p
Dysregulated
0


OD Brain Bredel
50




hsa-mir-1254

0


ME Melanoma Hoek
47


hsa-mir-549



0


ME Melanoma Hoek
44


hsa-mir-1299

hsa-mir-1183

0


ME Melanoma Hoek
41


hsa-mir-938

hsa-mir-451b

0








hsa-mir-451


ME Melanoma Hoek
0


hsa-mir-34b
Dysregulated
hsa-mir-582-5p

0


ME Melanoma Hoek
3
hsa-mir-4285





0


CA Bladder Dyrskjot
9


hsa-mir-452
Dysregulated
hsa-mir-548c-3p

0


ME Melanoma Hoek
6


hsa-mir-410

hsa-mir-186

0


ME Melanoma Hoek
9


hsa-mir-106b
Dysregulated
hsa-mir-494

0






hsa-mir-17






hsa-mir-106a






hsa-mir-93






hsa-mir-20b






hsa-mir-20a


ME Melanoma Hoek
39


hsa-mir-212

hsa-mir-944

0






hsa-mir-132


ME Melanoma Hoek
12


hsa-mir-892a

hsa-mir-935

0


ME Melanoma Hoek
15


hsa-mir-217

hsa-mir-1292

0


ME Melanoma Hoek
16




hsa-mir-631

0


ME Melanoma Hoek
33




hsa-mir-1265

0


ME Melanoma Hoek
23


hsa-mir-32



0


ME Melanoma Hoek
37




hsa-mir-380

0


ME Melanoma Hoek
50


hsa-mir-548c-3p



0


GCT Seminoma Korkola
92




hsa-mir-564

0


ML Melanoma Talantov
25


hsa-mir-606



0


ML Melanoma Talantov
26


hsa-mir-607

hsa-mir-664

0


ML Melanoma Talantov
27




hsa-mir-96
Dysregulated
0


ML Melanoma Talantov
21




hsa-mir-450b-5p

0


ML Melanoma Talantov
22


hsa-mir-520d-5p

hsa-mir-570

0






hsa-mir-524-5p


ML Melanoma Talantov
23


hsa-mir-548p



0


ML Melanoma Talantov
28
hsa-mir-3175



hsa-mir-1207-5p

0


ML Melanoma Talantov
29




hsa-mir-1257

0


ML Melanoma Talantov
40




hsa-mir-296-5p

0


ML Melanoma Talantov
0


hsa-mir-603



0


ML Melanoma Talantov
3


hsa-mir-181a
Dysregulated
hsa-mir-548n

0






hsa-mir-181d






hsa-mir-181b






hsa-mir-181c


ML Melanoma Talantov
4




hsa-mir-146b-3p

0


ML Melanoma Talantov
7


hsa-mir-125b
Dysregulated
hsa-mir-296-5p

0






hsa-mir-125a-5p


ML Melanoma Talantov
9


hsa-mir-151-3p

hsa-mir-493

0


ML Melanoma Talantov
8




hsa-mir-199b-5p
Dysregulated
0


ML Melanoma Talantov
13
hsa-mir-337-5p





0


ML Melanoma Talantov
10


hsa-mir-623

hsa-mir-1180

0


ML Melanoma Talantov
12


hsa-mir-125b
Dysregulated
hsa-mir-324-3p

0






hsa-mir-125a-5p


ML Melanoma Talantov
14


hsa-mir-519a

hsa-mir-548c-3p

0






hsa-mir-519c-3p






hsa-mir-519b-3p


ML Melanoma Talantov
19
hsa-mir-302c*

hsa-mir-421

hsa-mir-548c-3p

0


ML Melanoma Talantov
18




hsa-mir-513a-3p

0


ML Melanoma Talantov
36




hsa-mir-663b

0








hsa-mir-663


ML Melanoma Talantov
34
hsa-mir-548c-3p

hsa-mir-767-3p

hsa-mir-548n

0


ML Melanoma Talantov
33




hsa-mir-605

0


MPM Mesothelioma Gordon
56


hsa-mir-595
Dysregulated
hsa-mir-590-3p

0


MPM Mesothelioma Gordon
41


hsa-mir-519e

hsa-mir-381

0


MPM Mesothelioma Gordon
42


hsa-mir-183

hsa-mir-539

0


MPM Mesothelioma Gordon
29




hsa-mir-1265

0


MPM Mesothelioma Gordon
61


hsa-mir-545

hsa-mir-1287

0


MPM Mesothelioma Gordon
62


hsa-mir-1279

hsa-mir-708

0


MPM Mesothelioma Gordon
36




hsa-mir-487a

0


MPM Mesothelioma Gordon
64




hsa-mir-655

0


MPM Mesothelioma Gordon
65


hsa-mir-590-3p

hsa-mir-548n

0


MPM Mesothelioma Gordon
52




hsa-mir-606

0


MPM Mesothelioma Gordon
24




hsa-mir-361-3p

0


MPM Mesothelioma Gordon
27


hsa-mir-1301

hsa-mir-128

0


MPM Mesothelioma Gordon
21




hsa-mir-548c-3p

0


MPM Mesothelioma Gordon
22
hsa-mir-1284





0


MPM Mesothelioma Gordon
44




hsa-mir-338-5p

0


MPM Mesothelioma Gordon
48


hsa-mir-561

hsa-mir-606

0


MPM Mesothelioma Gordon
28




hsa-mir-590-3p

0


MPM Mesothelioma Gordon
40
hsa-mir-3178





0


MPM Mesothelioma Gordon
1




hsa-mir-1224-5p

0


MPM Mesothelioma Gordon
2




hsa-mir-1207-5p

0


MPM Mesothelioma Gordon
5




hsa-mir-603

0


MPM Mesothelioma Gordon
7


hsa-mir-526b



0


MPM Mesothelioma Gordon
6




hsa-mir-192

0


MPM Mesothelioma Gordon
9
hsa-mir-219-5p





0


MPM Mesothelioma Gordon
8




hsa-mir-1180

0


MPM Mesothelioma Gordon
35


hsa-mir-371b-5p



0






hsa-mir-371-5p


MPM Mesothelioma Gordon
13
hsa-mir-1250



hsa-mir-585

0


MPM Mesothelioma Gordon
38


hsa-mir-1276

hsa-mir-145

0


MPM Mesothelioma Gordon
59




hsa-mir-423-5p
Dysregulated
0


MPM Mesothelioma Gordon
14


hsa-mir-361-3p



0


MPM Mesothelioma Gordon
11


hsa-mir-491-3p

hsa-mir-889

0


MPM Mesothelioma Gordon
15




hsa-mir-1229

0


MPM Mesothelioma Gordon
17




hsa-mir-1296

0


MPM Mesothelioma Gordon
16


hsa-mir-548m

hsa-mir-590-3p

0


MPM Mesothelioma Gordon
54




hsa-mir-548h

0


MPM Mesothelioma Gordon
51


hsa-mir-605

hsa-mir-376a

0


MPM Mesothelioma Gordon
53


hsa-mir-1182



0


MPM Mesothelioma Gordon
19
hsa-mir-615-5p



hsa-mir-423-5p
Dysregulated
0


MPM Mesothelioma Gordon
63


hsa-mir-548b-5p

hsa-mir-548c-3p

0






hsa-mir-548am






hsa-mir-548ab






hsa-mir-548aa






hsa-mir-548ag






hsa-mir-548ak






hsa-mir-548aj






hsa-mir-548ai






hsa-mir-548ah






hsa-mir-548an






hsa-mir-548al






hsa-mir-548ae






hsa-mir-548ad






hsa-mir-548a-5p






hsa-mir-548ac






hsa-mir-548d-5p






hsa-mir-548i






hsa-mir-548j






hsa-mir-548c-5p






hsa-mir-548h


MPM Mesothelioma Gordon
32




hsa-mir-541

0


MPM Mesothelioma Gordon
31




hsa-mir-127-5p
Causal
0


MM Myeloma Zhan
45


hsa-mir-595



0


MM Myeloma Zhan
22


hsa-mir-1236



0


MM Myeloma Zhan
36




hsa-mir-1273

0








hsa-mir-1273c








hsa-mir-1273d








hsa-mir-1273e








hsa-mir-1273f








hsa-mir-1273g


MM Myeloma Zhan
24


hsa-mir-140-3p
Dysregulated


0


MM Myeloma Zhan
25


hsa-mir-188-5p



0


MM Myeloma Zhan
26




hsa-mir-1321

0


MM Myeloma Zhan
20


hsa-mir-1226



0


MM Myeloma Zhan
21


hsa-mir-183



0


MM Myeloma Zhan
49




hsa-mir-138

0


MM Myeloma Zhan
46


hsa-mir-425



0


MM Myeloma Zhan
47


hsa-mir-875-3p

hsa-mir-662

0


MM Myeloma Zhan
43


hsa-mir-23b

hsa-mir-124
Causal
0






hsa-mir-23a


MM Myeloma Zhan
40


hsa-mir-382

hsa-mir-612

0


MM Myeloma Zhan
41




hsa-mir-339-5p

0


MM Myeloma Zhan
1


hsa-mir-519e



0


MM Myeloma Zhan
0




hsa-mir-1207-5p

0


MM Myeloma Zhan
3


hsa-mir-590-3p

hsa-mir-548c-3p

0


MM Myeloma Zhan
2


hsa-mir-587



0


MM Myeloma Zhan
4


hsa-mir-361-3p

hsa-mir-185

0


MM Myeloma Zhan
7


hsa-mir-510

hsa-mir-645

0


MM Myeloma Zhan
6


hsa-mir-516b

hsa-mir-600

0


MM Myeloma Zhan
9


hsa-mir-9

hsa-mir-185

0


MM Myeloma Zhan
39




hsa-mir-647

0


MM Myeloma Zhan
38




hsa-mir-652

0


MM Myeloma Zhan
29


hsa-mir-760



0


MM Myeloma Zhan
11




hsa-mir-658

0


AD Lung Beer
10




hsa-mir-600

0


MM Myeloma Zhan
13


hsa-mir-655

hsa-mir-770-5p

0


MM Myeloma Zhan
15




hsa-mir-922

0


CA Bladder Dyrskjot
62




hsa-mir-637

0


MM Myeloma Zhan
17


hsa-mir-320e

hsa-mir-495

0






hsa-mir-320d






hsa-mir-320c






hsa-mir-320b






hsa-mir-320a


MM Myeloma Zhan
16




hsa-mir-134

0


MM Myeloma Zhan
32


hsa-mir-212

hsa-mir-379

0






hsa-mir-132


MM Myeloma Zhan
31


hsa-mir-597

hsa-mir-512-3p

0


MM Myeloma Zhan
30


hsa-mir-588



0


MM Myeloma Zhan
50




hsa-mir-28-5p

0


MM Myeloma Zhan
35


hsa-mir-650

hsa-mir-129-5p

0


MM Myeloma Zhan
34




hsa-mir-147

0








hsa-mir-147b


MM Myeloma Zhan
33




hsa-mir-507

0


AD Ovarian Welsh
24
hsa-mir-1469





0


AD Ovarian Welsh
26


hsa-mir-210



0


AD Ovarian Welsh
20


hsa-mir-767-5p



0


AD Ovarian Welsh
21


hsa-mir-96

hsa-mir-606

0


AD Ovarian Welsh
22




hsa-mir-1207-5p

0


AD Ovarian Welsh
29
hsa-mir-3194-5p

hsa-mir-1280

hsa-mir-1225-3p

0


AD Ovarian Welsh
1




hsa-mir-548d-3p

0


AD Ovarian Welsh
0


hsa-mir-510

hsa-mir-200b
Causal
0


AD Ovarian Welsh
3


hsa-mir-1283



0


AD Ovarian Welsh
2


hsa-mir-122



0


AD Ovarian Welsh
5


hsa-mir-188-3p

hsa-mir-455-5p

0


AD Ovarian Welsh
4




hsa-mir-424
Dysregulated
0


AD Ovarian Welsh
7


hsa-mir-650



0


AD Ovarian Welsh
6
hsa-let-7e*





0


AD Ovarian Welsh
9




hsa-mir-524-5p

0


AD Ovarian Welsh
8




hsa-mir-1260

0








hsa-mir-1260b


AD Ovarian Welsh
11


hsa-mir-1323

hsa-mir-1225-5p

0






hsa-mir-548o


AD Ovarian Welsh
10




hsa-mir-921

0


AD Ovarian Welsh
13
hsa-mir-3178





0


CA Bladder Dyrskjot
77




hsa-mir-620

0


AD Ovarian Welsh
15


hsa-mir-1282



0


AD Ovarian Welsh
14




hsa-mir-338-5p

0


AD Ovarian Welsh
17




hsa-mir-1321

0


AD Ovarian Welsh
16




hsa-mir-548l

0


AD Ovarian Welsh
31


hsa-mir-380

hsa-mir-548c-3p

0


AD Ovarian Welsh
30


hsa-mir-1207-5p

hsa-mir-1204

0


CCC Ovarian Hendrix
56


hsa-mir-409-3p

hsa-mir-587

0


CCC Ovarian Hendrix
51


hsa-mir-1279

hsa-mir-499-3p

0


CCC Ovarian Hendrix
60


hsa-mir-105
Dysregulated
hsa-mir-1305

0


CCC Ovarian Hendrix
61




hsa-mir-145
Dysregulated
0


CCC Ovarian Hendrix
24


hsa-mir-19b



0






hsa-mir-19a


CCC Ovarian Hendrix
25


hsa-mir-183
Dysregulated
hsa-mir-744

0


CCC Ovarian Hendrix
27




hsa-mir-556-5p

0


CCC Ovarian Hendrix
20




hsa-mir-495
Causal
0


CCC Ovarian Hendrix
23
hsa-mir-523

hsa-mir-105
Dysregulated


0


CCC Ovarian Hendrix
46




hsa-mir-340

0


CCC Ovarian Hendrix
47


hsa-mir-548p

hsa-mir-122

0


CCC Ovarian Hendrix
44




hsa-mir-548m

0


CCC Ovarian Hendrix
45


hsa-mir-382

hsa-mir-1250

0


CCC Ovarian Hendrix
29




hsa-mir-636

0


CCC Ovarian Hendrix
1


hsa-mir-1200



0


CCC Ovarian Hendrix
0




hsa-mir-194

0


CCC Ovarian Hendrix
2




hsa-mir-423-5p

0


CCC Ovarian Hendrix
7


hsa-mir-532-5p

hsa-mir-382

0


CCC Ovarian Hendrix
9




hsa-mir-1291

0


CCC Ovarian Hendrix
43




hsa-mir-1247

0


CCC Ovarian Hendrix
14




hsa-mir-1276

0


CCC Ovarian Hendrix
11
hsa-mir-638

hsa-mir-29b
Dysregulated
hsa-mir-602

0






hsa-mir-29c






hsa-mir-29a


CCC Ovarian Hendrix
10




hsa-mir-615-5p

0


CCC Ovarian Hendrix
13


hsa-mir-143
Dysregulated
hsa-mir-500b

0








hsa-mir-500a


CCC Ovarian Hendrix
12


hsa-mir-876-5p

hsa-mir-508-3p

0


CCC Ovarian Hendrix
59


hsa-mir-552

hsa-mir-1258

0


CCC Ovarian Hendrix
58




hsa-mir-586

0


CCC Ovarian Hendrix
55
hsa-mir-1471





0


CCC Ovarian Hendrix
30


hsa-mir-590-5p



0


CCC Ovarian Hendrix
37


hsa-mir-1302

hsa-mir-1237

0


CCC Ovarian Hendrix
35


hsa-mir-1283

hsa-mir-607

0


CCC Ovarian Hendrix
33


hsa-mir-127-5p
Causal
hsa-mir-770-5p

0


CA Breast Sorlie
23




hsa-mir-423-5p

0


CCC Ovarian Hendrix
18




hsa-mir-326

0


CCC Ovarian Hendrix
57




hsa-mir-590-5p

0


MUC Ovarian Hendrix
30




hsa-mir-635
Dysregulated
0


MUC Ovarian Hendrix
54




hsa-mir-921

0


MUC Ovarian Hendrix
28




hsa-mir-296-5p
Dysregulated
0


MUC Ovarian Hendrix
45


hsa-mir-765



0


MUC Ovarian Hendrix
60


hsa-mir-369-3p

hsa-mir-574-3p

0


MUC Ovarian Hendrix
61


hsa-mir-940

hsa-mir-410

0


B-CLL Leukemia Haslinger
12




hsa-mir-1302

0


MUC Ovarian Hendrix
63


hsa-mir-184
Dysregulated
hsa-mir-1247

0


GCT Seminoma Korkola
71




hsa-mir-361-3p

0


MUC Ovarian Hendrix
65




hsa-mir-380

0


MUC Ovarian Hendrix
66




hsa-mir-889

0


MUC Ovarian Hendrix
67


hsa-mir-1224-3p



0


MUC Ovarian Hendrix
68


hsa-mir-606

hsa-mir-1305

0


MUC Ovarian Hendrix
69




hsa-mir-579

0


MUC Ovarian Hendrix
52




hsa-mir-541

0


MUC Ovarian Hendrix
24




hsa-mir-361-3p

0


MUC Ovarian Hendrix
25


hsa-mir-548c-3p

hsa-mir-582-5p

0


MUC Ovarian Hendrix
26




hsa-mir-296-5p
Dysregulated
0


MUC Ovarian Hendrix
27




hsa-mir-423-5p

0


MUC Ovarian Hendrix
20




hsa-mir-640

0


MUC Ovarian Hendrix
21


hsa-mir-216b

hsa-mir-520d-5p

0


MUC Ovarian Hendrix
22




hsa-mir-1293

0


MUC Ovarian Hendrix
23




hsa-mir-486-3p

0


MUC Ovarian Hendrix
47




hsa-mir-654-5p

0


MUC Ovarian Hendrix
44


hsa-mir-217



0


MUC Ovarian Hendrix
48




hsa-mir-608
Dysregulated
0


MUC Ovarian Hendrix
42
hsa-mir-1181





0


MUC Ovarian Hendrix
40




hsa-mir-618

0


MUC Ovarian Hendrix
41


hsa-mir-34a
Causal


0






hsa-mir-34c-5p






hsa-mir-449a






hsa-mir-449b


MUC Ovarian Hendrix
0


hsa-mir-556-3p

hsa-mir-410

0


MUC Ovarian Hendrix
3




hsa-mir-1205

0


MUC Ovarian Hendrix
2


hsa-mir-22



0


MUC Ovarian Hendrix
7


hsa-mir-607

hsa-mir-590-3p

0


TU Prostate Lapointe
32




hsa-mir-608

0


MUC Ovarian Hendrix
8


hsa-mir-1226

hsa-mir-486-3p

0


MUC Ovarian Hendrix
56
hsa-mir-508-3p



hsa-mir-548c-3p

0


MUC Ovarian Hendrix
19




hsa-mir-548g

0


MUC Ovarian Hendrix
76


hsa-mir-144

hsa-mir-573

0


MUC Ovarian Hendrix
75




hsa-mir-512-3p

0


MUC Ovarian Hendrix
74


hsa-mir-27a



0






hsa-mir-27b


MUC Ovarian Hendrix
73




hsa-mir-361-3p

0


MUC Ovarian Hendrix
72




hsa-mir-409-5p

0


MUC Ovarian Hendrix
71


hsa-mir-361-3p



0


MUC Ovarian Hendrix
14


hsa-mir-148a
Dysregulated


0






hsa-mir-148b






hsa-mir-152


AD Pancreas Logsdon
1




hsa-mir-1247

0


MUC Ovarian Hendrix
15


hsa-mir-340

hsa-mir-944

0


MUC Ovarian Hendrix
55




hsa-mir-486-3p

0


MUC Ovarian Hendrix
32




hsa-mir-490-3p

0


MUC Ovarian Hendrix
57


hsa-mir-766



0


MUC Ovarian Hendrix
49




hsa-mir-200b
Causal
0


AD Lung Bhattacharjee
16




hsa-mir-361-3p

0


MUC Ovarian Hendrix
34




hsa-mir-1291

0


MUC Ovarian Hendrix
18


hsa-mir-548n

hsa-mir-606

0


MUC Ovarian Hendrix
12




hsa-mir-658

0


MUC Ovarian Hendrix
31




hsa-mir-342-5p

0


MUC Ovarian Hendrix
50




hsa-mir-889

0


SRS Ovarian Hendrix
36




hsa-mir-890

0


SRS Ovarian Hendrix
42




hsa-mir-1298

0


SRS Ovarian Hendrix
22


hsa-mir-624



0


SRS Ovarian Hendrix
60


hsa-mir-188-3p

hsa-mir-184
Dysregulated
0


SRS Ovarian Hendrix
64




hsa-mir-377
Causal
0


SRS Ovarian Hendrix
66


hsa-mir-892b

hsa-mir-548c-3p

0


SRS Ovarian Hendrix
67




hsa-mir-608
Dysregulated
0


SRS Ovarian Hendrix
68




hsa-mir-200b
Causal
0


SRS Ovarian Hendrix
83




hsa-mir-637
Dysregulated
0


SRS Ovarian Hendrix
80




hsa-mir-324-5p

0


SRS Ovarian Hendrix
81
hsa-mir-3135b





0




hsa-mir-3135


SRS Ovarian Hendrix
24




hsa-mir-635
Dysregulated
0


SRS Ovarian Hendrix
26




hsa-mir-325

0


SRS Ovarian Hendrix
27


hsa-mir-362-5p



0


SRS Ovarian Hendrix
20




hsa-mir-296-5p
Dysregulated
0


SRS Ovarian Hendrix
21




hsa-mir-944

0


SRS Ovarian Hendrix
48




hsa-mir-1278

0


SRS Ovarian Hendrix
44




hsa-mir-584

0


SRS Ovarian Hendrix
45


hsa-mir-146b-3p



0


SRS Ovarian Hendrix
28




hsa-mir-186

0


SRS Ovarian Hendrix
43




hsa-mir-299-3p

0


SRS Ovarian Hendrix
41


hsa-mir-650



0


SRS Ovarian Hendrix
1


hsa-mir-641

hsa-mir-409-3p

0


SRS Ovarian Hendrix
3




hsa-mir-146b-3p

0


SRS Ovarian Hendrix
2


hsa-mir-505



0


SRS Ovarian Hendrix
4




hsa-mir-1250

0


SRS Ovarian Hendrix
6




hsa-mir-185

0


SRS Ovarian Hendrix
9




hsa-mir-1297

0


SRS Ovarian Hendrix
19




hsa-mir-135a

0


SRS Ovarian Hendrix
75
hsa-mir-937



hsa-mir-372

0


OD Brain Bredel
40




hsa-mir-216b

0


SRS Ovarian Hendrix
17




hsa-mir-193b

0


SRS Ovarian Hendrix
70


hsa-mir-641

hsa-mir-433

0


SRS Ovarian Hendrix
15


hsa-mir-1293

hsa-let-7d
Causal
0


SRS Ovarian Hendrix
69


hsa-mir-330-3p

hsa-mir-29b

0


SRS Ovarian Hendrix
79




hsa-mir-944

0


SRS Ovarian Hendrix
78




hsa-mir-206
Dysregulated
0


SRS Ovarian Hendrix
11


hsa-mir-361-5p
Dysregulated
hsa-mir-590-3p

0


SRS Ovarian Hendrix
10




hsa-mir-34c-3p

0


SRS Ovarian Hendrix
38




hsa-mir-17

0


SRS Ovarian Hendrix
59




hsa-mir-656

0


SRS Ovarian Hendrix
14




hsa-mir-1290

0


SRS Ovarian Hendrix
61




hsa-mir-1224-3p

0


SRS Ovarian Hendrix
54


hsa-mir-448



0


SRS Ovarian Hendrix
30


hsa-mir-424
Dysregulated
hsa-mir-582-5p

0


SRS Ovarian Hendrix
53


hsa-mir-376b
Causal
hsa-mir-576-5p

0






hsa-mir-376a


SRS Ovarian Hendrix
52


hsa-mir-626



0


SRS Ovarian Hendrix
55


hsa-mir-548l

hsa-mir-338-5p

0


SRS Ovarian Hendrix
16




hsa-mir-548k

0


SRS Ovarian Hendrix
32




hsa-mir-331-3p

0


SRS Ovarian Hendrix
12




hsa-mir-125a-3p

0


SRS Ovarian Hendrix
57


hsa-mir-561

hsa-mir-548d-3p

0


SRS Ovarian Hendrix
72


hsa-mir-1276



0


END Ovarian Hendrix
37




hsa-mir-125b
Dysregulated
0


END Ovarian Hendrix
60


hsa-mir-580

hsa-mir-570

0


END Ovarian Hendrix
62




hsa-mir-571

0


END Ovarian Hendrix
66




hsa-mir-101
Dysregulated
0


END Ovarian Hendrix
82
hsa-let-7d*

hsa-mir-505

hsa-mir-320b

0


END Ovarian Hendrix
32


hsa-mir-802

hsa-mir-548d-3p

0


END Ovarian Hendrix
25


hsa-mir-653



0


END Ovarian Hendrix
26


hsa-mir-548c-3p

hsa-mir-656

0


END Ovarian Hendrix
20




hsa-mir-663b
Dysregulated
0








hsa-mir-663


END Ovarian Hendrix
48


hsa-mir-125a-3p

hsa-mir-1304

0


END Ovarian Hendrix
23




hsa-mir-22

0


END Ovarian Hendrix
47
hsa-mir-1471





0


END Ovarian Hendrix
45
hsa-mir-1471





0


END Ovarian Hendrix
43




hsa-mir-590-3p

0


END Ovarian Hendrix
40




hsa-mir-944

0


END Ovarian Hendrix
41




hsa-mir-338-5p

0


IDC Breast Radvanyi
46




hsa-mir-675

0


END Ovarian Hendrix
0
hsa-mir-598





0


END Ovarian Hendrix
3


hsa-mir-510

hsa-mir-1279

0


END Ovarian Hendrix
4


hsa-mir-608
Dysregulated
hsa-mir-612

0


END Ovarian Hendrix
7


hsa-mir-1302



0


END Ovarian Hendrix
6


hsa-mir-29b
Dysregulated
hsa-mir-890

0






hsa-mir-29c






hsa-mir-29a


END Ovarian Hendrix
9




hsa-mir-486-3p

0


END Ovarian Hendrix
8


hsa-mir-200a
Causal


0






hsa-mir-141


END Ovarian Hendrix
52
hsa-mir-1538





0


END Ovarian Hendrix
28




hsa-mir-495
Causal
0


END Ovarian Hendrix
78




hsa-mir-125a-5p
Causal
0


END Ovarian Hendrix
19
hsa-mir-3195





0


END Ovarian Hendrix
39


hsa-mir-508-5p
Dysregulated


0


CA Bladder Dyrskjot
39




hsa-mir-486-3p

0


END Ovarian Hendrix
76




hsa-mir-888

0


END Ovarian Hendrix
75




hsa-mir-489

0


END Ovarian Hendrix
72




hsa-mir-548d-3p

0


END Ovarian Hendrix
70




hsa-mir-939

0


END Ovarian Hendrix
15




hsa-mir-542-3p
Dysregulated
0


END Ovarian Hendrix
69


hsa-mir-607

hsa-mir-186

0


END Ovarian Hendrix
29




hsa-mir-944

0


END Ovarian Hendrix
58
hsa-mir-621





0


END Ovarian Hendrix
11




hsa-mir-940

0


END Ovarian Hendrix
13


hsa-mir-1276

hsa-mir-23a

0


END Ovarian Hendrix
38


hsa-mir-944

hsa-mir-944

0


END Ovarian Hendrix
22


hsa-mir-15b
Dysregulated
hsa-mir-944

0






hsa-mir-15a






hsa-mir-16






hsa-mir-497






hsa-mir-195


END Ovarian Hendrix
17




hsa-mir-30e
Dysregulated
0


END Ovarian Hendrix
61




hsa-mir-342-5p

0


END Ovarian Hendrix
31




hsa-mir-1253

0


END Ovarian Hendrix
49




hsa-mir-145
Dysregulated
0


END Ovarian Hendrix
51


hsa-mir-130b



0






hsa-mir-301a






hsa-mir-301b






hsa-mir-130a






hsa-mir-454


END Ovarian Hendrix
50


hsa-mir-539

hsa-mir-548c-3p

0


END Ovarian Hendrix
16




hsa-mir-588

0


END Ovarian Hendrix
18
hsa-mir-487b
Dysregulated
hsa-mir-890



0


END Ovarian Hendrix
65




hsa-mir-331-3p

0


PDC Pancreas Ishikawa
1




hsa-mir-106b

0


PDC Pancreas Ishikawa
3
hsa-mir-369-5p





0


PDC Pancreas Ishikawa
2




hsa-mir-448

0


AD Pancreas Logsdon
10
hsa-mir-1273





0




hsa-mir-1273c




hsa-mir-1273d




hsa-mir-1273e




hsa-mir-1273f




hsa-mir-1273g


AD Pancreas Logsdon
13


hsa-mir-486-5p



0


AD Pancreas Logsdon
12
hsa-let-7d
Dysregulated


hsa-mir-933

0




hsa-let-7f




hsa-mir-98




hsa-let-7b




hsa-let-7c




hsa-let-7a




hsa-let-7g




hsa-let-7e




hsa-let-7i


AD Pancreas Logsdon
15


hsa-mir-556-3p

hsa-mir-130b

0


AD Pancreas Logsdon
14


hsa-mir-517c



0






hsa-mir-517b






hsa-mir-517a


AD Pancreas Logsdon
16


hsa-mir-561



0


CA Bladder Dyrskjot
59




hsa-mir-374a

0


AD Pancreas Logsdon
18




hsa-mir-939

0


RCCC Renal Boer
5




hsa-mir-374a

0


AD Pancreas Logsdon
3
hsa-mir-3178





0


AD Pancreas Logsdon
4




hsa-mir-22

0


MPC Prostate Dhanasekaran
30


hsa-mir-659



0


MPC Prostate Dhanasekaran
29




hsa-mir-663b

0








hsa-mir-663


MPC Prostate Dhanasekaran
26


hsa-mir-935

hsa-mir-548j

0


MPC Prostate Dhanasekaran
27




hsa-mir-1271

0


MPC Prostate Dhanasekaran
21


hsa-mir-498
Dysregulated


0


MPC Prostate Dhanasekaran
48




hsa-mir-625

0


MPC Prostate Dhanasekaran
44


hsa-mir-1323

hsa-mir-576-3p

0






hsa-mir-548o


MPC Prostate Dhanasekaran
45


hsa-mir-490-3p



0


MPC Prostate Dhanasekaran
42
hsa-mir-582-3p



hsa-mir-331-5p

0


MPC Prostate Dhanasekaran
0
hsa-mir-3074-5p

hsa-mir-1323

hsa-mir-200b
Causal
0






hsa-mir-548o


MPC Prostate Dhanasekaran
2




hsa-mir-548c-3p

0


MPC Prostate Dhanasekaran
5




hsa-mir-211

0


MPC Prostate Dhanasekaran
7


hsa-mir-330-5p
Causal
hsa-mir-296-5p
Dysregulated
0






hsa-mir-326


MPC Prostate Dhanasekaran
9


hsa-mir-190b



0






hsa-mir-190


MPC Prostate Dhanasekaran
8




hsa-mir-219-1-3p

0


MPC Prostate Dhanasekaran
13


hsa-mir-1257



0


MPC Prostate Dhanasekaran
12


hsa-mir-139-5p

hsa-mir-340

0


MPC Prostate Dhanasekaran
14


hsa-mir-133b

hsa-mir-502-5p

0






hsa-mir-133a


MPC Prostate Dhanasekaran
11




hsa-mir-34a
Causal
0


MPC Prostate Dhanasekaran
10




hsa-mir-554

0


MPC Prostate Dhanasekaran
22


hsa-mir-105

hsa-mir-382

0


MPC Prostate Dhanasekaran
17




hsa-mir-1266

0


MPC Prostate Dhanasekaran
16


hsa-mir-944

hsa-mir-101
Causal
0


MPC Prostate Dhanasekaran
19


hsa-mir-661



0


MPC Prostate Dhanasekaran
23




hsa-mir-302f

0


GCT Seminoma Korkola
32




hsa-mir-608

0


MPC Prostate Dhanasekaran
34


hsa-mir-544

hsa-mir-1279

0






hsa-mir-544b


MPC Prostate Dhanasekaran
18




hsa-mir-1263

0


PPC Prostate Dhanasekaran
29




hsa-mir-509-3p

0








hsa-mir-509-3-5p


PPC Prostate Dhanasekaran
27


hsa-mir-654-3p

hsa-mir-1279

0


PPC Prostate Dhanasekaran
20




hsa-mir-1207-5p

0


PPC Prostate Dhanasekaran
22


hsa-mir-802

hsa-mir-561

0


PPC Prostate Dhanasekaran
23


hsa-mir-376a

hsa-mir-518a-5p

0






hsa-mir-376b






hsa-mir-376c


PPC Prostate Dhanasekaran
28


hsa-mir-544

hsa-mir-944

0






hsa-mir-544b


PPC Prostate Dhanasekaran
41


hsa-mir-18a

hsa-mir-369-3p

0






hsa-mir-18b


PPC Prostate Dhanasekaran
1


hsa-mir-520d-5p

hsa-mir-561

0






hsa-mir-524-5p


PPC Prostate Dhanasekaran
0


hsa-mir-558



0


PPC Prostate Dhanasekaran
3


hsa-mir-624

hsa-mir-578

0


PPC Prostate Dhanasekaran
2


hsa-mir-217

hsa-mir-641

0


PPC Prostate Dhanasekaran
4


hsa-mir-760

hsa-mir-939

0


PPC Prostate Dhanasekaran
7




hsa-mir-1202

0


PPC Prostate Dhanasekaran
9


hsa-mir-153

hsa-mir-661

0


PPC Prostate Dhanasekaran
8




hsa-mir-340

0


PPC Prostate Dhanasekaran
12




hsa-mir-342-3p

0


PPC Prostate Dhanasekaran
11


hsa-mir-628-3p



0


PPC Prostate Dhanasekaran
10


hsa-mir-421

hsa-mir-889

0


PPC Prostate Dhanasekaran
39




hsa-mir-139-3p

0


PPC Prostate Dhanasekaran
38




hsa-mir-607

0


PPC Prostate Dhanasekaran
14


hsa-mir-34a
Causal
hsa-mir-1202

0






hsa-mir-34c-5p






hsa-mir-449a






hsa-mir-449b


PPC Prostate Dhanasekaran
17




hsa-mir-34a
Causal
0


PPC Prostate Dhanasekaran
19
hsa-mir-101*

hsa-mir-548e

hsa-mir-144

0


PPC Prostate Dhanasekaran
31




hsa-mir-515-3p

0


PPC Prostate Dhanasekaran
37




hsa-mir-553

0


PPC Prostate Dhanasekaran
35




hsa-mir-663b

0








hsa-mir-663


PPC Prostate Dhanasekaran
34




hsa-mir-149
Dysregulated
0


PPC Prostate Dhanasekaran
33




hsa-mir-548e

0


PPC Prostate Dhanasekaran
32




hsa-mir-296-5p
Dysregulated
0


BPH Prostate Dhanasekaran
20




hsa-mir-1224-3p

0


BPH Prostate Dhanasekaran
1




hsa-mir-579

0


BPH Prostate Dhanasekaran
5


hsa-mir-1283

hsa-mir-1290

0


BPH Prostate Dhanasekaran
4


hsa-mir-543

hsa-mir-1278

0


BPH Prostate Dhanasekaran
7


hsa-mir-508-5p

hsa-mir-380

0


BPH Prostate Dhanasekaran
6


hsa-mir-648



0


BPH Prostate Dhanasekaran
9




hsa-mir-574-5p

0


BPH Prostate Dhanasekaran
8


hsa-mir-891b

hsa-mir-1246

0


BPH Prostate Dhanasekaran
11


hsa-mir-520d-5p

hsa-mir-369-3p

0






hsa-mir-524-5p


BPH Prostate Dhanasekaran
10


hsa-mir-1290

hsa-mir-624

0


BPH Prostate Dhanasekaran
13
hsa-mir-423-3p



hsa-mir-922

0


BPH Prostate Dhanasekaran
12


hsa-mir-33b

hsa-mir-939

0






hsa-mir-33a


BPH Prostate Dhanasekaran
15


hsa-mir-770-5p



0


BPH Prostate Dhanasekaran
16


hsa-mir-548e

hsa-mir-302f

0


BPH Prostate Dhanasekaran
18




hsa-mir-513a-3p

0


TU Prostate Lapointe
24
hsa-mir-487b

hsa-mir-496

hsa-mir-548g

0


TU Prostate Lapointe
25




hsa-mir-130a

0


TU Prostate Lapointe
26
hsa-mir-566



hsa-mir-663b

0








hsa-mir-663


TU Prostate Lapointe
21




hsa-mir-608

0


TU Prostate Lapointe
23




hsa-mir-25
Dysregulated
0


TU Prostate Lapointe
29




hsa-mir-522

0


TU Prostate Lapointe
40
hsa-mir-369-5p





0


TU Prostate Lapointe
1


hsa-mir-1297
Dysregulated
hsa-mir-590-3p

0






hsa-mir-26a






hsa-mir-26b


TU Prostate Lapointe
0


hsa-mir-874

hsa-mir-219-2-3p

0


OD Brain Bredel
14




hsa-mir-296-5p
Causal
0


TU Prostate Lapointe
4


hsa-mir-532-3p

hsa-mir-185

0


TU Prostate Lapointe
7




hsa-mir-579

0


TU Prostate Lapointe
6




hsa-mir-876-3p

0


TU Prostate Lapointe
9


hsa-mir-208a



0






hsa-mir-208b








































SUPPLEMENTARY TABLE 9





GO Terms Mapping to the Hallmarks of Cancer







Self Sufficiency in Growth Signals










GO:0009967
Positive regulation of signal transduction



GO:0030307
Positive regulation of cell growth



GO:0008284
Positive regulation of cell proliferation



GO:0045787
Positivie regulation of cell cycle



GO:0007165
Signal transduction







Insensitivity to Antigrowth Signals










GO:0009968
Negative regulation of signal transduction



GO:0030308
Negative regulation of cell growth



GO:0008285
Negative regulation of cell proliferation



GO:0045786
Negative regulation of cell cycle



GO:0007165
Signal transduction







Evading Apoptosis










GO:0043069
Negative regulation of apoptosis



GO:0043066
Positive regulation of anti-apoptosis



GO:0045768
Negative regualtion of programmed cell death







Limitless Replicative Potential










GO:0001302
Replicative cell aging



GO:0032206
Positive regualtion of telomere maintenance



GO:0090398
Cellular senescence







Sustained Angiogenesis










GO:0045765
Positive regulation of angiogenesis



GO:0045766
Regulation of angiogenesis



GO:0030949
Positive regulation of vascular endothelial growth




factor receptor signaling pathway



GO:0001570
Vasculogenesis







Tissue Invasion and Metastasis










GO:0042060
Wound healing



GO:0007162
Negative regulation of cell adhesion



GO:0033631
Cell-cell adhesion mediated by integrin



GO:0044331
Cell-cell adhesion mediated by cadherin



GO:0001837
Epithelial to mesenchymal transition



GO:0016477
Cell migration



GO:0048870
Cell motility



GO:0007155
Cell adhesion







Genome Instability and Mutation










GO:0051276
Chromosome organization



GO:0045005
Maintenance of fidelity involved in DNA-dependent




DNA replication



GO:0006281
DNA repair







Tumor Promoting Inflammation










GO:0002419
T-cell mediated cytotoxicity directed against




tumor cell target



GO:0002420
Natural killer cell mediated cytotoxicity directed




against tumor cell target



GO:0002857
Positive regualtion of natural killer cell mediated




immune response to tumor cell



GO:0002842
Positive regualtion of T-cell mediated immune




response to tumor cell



GO:0002367
Cytokine production involved in immune response



GO:0050776
Regulation of immune response







Reprogramming Energy Metabolism










GO:0006096
Glycolysis



GO:0071456
Cellular response to hypoxia







Evading Immune Detection










GO:0002837
Regulation of immune response to tumor cell



GO:0002418
Immune response to tumor cells



GO:0002367
Cytokine production involved in immune response



GO:0050776
Regulation of immune response






















SUPPLEMENTARY TABLE 10









miRvestiagtor

PITA
TargetScan


Co-Expression Signature
miRvestigator miRNA
Validation
PITA miRNA
Validation
miRNA





GL Brain Rickman.31
NA
NA
hsa-let-7e_hsa-let-7f_hsa-let-7g_hsa-
dysregulated
NA





let-7a_hsa-let-7b_hsa-let-7d_hsa-let-





7i_hsa-mir-98_hsa-let-7c


B-CLL Leukemia Haslinger.9
NA
NA
NA
NA
hsa-mir-1245b-







5p_hsa-







mir-1245


SRS Ovarian Hendrix.14
NA
NA
NA
NA
hsa-mir-1290


IDC Breast Radvanyi.24
NA
NA
NA
NA
hsa-mir-1291


TU Prostate Lapointe.37
NA
NA
hsa-mir-199b-3p_hsa-mir-199a-3p
causal
hsa-mir-509-







3p_hsa-







mir-509-3-5p


AD Ovarian Welsh.26
NA
NA
hsa-mir-210
NA
NA


AD Lung Beer.35
NA
NA
hsa-mir-222
causal
NA


AD Lung Bhattacharjee.41
NA
NA
NA
NA
hsa-mir-296-5p


SMCL Lung Bhattacharjee.36
NA
NA
NA
NA
hsa-mir-296-5p


SQ Lung 8hattacharjee.13
NA
NA
NA
NA
hsa-mir-296-5p


AD Lung Bhattacharjee.59
NA
NA
hsa-mir-29b_hsa-mir-29c_hsa-mir-29a
causal
NA


END Ovarian Hendrix.6
NA
NA
hsa-mir-29b_hsa-mir-29c_hsa-mir-29a
dysregulated
hsa-mir-890


CCC Ovarian Hendrix.11
hsa-mir-638
NA
hsa-mir-29b_hsa-mir-29c_hsa-mir-29a
dysregulated
hsa-mir-602


AD Lung Beer.31
hsa-mir-29b_hsa-mir-
causal
hsa-mir-29b_hsa-mir-29c_hsa-mir-29a
causal
hsa-mir-29b



29c_hsa-mir-29a


CA Colon Graudens.35
NA
NA
hsa-mir-325
NA
NA


SMCL Lung Bhattacharjee.61
NA
NA
NA
NA
hsa-mir-331-3p


COID Lung Bhattacharjee.24
NA
NA
NA
NA
hsa-mir-342-5p


AD Lung Stearman.19
NA
NA
NA
NA
hsa-mir-370


GCT Seminoma Korkola.4
NA
NA
NA
NA
hsa-mir-







376a_hsa-mir-







376b_hsa-mir-376c


CA Breast Sorlie.23
NA
NA
NA
NA
hsa-mir-423-5p


HSCC Head-Neck Chung.1
hsa-mir-29b_hsa-mir-
dysregulated
hsa-mir-767-5p
NA
hsa-mir-450b-5p



29c_hsa-mir-29a


CA Breast Richardson.55
NA
NA
hsa-mir-130b_hsa-mir-301a_hsa-mir-
NA
hsa-mir-





301b_hsa-mir-130a_hsa-mir-454

544_hsa-







mir-544b


MM Myeloma Zhan.33
NA
NA
NA
NA
hsa-mir-507


CA Bladder Dyrskjot.82
NA
NA
hsa-mir-519d
NA
hsa-mir-656


ME Melanoma Hoek.50
NA
NA
hsa-mir-548c-3p
NA
NA


AD Ovarian Welsh.1
NA
NA
NA
NA
hsa-mir-548d-3p


AD Ovarian Welsh.16
NA
NA
NA
NA
hsa-mir-548I


CA Colon Graudens.40
NA
NA
hsa-mir-507_hsa-mir-557
NA
hsa-mir-369-3p


SQ Lung Bhattacharjee.23
NA
NA
NA
NA
hsa-mir-586


END Ovarian Hendrix.58
hsa-mir-621
NA
NA
NA
NA


GL Brain Rickman.8
NA
NA
NA
NA
hsa-mir-634


AC Brain Sun.5
hsa-mir-523
NA
NA
NA
hsa-mir-637


AD Lung Beer.32
NA
NA
hsa-mir-656
NA
NA


GL Brain Rickman.2
hsa-mir-718
NA
NA
NA
NA


B-CLL Leukemia Haslinger.27
NA
NA
hsa-mir-760
NA
NA


AD Ovarian Welsh.20
NA
NA
hsa-mir-767-5p
NA
NA


SQ Lung Bhattacharjee.44
hsa-mir-4285
NA
hsa-mir-767-5p
NA
NA


COID Lung Bhattacharjee.92
NA
NA
NA
NA
hsa-mir-920


END Ovarian Hendrix.22
NA
NA
hsa-mir-15b_hsa-mir-15a_hsa-mir-
dysregulated
hsa-mir-944





16_hsa-mir-497_hsa-mir-195












Co-Expression Signature
TargetScan Validation
GO and miRNA Overlap





GL Brain Rickman.31
NA
hsa-let-7c_GO: 0001501; hsa-let-7c_GO: 0001503; hsa-let-7c_GO: 0001934; hsa-let-




7c_GO: 0001944; hsa-let-7c_GO: 0001957; hsa-let-7c_GO: 0005979; hsa-let-




7c_GO: 0006928; hsa-let-7c_GO: 0007275; hsa-let-7c_GO: 0007530; hsa-let-




7c_GO: 0008284; hsa-let-7c_GO: 0008544; hsa-let-7c_GO: 0008645; hsa-let-




7c_GO: 0009653; hsa-let-7c_GO: 0009887; hsa-let-7c_GO: 0009888; hsa-let-




7c_GO: 0015749; hsa-let-7c_GO: 0015758; hsa-let-7c_GO: 0016477; hsa-let-




7c_GO: 0030154; hsa-let-7c_GO: 0030198; hsa-let-7c_GO: 0030199; hsa-let-




7c_GO: 0030238; hsa-let-7c_GO: 0031017; hsa-let-7c_GO: 0032501; hsa-let-




7c_GO: 0032502; hsa-let-7c_GO: 0032879; hsa-let-7c_GO: 0032885; hsa-let-




7c_GO: 0032963; hsa-let-7c_GO: 0032964; hsa-let-7c_GO: 0033273; hsa-let-




7c_GO: 0043062; hsa-let-7c_GO: 0043491; hsa-let-7c_GO: 0043588; hsa-let-




7c_GO: 0044236; hsa-let-7c_GO: 0044259; hsa-let-7c_GO: 0048468; hsa-let-




7c_GO: 0048513; hsa-let-7c_GO: 0048731; hsa-let-7c_GO: 0048856; hsa-let-




7c_GO: 0048869; hsa-let-7c_GO: 0051291; hsa-let-7c_GO: 0060324; hsa-let-




7c_GO: 0060343; hsa-let-7c_GO: 0060346; hsa-let-7c_GO: 0065008; hsa-let-




7c_GO: 0070208


B-CLL Leukemia Haslinger.9
NA
hsa-mir-1245_GO: 0042035; hsa-mir-1245_GO: 0042089; hsa-mir-1245_GO: 0042107; hsa-




mir-1245_GO: 0042108; hsa-mir-1245_GO: 0045086


SRS Ovarian Hendrix.14
NA
hsa-mir-1290_GO: 0030193; hsa-mir-1290_GO: 0050818; hsa-mir-1290_GO: 0051917; hsa-




mir-1290_GO: 0051918


IDC Breast Radvanyi.24
NA
hsa-mir-1291_GO: 0001775; hsa-mir-1291_GO: 0002252; hsa-mir-1291_GO: 0002694; hsa-




mir-1291_GO: 0002696; hsa-mir-1291_GO: 0002831; hsa-mir-1291_GO: 0006950; hsa-mir-




1291_GO: 0007596; hsa-mir-1291_GO: 0007599; hsa-mir-1291_GO: 0009615; hsa-mir-




1291_GO: 0019932; hsa-mir-1291_GO: 0031294; hsa-mir-1291_GO: 0031295; hsa-mir-




1291_GO: 0050688; hsa-mir-1291_GO: 0050690; hsa-mir-1291_GO: 0050817; hsa-mir-




1291_GO: 0050848; hsa-mir-1291_GO: 0050849; hsa-mir-1291_GO: 0050863; hsa-mir-




1291_GO: 0050865; hsa-mir-1291_GO: 0050867; hsa-mir-1291_GO: 0050870; hsa-mir-




1291_GO: 0050878; hsa-mir-1291_GO: 0051249; hsa-mir-1291_GO: 0051251; hsa-mir-




1291_GO: 0051346; hsa-mir-1291_GO: 0051707


TU Prostate Lapointe.37
NA
hsa-mir-199a-3p_GO: 0040012


AD Ovarian Welsh.26
NA
hsa-mir-210_GO: 0002521; hsa-mir-210_GO: 0006917; hsa-mir-210_GO: 0006928; hsa-mir-




210_GO: 0012502; hsa-mir-210_GO: 0016477; hsa-mir-210_GO: 0032943; hsa-mir-




210_GO: 0032944; hsa-mir-210_GO: 0040012; hsa-mir-210_GO: 0040017; hsa-mir-




210_GO: 0043065; hsa-mir-210_GO: 0043068; hsa-mir-210_GO: 0045321; hsa-mir-




210_GO: 0045672; hsa-mir-210_GO: 0048518; hsa-mir-210_GO: 0048870; hsa-mir-




210_GO: 0050789; hsa-mir-210_GO: 0050794; hsa-mir-210_GO: 0051674; hsa-mir-




210_GO: 0065007


AD Lung Beer.35
NA
hsa-mir-222_GO: 0007155; hsa-mir-222_GO: 0022610; hsa-mir-222_GO: 0030029


AD Lung Bhattacharjee.41
NA
hsa-mir-296-5p_GO: 0003007; hsa-mir-296-5p_GO: 0006928; hsa-mir-296-




5p_GO: 0009653; hsa-mir-296-5p_GO: 0016043; hsa-mir-296-5p_GO: 0016477; hsa-mir-




296-5p_GO: 0040011; hsa-mir-296-5p_GO: 0048518; hsa-mir-296-5p_GO: 0048870; hsa-




mir-296-5p_GO: 0051674


SMCL Lung Bhattacharjee.36
NA
hsa-mir-296-5p_GO: 0007517; hsa-mir-296-5p_GO: 0009653; hsa-mir-296-




5p_GO: 0009887; hsa-mir-296-5p_GO: 0010269; hsa-mir-296-5p_GO: 0010562; hsa-mir-




296-5p_GO: 0030509; hsa-mir-296-5p_GO: 0031960; hsa-mir-296-5p_GO: 0042127; hsa-




mir-296-5p_GO: 0045937; hsa-mir-296-5p_GO: 0051384


SQ Lung 8hattacharjee.13
NA
hsa-mir-296-5p_GO: 0010884; hsa-mir-296-5p_GO: 0016043; hsa-mir-296-




5p_GO: 0032879


AD Lung Bhattacharjee.59
NA
hsa-mir-29a_GO: 0000904; hsa-mir-29a_GO: 0001501; hsa-mir-29a_GO: 0001568; hsa-mir-




29a_GO: 0001944; hsa-mir-29a_GO: 0007229; hsa-mir-29a_GO: 0007275; hsa-mir-




29a_GO: 0007409; hsa-mir-29a_GO: 0007411; hsa-mir-29a_GO: 0009611; hsa-mir-




29a_GO: 0009653; hsa-mir-29a_GO: 0016477; hsa-mir-29a_GO: 0022008; hsa-mir-




29a_GO: 0030199; hsa-mir-29a_GO: 0032501; hsa-mir-29a_GO: 0032502; hsa-mir-




29a_GO: 0032990; hsa-mir-29a_GO: 0042060; hsa-mir-29a_GO: 0048667; hsa-mir-




29a_GO: 0048812; hsa-mir-29a_GO: 0048858


END Ovarian Hendrix.6
NA
hsa-mir-29a_GO: 0001501; hsa-mir-29a_GO: 0001568; hsa-mir-29a_GO: 0001944; hsa-mir-




29a_GO: 0007167; hsa-mir-29a_GO: 0007178; hsa-mir-29a_GO: 0007179; hsa-mir-




29a_GO: 0007275; hsa-mir-29a_GO: 0009653; hsa-mir-29a_GO: 0030154; hsa-mir-




29a_GO: 0030198; hsa-mir-29a_GO: 0030199; hsa-mir-29a_GO: 0032501; hsa-mir-




29a_GO: 0032502; hsa-mir-29a_GO: 0043062; hsa-mir-29a_GO: 0048513; hsa-mir-




29a_GO: 0048731; hsa-mir-29a_GO: 0048856; hsa-mir-29a_GO: 0051674


CCC Ovarian Hendrix.11
NA
hsa-mir-29a_GO: 0007409; hsa-mir-29a_GO: 0007411; hsa-mir-29a_GO: 0009887; hsa-mir-




29a_GO: 0030198; hsa-mir-29a_GO: 0031175; hsa-mir-29a_GO: 0032990; hsa-mir-




29a_GO: 0048513; hsa-mir-29a_GO: 0048667; hsa-mir-29a_GO: 0048812; hsa-mir-




29a_GO: 0048858


AD Lung Beer.31
causal
hsa-mir-29b_GO: 0009404; hsa-mir-29b_GO: 0030199; hsa-mir-29b_GO: 0032963; hsa-mir-




29b_GO: 0032964; hsa-mir-29b_GO: 0044236; hsa-mir-29b_GO: 0044259


CA Colon Graudens.35
NA
hsa-mir-325_GO: 0006520; hsa-mir-325_GO: 0051186


SMCL Lung Bhattacharjee.61
NA
hsa-mir-331-3p_GO: 0000902; hsa-mir-331-3p_GO: 0000904; hsa-mir-331-




3p_GO: 0001775; hsa-mir-331-3p_GO: 0002376; hsa-mir-331-3p_GO: 0002520; hsa-mir-




331-3p_GO: 0002682; hsa-mir-331-3p_GO: 0002684; hsa-mir-331-3p_GO: 0002694; hsa-




mir-331-3p_GO: 0002695; hsa-mir-331-3p_GO: 0002696; hsa-mir-331-




3p_GO: 0006464; hsa-mir-331-3p_GO: 0006468; hsa-mir-331-3p_GO: 0006935; hsa-mir-




331-3p_GO: 0007154; hsa-mir-331-3p_GO: 0007155; hsa-mir-331-3p_GO: 0007166; hsa-




mir-331-3p_GO: 0007167; hsa-mir-331-3p_GO: 0007169; hsa-mir-331-




3p_GO: 0007264; hsa-mir-331-3p_GO: 0007265; hsa-mir-331-3p_GO: 0007267; hsa-mir-




331-3p_GO: 0007268; hsa-mir-331-3p_GO: 0007399; hsa-mir-331-3p_GO: 0007507; hsa-




mir-331-3p_GO: 0007596; hsa-mir-331-3p_GO: 0007599; hsa-mir-331-




3p_GO: 0009605; hsa-mir-331-3p_GO: 0009653; hsa-mir-331-3p_GO: 0009719; hsa-mir-




331-3p_GO: 0009725; hsa-mir-331-3p_GO: 0009887; hsa-mir-331-3p_GO: 0010518; hsa-




mir-331-3p_GO: 0010863; hsa-mir-331-3p_GO: 0016310; hsa-mir-331-




3p_GO: 0019226; hsa-mir-331-3p_GO: 0021700; hsa-mir-331-3p_GO: 0022008; hsa-mir-




331-3p_GO: 0022610; hsa-mir-331-3p_GO: 0030029; hsa-mir-331-3p_GO: 0030097; hsa-




mir-331-3p_GO: 0030154; hsa-mir-331-3p_GO: 0030182; hsa-mir-331-




3p_GO: 0030323; hsa-mir-331-3p_GO: 0030324; hsa-mir-331-3p_GO: 0031100; hsa-mir-




331-3p_GO: 0031589; hsa-mir-331-3p_GO: 0032989; hsa-mir-331-3p_GO: 0040011; hsa-




mir-331-3p_GO: 0042060; hsa-mir-331-3p_GO: 0042110; hsa-mir-331-




3p_GO: 0042330; hsa-mir-331-3p_GO: 0043412; hsa-mir-331-3p_GO: 0043434; hsa-mir-




331-3p_GO: 0045321; hsa-mir-331-3p_GO: 0046578; hsa-mir-331-3p_GO: 0046649; hsa-




mir-331-3p_GO: 0048468; hsa-mir-331-3p_GO: 0048534; hsa-mir-331-




3p_GO: 0048699; hsa-mir-331-3p_GO: 0048731; hsa-mir-331-3p_GO: 0048869; hsa-mir-




331-3p_GO: 0050817; hsa-mir-331-3p_GO: 0050863; hsa-mir-331-3p_GO: 0050865; hsa-




mir-331-3p_GO: 0050866; hsa-mir-331-3p_GO: 0050867; hsa-mir-331-




3p_GO: 0050870; hsa-mir-331-3p_GO: 0050878; hsa-mir-331-3p_GO: 0051249; hsa-mir-




331-3p_GO: 0051251


COID Lung Bhattacharjee.24
NA
hsa-mir-342-5p_GO: 0007584; hsa-mir-342-5p_GO: 0009991; hsa-mir-342-




5p_GO: 0010269; hsa-mir-342-5p_GO: 0030198; hsa-mir-342-5p_GO: 0031667; hsa-mir-




342-5p_GO: 0031960; hsa-mir-342-5p_GO: 0043062; hsa-mir-342-5p_GO: 0050900; hsa-




mir-342-5p_GO: 0051384


AD Lung Stearman.19
NA
hsa-mir-370_GO: 0001570


GCT Seminoma Korkola.4
NA
hsa-mir-376c_GO: 0007157; hsa-mir-376c_GO: 0007166; hsa-mir-376c_GO: 0009605; hsa-




mir-376c_GO: 0016477; hsa-mir-376c_GO: 0030595; hsa-mir-376c_GO: 0032102; hsa-mir-




376c_GO: 0032501; hsa-mir-376c_GO: 0032879; hsa-mir-376c_GO: 0040011; hsa-mir-




376c_GO: 0040012; hsa-mir-376c_GO: 0045123; hsa-mir-376c_GO: 0048870; hsa-mir-




376c_GO: 0050900; hsa-mir-376c_GO: 0050901; hsa-mir-376c_GO: 0051270; hsa-mir-




376c_GO: 0051674


CA Breast Sorlie.23
NA
hsa-mir-423-5p_GO: 0000165; hsa-mir-423-5p_GO: 0006928; hsa-mir-423-




5p_GO: 0007165; hsa-mir-423-5p_GO: 0007166; hsa-mir-423-5p_GO: 0007167; hsa-mir-




423-5p_GO: 0007169; hsa-mir-423-5p_GO: 0007243; hsa-mir-423-5p_GO: 0007266; hsa-




mir-423-5p_GO: 0008283; hsa-mir-423-5p_GO: 0008284; hsa-mir-423-




5p_GO: 0016043; hsa-mir-423-5p_GO: 0016192; hsa-mir-423-5p_GO: 0030334; hsa-mir-




423-5p_GO: 0032570; hsa-mir-423-5p_GO: 0032879; hsa-mir-423-5p_GO: 0040011; hsa-




mir-423-5p_GO: 0040012; hsa-mir-423-5p_GO: 0042127; hsa-mir-423-




5p_GO: 0043491; hsa-mir-423-5p_GO: 0045807; hsa-mir-423-5p_GO: 0048518; hsa-mir-




423-5p_GO: 0048522; hsa-mir-423-5p_GO: 0048583; hsa-mir-423-5p_GO: 0051050; hsa-




mir-423-5p_GO: 0051270; hsa-mir-423-5p_GO: 0051272; hsa-mir-423-5p_GO: 0065007


HSCC Head-Neck Chung.1
NA
hsa-mir-450b-5p_GO: 0001503; hsa-mir-450b-5p_GO: 0001934; hsa-mir-450b-




5p_GO: 0030154; hsa-mir-450b-5p_GO: 0030510; hsa-mir-450b-5p_GO: 0030514; hsa-mir-




450b-5p_GO: 0033138; hsa-mir-450b-5p_GO: 0048869


CA Breast Richardson.55
NA
hsa-mir-454_GO: 0001701; hsa-mir-454_GO: 0009653; hsa-mir-454_GO: 0009790; hsa-mir-




454_GO: 0048514


MM Myeloma Zhan.33
NA
hsa-mir-507_GO: 0006350; hsa-mir-507_GO: 0010556; hsa-mir-507_GO: 0031326; hsa-mir-




507_GO: 0044237; hsa-mir-507_GO: 0044238; hsa-mir-507_GO: 0045449


CA Bladder Dyrskjot.82
NA
hsa-mir-519d_GO: 0030514; hsa-mir-519d_GO: 0046631; hsa-mir-519d_GO: 0048518; hsa-




mir-519d_GO: 0048583; hsa-mir-519d_GO: 0050789; hsa-mir-519d_GO: 0065007


ME Melanoma Hoek.50
NA
hsa-mir-548c-3p_GO: 0000902; hsa-mir-548c-3p_GO: 0000904; hsa-mir-548c-




3p_GO: 0001525; hsa-mir-548c-3p_GO: 0001568; hsa-mir-548c-3p_GO: 0001944; hsa-mir-




548c-3p_GO: 0006357; hsa-mir-548c-3p_GO: 0006366; hsa-mir-548c-3p_GO: 0006464; hsa-




mir-548c-3p_GO: 0006886; hsa-mir-548c-3p_GO: 0006913; hsa-mir-548c-




3p_GO: 0006928; hsa-mir-548c-3p_GO: 0007154; hsa-mir-548c-3p_GO: 0007167; hsa-mir-




548c-3p_GO: 0007169; hsa-mir-548c-3p_GO: 0007275; hsa-mir-548c-3p_GO: 0007389; hsa-




mir-548c-3p_GO: 0007399; hsa-mir-548c-3p_GO: 0007409; hsa-mir-548c-




3p_GO: 0007411; hsa-mir-548c-3p_GO: 0007417; hsa-mir-548c-3p_GO: 0007611; hsa-mir-




548c-3p_GO: 0008104; hsa-mir-548c-3p_GO: 0008283; hsa-mir-548c-3p_GO: 0008285; hsa-




mir-548c-3p_GO: 0009653; hsa-mir-548c-3p_GO: 0009790; hsa-mir-548c-




3p_GO: 0009887; hsa-mir-548c-3p_GO: 0009888; hsa-mir-548c-3p_GO: 0009891; hsa-mir-




548c-3p_GO: 0009893; hsa-mir-548c-3p_GO: 0009987; hsa-mir-548c-3p_GO: 0010001; hsa-




mir-548c-3p_GO: 0010557; hsa-mir-548c-3p_GO: 0010604; hsa-mir-548c-




3p_GO: 0010628; hsa-mir-548c-3p_GO: 0014812; hsa-mir-548c-3p_GO: 0015031; hsa-mir-




548c-3p_GO: 0016477; hsa-mir-548c-3p_GO: 0019538; hsa-mir-548c-3p_GO: 0022008; hsa-




mir-548c-3p_GO: 0030154; hsa-mir-548c-3p_GO: 0030182; hsa-mir-548c-




3p_GO: 0030326; hsa-mir-548c-3p_GO: 0030334; hsa-mir-548c-3p_GO: 0031325; hsa-mir-




548c-3p_GO: 0031328; hsa-mir-548c-3p_GO: 0032501; hsa-mir-548c-3p_GO: 0032502; hsa-




mir-548c-3p_GO: 0032990; hsa-mir-548c-3p_GO: 0033036; hsa-mir-548c-




3p_GO: 0034613; hsa-mir-548c-3p_GO: 0035107; hsa-mir-548c-3p_GO: 0035108; hsa-mir-




548c-3p_GO: 0035113; hsa-mir-548c-3p_GO: 0035295; hsa-mir-548c-3p_GO: 0040011; hsa-




mir-548c-3p_GO: 0040012; hsa-mir-548c-3p_GO: 0042063; hsa-mir-548c-




3p_GO: 0042127; hsa-mir-548c-3p_GO: 0042733; hsa-mir-548c-3p_GO: 0043412; hsa-mir-




548c-3p_GO: 0044238; hsa-mir-548c-3p_GO: 0044267; hsa-mir-548c-3p_GO: 0045184; hsa-




mir-548c-3p_GO: 0045595; hsa-mir-548c-3p_GO: 0045596; hsa-mir-548c-




3p_GO: 0045597; hsa-mir-548c-3p_GO: 0045778; hsa-mir-548c-3p_GO: 0045893; hsa-mir-




548c-3p_GO: 0045935; hsa-mir-548c-3p_GO: 0045941; hsa-mir-548c-3p_GO: 0045944; hsa-




mir-548c-3p_GO: 0046907; hsa-mir-548c-3p_GO: 0048468; hsa-mir-548c-




3p_GO: 0048513; hsa-mir-548c-3p_GO: 0048514; hsa-mir-548c-3p_GO: 0048518; hsa-mir-




548c-3p_GO: 0048519; hsa-mir-548c-3p_GO: 0048522; hsa-mir-548c-3p_GO: 0048523; hsa-




mir-548c-3p_GO: 0048598; hsa-mir-548c-3p_GO: 0048646; hsa-mir-548c-




3p_GO: 0048667; hsa-mir-548c-3p_GO: 0048699; hsa-mir-548c-3p_GO: 0048705; hsa-mir-




548c-3p_GO: 0048731; hsa-mir-548c-3p_GO: 0048736; hsa-mir-548c-3p_GO: 0048812; hsa-




mir-548c-3p_GO: 0048846; hsa-mir-548c-3p_GO: 0048856; hsa-mir-548c-




3p_GO: 0048858; hsa-mir-548c-3p_GO: 0048869; hsa-mir-548c-3p_GO: 0048870; hsa-mir-




548c-3p_GO: 0050789; hsa-mir-548c-3p_GO: 0050793; hsa-mir-548c-3p_GO: 0050794; hsa-




mir-548c-3p_GO: 0051093; hsa-mir-548c-3p_GO: 0051094; hsa-mir-548c-




3p_GO: 0051101; hsa-mir-548c-3p_GO: 0051169; hsa-mir-548c-3p_GO: 0051239; hsa-mir-




548c-3p_GO: 0051254; hsa-mir-548c-3p_GO: 0051270; hsa-mir-548c-3p_GO: 0051641; hsa-




mir-548c-3p_GO: 0051649; hsa-mir-548c-3p_GO: 0051674; hsa-mir-548c-




3p_GO: 0060070; hsa-mir-548c-3p_GO: 0060173; hsa-mir-548c-3p_GO: 0060284; hsa-mir-




548c-3p_GO: 0065007


AD Ovarian Welsh.1
NA
hsa-mir-548d-3p_GO: 0006950; hsa-mir-548d-3p_GO: 0007611; hsa-mir-548d-




3p_GO: 0009605; hsa-mir-548d-3p_GO: 0009719; hsa-mir-548d-3p_GO: 0009725; hsa-mir-




548d-3p_GO: 0009889; hsa-mir-548d-3p_GO: 0010468; hsa-mir-548d-




3p_GO: 0010604; hsa-mir-548d-3p_GO: 0019219; hsa-mir-548d-3p_GO: 0019222; hsa-mir-




548d-3p_GO: 0031323; hsa-mir-548d-3p_GO: 0031326; hsa-mir-548d-




3p_GO: 0031440; hsa-mir-548d-3p_GO: 0031442; hsa-mir-548d-3p_GO: 0043066; hsa-mir-




548d-3p_GO: 0043069; hsa-mir-548d-3p_GO: 0048168; hsa-mir-548d-




3p_GO: 0050685; hsa-mir-548d-3p_GO: 0051252; hsa-mir-548d-3p_GO: 0060211; hsa-mir-




548d-3p_GO: 0060213; hsa-mir-548d-3p_GO: 0060255


AD Ovarian Welsh.16
NA
hsa-mir-548I_GO: 0006066; hsa-mir-548I_GO: 0008202; hsa-mir-548I_GO: 0055114


CA Colon Graudens.40
NA
hsa-mir-557_GO: 0048519; hsa-mir-557_GO: 0048523


SQ Lung Bhattacharjee.23
NA
hsa-mir-586_GO: 0001910; hsa-mir-586_GO: 0001912; hsa-mir-586_GO: 0031343; hsa-mir-




586_GO: 0042492; hsa-mir-586_GO: 0045577; hsa-mir-586_GO: 0045586; hsa-mir-




586_GO: 0045588; hsa-mir-586_GO: 0046629; hsa-mir-586_GO: 0046643; hsa-mir-




586_GO: 0046645


END Ovarian Hendrix.58
NA
hsa-mir-621_GO: 0006952; hsa-mir-621_GO: 0006954; hsa-mir-621_GO: 0009611


GL Brain Rickman.8
NA
hsa-mir-634_GO: 0001661; hsa-mir-634_GO: 0007611; hsa-mir-634_GO: 0007613; hsa-mir-




634_GO: 0014070; hsa-mir-634_GO: 0031646; hsa-mir-634_GO: 0032225; hsa-mir-




634_GO: 0050806; hsa-mir-634_GO: 0051971


AC Brain Sun.5
NA
hsa-mir-637_GO: 0002292; hsa-mir-637_GO: 0002293; hsa-mir-637_GO: 0002294; hsa-mir-




637_GO: 0042093


AD Lung Beer.32
NA
hsa-mir-656_GO: 0001525; hsa-mir-656_GO: 0001568; hsa-mir-656_GO: 0001570; hsa-mir-




656_GO: 0001944; hsa-mir-656_GO: 0003013; hsa-mir-656_GO: 0006928; hsa-mir-




656_GO: 0007166; hsa-mir-656_GO: 0007275; hsa-mir-656_GO: 0007599; hsa-mir-




656_GO: 0008015; hsa-mir-656_GO: 0008283; hsa-mir-656_GO: 0009653; hsa-mir-




656_GO: 0016477; hsa-mir-656_GO: 0030154; hsa-mir-656_GO: 0030334; hsa-mir-




656_GO: 0030335; hsa-mir-656_GO: 0032501; hsa-mir-656_GO: 0032502; hsa-mir-




656_GO: 0032879; hsa-mir-656_GO: 0040011; hsa-mir-656_GO: 0040012; hsa-mir-




656_GO: 0042060; hsa-mir-656_GO: 0042127; hsa-mir-656_GO: 0048514; hsa-mir-




656_GO: 0048522; hsa-mir-656_GO: 0048583; hsa-mir-656_GO: 0048646; hsa-mir-




656_GO: 0048731; hsa-mir-656_GO: 0048856; hsa-mir-656_GO: 0048870; hsa-mir-




656_GO: 0050878; hsa-mir-656_GO: 0050900; hsa-mir-656_GO: 0051150; hsa-mir-




656_GO: 0051270; hsa-mir-656_GO: 0051272; hsa-mir-656_GO: 0051385; hsa-mir-




656_GO: 0051412; hsa-mir-656_GO: 0051674; hsa-mir-656_GO: 0070374


GL Brain Rickman.2
NA
hsa-mir-718_GO: 0002699; hsa-mir-718_GO: 0002703; hsa-mir-718_GO: 0006957; hsa-mir-




718_GO: 0010886; hsa-mir-718_GO: 0019060; hsa-mir-718_GO: 0030581; hsa-mir-




718_GO: 0046719; hsa-mir-718_GO: 0046967; hsa-mir-718_GO: 0051708


B-CLL Leukemia
NA
hsa-mir-760_GO: 0006323; hsa-mir-760_GO: 0006333; hsa-mir-760_GO: 0006334; hsa-mir-


Haslinger.27

760_GO: 0031497; hsa-mir-760_GO: 0034728; hsa-mir-760_GO: 0065004


AD Ovarian Welsh.20
NA
hsa-mir-767-5p_GO: 0000902; hsa-mir-767-5p_GO: 0000904; hsa-mir-767-




5p_GO: 0001501; hsa-mir-767-5p_GO: 0001944; hsa-mir-767-5p_GO: 0007229; hsa-mir-




767-5p_GO: 0007409; hsa-mir-767-5p_GO: 0007411; hsa-mir-767-5p_GO: 0009605; hsa-




mir-767-5p_GO: 0009888; hsa-mir-767-5p_GO: 0016043; hsa-mir-767-




5p_GO: 0022008; hsa-mir-767-5p_GO: 0030030; hsa-mir-767-5p_GO: 0030198; hsa-mir-




767-5p_GO: 0030199; hsa-mir-767-5p_GO: 0031175; hsa-mir-767-5p_GO: 0032501; hsa-




mir-767-5p_GO: 0032989; hsa-mir-767-5p_GO: 0032990; hsa-mir-767-




5p_GO: 0040011; hsa-mir-767-5p_GO: 0042246; hsa-mir-767-5p_GO: 0043062; hsa-mir-




767-5p_GO: 0043588; hsa-mir-767-5p_GO: 0048468; hsa-mir-767-5p_GO: 0048666; hsa-




mir-767-5p_GO: 0048667; hsa-mir-767-5p_GO: 0048731; hsa-mir-767-




5p_GO: 0048812; hsa-mir-767-5p_GO: 0048856; hsa-mir-767-5p_GO: 0048858


SQ Lung Bhattacharjee.44
NA
hsa-mir-767-5p_GO: 0008544; hsa-mir-767-5p_GO: 0009888; hsa-mir-767-




5p_GO: 0030198; hsa-mir-767-5p_GO: 0030199; hsa-mir-767-5p_GO: 0043062; hsa-mir-




767-5p_GO: 0043588


COID Lung Bhattacharjee.92
NA
hsa-mir-920_GO: 0007154; hsa-mir-920_GO: 0030336; hsa-mir-920_GO: 0050865; hsa-mir-




920_GO: 0051271


END Ovarian Hendrix.22
NA
hsa-mir-944_GO: 0010817


















SUPPLEMENTARY TABLE 11









Co-Expresston Cluster












Gene Ontology (GO)
Num-

PubMed














miRNA
ID
Term
Tissue
Dataset
ber
Full Cancer Name
ID

















hsa-miR-9
GO:0034641
Cellular nitrogen compound metabolic process
Breast
IDC Breast Radvanyl
16
Invasive Ductal Carcinoma (Radvanyl et al., 2005)
16043716





Lung
AD Lung Beer
11
Adenocarcinoma (Beer et al., 2002)
12118244


hsa-miR-23a/b
GO:0016071
mRNA metabolic process
Lung
AD Lung Bhattacharjee
69
Adenocarcinoma (Bhattacharjee et al., 2001)
11707567





Myeloma
MM Myeloma Zhan
43
Multiple Myeloma (Zhan et al., 2002)
11861292


hsa-miR-29a/b/c
GO:0006928
Cellular component movement
Head & Neck
HSCC Head-Neck Chung
1
Head-Neck Squamous Cell Carcinoma (Chung et al.,
15144956








2004)



GO:0030198
Extracellular matrix organization
Lung
AD Lung Beer
31
Adenocarcinoma (Beer et al., 2002)
12118244





Lung
AD Lung Bhattacharjee
59
Adenocarcinoma (Bhattacharjee et al., 2001)
11707567





Ovarian
CCC Ovarian HENDrix
11
Clear Cell Carcinoma (HENDrix et al., 2006)
16452189





Ovarian
END Ovarian HENDrix
6
ENDometrioid Adenocarcinoma (HENDrix et al., 2006)
16452189


hsa-miR-130a
GO:0009611
Response to wounding
Breast
CA Breast Richardson
55
Carcinoma (Richardson et al., 2006)
16473279





Prostate
TU Prostate Lapointe
25
Primary Tumor (Lapointe et al., 2004)
14711987


hsa-miR-183
GO:0001501
Skeletal system development
Myeloma
MM Myeloma Zhan
21
Multiple Myeloma (Zhan et al., 7002)
11861292



GO:0001503
Ossification
Germ Cell
GCT Seminoma Korkola
45
Germ Cell Tumor (Korkola et al., 2006)
16424014



GO:0060348
Bone development


hsa-miR-296-5p
GO:0006928
Cellular component movement
Germ Cell
GCT Seminoma Korkola
69
Germ Cell Tumor (Korkola et al., 2006)
16424014



GO:0007155
Cell adhesion
Lung
AD Lung Bhattacharjee
41
Adenocarcinoma (Bhattacharjee et al., 2001)
11707567



GO:0009653
Anatomical structure morphogenesis
Lung
SMCL Lung Bhattacharjee
36
Small Cell Lung Cancer (Bhattacharjee et al., 2001)
11707567



GO:0030036
Actin cytoskeleton organization
Lung
SQ Lung Bhattacharjee
13
Squamous Cell Lung Carcinoma (Bhattacharjee et al.,
11707567








2001)



GO:0042127
Regulation of cell proliferation



GO:0051384
Response to glucocorticoid stimulus


hsa-miR-338-5p
GO:0000075
Cell cycle checkpoint
Germ Cell
GCT Seminoma Korkola
88
Germ Cell Tumor (Korkola et al., 2006)
16424014



GO:0000278
Mitotic cell cycle
Lung
AD Lung Bhattacharjee
0
Adenocarcinoma (Bhattacharjee et al., 2001)
11707567



GO:0006974
Response to DNA damage stimulus
Mesothelioma
MPM Mesothelioma Gordon
44
Malignant Mesothelioma (Gordon et al., 2005)
15920167



GO:0008152
Metabolic process
Ovarian
AD Ovarian Welsh
14
Adenocarcinoma (Welsh et al., 2001)
11158614


hsa-miR-369-5p
GO:0008152
Metabolic process
Brain
GBM Brain Liang
18
Glioblastoma Multiforme (Liang et al., 2005)
15827123



GO:0019538
Protein metabolic process
Prostate
TU Prostate Lapointe
40
Primary Tumor (Lapointe et al., 2004)
14711987



GO:0009987
Cellular process



GO:0044237
Cellular metabolic process


hsa-miR-487b
GO:0031018
ENDocrine pancreas development
Ovarian
END Ovarian HENDrix
18
ENDometrioid Adenocarcinoma (HENDrix et al., 2006)
16452189



GO:0019083
Viral transcription
Renal
RCCC Renal Lenburg
2
Clear Cell Renal Cell Carcinoma (Lenburg et al., 2003)
14641932



GO:0019058
Viral infectious cycle



GO:0006415
Translational termination



GO:0006414
Translational elongation


hsa-miR-495
GO:0006397
mRNA procossing
Head & Neck
HSCC Head-Neck Cromer
25
Head-Neck Squamous Cell Carcinoma(Cromer et al.,
14676830








2004)



GO:0016071
mRNA metabolic process
Lung
AD Lung Bhattacharjee
60
Adenocarcinoma (Bhattacharjee et al., 2001)
11707567





Myeloma
MM Myeloma Zhan
17
Multiple Myeloma (Zhan et al., 2002)
11861292


hsa-miR-548c-3p
GO:0008152
Metabolic process
Bladder
CA Bladder Dyrskjot
9
Bladder Carcinoma (Dyrskjot et al., 2004)
15173019



GO:0010467
Gene expression
Bladder
CA Bladder Dyrskjot
13
Bladder Carcinoma (Dyrskjot et al., 2004)
15173019



GO:0016070
RNA metabolic process
Bladder
CA Bladder Dyrskjot
29
Bladder Carcinoma (Dyrskjot et al., 2004)
15173019





Brain
GLB Brain Sun
50
Glioblastoma (Sun et al., 2006)
16616334





Brain
OD Brain Bredel
21
OligodENDroglioma (Bredel et al., 2005)
16204036





Brain
ODGL Brain Sun
50
OligodENDroglioma (Sun et al., 2006)
16616334





Breast
CA Breast Sorlie
12
Carcinoma (Sorlie et al., 2001)
11553815





Germ Cell
GCT Seminoma Korkola
95
Germ Cell Tumor (Korkola el al., 2005)
16424014





Leukemia
B-CLL Leukemia Haslinger
62
Chronic Lymphocytic Leukemia (Haslinger et al., 2004)
15459216





Lung
AD Lung Beer
6
Adenocarcinoma (Beer et al., 2002)
12118244





Lung
AD Lung Bhattacharjee
30
Adenocarcinoma (Bhattacharjee et al., 2001)
11707567





Melanoma
ME Melanoma Hoek
50
Cutaneous melanoma (Hoek et al., 2006)
16827748





Mesothelioma
MPM Mesothelioma Gordon
63
Malignant Mesothelioma (Gordon et al., 2005)
15920167





Myeloma
MM Myeloma Zhan
3
Multiple Myeloma (Zhan et al., 2002)
11861292


hsa-miR-548n
GO:0010467
Gene expression
Bladder
CA Bladder Dyrskjot
37
Bladder Carcinoma (Dyrskjot et al., 2004)
15173019





Germ Cell
GCT Seminoma Korkola
40
Germ Cell Tumor (Korkola et al., 2006)
16424014





Germ Cell
GCT Seminoma Korkola
112
Germ Cell Tumor (Korkola et al., 2006)
16424014





Lung
SMCL Lung Bhattacharjee
22
Small Cell Lung Cancer (Bhattacharjee et at., 2001)
11707567





Lung
SQ Lung Bhattacharjee
22
Squamous Cell Lung Carcinoma (Bhattacharjee et al.,
11707567








2001)





Melanoma
ML Melanoma Talantov
3
Melanoma (Talantov et al., 2005)
16825504


hsa-miR-590-3p
GO:0044237
Cellular metabolic process
Leukemia
B-CLL Leukemia Haslinger
17
Chronic Lymphocytic Leukemia (Haslinger et al., 2004)
15459216





Bladder
CA Bladder Dyrskjot
64
Bladder Carcinoma (Dyrskjot el al., 2004)
15173019





Ovarian
CCC Ovarian HENDrix
42
Clear Cell Carcinoma (HENDrix el al., 2006)
16452189





Germ Cell
GCT Seminoma Korkola
112
Germ Cell Tumor (Korkola et al., 2006)
16424014





Brain
GLB Brain Sun
27
Glioblastoma (Sun et al., 2006)
16616334





Head & Neck
HSCC Head-Neck Chung
6
Head-Neck Squamous Cell Carcinoma (Chung et al.,
15144956








2004)





Myeloma
MM Myeloma Zhan
3
Multiple Myeloma (Zhan et al., 2002)
11861292





Mesothelioma
MPM Mesothelioma Gordon
16
Malignant Mesothelioma (Gordon et al., 2005)
15920167





Mesothelioma
MPM Mesothelioma Gordon
28
Malignant Mesothelioma (Gordon et al., 2005)
15920167





Prostate
TU Prostate Lapointe
1
Primary Tumor (Lapointe et al., 2004)
14711987


hsa-miR-607
GO:0000398
Nuclear mRNA splicing, via spliceosome
Bladder
CA Bladder Dyrskjot
0
Bladder Carcinoma (Dyrskjot et al., 2004)
15173019





Lung
SQ Lung Bhattacharjee
22
Squamous Cell Lung Carcinoma (Bhattacharjee et al.,
11707567








2001)


hsa-miR-656
GO:0001525
Angiogenesis
Bladder
CA Bladder Dyrskjot
82
Bladder Carcinoma (Dyrskjot et al., 2004)
15173019



GO:0001568
Blood vessel development
Lung
AD Lung Beer
32
Adenocarcinoma (Beer et al., 2002)
12118244



GO:0001816
Cytokine production



GO:0006928
Cellular component movement



GO:0006935
Chemotaxis



GO:0006952
Defense response



GO:0006954
Inflammatory response



GO:0006955
Immune response



GO:0007166
Cell surface receptor linked signaling pathway



GO:0008283
Cell proliferation



GO:0009611
Response to wounding



GO:0009653
Anatomical structure morphogenesis



GO:0009887
Organ morphogenesis



GO:0016477
Cell migration



GO:0030334
Regulation of cell migration



GO:0030335
Positive regulation of cell migration



GO:0042060
Wound healing



GO:0042127
Regulation of cell proliferation



GO:0048514
Blood vessel morphogenesis



GO:0048870
Cell motility



GO:0050900
Leukocyte migration



GO:0051272
Positive regulation of cellular component movement


hsa-miR-760
GO:0006334
Nucleosome assembly
Brain
GLB Brain Sun
41
Glioblastoma (Sun et al., 2006)
16616334





Leukemia
B-CLL Leukemia Haslinger
27
Chronic Lymphocytic Leukemia (Haslinger et al., 2004)
15459216





Lung
AD Lung Bhattacharjee
42
Adenocarcinoma (Bhattacharjee et al., 2001)
11707567





Myeloma
MM Myeloma Zhan
29
Multiple Myeloma (Zhan et al., 2002)
11861292


hsa-miR-767-5p
GO:0006928
Cellular component movement
Head & Neck
HSCC Head-Neck Chung
1
Head-Neck Squamous Cell Carcinoma (Chung et al.,
15144956








2004)



GO:0030198
Extracellular matrix organization
Lung
SQ Lung Bhattacharjee
18
Squamous Cell Lung Carcinoma (Bhattacharjee et al.,
11707567








2001)



GO:0030199
Collagen fibril organization
Lung
SQ lung Bhattacharjee
44
Squamous Cell Lung Carcinoma (Bhattacharjee et al.,
11707567








2001)





Ovarian
AD Ovarian Welsh
20
Adenocarcinoma (Walsh et al., 2001)
11158614


hsa-miR-890
GO:0001568
Blood vessel development
Lung
COID Lung Bhattacharjee
36
Carcinoid (Bhattacharjee et al., 2001)
11707567



GO:0001822
Kidney development
Ovarian
END Ovarian HENDrix
6
ENDometrioid Adenocarcinoma (HENDrix et al., 2006)
16452189



GO:0007155
Cell adhesion



GO:0007275
Multicellular organismal development



GO:0017015
Regulation of transforming growth factor beta




receptor signaling pathway


hsa-miR-939
GO:0007267
Cell-cell signaling
Brain
AC Brain Sun
44
Astrocytoma (Sun et al., 2006)
16616334



GO:0007268
Synaptic transmission
Brain
ODGL Brain Sun
2
OligodENDroglioma (Sun et al., 2006)
16616334



GO:0050877
Neurological system process


hsa-miR-944
GO:0003676
Nucleic acid binding
Ovarian
END Ovarian HENDrix
38
ENDometrioid Adenocarcinoma (HENDrix et al., 2006)
16452189



GO:0006139
Nucleobase, nucleoside, nucleotide and nucleic acid
Ovarian
MUC Ovarian HENDrix
15
Mucinous Adenocarcinoma (HENDrix el al., 2006)
16452189




metabolic process



GO:0010467
Gene expression


hsa-miR-1207-5p
GO:0006370
mRNA capping
Brain
GL Brain Rickman
9
Glioma (Rickman el al., 2001)
11559565





Lung
SMCL Lung Bhattacharjee
34
Small Cell Lung Cancer (Bhattacharjee et al., 2001)
11707567


hsa-miR-1275
GO:0007186
G-protein coupled receptor protein signaling
Brain
GLB Brain Sun
29
Glioblastoma (Sun et al., 2006)
:6616334




pathway



GO:0007267
Cell-cell signaling
Lung
AD Lung Beer
43
Adenocarcinoma (Beer et al., 2002)
12118244


hsa-miR-1276
GO:0006334
Nucleosome assembly
Bladder
CA Bladder Dyrskjot
51
Bladder Carcinoma (Dyrskjot et al., 2004)
15173019





Ovarian
END Ovarian HENDrix
35
ENDometrioid Adenocarcinoma (HENDrix et al., 2006)
16452189





Ovarian
SRS Ovarian HENDrix
72
Serous Adenocarcinoma (HENDrix et al., 2006)
16452189


hsa-miR-1291
GO:0007154
Cell communication
Bladder
CA Bladder Dyrskjot
18
Bladder Carcinoma (Dyrskjot et al., 2004)
15173019





Breast
IDC Breast Radvanyl
24
Invasive Ductal Carcinoma (Radvanyl et al., 2005)
16043716























SUPPLEMENTARY TABLE 12












miRNA





PCR



Binding





Fragment



Site in


Gene
Forward Primer
Reverse Primer
Size
Chr
Start
Stop
Amplicon






















COL3A1
TCCATATGTGTTCCTCTTGTTCT
TTATGGGTGTCTGTAAGGAAAAA
912
2
189584785
189585696
Y



SEQ ID NO: 318
SEQ ID NO: 319










COL4A1
CCTGACTCAGCTAATGTCACAA
GCAGCTTGTGCAGTAAGTTTCTT
1366
13
109599362
109600565
Y



SEQ ID NO: 320
SEQ ID NO: 321










COL4A2
GGCCATTTTGGTGCTTATTC
CAGAACCAAGTTTTATTTTGTAGTCG
805
13
109962559
109963363
Y



SEQ ID NO: 322
SEQ ID NO: 323










COL5A2
CAATGAGCACCACCATCAAT
TTGGAAGTCAAACAAAACTCACA
2000
2
189604886
189607040
Y



SEQ ID NO: 324
SEQ ID NO: 325










COL10A1
TCTAAATCTTGTGCTAGAAAAAGCA
CTTTGAACAATGAAAAGCCTTG
1107
6
116546778
116547928
Y



SEQ ID NO: 326
SEQ ID NO: 327










FBN1
TCACCATCCAGAGACCAAATA
CAAAGTGATTTTGGCTGAGTAAA
2593
15
46487885
46490477
Y



SEQ ID NO: 328
SEQ ID NO: 329










LOX
ATAAATCAGTGCCTGGTGTTCTG
ATGAGAATGCAAAGAGGAACA
3450
5
121426789
121430336
Y



SEQ ID NO: 330
SEQ ID NO: 331










MMP2
CCTCTCCACTGCCTTCGATA
CCTCGAACAGATGCCACAAT
1017
16
54096882
54097898
Y



SEQ ID NO: 332
SEQ ID NO: 333










PDGFRB
TTTCTGCTCCTGACGTGTTG
TGAGTGAGAAGCACCAGGTTT
1797
5
149473597
149475393
Y



SEQ ID NO: 334
SEQ ID NO: 335










SERPINH1
CTCAGGGTGCACACAGGAT
CACGCTCCAACAAAATGTCA
712
11
74960780
74961491
Y



SEQ ID NO: 336
SEQ ID NO: 337










SPARC
CTCTTTAACCCTCCCCTTCG
GAGGGGAAATGACATCTGGA
2039
15
151021258
151023296
Y



SEQ ID NO: 338
SEQ ID NO: 339





Recombinant PCR Primers


MMP2_recomb_F GCCACACTTCAGGCTCTTCTC (SEQ ID NO: 340)


MMP2_bubble_del_R GAGAAGAGCCTGAAGTGTGGCcgacaacGGGCAGCCCAAAGCAGGGCTG (SEQ ID NO: 341)


SPARC_recomb_del_F CATAGATTTAAGTGAATACATTAACatgcggtAAAATGAAAATTCTAACCC (SEQ ID NO: 342)


SPARC_recomb_del_R TGTATTCACTTAAATCTATGTaccgcatTTGTCTCCAGGCAGAACAAC (SEQ ID NO: 343)





Claims
  • 1. A method of calculating a risk score for developing cancer comprising (a) obtaining inputs about an individual comprising the level of biomarkers in at least one biological sample from said individual and (b) calculating a cancer risk score from said inputs, wherein said biomarkers comprise one or more miRNA biomarkers selected from FIGS. 12, 13 and 14.
  • 2. A method of evaluating risk for developing cancer comprising (a) obtaining biomarker measurement data, wherein the biomarker measurement data is representative of measurements of biomarkers in a least one biological sample from an individual and (b) evaluating risk for developing cancer based on an output from a model, wherein the model is executed based on an input of the biomarker measurement data, wherein the biomarkers comprise one or more biomarkers selected form FIGS. 12, 13 and 14.
  • 3. A method of evaluating risk for developing cancer comprising (a) obtaining biomarker measurements from at least one biological sample from an individual who is a subject that has not been previously diagnosed as having cancer, (b) comparing the biomarker measurement to normal control levels and (c) evaluating the risk for the individual developing a cancer from the comparison; wherein the biomarkers comprise one or more biomarkers selected from FIGS. 12, 13 and 14.
  • 4. A method of evaluating risk for developing cancer comprising (a) obtaining biomarker measurement data, wherein the biomarker measurement data is representative of measurements of biomarkers in at least one biological sample from an individual and (b) evaluating risk for developing cancer based on an output from a model, wherein the model is executed based on an input of the biomarker measurement data; wherein said biomarkers the biomarkers comprise one or more biomarkers selected from FIGS. 12, 13 and 14.
  • 5. A method of calculating a risk score for cancer progression comprising (a) obtaining inputs about an individual suffering from cancer comprising the level of biomarkers in a least one biological sample from said individual; and (b) calculating a cancer risk score form said inputs, wherein said biomarkers comprise one or more biomarkers selected from FIGS. 12,13 and 14.
  • 6. The method of claim 1, 2, 3, 4, or 5 further comprising advising the individual of the individual's risk of developing cancer or risk of cancer progression.
  • 7. A method of ranking or grouping a population of individuals according to cancer risk comprising (a) obtaining a cancer risk score for individuals comprised within said population, wherein said cancer risk score is calculated according to claim 1 and (b) ranking individuals within the population relative to the remaining individuals in the population or dividing the population into at least two groups, based on factors comprising said obtained cancer risk scores.
  • 8. A diagnostic test system comprising (a) means for obtaining test results comprising levels of biomarkers in at least one biological sample; (b) means for collecting and tracking test results for one or more individual biological samples; (c) means for calculating an cancer risk score from inputs, wherein said inputs comprise measured levels of biomarkers, and further wherein said measured levels of biomarkers comprise the levels of one or more biomarkers selected from FIGS. 12, 13 and 14; and (d) means for reporting said cancer risk score.
  • 9. A diagnostic test system comprising (a) means for obtaining test results data representing levels of multiple biomarkers in at least one biological sample, (b) means for collecting and tracking test results data for one or more individual biological samples (c) means for computing a cancer risk score from biomarker measurement data, wherein said biomarker measurement data is representative of measured levels of biomarkers, and further wherein said measured levels of biomarkers comprise the levels of a panel of one or more biomarkers selected from FIGS. 12, 13 and 14, and (d) means for reporting said index value.
  • 10. A medical diagnostic test system for evaluating risk for developing a cancer or risk for cancer progression comprising (a) a data collection tool adapted to collect biomarker measurement data representative of measurements of one or more biomarkers in at least one biological sample from an individual, (b) an analysis tool comprising a statistical analysis engine adapted to generate a representation of a correlation between a risk for developing a cancer and measurements of the biomarkers, wherein the representation of the correlation is adapted to be executed to generate a result and (c) an index computation tool adapted to analyze the result to determine the individual's risk for developing a cancer or for cancer progression, and represent the result as a cancer risk score; wherein said one or more biomarkers are selected from FIGS. 12, 13 and 14.
  • 11. A computer readable medium having computer executable instructions for evaluating risk for developing a cancer, the computer readable medium comprising (a) a routine, stored on the computer readable medium and adapted to be executed by a processor, to store biomarker measurement data representing a panel of one or more biomarkers and (b) a routine stored on the computer readable medium and adapted to be executed by a processor to analyze the biomarker measurement data to evaluate a risk for developing a cancer or for risk of cancer progression; wherein said biomarkers are one or more biomarkers selected from FIGS. 12, 13 and 14.
  • 12. A kit comprising reagents for measuring a panel of one or more miRNA biomarkers selected from FIGS. 12, 13 and 14, wherein the reagents are primers for reverse transcription of miRNA into DNA, primers for amplification of the DNA, or both primers for reverse transcription of miRNA in the panel and primers for amplification of the reverse transcribed DNA.
  • 13. A kit comprising reagents for detecting a panel of one or more miRNA biomarkers selected from FIGS. 12, 13 and 14, wherein the reagents hybridize to miRNA in the panel.
  • 14. A system for diagnosing susceptibility to cancer in a human subject, the system comprising: (a)at least one processor;(b)at least one computer-readable medium;(c) a susceptibility database operatively coupled to a computer-readable medium of the system and containing information associating measurements of one or more biomarkers selected from FIGS. 12, 13 and 14 and cancer in a population of humans;(d) a measurement tool that receives an input about the human subject and generates information from the input about one or more biomarkers selected from FIGS. 12, 13 and 14 from the human subject; and(e) an analysis tool (routine) that: (i) is operatively coupled to the susceptibility database and the measurement tool,(ii) is stored on a computer-readable medium of the system,(iii) is adapted to be executed on a processor of the system, to compare the information about the human subject with the information about the population in the susceptibility database and generate a conclusion with respect to susceptibility to cancer in the human subject.
  • 15. A system for diagnosing cancer in a human subject, the system comprising: (a)at least one processor;(b)at least one computer-readable medium;(c) a susceptibility database operatively coupled to a computer-readable medium of the system and containing information associating measurements of biomarkers selected from FIGS. 12, 13 and 14 and cancer in a population of humans;(d)a measurement tool that receives an input about the human subject and generates information from the input about one or more biomarkers selected from FIGS. 12, 13 and 14 from the human subject; and(e)an analysis tool (routine) that: (i) is operatively coupled to the susceptibility database and the measurement tool,(ii) is stored on a computer-readable medium of the system,(iii) is adapted to be executed on a processor of the system, to compare the information about the human subject with the information about the population in the susceptibility database and generate a conclusion with respect to the presence of cancer in the human subject.
  • 16. The system according to claim 14 or 15, wherein the input about the human subject is a biological sample from the human subject, and wherein the measurement tool comprises a tool to measure one or more biomarkers selected from FIGS. 12, 13 and 14 in the biological sample, thereby generating biomarker measurements from a human subject.
  • 17. The system of claim 16 wherein the biomarkers are measured by polymerase chain reaction or hybridization to a microarray.
  • 18. The system of claim 14 or 15 further comprising a communication tool operatively coupled to the analysis tool, stored on a computer-readable medium of the system and adapted to be executed on a processor of the system to generate a communication for the human subject, or a medical practitioner for the subject, containing the conclusion with respect to cancer for the subject.
  • 19. The system according to claim 18, wherein the communication tool is operatively connected to the analysis tool or routine and comprises a routine stored on a computer-readable medium of the system and adapted to be executed on a processor of the system, to: generate a communication containing the conclusion; andtransmit the communication to the subject or the medical practitioner, orenable the subject or medical practitioner to access the communication.
  • 20. The system of claim 14, 15, 18 or 19 further comprising: a medical protocol database operatively connected to a computer-readable medium of the system and containing information correlating the conclusion and medical protocols for human subjects at risk for or suffering from cancer; anda medical protocol tool (or routine), operatively connected to the medical protocol database and the analysis tool or routine, stored on a computer-readable medium of the system, and adapted to be executed on a processor of the system, to compare the conclusion from the analysis routine with respect to cancer for the subject and the medical protocol database, and generate a protocol report with respect to the probability that one or more medical protocols in the database will: reduce susceptibility to cancer; ordelay onset of cancer;increase the likelihood of detecting cancer at an early stage to facilitate early treatment; ortreat the cancer.
  • 21. The system according to claim 20, wherein the communication tool is operatively connected to the medical protocol tool or routine, and generates a communication that further includes the protocol report.
  • 22. A method for the prophylactic treatment of a individual at risk for a cancer comprising (a) obtaining a cancer risk score for an individual based on one or more biomarkers selected from FIGS. 12, 13 and 14 and (b) generating prescription treatment data representing a prescription for a treatment regimen to delay or prevent the onset of cancer in the individual identified by the cancer risk score as being at elevated risk for cancer.
  • 23. A method for the therapeutic treatment of a individual suffering from a cancer comprising (a) obtaining a cancer diagnosis based on one or more miRNA biomarkers selected from FIGS. 12, 13 and 14 and (b) generating prescription treatment data representing a prescription for a treatment regimen to treat the cancer in the individual identified by the cancer risk score as being at elevated risk for cancer.
  • 24. The method of claim 22 or 23 wherein the treatment regimen comprises the standard of care for the cancer.
  • 25. The method of claim 22, 23 or 24 wherein the treatment regimen comprises administering a drug that increases the amount of the one or more miRNAs selected from FIGS. 12, 13 and 14.
  • 26. The method of claim 22, 23 or 24 wherein the treatment regimen comprises administering a drug to inhibit the one or more miRNAs or decrease the amount of the one or more miRNAs selected from FIGS. 12, 13 and 14.
  • 27. The method of claim 22, 23, 24, 25 or 26 further comprising (c) treating the individual according to the treatment regimen.
STATEMENT OF GOVERNMENT INTEREST

This invention was made with U.S. Government support under NIH (P50GM076547 and 1R01GM077398-01A2), DoE (DE-FG02-04ER64685)and NSF (DBI-0640950). The U.S. Government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US14/44385 6/26/2014 WO 00
Provisional Applications (2)
Number Date Country
61840255 Jun 2013 US
61888346 Oct 2013 US