This application is a filing under 35 USC 371 of PCT/FR2003/000181 filed Jan. 21, 2003.
The invention relates to a powder product designed to protect casting moulds for cast iron pipes made by centrifugal casting; the casting moulds used are commonly referred to as “shells”.
Coatings used for protection of centrifugal casting shells for cast iron pipes were composed firstly of inoculation products and powder refractory materials, and mixes of silica and bentonite placed by spraying of an aqueous solution. For example, this type of coating is described in Pont-à-Mousson's U.S. Pat. No. 4,058,153.
These products were subsequently replaced by dry spray powders sprayed on the shell before the cast iron was moulded, using the technique referred to as “dry spray”. Regardless of the technique used for their placement, these products are used to create a thermal barrier effect limiting the temperature rise of the shell and thus contributing to increasing its life, and also an inoculating effect on the poured cast iron to control the metallurgical structure of the pipe.
It is well known that insufficient inoculation will lead to the formation of carbide in the cast iron, high shrinkage during cooling and fast mould stripping, which helps to increase productivity. But the parts thus obtained will require subsequent heat treatment that may be expensive.
Depending on the case, it may be preferred to inoculate more to prevent the final heat treatment even though the production rate is lowered, or on the other hand to inoculate only slightly to increase productivity and then apply heat treatment to the cast iron part.
Therefore, the inoculating power of the dry spray may vary within fairly wide limits, however other effects requested from the product are subjected to more constant requirements.
Therefore, dry spray products are usually composed of a mix of several components, including an inoculant with a variable efficiency that may form 30 to 100% of the product, for example a ferro-silicon containing 0.1 to 3% of aluminium and calcium and an inert mineral filler, for example silica or fluorspar that may form between 0 to 70% of the product.
Patent FR 2612097 (Foseco) describes the use of FeSiMg type alloys as treatment agents, with particles electrically charged by friction.
These mixes are in the form of powders with size grading always smaller than 400 μm, but free of fines. For example, a size grading of between 50 and 200 μm is well adapted.
The purpose of the invention is a powder product for the protection of centrifugal casting moulds for cast iron pipes, comprising an inoculating metal alloy and possibly inert mineral powders and a highly reducing metal that is volatile at the temperature of the liquid cast iron.
Products according to prior art used as dry spray for the manufacture of cast iron pipes by centrifugal casting have some disadvantages. The inert mineral filler added to the mix contributes to increasing the risks of making moulds dirty and the formation of inert mineral inclusions in the cast iron that can appear as surface defects on the pipes.
Furthermore, the applicant has observed that although the addition of a strongly reducing agent such as aluminium protects the shells and their life, in some cases, it can increase the risk of occurrence of unacceptable pitting defects on the surface of the pipes.
Therefore, the applicant's objective was to develop products that protect the user from these disadvantages. These products comprise an inoculating alloy, for example based on ferro-silicon, or a mix of inoculating alloys, possibly a mineral filler and a reducing agent with a content of between 0.3 and 18%, composed of a metal that is volatile at the temperature of the liquid cast iron, that may be a metal from column 2 in the Mendeleiev classification, and preferably a metal from column 2a in the periodic table of the elements. The preferred metals are calcium or magnesium or alloys containing at least one of these metals. Silicon alloys are particularly suitable, particularly the CaSi alloys. Thus, the following alloy compositions can be used (by weight):
Si 58-65%; Ca 27-35%; Fe 2-7%; Al 0.4-2%.
The product preferably contains,
Tests carried out by the applicant have shown that ferrous alloys of the FeSiCa type, typically containing more than 10% iron and frequently called “CaSiFer” containing (by weight):
Si 51-58%; Ca 16-20%; Fe 23-27%; Al 0.3-1.5%
and FeSiMg type alloys containing (by weight):
Si 47-53%; Fe 35-48%; Mg 2-12%; Al 0.2-1.5%; Ca 0.1-1.5%, rare earths 0-2%,
give disappointing results, well below the results obtained with mixes according to the invention.
The corresponding quantities of the different constituents in the final mix were evaluated as a function of the defects that can arise as a result of overdoses.
Furthermore, for safety reasons related to preparation of the products, the reducing metals or reducing alloys are not used alone, but rather in the form of a premix with an inert substance, preferably calcium fluoride, magnesium fluoride or a mix of these two fluorides. For maximum efficiency, the strongly reducing metal alloy content in the premix is preferably between 15 and 60%.
The size grading of the products is less than 400 μm, and is preferably less than 250 μm. Fine particles smaller than 40 μm and preferably smaller than 50 μm are excluded to prevent dust emission during use.
A mix was prepared according to prior art with the following constituents:
85% ferro-silicon with 75.2% of Si, 1.3% of Ca and 0.45% of Al, with size grading of between 50 and 200 μm and 15% of fluorspar with a size grading of between 10 and 150 μm.
This product gave satisfactory results when used as a dry spray as a reference test; the pipes were stripped after 55 seconds of cooling and the thickness of ferritic cast iron measured on pipes made in this way was 35 microns. However, the shells were slightly attacked.
A mix according to the invention was prepared from the following constituents:
55% ferro-silicon with 75.2% of Si, 1.3% of Ca and 0.45% of Al with size grading between 50 and 200 μm and 45% of a mix composed of ⅓ fluorspar between 10 and 150 μm, and ⅔ of calcium silicide with 60.1% of Si, 31.7% of Ca and 4.3% of Fe.
When used as a dry spray this product gave satisfactory results; the pipes were stripped after 45 seconds cooling and a thickness of 25 μm of ferritic cast iron was measured on the pipes made in this way. However, there was no visible attack of the shells.
Therefore, this type of product gives better results than the product mentioned in example No. 1.
A mix of 50% of magnesium powder with size grading between 50 and 250 μm, 25% of magnesium fluoride with size grading between 40 and 250 μm, and 25% fluorspar with size grading between 40 and 250 μm, was prepared.
A mix according to the invention was then prepared consisting of 3% of the previous mix and 97% of ferro-silicon with 75.2% of Si, 1.3% of Ca and 0.45% of Al with a size grading between 50 and 200 μm.
When used as dry spray test, this product gave results considered to be better than those obtained in examples No. 1 and No. 2; the pipes were stripped after 37 seconds cooling and the pipes thus made were found to have a ferritic cast iron thickness of 30 μm. The surface condition of the parts was considered to be excellent.
A mix according to prior art was prepared with an equivalent composition of the mix in example 3, composed (by weight) as follows:
When used as a dry spray, this product gave results significantly worse than those obtained in example 3. Pipes were stripped after 50 seconds cooling, the observed thickness of ferritic cast iron on the pipes thus made was 35 μm, and absolutely unacceptable pitting was observed on the surface of the parts with a density of the order of 25 per m2.
Number | Date | Country | Kind |
---|---|---|---|
02 00947 | Jan 2002 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR03/00181 | 1/21/2003 | WO | 00 | 8/9/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/061878 | 7/31/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1982763 | Russell et al. | Dec 1934 | A |
2152717 | Wehmeier et al. | Apr 1939 | A |
2245994 | Mcwane | Jun 1941 | A |
3415307 | Schuh et al. | Dec 1968 | A |
3588028 | Okamoto et al. | Jun 1971 | A |
3746078 | Moore et al. | Jul 1973 | A |
4058153 | Pierrel | Nov 1977 | A |
4313758 | Henning et al. | Feb 1982 | A |
5033531 | Fisher et al. | Jul 1991 | A |
5193604 | Brugger | Mar 1993 | A |
5249619 | Meacock, II et al. | Oct 1993 | A |
6338753 | Margaria et al. | Jan 2002 | B1 |
Number | Date | Country |
---|---|---|
2612097 | Sep 1988 | FR |
930391 | Jul 1963 | GB |
56099061 | Oct 1981 | JP |
09271922 | Oct 1997 | JP |
11277210 | Oct 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20050066771 A1 | Mar 2005 | US |