Programmable active pixel test injection

Information

  • Patent Grant
  • 11885646
  • Patent Number
    11,885,646
  • Date Filed
    Thursday, August 12, 2021
    3 years ago
  • Date Issued
    Tuesday, January 30, 2024
    10 months ago
Abstract
Methods and apparatus for a detector system having a photodetector and an amplifier to amplify the photodetector signal. A discriminator generates an active output signal when the output from the amplifier is greater than a threshold. An injection circuit is coupled to the input of the amplifier. The injection circuit is configured to selectively inject a test pulse that mimics a pulse from the photodetector for verifying operation of the detector system.
Description
BACKGROUND

As is known in the art, pixel circuits used in photonic detection systems look for active transient signals indicating optical returns from pulse-illuminated scenes of interest. The pulsed illumination propagates from the optical source, reflects off objects in the active imaging system field of view, and returns towards the active imaging system. Pixels in the active imaging convert this input energy, generally photo-current from a photo-detector device, into a voltage signal that is compared to a threshold for detecting the presence and timing of an active optical return. The timing information from this active system is used to calculate range to an object in the field of view of the active imaging system.


SUMMARY

Embodiments of the disclosure provide a photodetection system having a programmable pixel test injection circuit. In example embodiments, a system can include a photo-detector, an amplifier, a differential voltage discriminator, a charge injection circuit, and a selection control circuit. The photo-detector converts incident photon energy striking the photo-detector into current flow that is proportional to the number of photons striking the photo-detector. A common photo-detector device is a photo-diode which creates reverse-bias current flow proportional to photons of particular wavelengths striking the device and has an intrinsic capacitance between anode and cathode nodes. In embodiments, the amplifier comprises a transimpedance amplifier that converts photo-current into a corresponding voltage output. In some embodiments, the circuit is implemented as a single-ended circuit with implicit reference to ground or another reference voltage.


In other embodiments, the circuit is implemented as a differential circuit which converts the photo-current into a differential output voltage. The output is coupled to the input of the differential voltage discriminator either though AC coupling capacitors, for example, or with a direct connection to the input. In embodiments, the differential voltage discriminator detects when the positive input exceeds the negative input and produces a digital output pulse corresponding to time a duration of the positive input exceedance. In single-ended pixel systems, the threshold may be directly applied to the negative input of the differential voltage discriminator. In differential pixel systems, the threshold is injected into the differential signal path.


In embodiments, the charge injection circuit is constructed from an injection capacitor, switches, and rate-limited switch drivers and control logic. The switches serve to transition the voltage on the injection capacitor from ground to a reference voltage injecting charge proportional to the change in voltage and the injection capacitor size. The charge injection circuit may provide a moment of charge transfer onto the photo-detector node which is equivalent to a current pulse. This current pulse may mimic an active photo-current return pulse from the photo-detector and allow testing the active imaging functions of the pixel.


The injection capacitor may be kept small to limit the performance impact on the active pixel circuit. In one embodiment, the injection capacitor comprises a parasitic metal-metal capacitor. Other embodiments may use capacitor devices and be limited to a minimum capacitance according to device minimum sizes. Other embodiments may be constructed using devices or materials having capacitive properties between two conductive nodes.


In embodiments, the reference voltages used for switching the voltage on the injection capacitor may comprise any practical voltage. One embodiment uses ground for one reference and a programmable reference voltage for the other reference. The programmable reference voltage allows a variable charge injection which mimics various return energies and allows the test feature to evaluate the sensitivity of each pixel in-situ.


In example embodiments, the rate-limited switch drivers control the rate of the of the charge injection, and thus, the width of the current injection pulse. It may be desirable to test the active pixel with a current injection pulse similar to the width of the optical pulses used in the active imaging system. One embodiment includes controllable rate-limited switch drivers to allow for programmable switch transition rates, and therefore, programmable current injection pulse widths. Another embodiment drives the switches with logic devices allowing the injection current pulse width to be limited by the logic drive speed and switch on-resistance.


The control logic may comprise a logical decoder to allow for control of the pixel injection in a number of different ways. One embodiment uses row and column select controls to enable a system allowing individual pixels to be selected active for the test current injection. This arrangement also allows multiple pixels on a row or multiple pixels on a column to be selected, as well as all pixels on a row, all pixels on a column, multiple rows or columns of pixels, or all pixels to be globally selected. Another embodiment comprises a 1-dimensional pixel array with a single pixel-select input to enable the pixel and allow single pixel, multiple pixel, or all pixel selection as desired. Another embodiment may remove selection options entirely to enable driving all pixels with the test signal at the same time. Selection functions may be implemented external to the pixel and the step signal delivered to the pixel may be filtered before delivery to the pixel.


In embodiments, photodetector systems are configured for automotive or other safety-sensitive applications and meet safety standards, such as ISO 26262 which includes specification of an Application Safety Integration Level (ASIL). In order to meet the high fault detectability standards required, validation of the active operation of all pixels in the active imaging system may be required. The active testing of pixels may enable safety reporting to detect and report on unsafe active imager status which may develop over the lifetime or may be related to other system failures.


In one aspect, a detector system comprises: a photodetector; an amplifier having an input to receive an output from the photodetector; a discriminator to receive an output from the amplifier and generate an active output signal when the output from the amplifier is greater than a threshold; and an injection circuit coupled to the input of the amplifier, wherein the injection circuit is configured to selectively inject a test pulse that mimics a pulse from the photodetector for verifying operation of the detector system.


A detector system can further include one or more of the following features: the injection circuit comprises an injection capacitor coupled to the input of the amplifier, the amplifier comprises a transimpedance amplifier, the discriminator comprises a voltage discriminator, the injection circuit includes first and second switches and an injection capacitor having a terminal coupled between the first and second switches, the first and second switches transition a voltage on the injection capacitor from a first reference voltage to a second reference voltage injecting charge proportional to a change in voltage and size of the injection capacitor, a selection control circuit coupled to the injection circuit to control generation of the test pulse and state of the first and second switches, the selection control circuit controls the first and second switches with rate-limited signals to control a width of the injection pulse, the selection control circuit controls generation of the injection pulse based on row and column of the photodetector within an array, the amplifier and the discriminator receive differential signals so that that discriminator detects when a positive input to the discriminator exceeds a negative input to the discriminator, a safety module to detect a fault by monitoring an output of the discriminator, and/or the safety module is configured to generate an alert after detection of the fault.


In another aspect, a method comprises: amplifying, with an amplifier, an input from an output from a photodetector; generating, by a discriminator, an active output signal when the output from the amplifier is greater than a threshold; and selectively injecting, by an injection circuit, a test pulse that mimics a pulse from the photodetector for verifying operation of the detector system.


A method can further include one or more of the following features: the injection circuit comprises an injection capacitor coupled to the input of the amplifier, the amplifier comprises a transimpedance amplifier, the discriminator comprises a voltage discriminator, the injection circuit includes first and second switches and an injection capacitor having a terminal coupled between the first and second switches, the first and second switches transition a voltage on the injection capacitor from a first reference voltage to a second reference voltage injecting charge proportional to a change in voltage and size of the injection capacitor, a selection control circuit coupled to the injection circuit to control generation of the test pulse and state of the first and second switches, the selection control circuit controls the first and second switches with rate-limited signals to control a width of the injection pulse, the selection control circuit controls generation of the injection pulse based on row and column of the photodetector within an array, the amplifier and the discriminator receive differential signals so that that discriminator detects when a positive input to the discriminator exceeds a negative input to the discriminator, a safety module to detect a fault by monitoring an output of the discriminator, and/or the safety module is configured to generate an alert after detection of the fault.


In a further aspect, a detector system comprises: a means for detecting photons; an amplifier having an input to receive an output from the means for detecting photons; a discriminator means for receiving an output from the amplifier and generating an active output signal when the output from the amplifier is greater than a threshold; and an injection circuit means for selectively injecting a test pulse that mimics a pulse from the photodetector for verifying operation of the detector system.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of this disclosure, as well as the disclosure itself, may be more fully understood from the following description of the drawings in which:



FIG. 1 is a block diagram of an example photo-detector system having pixel test injection functionality in accordance with illustrative embodiments of the disclosure;



FIG. 2A is a diagram of an example circuit implementation of the system of FIG. 1;



FIG. 2B is a waveform diagram for signals in the circuit of FIG. 2A;



FIG. 3A is a diagram of an example differential circuit implementation of the system of FIG. 1;



FIG. 3B is a waveform diagram for signals in the circuit of FIG. 3A;



FIG. 4 is a schematic representation of an example pixel selection circuit;



FIG. 5 is a flow diagram of an example sequence of steps for providing a photo-detector system having pixel test injection functionality; and



FIG. 6 is a schematic representation of an example computer that can perform at least a portion of the processing described herein.





DETAILED DESCRIPTION

Prior to describing example embodiments of the disclosure some information is provided. Laser ranging systems can include laser radar (ladar), light-detection and ranging (lidar), and rangefinding systems, which are generic terms for the same class of instrument that uses light to measure the distance to objects in a scene. This concept is similar to radar, except optical signals are used instead of radio waves. Similar to radar, a laser ranging and imaging system emits an optical signal, e.g. a pulse or continuous optical signal, toward a particular location and measures return reflections to extract range information.


Laser ranging systems generally work by emitting a laser pulse and recording the time it takes for the laser pulse to travel to a target, reflect, and return to a photoreceiver. The laser ranging instrument records the time of the outgoing pulse—either from a trigger or from calculations that use measurements of the scatter from the outgoing laser light—and then records the time that a laser pulse returns. The difference between these two times is the time of flight to and from the target. Using the speed of light, the round-trip time of the pulses is used to calculate the distance to the target.


Lidar systems may scan the beam across a target area to measure the distance to multiple points across the field of view, producing a full three-dimensional range profile of the surroundings. More advanced flash lidar cameras, for example, contain an array of detector elements, each able to record the time of flight to objects in their field of view.


When using light pulses to create images, the emitted pulse may intercept multiple objects, at different orientations, as the pulse traverses a 3D volume of space. The reflected laser-pulse waveform contains a temporal and amplitude imprint of the scene. By sampling the light reflections, a record of the interactions of the emitted pulse is extracted with the intercepted objects of the scene, allowing an accurate multi-dimensional image to be created. To simplify signal processing and reduce data storage, laser ranging and imaging can be dedicated to discrete-return systems, which record only the time of flight (TOF) of the first, or a few, individual target returns to obtain angle-angle-range images. In a discrete-return system, each recorded return corresponds, in principle, to an individual laser reflection (i.e., a reflection from one particular reflecting surface, for example, a vehicle, a person, a tree, pole or building). By recording just a few individual ranges, discrete-return systems simplify signal processing and reduce data storage, but they do so at the expense of lost target and scene reflectivity data. Because laser-pulse energy has significant associated costs and drives system size and weight, recording the TOF and pulse amplitude of more than one laser pulse return per transmitted pulse, to obtain angle-angle-range-intensity images, increases the amount of captured information per unit of pulse energy. All other things equal, capturing the full pulse return waveform offers significant advantages, such that the maximum data is extracted from the investment in average laser power. In full-waveform systems, each backscattered laser pulse received by the system is digitized at a high sampling rate (e.g., 500 MHz to 1.5 GHz). This process generates digitized waveforms (amplitude versus time) that may be processed to achieve higher-fidelity 3D images.


Of the various laser ranging instruments available, those with single-element photoreceivers generally obtain range data along a single range vector, at a fixed pointing angle. This type of instrument—which is, for example, commonly used by golfers and hunters—either obtains the range (R) to one or more targets along a single pointing angle or obtains the range and reflected pulse intensity (I) of one or more objects along a single pointing angle, resulting in the collection of pulse range-intensity data, (R,I)i, where i indicates the number of pulse returns captured for each outgoing laser pulse.


More generally, laser ranging instruments can collect ranging data over a portion of the solid angles of a sphere, defined by two angular coordinates (e.g., azimuth and elevation), which can be calibrated to three-dimensional (3D) rectilinear cartesian coordinate grids; these systems are generally referred to as 3D lidar and ladar instruments. The terms “lidar” and “ladar” are often used synonymously and, for the purposes of this discussion, the terms “3D lidar,” “scanned lidar,” or “lidar” are used to refer to these systems without loss of generality. 3D lidar instruments obtain three-dimensional (e.g., angle, angle, range) data sets. Conceptually, this would be equivalent to using a rangefinder and scanning it across a scene, capturing the range of objects in the scene to create a multi-dimensional image. When only the range is captured from the return laser pulses, these instruments obtain a 3D data set (e.g., angle, angle, range)n, where the index n is used to reflect that a series of range-resolved laser pulse returns can be collected, not just the first reflection.


Some 3D lidar instruments are also capable of collecting the intensity of the reflected pulse returns generated by the objects located at the resolved (angle, angle, range) objects in the scene. When both the range and intensity are recorded, a multi-dimensional data set [e.g., angle, angle, (range-intensity)n] is obtained. This is analogous to a video camera in which, for each instantaneous field of view (FOV), each effective camera pixel captures both the color and intensity of the scene observed through the lens. However, 3D lidar systems, instead capture the range to the object and the reflected pulse intensity.


Lidar systems can include different types of lasers, including those operating at different wavelengths, including those that are not visible (e.g., those operating at a wavelength of 840 nm or 905 nm), and in the near-infrared (e.g., those operating at a wavelength of 1064 nm or 1550 nm), and the thermal infrared including those operating at wavelengths known as the “eyesafe” spectral region (i.e., generally those operating at a wavelength beyond about 1400-nm), where ocular damage is less likely to occur. Lidar transmitters are generally invisible to the human eye. However, when the wavelength of the laser is close to the range of sensitivity of the human eye—roughly 350 nm to 730 nm—the energy of the laser pulse and/or the average power of the laser must be lowered such that the laser operates at a wavelength to which the human eye is not sensitive. Thus, a laser operating at, for example, 1550 nm, can—without causing ocular damage—generally have 200 times to 1 million times more laser pulse energy than a laser operating at 840 nm or 905 nm.


One challenge for a lidar system is detecting poorly reflective objects at long distance, which requires transmitting a laser pulse with enough energy that the return signal—reflected from the distant target—is of sufficient magnitude to be detected. To determine the minimum required laser transmission power, several factors must be considered. For instance, the magnitude of the pulse returns scattering from the diffuse objects in a scene is proportional to their range and the intensity of the return pulses generally scales with distance according to 1/R{circumflex over ( )}4 for small objects and 1/R{circumflex over ( )}2 for larger objects; yet, for highly-specularly reflecting objects (i.e., those objects that are not diffusively-scattering objects), the collimated laser beams can be directly reflected back, largely unattenuated. This means that—if the laser pulse is transmitted, then reflected from a target 1 meter away—it is possible that the full energy (J) from the laser pulse will be reflected into the photoreceiver; but—if the laser pulse is transmitted, then reflected from a target 333 meters away—it is possible that the return will have a pulse with energy approximately 10{circumflex over ( )}12 weaker than the transmitted energy.


In many cases of lidar systems highly-sensitive photoreceivers are used to increase the system sensitivity to reduce the amount of laser pulse energy that is needed to reach poorly reflective targets at the longest distances required, and to maintain eyesafe operation. Some variants of these detectors include those that incorporate photodiodes, and/or offer gain, such as avalanche photodiodes (APDs) or single-photon avalanche detectors (SPADs). These variants can be configured as single-element detectors-segmented-detectors, linear detector arrays, or area detector arrays. Using highly sensitive detectors such as APDs or SPADs reduces the amount of laser pulse energy required for long-distance ranging to poorly reflective targets. The technological challenge of these photodetectors is that they must also be able to accommodate the incredibly large dynamic range of signal amplitudes.


As dictated by the properties of the optics, the focus of a laser return changes as a function of range; as a result, near objects are often out of focus. Furthermore, also as dictated by the properties of the optics, the location and size of the “blur”—i.e., the spatial extent of the optical signal—changes as a function of range, much like in a standard camera. These challenges are commonly addressed by using large detectors, segmented detectors, or multi-element detectors to capture all of the light or just a portion of the light over the full-distance range of objects. It is generally advisable to design the optics such that reflections from close objects are blurred, so that a portion of the optical energy does not reach the detector or is spread between multiple detectors. This design strategy reduces the dynamic range requirements of the detector and prevents the detector from damage.


Acquisition of the lidar imagery can include, for example, a 3D lidar system embedded in the front of car, where the 3D lidar system, includes a laser transmitter with any necessary optics, a single-element photoreceiver with any necessary dedicated or shared optics, and an optical scanner used to scan (“paint”) the laser over the scene. Generating a full-frame 3D lidar range image—where the field of view is 20 degrees by 60 degrees and the angular resolution is 0.1 degrees (10 samples per degree)—requires emitting 120,000 pulses [(20*10*60*10)=120,000)]. When update rates of 30 frames per second are required, such as is required for automotive lidar, roughly 3.6 million pulses per second must be generated and their returns captured.


There are many ways to combine and configure the elements of the lidar system—including considerations for the laser pulse energy, beam divergence, detector array size and array format (single element, linear, 2D array), and scanner to obtain a 3D image. If higher power lasers are deployed, pixelated detector arrays can be used, in which case the divergence of the laser would be mapped to a wider field of view relative to that of the detector array, and the laser pulse energy would need to be increased to match the proportionally larger field of view. For example—compared to the 3D lidar above—to obtain same-resolution 3D lidar images 30 times per second, a 120,000-element detector array (e.g., 200×600 elements) could be used with a laser that has pulse energy that is 120,000 times greater. The advantage of this “flash lidar” system is that it does not require an optical scanner; the disadvantages are that the larger laser results in a larger, heavier system that consumes more power, and that it is possible that the required higher pulse energy of the laser will be capable of causing ocular damage. The maximum average laser power and maximum pulse energy are limited by the requirement for the system to be eyesafe.


As noted above, while many lidar system operate by recording only the laser time of flight and using that data to obtain the distance to the first target return (closest) target, some lidar systems are capable of capturing both the range and intensity of one or multiple target returns created from each laser pulse. For example, for a lidar system that is capable of recording multiple laser pulse returns, the system can detect and record the range and intensity of multiple returns from a single transmitted pulse. In such a multi-pulse lidar system, the range and intensity of a return pulse from a from a closer-by object can be recorded, as well as the range and intensity of later reflection(s) of that pulse—one(s) that moved past the closer-by object and later reflected off of more-distant object(s). Similarly, if glint from the sun reflecting from dust in the air or another laser pulse is detected and mistakenly recorded, a multi-pulse lidar system allows for the return from the actual targets in the field of view to still be obtained.


The amplitude of the pulse return is primarily dependent on the specular and diffuse reflectivity of the target, the size of the target, and the orientation of the target. Laser returns from close, highly-reflective objects, are many orders of magnitude greater in intensity than the intensity of returns from distant targets. Many lidar systems require highly sensitive photodetectors, for example avalanche photodiodes (APDs), which along with their CMOS amplification circuits allow low reflectivity targets to be detected, provided the photoreceiver components are optimized for high conversion gain. Largely because of their high sensitivity, these detectors may be damaged by very intense laser pulse returns.


However, capturing the intensity of pulses over a larger dynamic range associated with laser ranging may be challenging because the signals are too large to capture directly. One can infer the intensity by using a recording of a bit-modulated output obtained using serial-bit encoding obtained from one or more voltage threshold levels. This technique is often referred to as time-over-threshold (TOT) recording or, when multiple-thresholds are used, multiple time-over-threshold (MTOT) recording.



FIG. 1 shows an example detector system 100 having safety functionality. The system 100 includes a photo-detector array 102 to convert incident photon energy striking the photo-detectors in the array into current flow that is proportional to the number of photons striking the photo-detectors. A common photo-detector device comprises a photo-diode which creates reverse-bias current flow proportional to photons of particular wavelengths striking the device and has intrinsic capacitance between the anode and cathode.


The detector array 102, which can comprise a sensor chip assembly (SCA) 105 having an array of pixels, is coupled to a readout module 104, such as a readout integrated circuit (ROIC). Although the SCA 105 is shown as a ROIC and detector array in another embodiment they may comprise one piece of material, for example a monolithic silicon detector. In addition, the READOUT module 106 may comprise a silicon circuit and the detector module 102 may comprise a different material, such as, but not limited to GaAs, InGaAs, InGaAsP, and/or other detector materials.


In embodiments, the detector array 102 can comprise a single pixel, or pixels in one dimension (1D), two dimensions (2D) An interface module 106 can output the information from the readout module 104. A safety module 108 can analyze operation of the detector system 100 and may generate alerts upon detecting one or more faults. In embodiments, the safety module 108 can include active pixel test injection functionality. In embodiments, the safety module 108 can provide Automotive Safety Integrity Level (ASIL) related functionality, as described more fully below. The detector system 100 can include a regulator 110 to provide one or more regulated voltages for the system.



FIG. 2A shows an example detector system 200 having programmable active pixel test injection functionality in accordance with example embodiments of the disclosure. The system 200 can include a charge/pixel test injection circuit 202 for injecting a signal into a photo-detector 204 circuit, which is coupled to the input of an amplifier 206, such as a transimpedance amplifier (TIA). A threshold detector 208, such as a voltage discriminator, can generate an output signal 210 based on the output of the amplifier 206. The TIA 206 converts a current, such as a current pulse from the photo-detector 204 or pixel injection circuit 202, into a corresponding voltage signal. In embodiments, the test injection circuit 202 includes an injection capacitor 211 that is sized to inject a pulse that may be of similar characteristics to a pulse generated by the photodiode 204 in response to received photonic energy from signal return.


In the illustrated embodiment of FIG. 2A, the circuit is implemented as a single-ended circuit with implicit reference to ground or another reference voltage. In the illustrated embodiment of FIG. 3A, a differential circuit implementation is shown which converts the photo-current into a differential output voltage.


The voltage discriminator 208 detects when the amplifier 206 output exceeds a threshold voltage Vthresh. When the threshold voltage Vthresh is exceeded, the voltage discriminator 208 produces a digital output pulse corresponding to a time for a duration of the threshold voltage Vthresh exceedance. In single-ended pixel systems, the threshold is directly applied to the negative input of the voltage discriminator 208. In embodiments, the amplifier 206 output may be coupled to the input of the voltage discriminator 208 though an AC coupling capacitor 212.


In the example embodiment of FIG. 2A, the charge injection circuit 202 is coupled to the amplifier 206 for injecting a pulse from the injection capacitor 211 into the amplifier that may mimic a pulse generated by the photodetector 204 during normal operation. A selection control module 222 coupled to the charge injection circuit 202 can control the generation and characteristics of test pulses by controlling the state of switches, such as a first switch 224 and a second switch 226 in the illustrated embodiment, and selection signals.



FIG. 2B show example signals for operation of the circuit 200 of FIG. 2A. An os signal pulse can momentarily close a switch 214 coupled to a common mode voltage supply prior to test pulse injection. A step pulse can be input to a logic gate 216. In the illustrated embodiment, the logic gate comprises a NAND gate. A row select sel_row signal and column select sel_col signal corresponding to a particular pixel in an array can also be inputs to the logic gate 216. When the step signal, the row select signal, and the column select signal to the logic gate 216 are active, an output of the logic gate transitions to an active state, shown as LO, which generate a step_lim and step_limB signal, which are of opposite polarity. The step_lim signal controls the state of the first switch 224 and the step_limB signal controls the state of the second switch 226.


The slope 230 of the step_lim signal and the step_limB signal can be controlled to shape the current pulse Itest from the injection capacitor 211. In the illustrated embodiment, the injection capacitor 211 is coupled between the first and second switches 224, 226. The first switch 224 is coupled to an injection voltage signal Vinj and the second switch 226 is coupled to a voltage reference, such as ground. The injection voltage Vinj level may also define the characteristics of the injection pulse Itest. In embodiments, respective buffer elements 217, 218 can define characteristics, such as ramp slope, of the switch control signals step_lim, step_limB to shape the pulse. For example, the drive strength, impedance, capacitance, fabrication technology and the like, can be used to control the switch signals, and therefore, the shape of the injection pulse Itest.


As described above, the injection pulse Itest is amplified by the amplifier 206 and, if above a voltage threshold Vthresh, the voltage discriminator 208 outputs 210 a pulse disc out signal corresponding to the injection pulse Itest.



FIG. 3A shows the system of FIG. 3 in a differential implementation 300. The system 300 includes a charge/pixel test injection circuit 302 for injecting a signal into a photo-detector 304 circuit, which is coupled to the input of a differential amplifier 306, such as a transimpedance amplifier (TIA). The photodetector 304, which includes an inherent capacitance 305, is coupled to a first input of the differential amplifier 306 and to the injection capacitor 311. A second input of the amplifier 306 is coupled to a capacitor 307, which is coupled to a voltage supply Vc and also coupled to the anode of the photodiode 304. A differential voltage discriminator 308, can generate an output signal 310 based on the output of the differential amplifier 306.


The differential voltage discriminator 308 detects when the positive input exceeds the negative input and produces a digital output pulse corresponding to time and duration of the positive input exceedance. In the illustrated embodiment, a threshold generator 319 can be coupled to the negative input of the voltage discriminator 308. An alternative embodiment injects a differential threshold though coupled capacitors to both positive and negative inputs of the voltage discriminator 308.



FIG. 3B shows example waveforms for the circuit of FIG. 3A. The waveforms are similar to the waveforms in FIG. 3A so that descriptions are not repeated here.


In embodiments, the system can confirm that the test pulse Itest is seen at the output of the voltage discriminator 208,308. For example, the safety module 108 of FIG. 1 can include circuitry to monitor the output of the voltage discriminator during test operations, such as pulse injection. If safety module 108 does not ‘see’ the test pulse at the output of the discriminator, an alert can be generated.


It is understood that control logic can comprise a decoder allowing for control of the pixel injection in a number of different ways. In some embodiments, row and column select controls to enable individual pixel selection for active test current injection. Multiple pixels on a row or multiple pixels on a column can be selected, as well as all pixels on a row, all pixels on a column, multiple rows or columns of pixels, or all pixels to be globally selected.



FIG. 4 shows an example selection control module 400 for pixel array row and column selection. An array 402 comprises pixels 404 each of which is connected to a row select signal 406 and a column select signal 408. The selection control module 400 can control the row and column select signals 406, 408 to select a particular pixel 404 in the array. In embodiments, the selection control modules generate the step, sel_row, and sel_col signals of FIG. 2A.


It is understood that selecting pixels for pulse injection can be implemented in a wide variety of configurations in hardware, software, and combinations thereof, to meet the needs of a particular application. It is further understood that one pixel, one row of pixels, one column of pixels, or any practical subset of pixels can be selected for active pixel test injection.



FIG. 5 shows an example sequence of steps for providing photodetection with active pixel test injection. In step 500, one or more pixels within an array can be selected for pixel injection. For example, row and column select signals can be controlled to select a particular pixel. In step 502, switches are closed to generate a pulse of desired width. In step 504, an amplifier amplifies the pulse. In embodiments, amplifier generates a voltage output corresponding to a current level of the pulse. In step 506, a voltage discriminator compares the signal from the amplifier with a threshold voltage. In step 508, the discriminator output transitions to a different state during the time the voltage threshold is exceeded. In step 510, the output signal on the discriminator is checked for proper operation based on the expected response to the test pulse, which may mimic a pulse from a photodetector during normal operation. An alert can be generated if a fault is detected.



FIG. 6 shows an exemplary computer 600 that can perform at least part of the processing described herein. For example, the computer 600 can perform processing to implement pixel section and pulse generation. The computer 600 includes a processor 602, a volatile memory 604, a non-volatile memory 606 (e.g., hard disk), an output device 607 and a graphical user interface (GUI) 608 (e.g., a mouse, a keyboard, a display, for example). The non-volatile memory 606 stores computer instructions 612, an operating system 616 and data 618. In one example, the computer instructions 612 are executed by the processor 602 out of volatile memory 604. In one embodiment, an article 620 comprises non-transitory computer-readable instructions.


Processing may be implemented in hardware, software, or a combination of the two. Processing may be implemented in computer programs executed on programmable computers/machines that each includes a processor, a storage medium or other article of manufacture that is readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and one or more output devices. Program code may be applied to data entered using an input device to perform processing and to generate output information.


The system can perform processing, at least in part, via a computer program product, (e.g., in a machine-readable storage device), for execution by, or to control the operation of, data processing apparatus (e.g., a programmable processor, a computer, or multiple computers). Each such program may be implemented in a high-level procedural or object-oriented programming language to communicate with a computer system. However, the programs may be implemented in assembly or machine language. The language may be a compiled or an interpreted language and it may be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program may be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network. A computer program may be stored on a storage medium or device (e.g., RAM/ROM, CD-ROM, hard disk, or magnetic diskette) that is readable by a general or special purpose programmable computer for configuring and operating the computer when the storage medium or device is read by the computer.


Processing may also be implemented as a machine-readable storage medium, configured with a computer program, where upon execution, instructions in the computer program cause the computer to operate.


Processing may be performed by one or more programmable processors executing one or more computer programs to perform the functions of the system. All or part of the system may be implemented as, special purpose logic circuitry (e.g., an FPGA (field programmable gate array), a general purpose graphical processing units (GPGPU), and/or an ASIC (application-specific integrated circuit)).


Having described exemplary embodiments of the disclosure, it will now become apparent to one of ordinary skill in the art that other embodiments incorporating their concepts may also be used. The embodiments contained herein should not be limited to disclosed embodiments but rather should be limited only by the spirit and scope of the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.


Elements of different embodiments described herein may be combined to form other embodiments not specifically set forth above. Various elements, which are described in the context of a single embodiment, may also be provided separately or in any suitable subcombination. Other embodiments not specifically described herein are also within the scope of the following claims.

Claims
  • 1. A detector system, comprising: a photodetector;an amplifier having an input to receive an output from the photodetector;a discriminator to receive an output from the amplifier and generate an active output signal when the output from the amplifier is greater than a threshold; andan injection circuit coupled to the input of the amplifier, wherein the injection circuit is configured to selectively inject a test pulse that mimics a pulse from the photodetector for verifying operation of the detector system,wherein the injection circuit comprises:an injection capacitor coupled to the input of the amplifier, wherein the injection capacitor is sized to mimic the pulse from the photodetector, wherein the amplifier comprises a transimpedance amplifier to convert an input voltage to an output current;a logic gate to receive a step signal and pixel row and column signals for the photodetector within an array and output a step lim signal;an inverter coupled to the output of the logic gate to generate an inverted step lim signal;a first switch controlled by the step lim signal, wherein the first switch is coupled between a voltage injection signal and the injection capacitor;a second switch controlled by the inverted step lim signal, wherein the second switch is coupled between the injection capacitor and a voltage reference,wherein the step-lim signal and the inverted step lim signal are rate-limited to control a width of the test pulse and to control slope to shape an output from the injection capacitor.
  • 2. The system according to claim 1, wherein the discriminator comprises a voltage discriminator.
  • 3. The system according to claim 1, wherein the amplifier and the discriminator receive differential signals so that that discriminator detects when a positive input to the discriminator exceeds a negative input to the discriminator.
  • 4. The system according to claim 1, further including a safety module to detect a fault by monitoring an output of the discriminator.
  • 5. The system according to claim 4, wherein the safety module is configured to generate an alert after detection of the fault.
  • 6. A method, comprising: amplifying, with an amplifier, an input from an output from a photodetector;generating, by a discriminator, an active output signal when the output from the amplifier is greater than a threshold; andselectively injecting, by an injection circuit, a test pulse that mimics a pulse from the photodetector for verifying operation of the detector system,wherein the injection circuit comprises:an injection capacitor coupled to the input of the amplifier, wherein the injection capacitor is sized to mimic the pulse from the photodetector, wherein the amplifier comprises a transimpedance amplifier to convert an input voltage to an output current;a logic gate to receive a step signal and pixel row and column signals for the photodetector within an array and output a step lim signal;an inverter coupled to the output of the logic gate to generate an inverted step lim signal;a first switch controlled by the first step lim signal, wherein the first switch is coupled between a voltage injection signal and the injection capacitor;a second switch controlled by the inverted step lim signal, wherein the second switch is coupled between the injection capacitor and a voltage reference,wherein the step lim signal and the inverted step lim signal are rate-limited to control a width of the test pulse and to control slope to shape an output from the injection capacitor.
  • 7. The method according to claim 6, wherein the discriminator comprises a voltage discriminator.
  • 8. The method according to claim 6, wherein the amplifier and the discriminator receive differential signals so that that discriminator detects when a positive input to the discriminator exceeds a negative input to the discriminator.
  • 9. The method according to claim 6, further including a safety module to detect a fault by monitoring an output of the discriminator.
  • 10. The method according to claim 9, wherein the safety module is configured to generate an alert after detection of the fault.
US Referenced Citations (193)
Number Name Date Kind
5917320 Scheller et al. Jun 1999 A
6091239 Vig et al. Jul 2000 A
6297627 Towne et al. Oct 2001 B1
6693419 Stauth et al. Feb 2004 B2
6760145 Taylor et al. Jul 2004 B1
6778728 Taylor et al. Aug 2004 B2
6894823 Taylor et al. May 2005 B2
6989921 Bernstein et al. Jan 2006 B2
7015780 Bernstein et al. Mar 2006 B2
7160753 Williams, Jr. Jan 2007 B2
7253614 Forrest et al. Aug 2007 B2
7321649 Lee Jan 2008 B2
7432537 Huntington Oct 2008 B1
7504053 Alekel Mar 2009 B1
7605623 Yun et al. Oct 2009 B2
7724050 Lee May 2010 B2
7764719 Munroe et al. Jul 2010 B2
7782911 Munroe et al. Aug 2010 B2
7787262 Mangtani et al. Aug 2010 B2
7852549 Alekel et al. Dec 2010 B2
7885298 Munroe Feb 2011 B2
7990194 Shim Aug 2011 B2
7994421 Williams et al. Aug 2011 B2
8207484 Williams Jun 2012 B1
8319307 Williams Nov 2012 B1
8570372 Russell Oct 2013 B2
8597544 Alekel Dec 2013 B2
8630036 Munroe Jan 2014 B2
8630320 Munroe et al. Jan 2014 B2
8729890 Donovan et al. May 2014 B2
8730564 Alekel May 2014 B2
8743453 Alekel et al. Jun 2014 B2
8760499 Russell Jun 2014 B2
8766682 Williams Jul 2014 B2
8853639 Williams, Jr. Oct 2014 B2
8917128 Baek et al. Dec 2014 B1
9121762 Williams et al. Sep 2015 B2
9164826 Fernandez Oct 2015 B2
9197233 Gaalema et al. Nov 2015 B2
9269845 Williams et al. Feb 2016 B2
9329057 Foletto et al. May 2016 B2
9368933 Nijjar et al. Jun 2016 B1
9397469 Nijjar et al. Jul 2016 B1
9447299 Schut et al. Sep 2016 B2
9451554 Singh et al. Sep 2016 B1
9466745 Williams et al. Oct 2016 B2
9520871 Eagen et al. Dec 2016 B2
9553216 Williams et al. Jan 2017 B2
9591238 Lee et al. Mar 2017 B2
9621041 Sun et al. Apr 2017 B2
9693035 Williams et al. Jun 2017 B2
9759602 Williams Sep 2017 B2
9804264 Villeneuve et al. Oct 2017 B2
9810775 Welford et al. Nov 2017 B1
9810777 Williams et al. Nov 2017 B2
9810786 Welford et al. Nov 2017 B1
9812838 Villeneuve et al. Nov 2017 B2
9823353 Eichenholz et al. Nov 2017 B2
9835490 Williams et al. Dec 2017 B2
9841495 Campbell et al. Dec 2017 B2
9843157 Williams Dec 2017 B2
9847441 Huntington Dec 2017 B2
9857468 Eichenholz et al. Jan 2018 B1
9869754 Campbell et al. Jan 2018 B1
9874635 Eichenholz et al. Jan 2018 B1
9897687 Campbell et al. Feb 2018 B1
9905992 Welford et al. Feb 2018 B1
9910088 Milano et al. Mar 2018 B2
9923331 Williams Mar 2018 B2
9941433 Williams et al. Apr 2018 B2
9958545 Eichenholz et al. May 2018 B2
9989629 LaChapelle Jun 2018 B1
9995622 Williams Jun 2018 B2
10003168 Villeneuve Jun 2018 B1
10007001 LaChapelle et al. Jun 2018 B1
10012732 Eichenholz et al. Jul 2018 B2
10056909 Qi et al. Aug 2018 B1
10061019 Campbell et al. Aug 2018 B1
10073136 Milano et al. Sep 2018 B2
10088559 Weed et al. Oct 2018 B1
10094925 LaChapelle Oct 2018 B1
10110128 Raval et al. Oct 2018 B2
10114111 Russell et al. Oct 2018 B2
10121813 Eichenholz et al. Nov 2018 B2
10139478 Gaalema et al. Nov 2018 B2
10156461 Snyder et al. Dec 2018 B2
10169678 Sachdeva et al. Jan 2019 B1
10169680 Sachdeva et al. Jan 2019 B1
10175345 Rhee et al. Jan 2019 B2
10175697 Sachdeva et al. Jan 2019 B1
10191155 Curatu Jan 2019 B2
10209359 Russell et al. Feb 2019 B2
10211592 Villeneuve et al. Feb 2019 B1
10211593 Lingvay et al. Feb 2019 B1
10217889 Dhulla et al. Feb 2019 B2
10218144 Munroe et al. Feb 2019 B2
10241198 LaChapelle et al. Mar 2019 B2
10254388 LaChapelle et al. Apr 2019 B2
10254762 McWhirter et al. Apr 2019 B2
10267898 Campbell et al. Apr 2019 B2
10267899 Weed et al. Apr 2019 B2
10267918 LaChapelle et al. Apr 2019 B2
10275689 Sachdeva et al. Apr 2019 B1
10291125 Raval et al. May 2019 B2
10295668 LaChapelle et al. May 2019 B2
10310058 Campbell et al. Jun 2019 B1
10324170 Engberg, Jr. et al. Jun 2019 B1
10324185 McWhirter et al. Jun 2019 B2
10338199 McWhirter et al. Jul 2019 B1
10338223 Englard et al. Jul 2019 B1
10340651 Drummer et al. Jul 2019 B1
10345437 Russell et al. Jul 2019 B1
10345447 Hicks Jul 2019 B1
10348051 Shah et al. Jul 2019 B1
10386489 Albelo et al. Aug 2019 B2
10394243 Ramezani et al. Aug 2019 B1
10401480 Gaalema et al. Sep 2019 B1
10401481 Campbell et al. Sep 2019 B2
10418776 Welford et al. Sep 2019 B2
10445599 Hicks Oct 2019 B1
10451716 Hughes et al. Oct 2019 B2
10473788 Englard et al. Nov 2019 B2
10481181 Bussing et al. Nov 2019 B2
10481605 Maila et al. Nov 2019 B1
10488458 Milano et al. Nov 2019 B2
10488496 Campbell et al. Nov 2019 B2
10491885 Hicks Nov 2019 B1
10498384 Briano Dec 2019 B2
10502831 Eichenholz Dec 2019 B2
10503172 Englard et al. Dec 2019 B2
10509127 Englard et al. Dec 2019 B2
10514462 Englard et al. Dec 2019 B2
10520602 Villeneuve et al. Dec 2019 B2
10523884 Lee Dec 2019 B2
10535191 Sachdeva et al. Jan 2020 B2
10539665 Danziger et al. Jan 2020 B1
10545240 Campbell et al. Jan 2020 B2
10551485 Maheshwari et al. Feb 2020 B1
10551501 LaChapelle Feb 2020 B1
10557939 Campbell et al. Feb 2020 B2
10557940 Eichenholz et al. Feb 2020 B2
10571567 Campbell et al. Feb 2020 B2
10571570 Paulsen et al. Feb 2020 B1
10578720 Hughes et al. Mar 2020 B2
10591600 Villeneuve et al. Mar 2020 B2
10591601 Hicks et al. Mar 2020 B2
10606270 Englard et al. Mar 2020 B2
10613158 Cook et al. Apr 2020 B2
10627495 Gaalema et al. Apr 2020 B2
10627512 Hicks Apr 2020 B1
10627516 Eichenholz Apr 2020 B2
10627521 Englard et al. Apr 2020 B2
10634735 Kravljaca et al. Apr 2020 B2
10636285 Haas et al. Apr 2020 B2
10641874 Campbell et al. May 2020 B2
10663564 LaChapelle May 2020 B2
10663585 McWhirter May 2020 B2
10677897 LaChapelle et al. Jun 2020 B2
10677900 Russell et al. Jun 2020 B2
10684360 Campbell Jun 2020 B2
10908190 Bussing et al. Feb 2021 B2
10948537 Forrest et al. Mar 2021 B2
11029176 Geiger et al. Jun 2021 B2
11115244 Briano et al. Sep 2021 B2
11177814 Kim et al. Nov 2021 B2
11313899 Milano et al. Apr 2022 B2
11409000 Behzadi et al. Aug 2022 B1
11451234 Austin et al. Sep 2022 B1
20030112913 Balasubramanian Jun 2003 A1
20040169753 Gulbransen Sep 2004 A1
20070257193 Macciocchi Nov 2007 A1
20110270543 Schmidt Nov 2011 A1
20130169329 Searles Jul 2013 A1
20130176061 Haerle et al. Jul 2013 A1
20140094993 Johnson Apr 2014 A1
20160013796 Choi Jan 2016 A1
20160054434 Williams Feb 2016 A1
20170250694 Im et al. Aug 2017 A1
20180054206 Im et al. Feb 2018 A1
20180068699 Choi et al. Mar 2018 A1
20180069367 Villeneuve et al. Mar 2018 A1
20180191356 Kesarwani Jul 2018 A1
20180191979 Mu Jul 2018 A1
20180284239 LaChapelle et al. Oct 2018 A1
20180284240 LaChapelle et al. Oct 2018 A1
20180284275 LaChapelle Oct 2018 A1
20180284280 Eichenholz et al. Oct 2018 A1
20190033460 Lipson Jan 2019 A1
20190310368 LaChapelle Oct 2019 A1
20210124050 Puglia et al. Apr 2021 A1
20210132229 Milkov May 2021 A1
20220236376 Li et al. Jul 2022 A1
20220294172 Taylor Sep 2022 A1
Foreign Referenced Citations (1)
Number Date Country
201422772 Jun 2014 TW
Non-Patent Literature Citations (26)
Entry
U.S. Appl. No. 17/645,118, filed Dec. 20, 2021, Babushkin, et al.
U.S. Appl. No. 17/657,140, filed Mar. 20, 2022, Myers.
U.S. Appl. No. 17/659,033, filed Apr. 13, 2022, Cadugan et al.
U.S. Appl. No. 17/659,035, filed Apr. 13, 2022, Cadugan et al.
U.S. Appl. No. 17/660,221, filed Apr. 22, 2022, Filippini et al.
U.S. Appl. No. 17/663,896, filed May 18, 2022, Cadugan et al.
U.S. Appl. No. 17/805,070, filed Jun. 2, 2022, Myers et al.
U.S. Appl. No. 17/809,990, filed Jun. 30, 2022, Quirk et al.
U.S. Notice of Allowance dated Oct. 24, 2022 for U.S. Appl. No. 17/660,221; 9 pages.
U.S. Appl. No. 17/566,763, filed Dec. 31, 2021, Huntington et al.
U.S. Appl. No. 17/648,702, filed Jan. 24, 2022, Lee et al.
U.S. Appl. No. 17/651,250, filed Feb. 16, 2022, Marshall.
U.S. Appl. No. 17/653,881, filed Mar. 8, 2022, Keuleyan et al.
U.S. Appl. No. 17/656,977, filed Mar. 29, 2022, Myers et al.
U.S. Appl. No. 17/656,978, filed Mar. 29, 2022, Myers et al.
U.S. Appl. No. 17/656,981, filed Mar. 29, 2022, Myers et al.
U.S. Appl. No. 17/197,314, filed Mar. 10, 2021, Taylor et al.
U.S. Appl. No. 17/197,328, filed Mar. 30, 2021, Taylor et al.
U.S. Appl. No. 17/230,253, filed Apr. 14, 2021, Judkins, III et al.
U.S. Appl. No. 17/230,276, filed Apr. 14, 2021, Cadugan.
U.S. Appl. No. 17/230,277, filed Apr. 14, 2021, Judkins, III et al.
U.S. Appl. No. 17/352,829, filed Jun. 21, 2021, Huntington et al.
U.S. Appl. No. 17/352,937, filed Jun. 21, 2021, Cadugan et al.
U.S. Appl. No. 17/376,607, filed Jul. 15, 2021, Stewart et al.
U.S. Appl. No. 17/402,065, filed Aug. 13, 2021, Lee et al.
U.S. Notice of Allowance dated Jan. 25, 2023 for U.S. Appl. No. 17/660,221; 7 pages.
Related Publications (1)
Number Date Country
20230051974 A1 Feb 2023 US