This application is related to Paul L. Master et al., U.S. patent application Ser. No. 09/815,122, entitled “Adaptive Integrated Circuitry With Heterogeneous And Reconfigurable Matrices Of Diverse And Adaptive Computational Units Having Fixed, Application Specific Computational Elements”, filed Mar. 22, 2001, now U.S. Pat. No. 6,836,839, commonly assigned to QuickSilver Technology, Inc., and incorporated by reference herein, with priority claimed for all commonly disclosed subject matter (the “related application”).
The present invention relates in general to profiling of software and circuit designs for performance analyses and, more particularly, to profiling both software and reconfigurable and adaptive circuit designs utilizing data parameters, including data dynamics and other data operational statistics.
Software or other computing programs, such as programs expressed in C and C++ code, have been profiled in the prior art, as a method of determining performance of the program as executed, generally using criteria such as estimated power consumption, speed of execution, code size, integrated circuit (IC) area utilized in execution, and other performance measures. Such current profiling techniques, as a consequence, have been confined largely to the processor (microprocessor) computing environment, for example, to identify algorithms which may be separately accelerated in an application specific integrated circuit (ASIC), or to provide statistics on processor or program performance.
Current profiling techniques are generally statistical or intrusive. In statistical profiling, an interrupt is generated, which then allows the capture of various register contents or counters. This type of profiling then provides statistics, such as how often the program executes a particular algorithm or routine. One widely used hardware profiler, for example, requires the user to stop the central processing unit (CPU) during program execution, and use special debugging registers to generate a profile.
Other existing profiling techniques are typically intrusive. In this method, extra lines of programming code are actually inserted periodically into the program code to be profiled. As these inserted code segments are called, hard counts may be generated, reflecting usage of a corresponding algorithm or routine.
Both statistical profiling and intrusive profiling have significant limitations. For example, depending upon the granularity or degree to which code has been inserted or interrupts generated, both methodologies may typically miss or overlook code features between such points of intrusion or interrupt.
In addition, measures of power and performance based upon such current statistical or intrusive profiling may be significantly inaccurate. Such power and performance measures are typically based upon various underlying assumptions, such as data pipeline length, and exhibit strong data dependencies, such as depending upon the sequence of logic 1s and 0s (i.e., high and low voltages) within a particular data stream. In addition, such power and performance measures also depends significantly upon program dynamics, such that statistical or intrusive profiling often provides inaccurate results compared to actual performance of the program. As a consequence, because current profiling techniques do not account for data issues and concerns, they tend to be significantly inaccurate.
Finally, the existing profilers can measure program performance in known computing architectures or processor architectures only; no profilers exist for profiling program execution for an integrated circuit that is reconfigurable or adaptive. In the reconfigurable hardware environment, the combination of hardware computational units, their interconnections, the proximity of data to these computation units, and the algorithms to be performed by the circuit, each contribute to overall efficiency of execution. Existing profiling tools do not address the impact of each of these variables.
While the present invention is susceptible of embodiment in many different forms, there are shown in the drawings and will be described herein in detail specific embodiments thereof, with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated.
The present invention, referred to herein as the “profiler” or the “profiling tool”, of the present invention, evaluates or profiles both existing (or legacy) program code (or software) and new forms of program code on the basis of a plurality of data parameters. Such a profiling tool, in accordance with the present invention, provides this profiling based upon data parameters (or data metrics) such as data location (for static data), data type, data size (input and output), data source and destination locations (for dynamic data), data pipeline length, locality of reference, distance of data movement, speed of data movement, data access frequency, number of data load/stores, degree of cache, register or memory usage, data persistence, corresponding algorithmic element, and corresponding hardware location for the algorithmic element. The profiler of the invention may also provide other measurements of resource utilization, such as memory throughput, execution time and frequency, power consumed, number of instructions utilized, and so on. The profiling tool of the present invention is especially useful in performing actual circuit design and implementation, particularly in the adaptive computing environment.
The profiler of the present invention was developed as a component in a suite of development tools for designing adaptive and reconfigurable hardware and attendant configuration information (which themselves are the subjects of the related application and other pending patent applications). This reconfigurable hardware, referred to as an adaptive computing engine (“ACE”) architecture, and the other development tools, is briefly discussed with reference to
The present invention is a method, system, tangible medium storing machine readable software, and data structure for profiling computing programs, communication programs, and other program code or other software, with respect to a plurality of data parameters. These programs would typically operate or be run in a processing environment, such as a microprocessor or digital signal processor, or operate as embedded in custom hardware such as an ASIC. In an exemplary embodiment of the invention, the profiler analyzes the code based upon the plurality of data parameters, and outputs the results in any of various forms, such as a data structure. Such data structures may embodied in a plurality of forms, such as electronically in a memory, or a visually perceptible form, such as in a graph, spreadsheet, table, or array.
It should be noted that the terminology such as “program”, “code”, “program code”, or “software” are used interchangeably herein and are to be construed broadly to cover and include any type of programming language which has been arranged or ordered such that, when executed, a particular function is performed. For example, the code to be profiled may be a computing program, such as software or operating systems used with a computer or workstation, or a communication program, such as the International Telecommunications Union (ITU) programs or code for cellular, CDMA, GSM, or 3G communications, including legacy ITU code which often is the actual promulgated definition of a communication function to be performed to be compliant with an ITU standard. Other code types may include the code utilized in the International Electrical and Electronic Engineers (IEEE) standards, such as IEEE 802.11 for wireless LANs, or code which is under development or which is to be developed, such as code for software defined radios, and so on.
The profiler of the invention is of particular use in transforming this program code for use in an adaptive and reconfigurable computing environment by, for example, selecting algorithmic elements from the code for performance on various computational elements of the adaptive computing architecture and determining the locations of these computational elements within the ACE architecture based on, among other things, the profiled data parameter results (also referred to as measured data parameters which are combined to form data parameter comparative results). In another exemplary embodiment of the invention, the profiler accepts, as inputs, various hardware descriptions of the adaptive computing architecture, and program code or software which would otherwise typically be run in a processor-based environment. The profiler analyzes the code based upon the plurality of data parameters, and using the profiled data parameter results, selects portions of the profiled code for conversion into a form so that its corresponding functions or algorithmic elements may be executed on the ACE architecture directly by corresponding selected computational elements. These profiling statistics are calculated iteratively, as portions of code are identified for execution of corresponding functions in the adaptive computing architecture, and subsequently removed from the software code. The process is repeated until optimal performance of the ACE architecture (with its adapting configuration) is achieved.
Another unique feature of the present invention is a “self-profiling” capability in the adaptive computing architecture. As discussed in greater detail below, the adaptive computing engine (“ACE”) architecture is configurable and reconfigurable, with actual input connections and output connections between and among constituent computational elements being changeable, in real time, to perform different functions as needed, to provide the overall operating mode of the adaptive computing architecture. For example, computational elements such as adders and multipliers, which were performing a discrete cosine transformation (DCT), may be reconfigured to perform a fast Fourier transformation (FFT). As a consequence of this reconfiguration capability, a profiler may be included within the ACE, with the profiler operating upon the actual circuit design or structure of the ACE as it is operating. As the ACE operates, it may determine that, based upon the profiled data parameter results, it should change or modify its configuration for performance of one or more functions or operations. For example, based upon profiled data parameter results such as distance of data movement, the ACE may reconfigure itself by providing additional data memory in closer proximity to the area of its circuit performing a corresponding calculation.
The profiler of the invention utilizes the plurality of data parameters as one form of measurement of performance, indicative of resource utilization, speed of operation, power utilization, and so on. Such performance may be evaluated on one or more levels, such as “coarse grain” performance metrics at the program language function level, and “fine grain” statistics at the CPU instruction level or other hardware level.
In the various exemplary embodiments, the plurality of data parameters may include one or more of the following parameters, in addition to other forms of data measurement:
In addition, the measured data parameters, as profiled data parameter results, may be combined in various ways, such as by a weighted function, to produce an overall, comparative result (referred to as a data parameter comparative result), defining a new unit of measure referred to as a “data operational unit”, as discussed in greater detail below. Various sets of profiled data parameter results may be generated, with corresponding data operational units, based upon various hardware architectures, based upon corresponding algorithms or algorithmic elements, and based upon various input data sets. Using the comparative data operational units, an optimal architecture may be selected, with a corresponding set of optimal profiled data parameter results.
In step 25, not all of the plurality of data parameters may be applicable. For example, the data parameters for source and destination locations would be inapplicable, as the data used in this code portion does not move to a destination location. Data parameters which are applicable, among others, include data location, data type, data size (input and output), data pipeline length, locality of reference, data access frequency, number of data load/stores, degree of cache, register or memory usage, and data persistence. In the event that data location may be determined as a code location rather than an IC location, the code location may also be mapped to an IC location, as part of step 25 or as a separate step.
Also for static data, the profiling methodology determines the corresponding algorithmic element (or function or operation) involving the static data, step 30, such as a multiply, divide, add, subtract, accumulate, multiply-and-accumulate, and so on. In addition, the method determines an applicable hardware location, if any, for execution or performance of the algorithmic element, step 35, such as a location of a computational element for an ACE embodiment, or a location within a microprocessor.
Following step 35, or when there is no data which may remain static determined or identified in step 20, the method proceeds to evaluate the selected code portion using the plurality of data parameters for dynamic data, that is, data which does move from one location to another during processing or other execution, step 40. When dynamic data has been identified or determined in step 40, the profiling methodology evaluates the selected code portion using one or more of the plurality of data parameters, step 45, such as determining the source (from) and destination (to) locations of the data, data type, data size (input and output), data pipeline length, locality of reference, distance of data movement, speed of data movement, data access frequency, number of data load/stores, degree of cache, register or memory usage, and data persistence, and provides a corresponding plurality of measured data parameters. As mentioned above, if the source and destination locations are determined as locations within the code, they also may be mapped to source and destination locations within an IC, in this or another step. For the particular identified dynamic data for the selected code portion, the profiling methodology determines the corresponding algorithmic element or function involving the dynamic data, step 50, also such as a multiply, divide, add, subtract, accumulate, multiply-and-accumulate, and so on. In addition, the method determines an applicable hardware location, if any, for execution or performance of the algorithmic element, step 55, such as a location of a computational element for an ACE embodiment, or a location within a microprocessor.
Following step 55, or when there is no dynamic data determined or identified in step 40, the method proceeds to step 60, and determines whether there is any remaining code (or program) for profiling. When there is remaining code in step 60, the method returns to step 20, and continues to iterate until there is no code remaining for profiling. In lieu of returning to step 20, the method may also return to step 15, if one or more additional input operand data sets are needed, and then continue to iterate until there is no code remaining for profiling.
Not separately illustrated in
When there is no code remaining for profiling in step 60, the methodology generates the complete results of the data profiling, such as the measured data parameters (also referred to as profiled data parameter results), and preferably also the data parameter comparative results (derived from the measured data parameters, as discussed below), and provides these results in a data structure form, step 65. In step 65, the method generates a selected data structure or other representation of the profiled data parameter results, such as a graphical or tabular representation, a spreadsheet, a multidimensional array, a database, a data array stored in a memory or other machine-readable medium, or another form of data structure. As indicated above, the measured data parameters (or profiled data parameter results) may be combined to form data parameter comparative results which are expressed in data operational units, as comparative, numerical values. An exemplary data structure, as a visually perceptible structure, is illustrated as a two-dimensional array in
With regard to the methodology illustrated in
The methodology of the present invention is particularly suitable for adaptation of existing or legacy code, such as C or C++ code, for the adaptive computing architecture. In addition, the profiling of the present invention is also suitable for new forms of code or programming, including code based upon programming languages designed for the adaptive computing engine.
A significant departure from the prior art, the ACE 100 does not utilize traditional (and typically separate) data, direct memory access (DMA), random access, configuration and instruction busses for signaling and other transmission between and among the reconfigurable matrices 150, the controller 120, and the memory 140, or for other input/output (“I/O”) functionality. Rather, data, control and configuration information are transmitted between and among these matrix 150 elements, utilizing the matrix interconnection network 110, which may be configured and reconfigured, to provide any given connection between and among the reconfigurable matrices 150, including those matrices 150 configured as the controller 120 and the memory 140, as discussed in greater detail below.
It should also be noted that once configured, the MIN 110 also and effectively functions as a memory, directly providing the interconnections for particular functions, until and unless it is reconfigured. In addition, such configuration and reconfiguration may occur in advance of the use of a particular function or operation, and/or may occur in real-time or at a slower rate, namely, in advance of, during or concurrently with the use of the particular function or operation. Such configuration and reconfiguration, moreover, may be occurring in a distributed fashion without disruption of function or operation, with computational elements in one location being configured while other computational elements (having been previously configured) are concurrently performing their designated function.
The matrices 150 configured to function as memory 140 may be implemented in any desired or preferred way, utilizing computational elements (discussed below) of fixed memory elements, and may be included within the ACE 100 or incorporated within another IC or portion of an IC. When the memory 140 is included within the ACE 100, it may be comprised of computational elements which are low power consumption random access memory (RAM), but also may be comprised of computational elements of any other form of memory, such as flash, DRAM, SRAM, SDRAM, MRAM, FeRAM, ROM, EPROM or E2PROM. As mentioned, this memory functionality may also be distributed across multiple matrices 150, and may be temporally embedded, at any given time, as a particular MIN 110 configuration. In addition, the memory 140 may also include DMA engines, not separately illustrated.
The controller 120 may be implemented, using matrices 150A and 150B configured as adaptive finite state machines, as a reduced instruction set (“RISC”) processor, controller or other device or IC capable of performing the two types of functionality discussed below. The first control functionality, referred to as “kernel” control, is illustrated as kernel controller (“KARC”) of matrix 150A, and the second control functionality, referred to as “matrix” control, is illustrated as matrix controller (“MARC”) of matrix 150B.
The matrix interconnection network 10 of
The various matrices or nodes 150 are reconfigurable and heterogeneous, namely, in general, and depending upon the desired configuration: reconfigurable matrix 150A is generally different from reconfigurable matrices 150B through 150N; reconfigurable matrix 150B is generally different from reconfigurable matrices 150A and 150C through 150N; reconfigurable matrix 150C is generally different from reconfigurable matrices 150A, 150B and 150D through 150N, and so on. The various reconfigurable matrices 150 each generally contain a different or varied mix of adaptive and reconfigurable computational (or computation) units (200,
The ACE architecture utilizes a plurality of fixed and differing computational elements, such as (without limitation) correlators, multipliers, complex multipliers, adders, demodulators, interconnection elements, routing elements, combiners, finite state machine elements, reduced instruction set (RISC) processing elements, bit manipulation elements, input/output (I/O) and other interface elements, and the lower-level “building blocks” which form these units, which may be configured and reconfigured, in response to configuration information, to form the functional blocks (computational units and matrices) which may be needed, at any given or selected time, to perform higher-level functions and, ultimately, to execute or perform the selected operating mode, such as to perform wireless communication functionality, including channel acquisition, voice transmission, multimedia and other data processing. Through the varying levels of interconnect, corresponding algorithms are then implemented, at any given time, through the configuration and reconfiguration of fixed computational elements (250), namely, implemented within hardware which has been optimized and configured for efficiency, i.e., a “machine” is configured in real-time which is optimized to perform the particular algorithm.
Next, the ACE architecture also utilizes a tight coupling (or interdigitation) of data and configuration (or other control) information, within one, effectively continuous stream of information. This coupling or commingling of data and configuration information, referred to as “silverware” or as a “silverware” module, is the subject of another patent application. For purposes of the present invention, however, it is sufficient to note that this coupling of data and configuration information into one information (or bit) stream, which may be continuous or divided into packets, helps to enable real-time reconfigurability of the ACE 100, without a need for the (often unused) multiple, overlaying networks of hardware interconnections of the prior art. For example, as an analogy, a first configuration of computational elements at a first period of time, as the hardware to execute a corresponding algorithm during or after that first period of time, may be viewed or conceptualized as a hardware analog of “calling” a subroutine in software which may perform the same algorithm. As a consequence, once the configuration of the computational elements has occurred (i.e., is in place), as directed by (a first subset of) the configuration information, the data for use in the algorithm is immediately available as part of the silverware module. The same computational elements may then be reconfigured for a second period of time, as directed by second configuration information (i.e., a second subset of configuration information), for execution of a second, different algorithm, also utilizing immediately available data. The immediacy of the data, for use in the configured computational elements, provides a one or two clock cycle hardware analog to the many separate software steps of determining a memory address, fetching stored data from the addressed registers, and performing the various operations on the data. This has the further result of additional efficiency, as the configured computational elements may execute, in comparatively few clock cycles, an algorithm which may require orders of magnitude more clock cycles for execution if called as a subroutine in a conventional microprocessor or digital signal processor (“DSP”).
This use of silverware modules, as a commingling of data and configuration information, in conjunction with the reconfigurability of a plurality of heterogeneous and fixed computational elements 250 to form adaptive, different and heterogeneous computation units 200 and matrices 150, enables the ACE 100 architecture to have multiple and different modes of operation. For example, when included within a hand-held device, given a corresponding silverware module, the ACE 100 may have various and different operating modes as a cellular or other mobile telephone, a music player, a pager, a personal digital assistant, and other new or existing functionalities. In addition, these operating modes may change based upon the physical location of the device. For example, while configured for a first operating mode, using a first set of configuration information, as a CDMA mobile telephone for use in the United States, the ACE 100 may be reconfigured using a second set of configuration information for an operating mode as a GSM mobile telephone for use in Europe.
Referring again to
Continuing to refer to
Continuing to refer to
In the exemplary embodiment, the various computational elements 250 are designed and grouped together, into the various adaptive and reconfigurable computation units 200. In addition to computational elements 250 which are designed to execute a particular algorithm or function, such as multiplication, correlation, clocking, synchronization, queuing, sampling, or addition, other types of computational elements 250 are also utilized in the exemplary embodiment. As illustrated in
With the various types of different computational elements 250 which may be available, depending upon the desired functionality of the ACE 100, the computation units 200 may be loosely categorized. A first category of computation units 200 includes computational elements 250 performing linear operations, such as multiplication, addition, finite impulse response filtering, clocking, synchronization, and so on. A second category of computation units 200 includes computational elements 250 performing non-linear operations, such as discrete cosine transformation, trigonometric calculations, and complex multiplications. A third type of computation unit 200 implements a finite state machine, such as computation unit 200C as illustrated in
In the exemplary embodiment, in addition to control from other matrices or nodes 150, a matrix controller 230 may also be included or distributed within any given matrix 150, also to provide greater locality of reference and control of any reconfiguration processes and any corresponding data manipulations. For example, once a reconfiguration of computational elements 250 has occurred within any given computation unit 200, the matrix controller 230 may direct that that particular instantiation (or configuration) remain intact for a certain period of time to, for example, continue repetitive data processing for a given application.
The profiling methodology of the present invention is also utilized in both the design and the implementation of ACE 100 circuitry. For many applications, IC functionality is already defined and existing as C or C++ code. In other circumstances, standards and algorithms for various technologies are defined and described as C or C++ code. In accordance with the present invention, this existing or legacy code is profiled based on the data parameters mentioned above. Based upon the results of this profiling, the ACE 100 circuitry, and corresponding configuration information, may be determined, preferably in an iterative fashion, as discussed below. For example, a determination may be made that certain data should be static in an ACE 100 implementation, with appropriate hardware (computational elements) configured and reconfigured around the static data, for the performance of the selected algorithm. In other circumstances, also for example, memory elements may be configured adjacent to other computational elements, to provide a very close distance (or locality of reference) between a data source location and a data destination location.
When there is no remaining code to be profiled in step 335, the method proceeds to step 340, and generates an adaptive computing (or ACE) architecture from the selected computational elements and determines the overall configuration information needed for the adaptive computing (or ACE) architecture to perform the algorithms of the input program code. In an initial iteration, this process results in a “first generation” ACE 100 architecture (or a subpart computational unit 200) and corresponding configuration information, with “next generation” architectures and configuration information generated with subsequent iterations.
The adaptive computing architecture may then be profiled as various algorithmic elements are performed, based upon the data parameters and other criteria, with the generation of another (or next) set of profiled data parameter results (or measured data parameters), step 345. If this set of profiled data parameter results are not optimal or acceptable in step 350, the method returns to step 340 and iterates, generating a next generation adaptive computing (or ACE) architecture and corresponding configuration information, followed again by profiling and generating another set of profiled data parameter results, step 345.
The determination of acceptability or optimality in step 350 may be performed in any number of ways, such as by using a predetermined criterion of optimality, such as a particular level or score expressed in data operational units, or by comparing the various sets of profiled data parameter results after repeated iterations, and selecting the one or more of the better or best adaptive computing (or ACE) architectures of those generated in repeated iterations of step 340. (It should be noted that optimization is used herein in a very broad sense, to mean and include merely desired or acceptable for one or more purposes, such as for a selected operating mode of a plurality of operating modes, for example, and not just meaning “most” desired or favorable.)
When optimal or acceptable results have been obtained in step 350, the method outputs the comparatively optimal, selected adaptive computing (or ACE) architecture and corresponding configuration information, step 355, and outputs the corresponding profiled data parameter results (such as in the form of a data structure), step 360, and the method may end, step 365. It should be noted that there may be a plurality of optimal adaptive computing (or ACE) architectures produced, depending upon any number of factors or constraints imposed; for example, the architecture may have several operating modes, with any given architecture better for one of the operating modes compared to another operating mode.
In the exemplary embodiment, where execution of the algorithmic elements of the program may be optimized through the ACE 100 architecture and corresponding configuration information, the program code may have one or more of the following characteristics: (1) frequently executed code, which may be more appropriately implemented as hardware (i.e., computational elements 250); (2) sequentially executed programming code that could be distributed for parallel execution across computational units 200; (3) inappropriate data typing resulting in wasted memory resources; (4) unnecessary data movement, such that the data should remain static with logic (computational elements 250) configured and reconfigured around the static data; and (5) a distant locality of reference for data, such that source and destination locations for data are comparatively far apart, or a data location “distant” from the computation units 200 or computational elements 250 acting upon the data. Other code or portions of code, such as those only utilized on a single occasion or those involving complicated control sequences, may be performed on various computational units 200 configured as finite state machines, as discussed above, or performed utilizing a separate or additional processor, depending upon selection of an overall system embodiment which may include the adaptive computing (or ACE) architecture with other processor components.
In the exemplary embodiment, the significant measurements of the profiler are those made for the various data parameters discussed above, such as data movement, size, speed and location, and resource utilization, including memory utilization (e.g., frequency of access, load/stores, and so on). Power (consumption and/or dissipation) and other performance metrics may also be assigned to these data parameter measurements, or measured based upon other statistics, providing additional information for use in IC design and evaluation.
As discussed above, the profiling methodology of the present invention may be utilized to evaluate program code on a variety of levels, such as on a code or program level, where the plurality of data parameters are applied to what data does within the program itself (e.g., at a “C” or “C++” function level). The profiling methodology of the present invention may be utilized to evaluate program code on a processor level, where the plurality of data parameters are applied to what data does within a microprocessor of DSP, for example, and may provide a useful point of comparison with profiling of the code on an adaptive computing (or ACE) architecture. The profiled data parameter results from these two types of profiling applications may be referred to, respectively, as “coarse grain” statistics or performance metrics (for the code level), and comparatively lower-level “fine grain” statistics or performance metrics (for the processor or architecture level).
In evaluating program code, the profiler may also measure resource utilization and execution speed using additional metrics or parameters. In the exemplary embodiment, in addition to measurements for the data parameters, other coarse grain measurements include (without limitation): (1) function call metrics, an architecture-independent quantity of how many times a function is executed in the operation; (2) function execution time, an architecture-independent quantity of time in seconds and relative percentage of execution time a function requires to complete; (3) function execution time, including child functions invoked, also architecture-independent and expressed in absolute time in seconds and relative percentage of execution time; (4) memory consumption of the function, measured in bytes, an architecture-independent metric calculated for a complete program, as well as for each component function; and (5) memory throughput, as average throughput, expressed in bytes per second for execution of the complete program and each component function.
In the exemplary embodiment, in addition to measurements for the data parameters, other fine grain measurements determine CPU instruction level activity, defined as the number of machine instructions (e.g., add, multiply, load) executed during program execution. The measurements include the number of times each instruction is executed, globally and per function, classified by type (arithmetic, memory, program control etc.), such as add, multiply, subtract, divide, clear, move, load, swap, jump, and branch. For example, an instruction call profile for some function f1 on some dataset d may indicate that exactly 100 additions, 50 multiplications and 25 divisions are required. This metric is architecture-independent, meaning that the same number and type of instructions will be performed by function f1 regardless of the processor architecture. These additional fine grain measurements may or may not be applicable to an adaptive computing (or ACE) architecture.
In addition to reporting statistics for a function, the profiler can furthermore distinguish between function “call” and function “execution”. During function call, some overhead work occurs, such as parameter passing and context switching, that can be distinguished from the actual operations the function was designed to do. Simple functions, when they are executed a great number of times, may exhibit large execution times in calling the function. One programming remedy to reduce excessive overhead expenditure is to embed the function's program code within the driver, or master program that invokes the function many times. This is called “inlining” the code. Profiler statistics may be used in the determination of whether inlining should occur. The adaptive computing (or ACE) architecture may be designed, with corresponding configuration information, to similarly reduce (if not eliminate) such overhead.
Often program code executes differently depending upon input operand data or other input parameters passed to the function (of either the code or the hardware). In the exemplary embodiment, as an option, several profiles of function performance may be created based upon different input operand data or input parameter values. Similarly, the size or content of different input data sets (or other operand data) may affect performance. The profiler of the present invention can measure performance with several input data sets, and report worst case, best case, as well as average metrics.
As indicated above, one of the truly novel and important features of the present invention is the calculation or creation of an overall, comparative performance metric, referred to as a data parameter comparative result, in a new measurement unit referred to herein as a “data computational unit”, based upon the measured data parameters (profiled data parameter results), for any given architecture or program, for example. Various sets of measured data parameters (profiled data parameter results) may be generated, with corresponding data operational units, based upon various hardware architectures, based upon corresponding algorithms or algorithmic elements, and based upon various input data sets. Using the comparative data operational units, an optimal architecture may be selected, with a corresponding set of optimal profiled data parameter results.
In the exemplary embodiment, for each set of profiled data parameter results, the profiler may calculate an overall, data parameter comparative result in “data operational units” as a measure, among other things, of data handling efficiency, power consumption, operating speed, and so on. In accordance with the present invention, a data operational unit is unit measure, which may be represented as a real number, which in general is calculated or created as a result of a selected combination (such as a weighted sum or product) of one or more of the measured data parameters (for a selected plurality of the data parameters), with or without weighting or other biasing, to form a data parameter comparative result in data operational units. A practitioner skilled in the art, depending upon the purposes of the application, could use myriad different methods and types of calculations and combinations, selecting different data parameter measurements of the profiled data parameter results, and potentially biasing each data parameter differently.
For example, for a selected embodiment, distance between memory locations for data movement, and distance between the data location and where it will be processed (locality of reference), may be among the more significant data parameters, as shorter distances and closer localities of reference may be indicative of faster operation. As a consequence, in determining a data parameter comparative result, expressed in data operational units, distance and locality of reference may be provided with increased weighting or biasing compared to, for example, access frequency or data persistence. Continuing with the example, the data parameter comparative result may be determined as a weighted (β, β, γ, δ) sum, such as α(distance)+β(locality)+γ(frequency)+δ(persistence), where in this case α, β, >>γ, δ.
It should be noted that, as discussed in greater detail below, the measurements themselves comprising the profiled data parameter results should be made, modified or converted into to a form to allow such combination into an overall, comparative result expressed in data operational units. Such conversion also may be accomplished through a weighting mechanism, as discussed above.
In an alternative embodiment, the underlying, profiled data parameter results, for each data parameter, are measured and converted directly into data operational units, which are then further combined to form an overall data parameter comparative result.
The measurements of the data parameters themselves, to form the measured data parameters (also referred to as profiled data parameter results) may also be made in relative or absolute (empirical) measures, such as for data movement and locality of reference distances. Other measures, such as speed or access frequency, may be determined or estimated as a number of clock cycles, and translated into a power measurement for an amount of power that a given movement of data will consume.
As mentioned above, a small “locality of reference” is highly desirable in computing, and particularly so in the reconfigurable environment, where traditional data movement to computational units may be supplanted by positioning or creating computational units positioned closer to persistent data.
Absolute measures may be utilized to determine data distances (such as the distance between source and destination locations), based upon a known architecture, such as the distance between primary and tertiary caches. Another method to measure distances among reconfigurable matrices is relativistic or comparative, using comparative measures based upon a potentially changing hardware topology, which may be more appropriate for the adaptive computing engine.
In addition to embodiment within an adaptive computing architecture such as the ACE 100, the profiler may be embodied in any number of forms, such as within a computer, within a workstation, or within any other form of computing or other system used to profile program code. The profiler may be embodied as any type of software, such as C, C++, C#, Java, or any other type of programming language, including as configuration information (as a form of software) to direct a configuration within an adaptive computing architecture to perform the various profiling functions. The profiler may be embodied within any tangible storage medium, such as within a memory or storage device for use by a computer, a workstation, any other machine-readable medium or form, or any other storage form or medium for use in a computing system to profile program code. Such storage medium, memory or other storage devices may be any type of memory device, memory integrated circuit (“IC”), or memory portion of an integrated circuit (such as the resident memory within a processor IC or ACE 100), including without limitation RAM, FLASH, DRAM, SRAM, SDRAM, MRAM, FeRAM, ROM, EPROM or E2PROM, or any other type of memory, storage medium, or data storage apparatus or circuit, depending upon the selected embodiment. For example, without limitation, a tangible medium storing computer or machine readable software, or other machine-readable medium, is interpreted broadly and may include a floppy disk, a CDROM, a CD-RW, a magnetic hard drive, an optical drive, a quantum computing storage medium or device, a transmitted electromagnetic signal (e.g., a computer data signal embodied in a carrier wave used in internet downloading), or any other type of data storage apparatus or medium, and may have a static embodiment (such as in a memory or storage device) or may have a dynamic embodiment (such as a transmitted electrical signal).
The data parameter comparative results and the measured data parameters may be stored, transmitted, or displayed in the form of a data structure embodied in any tangible medium, data signal or other carrier wave. Such a data structure, for example, may be an array of a plurality of fields stored in a form of memory or in a data storage device, such as the various forms of memory and other storage media and devices discussed above. In addition, such a data structure may also be displayed or illustrated, or converted into a form suitable for such display or illustration. For example, the display of the measured data parameters may be multidimensional and illustrated via any form or type of visual display, such as a video or holographic display, or may be displayed in two dimensions as a graphical or tabular display. For purposes of example,
Referring to
The third field 430 provides a listing of the measured data parameters (also referred to as profiled data parameter results), for each data parameter of the plurality of data parameters (of field 420), and for each function and input data set (of field 410), and is formed as the profiler is operating. As the profiler operates, it determines which function (of field 410) is occurring in the program code, and with the input data set, performs a measurement or determination of the plurality of data parameters, providing the measured data parameters of field 430. These profiled data parameter results may then be combined, in various forms, to provide one or more data parameter comparative results of a fourth field 440. As illustrated in the fourth field 440, data parameter comparative results are provided for each function and input data set (of field 410), with an overall data parameter comparative result provided for the entire program or architecture being profiled.
In the exemplary embodiment, the profiler is repeatedly run, beginning with the entire program or code set to be incorporated into an ACE architecture, with a target hardware configuration and subsequent modifications, until additional iterations indicate diminishing returns of further acceleration and/or an optimal ACE architecture (with configuration information) is determined. As adjustments are made, certain functions are removed from the code completely, with corresponding algorithmic elements being performed by the computational units 200 of the ACE 100 with its configuration information. Other code, if any, which may not become part of the ACE 100 with configuration information, may be maintained as separate code for separate execution within a processor or within an ACE configured as a processor.
In another exemplary embodiment, the profiler may also reside within the ACE 100 itself, with the profiler operating upon the actual circuit design or structure of the ACE as it is operating. The ACE 100 is capable of refining and adjusting its own configurations and reconfigurations, in the field, without outside intervention, through modification of the configuration information for any given function or operation. As the ACE operates, based upon the profiled data parameter results, the ACE 100 may determine that it should change or modify its configuration for performance of one or more functions or operations. For example, based upon profiled data parameter results such as distance of data movement, the ACE may reconfigure itself by providing additional data memory in closer proximity to the area of its circuit performing a corresponding calculation, store data in new locations, modify data types, and so on.
Numerous advantages of the present invention may be readily apparent. The profiling tool of the invention evaluates both program code and hardware architecture based upon a plurality of data parameters, such as data movement, size and speed. Both existing (or legacy) code and of new forms of code are profiled, within a variety of reconfigurable hardware environments or typical processing environments. The profiler of the invention provides profiling information based upon data parameters or metrics such as data location (for static data), data type, data size (input and output), data source and destination locations (for dynamic data), data pipeline length, locality of reference, distance of data movement, speed of data movement, data access frequency, number of data load/stores, degree of cache, register or memory usage, data persistence, corresponding algorithmic element, and corresponding hardware location for the algorithmic element. The profiler of the invention may also provide other measurements of resource utilization, such as memory throughput, execution time and frequency, power consumed, number of instructions utilized, and so on.
The various exemplary embodiments of the profiler of the invention provide unique advantages, such as use in actual circuit design and implementation. The various exemplary embodiments also provide for profiling of actual circuit designs, and self-modification of adaptive or reconfigurable circuitry through self-profiling.
The present invention also provides a novel unit of measure, a “data operational unit”, for use in providing data parameter comparative results. This comparative measure may be utilized to provide direct comparison of otherwise incomparable or incongruent objects, such as allowing direct comparison of a computing program with a hardware architecture (which performs the algorithms of the program).
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the novel concept of the invention. It is to be understood that no limitation with respect to the specific methods and apparatus illustrated herein is intended or should be inferred. It is, of course, intended to cover by the appended claims all such modifications as fall within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3409175 | Byrne | Nov 1968 | A |
3666143 | Weston | May 1972 | A |
3938639 | Birrell | Feb 1976 | A |
3949903 | Benasutti et al. | Apr 1976 | A |
3960298 | Birrell | Jun 1976 | A |
3967062 | Dobias | Jun 1976 | A |
3991911 | Shannon et al. | Nov 1976 | A |
3995441 | McMillin | Dec 1976 | A |
4076145 | Zygiel | Feb 1978 | A |
4143793 | McMillin et al. | Mar 1979 | A |
4172669 | Edelbach | Oct 1979 | A |
4174872 | Fessler | Nov 1979 | A |
4181242 | Zygiel et al. | Jan 1980 | A |
RE30301 | Zygiel | Jun 1980 | E |
4218014 | Tracy | Aug 1980 | A |
4222972 | Caldwell | Sep 1980 | A |
4237536 | Enelow et al. | Dec 1980 | A |
4252253 | Shannon | Feb 1981 | A |
4302775 | Widergren et al. | Nov 1981 | A |
4333587 | Fessler et al. | Jun 1982 | A |
4354613 | Desai et al. | Oct 1982 | A |
4377246 | McMillin et al. | Mar 1983 | A |
4380046 | Fung et al. | Apr 1983 | A |
4393468 | New | Jul 1983 | A |
4413752 | McMillin et al. | Nov 1983 | A |
4458584 | Annese et al. | Jul 1984 | A |
4466342 | Basile et al. | Aug 1984 | A |
4475448 | Shoaf et al. | Oct 1984 | A |
4509690 | Austin et al. | Apr 1985 | A |
4520950 | Jeans | Jun 1985 | A |
4549675 | Austin | Oct 1985 | A |
4553573 | McGarrah | Nov 1985 | A |
4560089 | McMillin et al. | Dec 1985 | A |
4577782 | Fessler | Mar 1986 | A |
4578799 | Scholl et al. | Mar 1986 | A |
RE32179 | Sedam et al. | Jun 1986 | E |
4633386 | Terepin et al. | Dec 1986 | A |
4658988 | Hassell | Apr 1987 | A |
4694416 | Wheeler et al. | Sep 1987 | A |
4711374 | Gaunt et al. | Dec 1987 | A |
4713755 | Worley, Jr. et al. | Dec 1987 | A |
4719056 | Scott | Jan 1988 | A |
4726494 | Scott | Feb 1988 | A |
4747516 | Baker | May 1988 | A |
4748585 | Chiarulli et al. | May 1988 | A |
4758985 | Carter | Jul 1988 | A |
4760525 | Webb | Jul 1988 | A |
4760544 | Lamb | Jul 1988 | A |
4765513 | McMillin et al. | Aug 1988 | A |
4766548 | Cedrone et al. | Aug 1988 | A |
4781309 | Vogel | Nov 1988 | A |
4800492 | Johnson et al. | Jan 1989 | A |
4811214 | Nosenchuck et al. | Mar 1989 | A |
4824075 | Holzboog | Apr 1989 | A |
4827426 | Patton et al. | May 1989 | A |
4850269 | Hancock et al. | Jul 1989 | A |
4856684 | Gerstung | Aug 1989 | A |
4870302 | Freeman | Sep 1989 | A |
4901887 | Burton | Feb 1990 | A |
4905231 | Leung et al. | Feb 1990 | A |
4921315 | Metcalfe et al. | May 1990 | A |
4930666 | Rudick | Jun 1990 | A |
4932564 | Austin et al. | Jun 1990 | A |
4936488 | Austin | Jun 1990 | A |
4937019 | Scott | Jun 1990 | A |
4960261 | Scott et al. | Oct 1990 | A |
4961533 | Teller et al. | Oct 1990 | A |
4967340 | Dawes | Oct 1990 | A |
4974643 | Bennett et al. | Dec 1990 | A |
4982876 | Scott | Jan 1991 | A |
4993604 | Gaunt et al. | Feb 1991 | A |
5007560 | Sassak | Apr 1991 | A |
5021947 | Campbell et al. | Jun 1991 | A |
5040106 | Maag | Aug 1991 | A |
5044171 | Farkas | Sep 1991 | A |
5090015 | Dabbish et al. | Feb 1992 | A |
5099418 | Pian et al. | Mar 1992 | A |
5129549 | Austin | Jul 1992 | A |
5139708 | Scott | Aug 1992 | A |
5144166 | Camarota et al. | Sep 1992 | A |
5156301 | Hassell et al. | Oct 1992 | A |
5156871 | Goulet et al. | Oct 1992 | A |
5165023 | Gifford | Nov 1992 | A |
5165575 | Scott | Nov 1992 | A |
5190083 | Gupta et al. | Mar 1993 | A |
5190189 | Zimmer et al. | Mar 1993 | A |
5193151 | Jain | Mar 1993 | A |
5193718 | Hassell et al. | Mar 1993 | A |
5202993 | Tarsy et al. | Apr 1993 | A |
5203474 | Haynes | Apr 1993 | A |
5218240 | Camarota et al. | Jun 1993 | A |
5240144 | Feldman | Aug 1993 | A |
5245227 | Furtek et al. | Sep 1993 | A |
5261099 | Bigo et al. | Nov 1993 | A |
5263509 | Cherry et al. | Nov 1993 | A |
5269442 | Vogel | Dec 1993 | A |
5280711 | Motta et al. | Jan 1994 | A |
5297400 | Benton et al. | Mar 1994 | A |
5301100 | Wagner | Apr 1994 | A |
5303846 | Shannon | Apr 1994 | A |
5335276 | Thompson et al. | Aug 1994 | A |
5336950 | Popli et al. | Aug 1994 | A |
5339428 | Burmeister et al. | Aug 1994 | A |
5343716 | Swanson et al. | Sep 1994 | A |
5361362 | Benkeser et al. | Nov 1994 | A |
5367651 | Smith et al. | Nov 1994 | A |
5367687 | Tarsy et al. | Nov 1994 | A |
5368198 | Goulet | Nov 1994 | A |
5379343 | Grube et al. | Jan 1995 | A |
5381546 | Servi et al. | Jan 1995 | A |
5381550 | Jourdenais et al. | Jan 1995 | A |
5388062 | Knutson | Feb 1995 | A |
5388212 | Grube et al. | Feb 1995 | A |
5392960 | Kendt et al. | Feb 1995 | A |
5437395 | Bull et al. | Aug 1995 | A |
5450557 | Kopp et al. | Sep 1995 | A |
5454406 | Rejret et al. | Oct 1995 | A |
5465368 | Davidson et al. | Nov 1995 | A |
5475856 | Kogge | Dec 1995 | A |
5479055 | Eccles | Dec 1995 | A |
5490165 | Blakeney, II et al. | Feb 1996 | A |
5491823 | Ruttenberg | Feb 1996 | A |
5504891 | Motoyama et al. | Apr 1996 | A |
5507009 | Grube et al. | Apr 1996 | A |
5515519 | Yoshioka et al. | May 1996 | A |
5517600 | Shimokawa | May 1996 | A |
5519694 | Brewer et al. | May 1996 | A |
5522070 | Sumimoto | May 1996 | A |
5530964 | Alpert et al. | Jun 1996 | A |
5534796 | Edwards | Jul 1996 | A |
5542265 | Rutland | Aug 1996 | A |
5553755 | Bonewald et al. | Sep 1996 | A |
5555417 | Odnert et al. | Sep 1996 | A |
5560028 | Sachs et al. | Sep 1996 | A |
5560038 | Haddock | Sep 1996 | A |
5570587 | Kim | Nov 1996 | A |
5572572 | Kawan et al. | Nov 1996 | A |
5590353 | Sakakibara et al. | Dec 1996 | A |
5594657 | Cantone et al. | Jan 1997 | A |
5600810 | Ohkami | Feb 1997 | A |
5600844 | Shaw et al. | Feb 1997 | A |
5602833 | Zehavi | Feb 1997 | A |
5603043 | Taylor et al. | Feb 1997 | A |
5607083 | Vogel et al. | Mar 1997 | A |
5608643 | Wichter et al. | Mar 1997 | A |
5611867 | Cooper et al. | Mar 1997 | A |
5623545 | Childs et al. | Apr 1997 | A |
5625669 | McGregor et al. | Apr 1997 | A |
5626407 | Westcott | May 1997 | A |
5630206 | Urban et al. | May 1997 | A |
5635940 | Hickman et al. | Jun 1997 | A |
5646544 | Iadanza | Jul 1997 | A |
5646545 | Trimberger et al. | Jul 1997 | A |
5647512 | Assis Mascarenhas deOliveira et al. | Jul 1997 | A |
5667110 | McCann et al. | Sep 1997 | A |
5684793 | Kiema et al. | Nov 1997 | A |
5684980 | Casselman | Nov 1997 | A |
5687236 | Moskowitz et al. | Nov 1997 | A |
5694613 | Suzuki | Dec 1997 | A |
5694794 | Jerg et al. | Dec 1997 | A |
5699328 | Ishizaki et al. | Dec 1997 | A |
5701398 | Glier et al. | Dec 1997 | A |
5701482 | Harrison et al. | Dec 1997 | A |
5704053 | Santhanam | Dec 1997 | A |
5706191 | Bassett et al. | Jan 1998 | A |
5706976 | Purkey | Jan 1998 | A |
5712996 | Schepers | Jan 1998 | A |
5720002 | Wang | Feb 1998 | A |
5721693 | Song | Feb 1998 | A |
5721854 | Ebicioglu et al. | Feb 1998 | A |
5729754 | Estes | Mar 1998 | A |
5732563 | Bethuy et al. | Mar 1998 | A |
5734808 | Takeda | Mar 1998 | A |
5737631 | Trimberger | Apr 1998 | A |
5742180 | DeHon et al. | Apr 1998 | A |
5742821 | Prasanna | Apr 1998 | A |
5745366 | Highma et al. | Apr 1998 | A |
RE35780 | Hassell et al. | May 1998 | E |
5751295 | Becklund et al. | May 1998 | A |
5754227 | Fukuoka | May 1998 | A |
5758261 | Weideman | May 1998 | A |
5768561 | Wise | Jun 1998 | A |
5778439 | Trimberger et al. | Jul 1998 | A |
5784636 | Rupp | Jul 1998 | A |
5787237 | Reilly | Jul 1998 | A |
5790817 | Asghar et al. | Aug 1998 | A |
5791517 | Avital | Aug 1998 | A |
5791523 | Oh | Aug 1998 | A |
5794062 | Baxter | Aug 1998 | A |
5794067 | Kadowaki | Aug 1998 | A |
5802055 | Krein et al. | Sep 1998 | A |
5812851 | Levy et al. | Sep 1998 | A |
5818603 | Motoyama | Oct 1998 | A |
5819255 | Celis et al. | Oct 1998 | A |
5822308 | Weigand et al. | Oct 1998 | A |
5822313 | Malek et al. | Oct 1998 | A |
5822360 | Lee et al. | Oct 1998 | A |
5828858 | Athanas et al. | Oct 1998 | A |
5829085 | Jerg et al. | Nov 1998 | A |
5835753 | Witt | Nov 1998 | A |
5838165 | Chatter | Nov 1998 | A |
5845815 | Vogel | Dec 1998 | A |
5854929 | Van Pract et al. | Dec 1998 | A |
5860021 | Klingman | Jan 1999 | A |
5862961 | Motta et al. | Jan 1999 | A |
5870427 | Teidemann, Jr. et al. | Feb 1999 | A |
5873045 | Lee et al. | Feb 1999 | A |
5881106 | Cartier | Mar 1999 | A |
5884284 | Peters et al. | Mar 1999 | A |
5886537 | Macias et al. | Mar 1999 | A |
5887174 | Simons et al. | Mar 1999 | A |
5889816 | Agrawal et al. | Mar 1999 | A |
5889989 | Robertazzi et al. | Mar 1999 | A |
5890014 | Long | Mar 1999 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5892950 | Rigori et al. | Apr 1999 | A |
5892961 | Trimberger | Apr 1999 | A |
5892962 | Cloutier | Apr 1999 | A |
5894473 | Dent | Apr 1999 | A |
5901884 | Goulet et al. | May 1999 | A |
5903886 | Heimlich et al. | May 1999 | A |
5907285 | Toms et al. | May 1999 | A |
5907580 | Cummings | May 1999 | A |
5910733 | Bertolet et al. | Jun 1999 | A |
5912572 | Graf, III | Jun 1999 | A |
5913172 | McCabe et al. | Jun 1999 | A |
5917852 | Butterfield et al. | Jun 1999 | A |
5920801 | Thomas et al. | Jul 1999 | A |
5931918 | Row et al. | Aug 1999 | A |
5933642 | Greenbaum et al. | Aug 1999 | A |
5940438 | Poon et al. | Aug 1999 | A |
5949415 | Lin et al. | Sep 1999 | A |
5950011 | Albrecht et al. | Sep 1999 | A |
5950131 | Vilmur | Sep 1999 | A |
5951674 | Moreno | Sep 1999 | A |
5953322 | Kimball | Sep 1999 | A |
5956518 | DeHon et al. | Sep 1999 | A |
5956967 | Kim | Sep 1999 | A |
5959811 | Richardson | Sep 1999 | A |
5959881 | Trimberger et al. | Sep 1999 | A |
5963048 | Harrison et al. | Oct 1999 | A |
5966534 | Cooke et al. | Oct 1999 | A |
5970254 | Cooke et al. | Oct 1999 | A |
5987105 | Jenkins et al. | Nov 1999 | A |
5987611 | Freund | Nov 1999 | A |
5991302 | Berl et al. | Nov 1999 | A |
5991308 | Fuhrmann et al. | Nov 1999 | A |
5993739 | Lyon | Nov 1999 | A |
5999734 | Willis et al. | Dec 1999 | A |
6005943 | Cohen et al. | Dec 1999 | A |
6006249 | Leong | Dec 1999 | A |
6016395 | Mohamed | Jan 2000 | A |
6021186 | Suzuki et al. | Feb 2000 | A |
6021492 | May | Feb 2000 | A |
6023742 | Ebeling et al. | Feb 2000 | A |
6023755 | Casselman | Feb 2000 | A |
6028610 | Deering | Feb 2000 | A |
6036166 | Olson | Mar 2000 | A |
6039219 | Bach et al. | Mar 2000 | A |
6041322 | Meng et al. | Mar 2000 | A |
6041970 | Vogel | Mar 2000 | A |
6046603 | New | Apr 2000 | A |
6047115 | Mohan et al. | Apr 2000 | A |
6052600 | Fette et al. | Apr 2000 | A |
6055314 | Spies et al. | Apr 2000 | A |
6056194 | Kolls | May 2000 | A |
6059840 | Click, Jr. | May 2000 | A |
6061580 | Altschul et al. | May 2000 | A |
6073132 | Gehman | Jun 2000 | A |
6076174 | Freund | Jun 2000 | A |
6078736 | Guccione | Jun 2000 | A |
6085740 | Ivri et al. | Jul 2000 | A |
6088043 | Kelleher et al. | Jul 2000 | A |
6091263 | New et al. | Jul 2000 | A |
6091765 | Pietzold, III et al. | Jul 2000 | A |
6094065 | Tavana et al. | Jul 2000 | A |
6094726 | Gonion et al. | Jul 2000 | A |
6111893 | Volftsun et al. | Aug 2000 | A |
6111935 | Hughes-Hartogs | Aug 2000 | A |
6115751 | Tam et al. | Sep 2000 | A |
6119178 | Martin et al. | Sep 2000 | A |
6120551 | Law et al. | Sep 2000 | A |
6122670 | Bennett et al. | Sep 2000 | A |
6128307 | Brown | Oct 2000 | A |
6134605 | Hudson et al. | Oct 2000 | A |
6138693 | Matz | Oct 2000 | A |
6141283 | Bogin et al. | Oct 2000 | A |
6150838 | Wittig et al. | Nov 2000 | A |
6154494 | Sugahara et al. | Nov 2000 | A |
6157997 | Oowaki et al. | Dec 2000 | A |
6158031 | Mack et al. | Dec 2000 | A |
6173389 | Pechanek et al. | Jan 2001 | B1 |
6175854 | Bretscher | Jan 2001 | B1 |
6175892 | Sazzad et al. | Jan 2001 | B1 |
6181981 | Varga et al. | Jan 2001 | B1 |
6185418 | MacLellan et al. | Feb 2001 | B1 |
6192070 | Poon et al. | Feb 2001 | B1 |
6192255 | Lewis et al. | Feb 2001 | B1 |
6192388 | Cajolet | Feb 2001 | B1 |
6195788 | Leaver et al. | Feb 2001 | B1 |
6198924 | Ishii et al. | Mar 2001 | B1 |
6199181 | Rechef et al. | Mar 2001 | B1 |
6202130 | Scales, III et al. | Mar 2001 | B1 |
6202189 | Hinedi et al. | Mar 2001 | B1 |
6219697 | Lawande et al. | Apr 2001 | B1 |
6219756 | Kasamizugami | Apr 2001 | B1 |
6219780 | Lipasti | Apr 2001 | B1 |
6223222 | Fijolek et al. | Apr 2001 | B1 |
6226387 | Tewfik et al. | May 2001 | B1 |
6230307 | Davis et al. | May 2001 | B1 |
6237029 | Master et al. | May 2001 | B1 |
6246883 | Lee | Jun 2001 | B1 |
6247125 | Noel-Baron et al. | Jun 2001 | B1 |
6249251 | Chang et al. | Jun 2001 | B1 |
6258725 | Lee et al. | Jul 2001 | B1 |
6263057 | Silverman | Jul 2001 | B1 |
6266760 | DeHon et al. | Jul 2001 | B1 |
6272579 | Lentz et al. | Aug 2001 | B1 |
6272616 | Fernando et al. | Aug 2001 | B1 |
6281703 | Furuta et al. | Aug 2001 | B1 |
6282627 | Wong et al. | Aug 2001 | B1 |
6286134 | Click, Jr. et al. | Sep 2001 | B1 |
6289375 | Knight et al. | Sep 2001 | B1 |
6289434 | Roy | Sep 2001 | B1 |
6289488 | Dave et al. | Sep 2001 | B1 |
6292822 | Hardwick | Sep 2001 | B1 |
6292827 | Raz | Sep 2001 | B1 |
6292830 | Taylor et al. | Sep 2001 | B1 |
6292938 | Sarkar et al. | Sep 2001 | B1 |
6301653 | Mohamed et al. | Oct 2001 | B1 |
6305014 | Roediger et al. | Oct 2001 | B1 |
6311149 | Ryan et al. | Oct 2001 | B1 |
6321985 | Kolls | Nov 2001 | B1 |
6326806 | Fallside et al. | Dec 2001 | B1 |
6346824 | New | Feb 2002 | B1 |
6347346 | Taylor | Feb 2002 | B1 |
6349394 | Brock et al. | Feb 2002 | B1 |
6353841 | Marshall et al. | Mar 2002 | B1 |
6356994 | Barry et al. | Mar 2002 | B1 |
6359248 | Mardi | Mar 2002 | B1 |
6360256 | Lim | Mar 2002 | B1 |
6360259 | Bradley | Mar 2002 | B1 |
6360263 | Kurtzberg et al. | Mar 2002 | B1 |
6363411 | Dugan et al. | Mar 2002 | B1 |
6366999 | Drabenstott et al. | Apr 2002 | B1 |
6377983 | Cohen et al. | Apr 2002 | B1 |
6378072 | Collins et al. | Apr 2002 | B1 |
6381293 | Lee et al. | Apr 2002 | B1 |
6381735 | Hunt | Apr 2002 | B1 |
6385751 | Wolf | May 2002 | B1 |
6405214 | Meade, II | Jun 2002 | B1 |
6408039 | Ito | Jun 2002 | B1 |
6410941 | Taylor et al. | Jun 2002 | B1 |
6411612 | Halford et al. | Jun 2002 | B1 |
6421372 | Bierly et al. | Jul 2002 | B1 |
6421809 | Wuytack et al. | Jul 2002 | B1 |
6426649 | Fu et al. | Jul 2002 | B1 |
6430624 | Jamtgaard et al. | Aug 2002 | B1 |
6433578 | Wasson | Aug 2002 | B1 |
6434590 | Blelloch et al. | Aug 2002 | B1 |
6438737 | Morelli et al. | Aug 2002 | B1 |
6446258 | McKinsey et al. | Sep 2002 | B1 |
6449747 | Wuytack et al. | Sep 2002 | B2 |
6456996 | Crawford, Jr. et al. | Sep 2002 | B1 |
6459883 | Subramanian et al. | Oct 2002 | B2 |
6467009 | Winegarden et al. | Oct 2002 | B1 |
6469540 | Nakaya | Oct 2002 | B2 |
6473609 | Schwartz et al. | Oct 2002 | B1 |
6483343 | Faith et al. | Nov 2002 | B1 |
6484304 | Ussery et al. | Nov 2002 | B1 |
6507947 | Schreiber et al. | Jan 2003 | B1 |
6510138 | Pannell | Jan 2003 | B1 |
6510510 | Garde | Jan 2003 | B1 |
6526570 | Click, Jr. et al. | Feb 2003 | B1 |
6538470 | Langhammer et al. | Mar 2003 | B1 |
6556044 | Langhammer et al. | Apr 2003 | B2 |
6563891 | Eriksson et al. | May 2003 | B1 |
6570877 | Kloth et al. | May 2003 | B1 |
6577678 | Scheuermann | Jun 2003 | B2 |
6587684 | Hsu et al. | Jul 2003 | B1 |
6590415 | Agrawal et al. | Jul 2003 | B2 |
6601086 | Howard et al. | Jul 2003 | B1 |
6601158 | Abbott et al. | Jul 2003 | B1 |
6604085 | Kolls | Aug 2003 | B1 |
6604189 | Zemlyak et al. | Aug 2003 | B1 |
6606529 | Crowder, Jr. et al. | Aug 2003 | B1 |
6615333 | Hoogerbrugge et al. | Sep 2003 | B1 |
6618434 | Heidari-Bateni et al. | Sep 2003 | B2 |
6640304 | Ginter et al. | Oct 2003 | B2 |
6647429 | Semal | Nov 2003 | B1 |
6653859 | Sihlbom et al. | Nov 2003 | B2 |
6658564 | Smith et al. | Dec 2003 | B1 |
6675265 | Barroso et al. | Jan 2004 | B2 |
6675284 | Warren | Jan 2004 | B1 |
6691148 | Zinky et al. | Feb 2004 | B1 |
6694380 | Wolrich et al. | Feb 2004 | B1 |
6711617 | Bantz et al. | Mar 2004 | B1 |
6718182 | Kung | Apr 2004 | B1 |
6718541 | Ostanevich et al. | Apr 2004 | B2 |
6721286 | Williams et al. | Apr 2004 | B1 |
6721884 | De Oliveira Kastrup Pereira et al. | Apr 2004 | B1 |
6732354 | Ebeling et al. | May 2004 | B2 |
6735621 | Yoakum et al. | May 2004 | B1 |
6738744 | Kirovski et al. | May 2004 | B2 |
6748360 | Pitman et al. | Jun 2004 | B2 |
6751723 | Kundu et al. | Jun 2004 | B1 |
6754470 | Hendrickson et al. | Jun 2004 | B2 |
6760587 | Holtzman et al. | Jul 2004 | B2 |
6760833 | Dowling | Jul 2004 | B1 |
6766165 | Sharma et al. | Jul 2004 | B2 |
6778212 | Deng et al. | Aug 2004 | B1 |
6785341 | Walton et al. | Aug 2004 | B2 |
6795930 | Laurenti et al. | Sep 2004 | B1 |
6819140 | Yamanaka et al. | Nov 2004 | B2 |
6823448 | Roth et al. | Nov 2004 | B2 |
6826748 | Hohensee et al. | Nov 2004 | B1 |
6829633 | Gelfer et al. | Dec 2004 | B2 |
6832250 | Coons et al. | Dec 2004 | B1 |
6836839 | Master et al. | Dec 2004 | B2 |
6859434 | Segal et al. | Feb 2005 | B2 |
6865664 | Budrovic et al. | Mar 2005 | B2 |
6871236 | Fishman et al. | Mar 2005 | B2 |
6883084 | Donohoe | Apr 2005 | B1 |
6894996 | Lee | May 2005 | B2 |
6901440 | Bimm et al. | May 2005 | B1 |
6912515 | Jackson et al. | Jun 2005 | B2 |
6941336 | Mar | Sep 2005 | B1 |
6980515 | Schunk et al. | Dec 2005 | B1 |
6985517 | Matsumoto et al. | Jan 2006 | B2 |
6986021 | Master et al. | Jan 2006 | B2 |
6986142 | Ehlig et al. | Jan 2006 | B1 |
6988139 | Jervis et al. | Jan 2006 | B1 |
7032229 | Flores et al. | Apr 2006 | B1 |
7044741 | Leem | May 2006 | B2 |
7082456 | Mani-Meitav et al. | Jul 2006 | B2 |
7139910 | Ainsworth et al. | Nov 2006 | B1 |
7142731 | Toi | Nov 2006 | B1 |
7171548 | Smith et al. | Jan 2007 | B2 |
7249242 | Ramchandran | Jul 2007 | B2 |
7996827 | Vorbach et al. | Aug 2011 | B2 |
20010003191 | Kovacs et al. | Jun 2001 | A1 |
20010023482 | Wray | Sep 2001 | A1 |
20010029515 | Mirsky | Oct 2001 | A1 |
20010034795 | Moulton et al. | Oct 2001 | A1 |
20010039654 | Miyamoto | Nov 2001 | A1 |
20010048713 | Medlock et al. | Dec 2001 | A1 |
20010048714 | Jha | Dec 2001 | A1 |
20010050948 | Ramberg et al. | Dec 2001 | A1 |
20020010848 | Kamano et al. | Jan 2002 | A1 |
20020013799 | Blaker | Jan 2002 | A1 |
20020013937 | Ostanevich et al. | Jan 2002 | A1 |
20020015435 | Rieken | Feb 2002 | A1 |
20020015439 | Kohli et al. | Feb 2002 | A1 |
20020023210 | Tuomenoksa et al. | Feb 2002 | A1 |
20020024942 | Tsuneki et al. | Feb 2002 | A1 |
20020024993 | Subramanian et al. | Feb 2002 | A1 |
20020031166 | Subramanian et al. | Mar 2002 | A1 |
20020032551 | Zakiya | Mar 2002 | A1 |
20020035623 | Lawande et al. | Mar 2002 | A1 |
20020041581 | Aramaki | Apr 2002 | A1 |
20020042875 | Shukla | Apr 2002 | A1 |
20020042907 | Yamanaka et al. | Apr 2002 | A1 |
20020061741 | Leung et al. | May 2002 | A1 |
20020069282 | Reisman | Jun 2002 | A1 |
20020072830 | Hunt | Jun 2002 | A1 |
20020078337 | Moreau et al. | Jun 2002 | A1 |
20020083305 | Renard et al. | Jun 2002 | A1 |
20020083423 | Ostanevich et al. | Jun 2002 | A1 |
20020087829 | Snyder et al. | Jul 2002 | A1 |
20020089348 | Langhammer | Jul 2002 | A1 |
20020101909 | Chen et al. | Aug 2002 | A1 |
20020107905 | Roe et al. | Aug 2002 | A1 |
20020107962 | Richter et al. | Aug 2002 | A1 |
20020119803 | Bitterlich et al. | Aug 2002 | A1 |
20020120672 | Butt et al. | Aug 2002 | A1 |
20020133688 | Lee et al. | Sep 2002 | A1 |
20020138716 | Master et al. | Sep 2002 | A1 |
20020141489 | Imaizumi | Oct 2002 | A1 |
20020147845 | Sanchez-Herrero et al. | Oct 2002 | A1 |
20020159503 | Ramachandran | Oct 2002 | A1 |
20020162026 | Neuman et al. | Oct 2002 | A1 |
20020168018 | Scheuermann | Nov 2002 | A1 |
20020181559 | Heidari-Bateni et al. | Dec 2002 | A1 |
20020184275 | Dutta et al. | Dec 2002 | A1 |
20020184291 | Hogenauer | Dec 2002 | A1 |
20020184498 | Qi | Dec 2002 | A1 |
20020191790 | Anand et al. | Dec 2002 | A1 |
20030007606 | Suder et al. | Jan 2003 | A1 |
20030012270 | Zhou et al. | Jan 2003 | A1 |
20030018446 | Makowski et al. | Jan 2003 | A1 |
20030018700 | Giroti et al. | Jan 2003 | A1 |
20030023830 | Hogenauer | Jan 2003 | A1 |
20030026242 | Jokinen et al. | Feb 2003 | A1 |
20030030004 | Dixon et al. | Feb 2003 | A1 |
20030046421 | Horvitz et al. | Mar 2003 | A1 |
20030061260 | Rajkumar | Mar 2003 | A1 |
20030061311 | Lo | Mar 2003 | A1 |
20030063656 | Rao et al. | Apr 2003 | A1 |
20030074473 | Pham et al. | Apr 2003 | A1 |
20030076815 | Miller et al. | Apr 2003 | A1 |
20030099223 | Chang et al. | May 2003 | A1 |
20030102889 | Master et al. | Jun 2003 | A1 |
20030105949 | Master et al. | Jun 2003 | A1 |
20030110485 | Lu et al. | Jun 2003 | A1 |
20030142818 | Raghunathan et al. | Jul 2003 | A1 |
20030154357 | Master et al. | Aug 2003 | A1 |
20030163723 | Kozuch et al. | Aug 2003 | A1 |
20030171907 | Gal-On et al. | Sep 2003 | A1 |
20030172138 | McCormack et al. | Sep 2003 | A1 |
20030172139 | Srinivasan et al. | Sep 2003 | A1 |
20030200538 | Ebeling et al. | Oct 2003 | A1 |
20030212684 | Meyer et al. | Nov 2003 | A1 |
20030229864 | Watkins | Dec 2003 | A1 |
20040006584 | Vandeweerd | Jan 2004 | A1 |
20040010645 | Scheuermann et al. | Jan 2004 | A1 |
20040015970 | Scheuermann | Jan 2004 | A1 |
20040025159 | Scheuermann et al. | Feb 2004 | A1 |
20040057505 | Valio | Mar 2004 | A1 |
20040062300 | McDonough et al. | Apr 2004 | A1 |
20040081248 | Parolari | Apr 2004 | A1 |
20040093479 | Ramchandran | May 2004 | A1 |
20040168044 | Ramchandran | Aug 2004 | A1 |
20050044344 | Stevens | Feb 2005 | A1 |
20050160402 | Wang et al. | Jul 2005 | A1 |
20050166038 | Wang et al. | Jul 2005 | A1 |
20050198199 | Dowling | Sep 2005 | A1 |
20060031660 | Master et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
100 18 374 | Oct 2001 | DE |
0 301 169 | Feb 1989 | EP |
0 166 586 | Jan 1991 | EP |
0 236 633 | May 1991 | EP |
0 478 624 | Apr 1992 | EP |
0 479 102 | Apr 1992 | EP |
0 661 831 | Jul 1995 | EP |
0 668 659 | Aug 1995 | EP |
0 690 588 | Jan 1996 | EP |
0 691 754 | Jan 1996 | EP |
0 768 602 | Apr 1997 | EP |
0 817 003 | Jan 1998 | EP |
0 821 495 | Jan 1998 | EP |
0 866 210 | Sep 1998 | EP |
0 923 247 | Jun 1999 | EP |
0 926 596 | Jun 1999 | EP |
1 056 217 | Nov 2000 | EP |
1 061 437 | Dec 2000 | EP |
1 061 443 | Dec 2000 | EP |
1 126 368 | Aug 2001 | EP |
1 150 506 | Oct 2001 | EP |
1 189 358 | Mar 2002 | EP |
2 067 800 | Jul 1981 | GB |
2 237 908 | May 1991 | GB |
62-249456 | Oct 1987 | JP |
63-147258 | Jun 1988 | JP |
4-51546 | Feb 1992 | JP |
7-064789 | Mar 1995 | JP |
7066718 | Mar 1995 | JP |
10233676 | Sep 1998 | JP |
10254696 | Sep 1998 | JP |
11296345 | Oct 1999 | JP |
2000315731 | Nov 2000 | JP |
2001-053703 | Feb 2001 | JP |
WO 8905029 | Jun 1989 | WO |
WO 8911443 | Nov 1989 | WO |
WO 9100238 | Jan 1991 | WO |
WO 9313603 | Jul 1993 | WO |
WO 9511855 | May 1995 | WO |
WO 9633558 | Oct 1996 | WO |
WO 9832071 | Jul 1998 | WO |
WO 9903776 | Jan 1999 | WO |
WO 9921094 | Apr 1999 | WO |
WO 9926860 | Jun 1999 | WO |
WO 9965818 | Dec 1999 | WO |
WO 0019311 | Apr 2000 | WO |
WO 0065855 | Nov 2000 | WO |
WO 0069073 | Nov 2000 | WO |
WO 0111281 | Feb 2001 | WO |
WO 0122235 | Mar 2001 | WO |
WO 0176129 | Oct 2001 | WO |
WO 0212978 | Feb 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040093589 A1 | May 2004 | US |