The present disclosure pertains to medical devices, and methods for manufacturing medical devices. More particularly, the present disclosure pertains to medical devices for delivering a replacement heart valve.
A wide variety of intracorporeal medical devices have been developed for medical use, for example, intravascular use. Some of these devices include guidewires, catheters, medical device delivery systems (e.g., for stents, grafts, replacement valves, etc.), and the like. These devices are manufactured by any one of a variety of different manufacturing methods and may be used according to any one of a variety of methods. Of the known medical devices and methods, each has certain advantages and disadvantages. There is an ongoing need to provide alternative medical devices as well as alternative methods for manufacturing and using medical devices.
This disclosure pertains to a profile reduction seal for a heart valve replacement comprising a multilayer, generally cylindrical seal body having a distal end, a proximal end, and a lumen therebetween; a plurality of reinforcing grommets disposed and distributed proximate the proximal end of the multilayer, generally cylindrical seal body; and a distal reinforcing band disposed proximate the distal end of the multilayer, generally cylindrical seal body, wherein the proximal end of the multilayer, generally cylindrical seal body comprises a plurality of alternating projections and recesses.
This disclosure also pertains to a method of forming a profile reduction seal for a heart valve replacement comprising positioning a cleaned, tapered seal-forming mandrel in a coating apparatus; applying a first coating composition comprising a carrier and at least one polymer to the cleaned tapered mandrel; removing the carrier from the first coating composition thereby forming a first coated mandrel; positioning a distal reinforcing band to encircle the first coated mandrel; positioning a plurality of grommets on the first coated mandrel; applying a second coating composition comprising a carrier and at least one polymer to the first coated mandrel, the distal reinforcing band, and the plurality of grommets; removing the carrier from the second coating composition thereby forming a second coated mandrel; applying a third coating composition comprising a carrier and at least one polymer to the first coated mandrel; removing the carrier from the third coating composition thereby forming a profile reduction seal precursor; confirming that the profile reduction seal precursor is fully formed and meets thickness specifications; trimming the profile reduction seal precursor to conform to dimensional specifications; and removing the profile reduction seal from the tapered seal-forming mandrel.
The following description should be read with reference to the drawings wherein like reference numerals indicate like elements throughout the several views. The drawings, which are not necessarily to scale, are not intended to limit the scope of the claimed invention. The detailed description and drawings illustrate example embodiments of the claimed invention.
All numbers are herein assumed to be modified by the term “about.” The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include the plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it would be within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described unless clearly stated to the contrary.
This disclosure pertains to a profile reduction seal for a heart valve replacement comprising a multilayer, generally cylindrical seal body with a plurality of reinforcing grommets disposed and distributed proximate the proximal end of the seal body and a distal reinforcing band disposed proximate the distal end of the multilayer, generally cylindrical seal body. The grommets and band provide reinforcement for sutures or other attachment devices which affix the multilayer, generally cylindrical seal body to the anchoring element of a heart valve replacement. The seal serves to minimize or eliminate paravalvular regurgitation.
Prior to introduction of the heart valve replacement into the patient's body, the heart valve replacement is compressed within a delivery system, a step which in prior art embodiments tended to produce undesirable bunching of the seal as the proximal end of the seal was reduced in diameter during insertion into the delivery system. The current design minimizes this bunching tendency by reducing the amount of material which is presented circumferentially at the leading edge of the seal as it initially enters the delivery system and gradually increasing the amount of material which is presented circumferentially as the seal 50 enters the delivery system (not shown) until the full circumferential amount of seal material is presented to the mouth of the delivery system being loaded. This may be accomplished by creating a series of alternating projections and recesses which resemble a crown at the proximal edge of the seal as illustrated in
In
In some embodiments, reinforcing grommets 32, 34, 36 include one or more perforations 30, said perforations 30 extending through both the reinforcing grommets 32, 34, 36 and the multilayer, generally cylindrical seal body 50. In the various embodiments, the reinforcing grommets 32, 34, 36 may comprise a woven fabric or a nonwoven fabric. In some such embodiments, the woven or nonwoven fabric may comprise polyester fibers.
In some embodiments, distal reinforcing band 40 also may include a plurality of perforations 30, said perforations 30 extending through both the distal reinforcing band 40 and the multilayer, generally cylindrical seal body 50. In the various embodiments, the reinforcing band 40 may comprise a woven fabric or a nonwoven fabric such as a polyester fiber fabric.
The profile reduction seals of this disclosure will have a “generally cylindrical” seal body 50. As the term “generally cylindrical” will be used in this specification and claims, it will be understood to include tubular bodies having one or more tapered sections which may be functionally tapered and/or which may taper to facilitate manufacturing of the profile reduction seals. In addition, “generally cylindrical” is to be interpreted as encompassing seals having transverse cross-sections which depart from strictly circular in an unconstrained condition. For example, a proximal end region may be fluted to encourage a predisposition to fold in an orderly manner as the seal body 50 enters the delivery system (not shown). See
In the non-limiting embodiment of
The multilayer, generally cylindrical seal body 50, illustrated in partial cross-section in
The multilayer, generally cylindrical seal body 50 may be formed in a variety of ways, for example it may be formed by successive applications of a polymer solution to an appropriately shaped mandrel illustrated in
A second coating composition comprising a carrier and at least one polymer may be applied to the first coated mandrel, the distal reinforcing band, and the plurality of grommets. In some embodiments, the second coating composition comprises a polycarbonate, a polyurethane, and a volatile carrier. The carrier of the second coating composition may be removed, thereby forming a second coated mandrel. The second coating composition may be applied as a single layer or as multiple layers to achieve the desired dried coating thickness. In some embodiments, the second coating composition may be different from the first coating composition. In other embodiments, the second coating composition may be the same as the first coating composition.
A third coating composition comprising a carrier and at least one polymer may be applied to the second coated mandrel. In some embodiments, the third coating composition comprises a polycarbonate, a polyurethane, and a volatile carrier. The carrier of the third coating composition may be removed thereby forming a profile reduction seal precursor. The third coating composition may be applied as a single layer or multiple layers to achieve the desired dried coating thickness. In some embodiments, the third coating composition may be different from the first coating composition. In other embodiments, the third coating composition may be the same as the first coating composition. In yet other embodiments, the third coating composition may be different from the second coating composition. In still other embodiments, the third coating composition may be the same as the second coating composition.
Following removal of the carrier from the third coating composition, the profile reduction seal precursor may be inspected to ensure that the profile reduction seal precursor is fully formed and meets thickness specifications. The profile reduction seal precursor may then be trimmed, for example by laser cutting, to conform to dimensional specifications; and removed from the tapered seal-forming mandrel thereby forming a profile reduction seal. In some embodiments, at least some of the perforations in one or both of the distal reinforcing band and the plurality of grommets 32, 34, 36 may be formed by laser cutting. In other embodiments, at least some of the grommets may be formed by a laser cutting operation performed on a profile reduction seal precursor. For example, grommets 32 may be added to the multilayer, generally cylindrical seal, in a step not illustrated, as a proximal band resembling distal reinforcing band 40. Subsequent laser cutting of the profile reduction seal precursor would then simultaneously form grommets 32 by removing the portions of the band located between the projections 20.
In some of the above embodiments, coating compositions may be selected to provide a relatively stiff dried polymer such as a dried polymer having a Shore D hardness of about 55. In other embodiments above, coating compositions may be selected to provide a relatively elastomeric dried polymer such as a dried polymer having a Shore A hardness of about 80. For example, the first and third dried polymer layers may have a Shore D hardness of 55 and the second layer may have a Shore A hardness of 80.
Although in the example above three polymer layers were employed, it will be appreciated that a greater or lesser number of layers may be employed and that each of the three or more layers may comprise two or more sublayers. Additionally, although the plurality of grommets and the distal reinforcing band were positioned between the first and second coating layers in the example, they could have been positioned elsewhere within the profile reduction seal including within a layer, or on the radially innermost or radially outermost surface of the profile reduction seal. It will also be appreciated that it is not necessary that the grommets and distal reinforcing band all be located at the same radial position within the profile reduction seal. As noted herein, in some embodiments, instead of a single grommet disposed at each location, more than one grommet may be disposed at each location and distributed at various aligned locations within the profile reduction seal to provide additional strength. Similarly more than a single distal reinforcing band may be incorporated, for example a first band may be positioned between a first and second layer of the multilayer, generally cylindrical seal body and a second band may be positioned between a second and third layer of the multilayer, generally cylindrical seal body.
The mandrel 600 of
Although the illustrative examples described above relate to a profile reduction seal for a heart replacement valve, similar seals may be fabricated and attached to a variety of other implantable devices such as, for example, stents and aneurysm plugs. In such embodiments, the forming mandrel may have a different geometry and different polymers may be selected for the multiple layers.
Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the scope and principles of this invention, and it should be understood that this invention is not to be unduly limited to the illustrative embodiments set forth hereinabove. All publications and patents are herein incorporated by reference to the same extent as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3503079 | Smith | Mar 1970 | A |
3546711 | Boyros | Dec 1970 | A |
3551913 | Shiley et al. | Jan 1971 | A |
3570014 | Hancock | Mar 1971 | A |
3755823 | Hancock | Sep 1973 | A |
3983581 | Angell et al. | Oct 1976 | A |
4035849 | Angell et al. | Jul 1977 | A |
4340977 | Brownlee et al. | Jul 1982 | A |
4473423 | Kolff | Sep 1984 | A |
4484365 | Murguet et al. | Nov 1984 | A |
4490859 | Black et al. | Jan 1985 | A |
4510628 | Kolff | Apr 1985 | A |
4739759 | Rexroth et al. | Apr 1988 | A |
5258023 | Reger | Nov 1993 | A |
5326372 | Mhatre et al. | Jul 1994 | A |
5469868 | Reger | Nov 1995 | A |
6045576 | Starr et al. | Apr 2000 | A |
6254636 | Peredo | Jul 2001 | B1 |
6558417 | Peredo | May 2003 | B2 |
6719789 | Cox | Apr 2004 | B2 |
6883522 | Spence et al. | Apr 2005 | B2 |
6951573 | Dilling | Oct 2005 | B1 |
7172625 | Shu et al. | Feb 2007 | B2 |
7175659 | Hill et al. | Feb 2007 | B2 |
7261732 | Justino | Aug 2007 | B2 |
7318278 | Zhang et al. | Jan 2008 | B2 |
7329279 | Haug et al. | Feb 2008 | B2 |
7381219 | Salahieh et al. | Jun 2008 | B2 |
7445631 | Salahieh et al. | Nov 2008 | B2 |
7524331 | Birdsall | Apr 2009 | B2 |
7575594 | Sieracki | Aug 2009 | B2 |
7670370 | Hill et al. | Mar 2010 | B2 |
7717955 | Lane et al. | May 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7780725 | Haug et al. | Aug 2010 | B2 |
7819915 | Stobie et al. | Oct 2010 | B2 |
7824442 | Salahieh et al. | Nov 2010 | B2 |
7824443 | Salahieh et al. | Nov 2010 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7959666 | Salahieh et al. | Jun 2011 | B2 |
7959672 | Salahieh et al. | Jun 2011 | B2 |
7988724 | Salahieh et al. | Aug 2011 | B2 |
7993394 | Hariton et al. | Aug 2011 | B2 |
8012135 | Dann et al. | Sep 2011 | B2 |
8029564 | Johnson et al. | Oct 2011 | B2 |
8048153 | Salahieh et al. | Nov 2011 | B2 |
8052749 | Salahieh et al. | Nov 2011 | B2 |
8075611 | Millwee et al. | Dec 2011 | B2 |
8136659 | Salahieh et al. | Mar 2012 | B2 |
8163014 | Lane et al. | Apr 2012 | B2 |
8172892 | Chuter et al. | May 2012 | B2 |
8182528 | Salahieh et al. | May 2012 | B2 |
8226710 | Nguyen et al. | Jul 2012 | B2 |
8231670 | Salahieh et al. | Jul 2012 | B2 |
8246678 | Salahieh et al. | Aug 2012 | B2 |
8252052 | Salahieh et al. | Aug 2012 | B2 |
20020058994 | Hill et al. | May 2002 | A1 |
20020077698 | Peredo | Jun 2002 | A1 |
20030114924 | Moe | Jun 2003 | A1 |
20040015232 | Shu et al. | Jan 2004 | A1 |
20040030381 | Shu | Feb 2004 | A1 |
20040106990 | Spence et al. | Jun 2004 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137687 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137689 | Salahieh et al. | Jun 2005 | A1 |
20050137690 | Salahieh et al. | Jun 2005 | A1 |
20050137691 | Salahieh et al. | Jun 2005 | A1 |
20050137692 | Haug et al. | Jun 2005 | A1 |
20050137693 | Haug et al. | Jun 2005 | A1 |
20050137694 | Haug et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050137697 | Salahieh et al. | Jun 2005 | A1 |
20050137698 | Salahieh et al. | Jun 2005 | A1 |
20050137699 | Salahieh et al. | Jun 2005 | A1 |
20050137701 | Salahieh et al. | Jun 2005 | A1 |
20050137702 | Haug et al. | Jun 2005 | A1 |
20050143809 | Salahieh et al. | Jun 2005 | A1 |
20050197690 | Molaei | Sep 2005 | A1 |
20050283231 | Haug et al. | Dec 2005 | A1 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060025854 | Lashinski et al. | Feb 2006 | A1 |
20060025855 | Lashinski et al. | Feb 2006 | A1 |
20060195184 | Lane et al. | Aug 2006 | A1 |
20060195185 | Lane et al. | Aug 2006 | A1 |
20060253191 | Salahieh et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060271172 | Tehrani | Nov 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070018214 | Ahn et al. | Jan 2007 | A1 |
20070027535 | Purdy, Jr. et al. | Feb 2007 | A1 |
20070129795 | Hill et al. | Jun 2007 | A1 |
20070162107 | Haug et al. | Jul 2007 | A1 |
20070203503 | Salahieh et al. | Aug 2007 | A1 |
20070244552 | Salahieh et al. | Oct 2007 | A1 |
20070282436 | Pinchuk | Dec 2007 | A1 |
20080033543 | Gurskis et al. | Feb 2008 | A1 |
20080086204 | Rankin | Apr 2008 | A1 |
20080125859 | Salahieh et al. | May 2008 | A1 |
20080234814 | Salahieh et al. | Sep 2008 | A1 |
20090240320 | Tuval et al. | Sep 2009 | A1 |
20100036484 | Hariton et al. | Feb 2010 | A1 |
20100082094 | Quadri et al. | Apr 2010 | A1 |
20100100176 | Elizondo et al. | Apr 2010 | A1 |
20100121434 | Paul et al. | May 2010 | A1 |
20100131054 | Tuval et al. | May 2010 | A1 |
20100137979 | Tuval et al. | Jun 2010 | A1 |
20100168844 | Toomes et al. | Jul 2010 | A1 |
20100191327 | Lane et al. | Jul 2010 | A1 |
20100249894 | Oba et al. | Sep 2010 | A1 |
20100249908 | Chau et al. | Sep 2010 | A1 |
20100249915 | Zhang | Sep 2010 | A1 |
20100249916 | Zhang | Sep 2010 | A1 |
20100249917 | Zhang | Sep 2010 | A1 |
20100249918 | Zhang | Sep 2010 | A1 |
20100256752 | Forster et al. | Oct 2010 | A1 |
20100262231 | Tuval et al. | Oct 2010 | A1 |
20100280495 | Paul et al. | Nov 2010 | A1 |
20110000073 | O'Fallon et al. | Jan 2011 | A1 |
20110098802 | Braido et al. | Apr 2011 | A1 |
20110125258 | Centola | May 2011 | A1 |
20110166648 | Robin et al. | Jul 2011 | A1 |
20110172765 | Nguyen et al. | Jul 2011 | A1 |
20110213460 | Lashinski et al. | Sep 2011 | A1 |
20110218619 | Benichou et al. | Sep 2011 | A1 |
20110224781 | White | Sep 2011 | A1 |
20110230956 | White | Sep 2011 | A1 |
20110245918 | White | Oct 2011 | A1 |
20110257735 | Salahieh et al. | Oct 2011 | A1 |
20110276128 | Cao et al. | Nov 2011 | A1 |
20110276129 | Salahieh et al. | Nov 2011 | A1 |
20110319991 | Hariton et al. | Dec 2011 | A1 |
20120016469 | Salahieh et al. | Jan 2012 | A1 |
20120016471 | Salahieh et al. | Jan 2012 | A1 |
20120022629 | Perera et al. | Jan 2012 | A1 |
20120029627 | Salahieh et al. | Feb 2012 | A1 |
20120041549 | Salahieh et al. | Feb 2012 | A1 |
20120041550 | Salahieh et al. | Feb 2012 | A1 |
20120053683 | Salahieh et al. | Mar 2012 | A1 |
20120059454 | Millwee et al. | Mar 2012 | A1 |
20120078356 | Fish et al. | Mar 2012 | A1 |
20120078357 | Conklin | Mar 2012 | A1 |
20120089224 | Haug et al. | Apr 2012 | A1 |
20120095549 | Forster et al. | Apr 2012 | A1 |
20120136432 | Forster et al. | May 2012 | A1 |
20120143316 | Seguin et al. | Jun 2012 | A1 |
20120185039 | Tuval et al. | Jul 2012 | A1 |
20120226348 | Lane et al. | Sep 2012 | A1 |
20120232459 | Dann et al. | Sep 2012 | A1 |
20120245706 | Alavi et al. | Sep 2012 | A1 |
20120259409 | Nguyen et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
2119417 | Nov 2009 | EP |
2006127412 | Nov 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20130090729 A1 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
61543521 | Oct 2011 | US |