The invention relates to optical microscopic measurement and imaging technology, and more specifically to a programmable annular LED illumination-based high efficiency quantitative phase microscopy imaging method.
Phase retrieval is an important technology for optical measurement and imaging, and plays an important role in biomedical and industrial inspections. The most classical quantitative phase measurement method is interferometry (Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging [J]. Optics letters, 1999, 24(5): 291-293.), and this kind of technique usually use a laser light source for beam splitting to generate two beams of light. In the interferometry setup, object beam passing through a sample and interfering with reference beam to generate interference fringes, and the phase delay of the object can be obtained through demodulation algorithm. However, interferometry is particularly disadvantageous: (1) interferometry generally requires a highly coherent light source (such as a laser), which requires a more complex interference device; (2) the introduction of additional reference optical paths leads to demanding requirements for the measurement environment; (3) the speckle coherent noise introduced by the highly coherent light source limits the spatial resolution and measurement accuracy of an imaging system.
Different from the traditional quantitative phase imaging based on interferometry, phase retrieval can realize quantitative phase acquisition without optical interference. By measuring the amplitude/intensity of an optical wave field, using the intensity distribution on different axial planes to calculate the phase distribution of an object and using the transport of intensity equation to solve phase is a typical direct phase retrieval method (Teague M R. Deterministic Phase retrieval: A Green's function solution[J]. JOSA, 1983, 73 (11): 1434-1441.). The transport of intensity equation is a second order elliptical partial differential equation, which illustrates the quantitative relationship between the intensity change along an optical axis and the phase of wave field plane which is perpendicular to the optical axis. A series of intensity images along the axial direction are captured, and then the central differential equation is used to obtain the intensity axial differential and the intensity distribution at the focusing position. Finally, the phase information can be directly obtained by numerically solving the transport of intensity equation. Compared with interferometry and iterative phase recovery method, the main advantages of the method of the transport of intensity equation are: (1) non-interference, directly resolving phase information by measuring surface intensity, without introducing additional reference light; (2) non-iterative, obtaining a phase by directly resolving differential equation; (3) being well applied to white light illumination, such as Kohler illumination in traditional bright field microscopy; (4) direct acquisition of the absolute distribution of phase positions without phase unwrapping and no presence of 2π phase wrapping problem in general interferometry; (5) no need of complex optical system, no harsh requirements for experimental environment and being insensitive to vibration.
In Kohler illumination system, with the increasing of illumination numerical aperture, the optical imaging system changes from coherent illumination to partially coherent illumination, as shown in
The purpose of this invention is to provide a programmable annular LED illumination-based high efficiency quantitative phase microscopy imaging method. This method not only achieves an imaging resolution twice as large as that of an objective lens numerical aperture, but also enables the response of the phase transfer function of an imaging system to have strong robustness. It improves the quantitative phase imaging quality and reconstruction results, and has high compatibility with traditional microscopes. So the present quantitative phase microscopic imaging method greatly improves the efficiency of quantitative phase imaging technology.
A technical solution for achieving the object of the present invention is: a programmable annular LED illumination-based high efficiency quantitative phase microscopy imaging method, characterized in the steps as follows:
Step one, the derivation of optical transfer function for a partially coherent imaging system; considering that the optical pupil functions of the illumination source and microscopic objective are symmetric about the optical axis, the optical transfer function under a weak object approximation in a partially coherent illumination imaging system can be derived;
Step two, the derivation of the phase transfer function under weak object approximation for a tilted axially symmetric coherent point illumination source; when the illumination degenerates from a circular partially coherent illumination pattern to a tilted axially symmetric coherent point source, the two axially symmetric discrete coherent point sources are matched with the pupil edge of an objective lens, respectively; then these two tilted axially symmetric coherent point sources are mapped to the LED array on the source plane, and the optical transfer function of the imaging system under a weak object approximation can be calculated and finally, the phase contrast intensity image containing phase information is generated by introducing defocus, so that the phase information of a sample can be transmitted to the defocus intensity image;
Step three, the extension of illumination from an axially symmetric coherence point source to a discrete annular point source; any axially symmetric partially coherent illumination source can be decomposed into a plurality of axially symmetric discrete coherent point sources on the source plane, and the optical transfer function can be treated as an incoherent superposition of each pair of tilted axially symmetric coherent point sources, and when the illumination source is in the shape of a discrete annular illumination pattern composed of discrete LED, the optical transfer function of the annular illumination pattern under the discrete condition can be obtained as well;
Step four, the acquisition of raw intensity dataset; when the annular LED illumination pattern matches the objective lens pupil, the camera is used for the acquisition of two defocus intensity images and an in-focusing intensity image with the movement of stage along the optical axis direction;
Step five, the implementing of deconvolution for quantitative phase reconstruction; three intensity images acquired by the camera are subjected to central axial intensity difference, and the absorption components in the intensity images are removed; and then the Fourier transform is performed, and this transform is corresponding to the dividing of phase transfer function in the frequency domain; moreover, the regularization parameter is added to prevent the occurrence of dividing zero; finally, the inverse Fourier transform is performed to obtain the quantitative phase microscopic image based on annular LED illumination.
Compared with the prior technique, the present invention has significant advantages: (1) deriving the system phase transfer function under tilted axis symmetric point light source in a partially coherent illumination, and promoting to the optical phase transfer function of the discrete annular point light source; (2) proposing an annular illumination mode in discrete cases and applying it to a quantitative phase imaging method; (3) introducing annular illumination into a microscopic imaging system, and adding a condenser to the imaging system not only improves the light energy utilization rate of the system, but also makes the numerical aperture of the system illumination reach 0.95 or more; (4) the programmable control method for an LED array enables the annular illumination aperture to be flexibly adjustable, being applicable to microscopic objects having different numerical apertures, and improving the compatibility and flexibility of the system.
The invention will be further described in detail with reference to the following description and the accompanying drawings.
As shown in
In order to meet the minimum frequency domain sampling rate required by the imaging method, the numerical aperture of the microscope objective is NAobj, and the distance from each lit LED unit on the annular illumination pattern to the center of the LED array is l and satisfies
where f is the focal length of the condenser, generally between 10-20 mm. The magnification of the microscope objective is Mag, the pixel size of the camera is Δxcam, and the wavelength of illumination light is λ, and satisfies
In order to meet the needs of microscope objectives with different numerical apertures, the radius of the annular illumination pattern can be changed through reprogramming, that is, illumination sources always satisfies
at this point, the radius of an illumination ring always matches the numerical aperture of an objective lens, as shown in
An LED array includes a plurality of (at least 261) LED units that are equally spaced to form a two-dimensional array. Each of the LED units is colored red, green and blue, and its typical wavelength is red light 633 nm, green light 525 nm, and blue light 465 nm. The typical center distance d between each LED unit is 1-4 mm. An LED array does not need to be independently machined and can be directly purchased on the market. Table 1 shows product parameters of a commercially available LED array. In the LED array, the LED units have 32 rows and 32 columns, 1024 in total, and the brightness of each LED unit is above 2000 cd/m2.
Each LED unit in an LED array can be individually illuminated by programming. The specific method of lighting LED units is a conventional technology, and the implementation circuit can adopt (not limited to) existing technology such as a microcontroller unit, an ARM, or a programmable logic device. The specific implementation methods can refer to relevant literature (Guo Baozeng, Deng Yumiao: FPGA-based LED display control system design [J]. LCD and Display, 2010, 25(3): 424-428).
The method for realizing high efficiency quantitative phase microscopy imaging using the imaging system based on the programmable annular LED illumination comprises the following steps:
Step one, the derivation of optical transfer function for a partially coherent imaging system; considering that the optical pupil functions of the illumination source and microscopic objective are symmetric about the optical axis, the optical transfer function under a weak object approximation in a partially coherent illumination imaging system can be derived.
The specific implementation process is: in an infinity-corrected imaging light-path composed of the programmable annular LED illumination-based high efficiency quantitative phase imaging system, the intensity image on the imaging plane for incoherent illumination is
I(r)=|h(r)|2⊗|t(r)|2⊗Iu(r)
wherein r is two-dimensional variables in a spatial domain, and h(r) is an amplitude point spread function of the imaging system. t(r) is the complex amplitude of an object, Iu(r) represents the superposition of the intensity produced by all the point sources on source plane; while the intensity images on the imaging plane for coherent illumination imaging systems can be expressed as:
I(r)=|h(r)⊗t(r)|2
for a partially coherent imaging system, the relationship between the intensity captured on the imaging plane and the imaging system is expressed as:
I(r)=a02TCC(0;0)+2a0 Re{∫TCC(u;0)[Δ)+ia0)]exp(i2πru)du}
where a0 is the average of the amplitudes in the complex amplitude, TCC (0; 0) is the transmitted component of the incident ray to an object, represents the Fourier transform of the phase of an object, and TCC (u; 0) can be described as the optical transfer function under a weak object approximation (WOTF):
WOTF(u)≡TCC(u;0)=∫∫S(u′)P(u′+u)P(u′)du′
The above formula is the WOTF of the imaging system, where u represents the two-dimensional variable of polar coordinate system in frequency domain, u′ is the temporary integral variable in frequency domain, S(u) is the distribution of illumination source on the front focal plane of a concentrator, and P(u) is the pupil function of a microscopic objective, and the absolute value of the optical pupil function can be expressed as:
wherein ρP is the normalized cutoff frequency of the microscope objective pupil.
Step two, the derivation of the phase transfer function under weak object approximation for a tilted axially symmetric coherent point illumination source; when the illumination degenerates from a circular partially coherent illumination pattern to a tilted axially symmetric coherent point source, the two axially symmetric discrete coherent point sources are matched with the pupil edge of an objective lens, respectively; then these two tilted axially symmetric coherent point sources are mapped to the LED array on the source plane, and the optical transfer function of the imaging system under a weak object approximation can be calculated and finally, the phase contrast intensity image containing phase information is generated by introducing defocus, so that the phase information of a sample can be transmitted to the defocus intensity image.
The specific implementation process is: if the source distribution S(u) and the microscope objective pupil P (u) are axially symmetrically distributed, WOTF is a real function and an even function; when the sample is in-focus, the phase information of object cannot be transmitted to the intensity image; Only when the phase contrast and the imaginary component are introduced into WOTF by axial defocusing mode, the pupil function at the back focal plane of a microscope objective can be expressed as
then, substituting the pupil function to WOTF and obtaining the complex optical transfer function in the defocus condition:
WOTF(u)=S(u′)|P*(u′)∥P(u′+u)exp[ikz(−√{square root over (1−λ2)}+√{square root over (1−λ2|u+u′|2)})]du′
the amplitude transfer function HA(u) and phase transfer function HP(u) correspond to the real part and the imaginary part of WOTF, respectively, and these two transfer functions can be expressed as:
HA(u)=2a0Re[WOTF(u)]
HP(u)=2a0Im[WOTF(u)]
where Re and Im labels represent the real part and the imaginary part of the function, respectively; by introducing two tilted axially symmetric coherent point sources on the source planes where LED array is located, and the expression of source distribution S(u) is:
S(u)=δ(u−ρs)+δ(u+ρs)
where δ represents Dirac delta function, and ρs is the normalized frequency distance from the point source to the center of the source. S(u) is substituted into WOTF, and the point sources with different ρs corresponds to the different distribution of illumination sources. when ρs≠0, the sources generate two-axially symmetric tilted illumination, and the phase transfer function at the moment is:
Hp(u)obl=|P(u−ρs)|sin [kz(√{square root over (1−λ2|u−ρs|2)}−√{square root over (1−λ2|ρs|2)})]+|P(u+ρs)|sin [kz(√{square root over (1−λ2|u−ρs|2)}−√{square root over (1−λ2|ρs|2)})]
where |P(u−ρs)| and |P(u+ρs)| are a pair of objective pupil functions shifted by an tilted point source; While ρs=0, the two shifted pupil functions overlap each other at the center position, and the phase transfer function under the coherent condition is obtained for this situation; The transfer function of the transport of intensity equation is derived by introducing the paraxial approximation and weak defocus approximation. Thus, the transfer function of the transport of intensity equation in the frequency domain is:
Hp(u)=|P(u)|sin(πλz|u|2)≈|P(u)|πλz|u|2.
Step three, the extension of illumination from an axially symmetric coherence point source to a discrete annular point source; any axially symmetric partially coherent illumination source can be decomposed into a plurality of axially symmetric discrete coherent point sources on the source plane, and the optical transfer function can be treated as an incoherent superposition of each pair of tilted axially symmetric coherent point sources, and when the illumination source is in the shape of a discrete annular illumination pattern composed of discrete LED, the optical transfer function of the annular illumination pattern under the discrete condition can be obtained as well.
The specific implementation process is: any illumination pattern about the axially symmetric partially coherent illumination can be decomposed into a plurality of axially symmetric coherent point sources, And the transfer function of this illumination pattern can be composed of the transfer function incoherent superposition of each pair of tilted axially symmetric coherent point sources, so the annular sources finally displayed on LED array are represented as:
where N is the number of LEDs on the source plane, the distance from each illuminated LED point source to the center of the LED array is ρp. Therefore, the annular LED illumination pattern is substantially matching a microscope objective pupil; In order to meet the minimum frequency domain sampling rate required by imaging, the numerical aperture of the microscopic objective lens is NAobj. The magnification of imaging system is Mag and the camera pixel size is Δxcom, which satisfies
Thus, the phase transfer function of annular LED illumination under the discrete condition can be obtained through the coherence mode decomposition theory;
when the imaging system contains an objective lens with a different numerical aperture, the LED array can be re-programmed to change the size of annular illumination pattern, so the illumination pattern can re-match the pupil of the microscope objective, that is the relationship
can be satisfied. In the imaging system, the radius of annular the illumination is always matched with the numerical aperture of the objective lens, and the phase transfer function of annular illumination can be calculated based on the corresponding parameters of optical imaging system.
As shown in
when an imaging system is switched to a microscope objective with a different numerical aperture, the LED array is re-programmed to change the annular illumination pattern so that it can be re-cut into the pupil of the microscope objective, namely, satisfying
at the moment, the radius of the illumination circular ring is always matched with the numerical aperture of the objective lens, and the phase transfer function of the annular illumination corresponding to the parameters of the optical imaging system at the moment is calculated.
Step four, the acquisition of raw intensity dataset; when the annular LED illumination pattern matches the objective lens pupil, the camera is used for the acquisition of two defocus intensity images and an in-focusing intensity image with the movement of stage along the optical axis direction.
Step five, the implementing of deconvolution for quantitative phase reconstruction; three intensity images acquired by the camera are subjected to central axial intensity difference, and the absorption components in the intensity images are removed; and then the Fourier transform is performed, and this transform is corresponding to the dividing of phase transfer function in the frequency domain; moreover, the regularization parameter is added to prevent the occurrence of dividing zero; finally, the inverse Fourier transform is performed to obtain the quantitative phase microscopy image based on annular LED illumination.
The specific implementation process is: the conventional transport of intensity equation is expressed as:
where I(r) is the intensity distribution on a focal plane, and ϕ(r) is the phase distribution of object. The transport of intensity equation is solved by using the Poisson equation-based fast Fourier transform, and the detailed formula can be written as the Laplacian filter form in the frequency domain:
where Ĩ1(u), Ĩ2(u), Ĩ(U) are the Fourier transform of three captured intensity images acquired in the case of weak defocus, πλz|u|2 is the Laplacian filter function, and the inverse Laplacian function 1/(πλz|u|2) corresponds to the inverse form of the phase transfer function in the case of coherent illumination and weak defocus approximation. Generally, the forward form of the optical transfer function under weak object approximation for more general partially coherent illumination can be expressed as:
where the phase transfer function of an imaging system corresponds to the imaginary part of optical transfer function under the weak object approximation. Thus, the Fourier transform of the quantitative phase of an object can be obtained through the inverse form of the phase transfer function, and the quantitative phase distribution of an annular LED illumination can be obtained through inverse Fourier transform:
where −1 represents the inverse Fourier transform and parameter α represents regularization parameter avoiding the division by zero.
As shown in the reconstruction flowchart
Number | Date | Country | Kind |
---|---|---|---|
201710660188.6 | Aug 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/077235 | 2/26/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/024491 | 2/7/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7787588 | Yun | Aug 2010 | B1 |
9594941 | Ishiwata | Mar 2017 | B2 |
10679763 | Zheng | Jun 2020 | B2 |
11106029 | Chen | Aug 2021 | B2 |
11487096 | Chen | Nov 2022 | B2 |
20170146788 | Waller et al. | May 2017 | A1 |
Number | Date | Country |
---|---|---|
101493934 | Jul 2009 | CN |
102781327 | Nov 2012 | CN |
105158887 | Dec 2015 | CN |
106768396 | May 2017 | CN |
106842540 | Jun 2017 | CN |
107290846 | Oct 2017 | CN |
Entry |
---|
Jenkins et al., “Quantitative phase microscopy via optimized inversion of the phase optical transfer function”, Applied Optics, vol. 54, No. 28, Oct. 1, 2015, p. 8566-8579. |
Tian et al., “Quantitative differential phase contrast imaging in an LED array microscope”, Optics Express, vol. 23, No. 9, Apr. 22, 2015, p. 11394-11403. |
Number | Date | Country | |
---|---|---|---|
20200209604 A1 | Jul 2020 | US |