Programmable Digital Labels for a Medicine Container

Abstract
A bottle for storing medicine that may include at least one sensor to determine an aspect about the medicine stored within the bottle. The bottle may also include a processor that receives the information from the one or more sensors. A wireless communication interface may be integrated with the bottle to communicate information.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to the field of digital labels and tags for products. It is typical for the manufacturer of a product to affix a label to the product which bears the manufacturer's brand name or logo. Labels are also used to provide product information and information about the manufacturer of the product. Because labels are typically small, they can carry only a limited amount of information. Therefore, it is not at all uncommon to find two or more labels affixed to different locations of a single product. For example, a product may carry a brand label which is placed in a visible location, and interior labels to give product information. However, there is a small, finite limit to the number of labels which can be applied to a product without cluttering the product.


In the past, labels have served as merely static and passive devices to convey label information that is fixed in time, and have not been used to expand the functionality of the product. Animated designs and logos are not possible with conventional woven, printed or stamped labels. Also, conventional labels cannot display information which may change over time, or user-specific information.


SUMMARY OF THE INVENTION

The present invention is a digital label for products that can be programmed to store, process, transmit and display information including label information and user-specific information. The digital label can also store authentication data to authenticate the product. The digital label includes a processing circuit, a memory for storing label information, and a display for displaying label information. An extensible program is stored in memory and is configured to execute user-defined applications or program code to extend the functionality of the digital label. In one embodiment of the invention, the extensible program comprises an operating system program with an application interface that allows development of custom applications by the manufacturer, retailer, or user to expand the functionality of the digital label. User-defined applications enable the digital label to receive, store, and process user-specific information, and to communicate and work other devices.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a functional block diagram of an exemplary digital label.



FIG. 2 is a front view of an exemplary digital label.



FIG. 3 is a side view of an exemplary digital label contained in a secondary encasement, which is shown in section.



FIG. 4 illustrates an exemplary software architecture for the digital label.



FIG. 5 illustrates the digital label communicating with other devices in a network environment.



FIG. 6 illustrates a tag for products incorporating a digital label.



FIG. 7 illustrates a digital label with a changing serial number for authentication.



FIG. 8 illustrates a web interface for a server that product tracking services.



FIG. 9 is a schematic drawing of a digital label incorporated in a product container and communicating with a computer.



FIG. 10 is a schematic drawing of a digital label incorporated in a product container and communicating with a computer.





DETAILED DESCRIPTION OF THE DRAWINGS

Referring now to the drawings, and particularly to FIG. 1, a digital label 10 for products is shown and indicated generally by the numeral 10. For purposes of this application, the term “digital label” means a device having a display that functions principally as a means of identification that is attached or affixed to a product to designate its origin, owner, manufacturer, contents or ingredients, use, etc. The term “label” is used in the common sense to mean a device that is distinguishable from the product to which it is affixed and not a typical or inherent feature of the product. For example, a computer monitor and a display for a consumer electronic device (e.g., watch, cell phone, camera, etc.) are not considered to be “labels’ as that term is used herein because the displays are inherent product features.


The digital label 10 stores and displays label information and other information as more fully described below. The term “label information” includes source information indicating the source or origin of the product, product information describing the features contents, ingredients or use of the product, and manufacturer information that provides information about the product manufacturer. An example of source information is a brand name, logo (including animated logos), or slogan which identifies the source or origin, and authentication data for verifying the authenticity of the product. Examples of product information are instructions for the care or use of the product, and description of the contents or ingredients of the product. Examples of manufacturer information are the address (including an e-mail address) or telephone number for contacting the manufacturer, and the IP address of a web page for finding additional information about the company and its products.


The digital label may also store consumer information or user information in addition to label information, and perform custom functions for the user. Consumer information is personal user information that affects the ownership, history, usage and effectiveness of the product. Examples of personal information are registration data, such as the name, address, contact information, weight, height, age, birth date, sex, DNA, allergies, medical and health conditions and history, scheduling information, personal preferences, diet, account information, other product usage data, etc.


The digital label 10 is particularly useful for products that do not otherwise include a display or microprocessor as an inherent feature of the product, but may also be used on products with a display or microprocessor. For example, in products that include a display as a functional feature of the product, the manufacturer may still use the digital label 10 of the present invention to provide a separate, dedicated display or microprocessor for displaying and transmitting trademarks, logos, brands, slogans, or other label and product information.


The digital label 10 according to the present invention provides a platform for manufacturers, retailers and end users to develop custom applications for the digital label 10 to expand the functionality of the digital label 10. In one embodiment, a processing circuit is configured to recognize and execute the user-defined applications. As used herein, the term “user-defined’ refers to users of the label and includes product manufacturers, retailers, and end users of the product. The user-defined applications allow the functionality of the digital label 10 to be expanded to perform functions for the user. Thus, the present invention extends the concept of a product label to include active devices that do more than present static information. the digital labels 10 according to various embodiments function as small computing devices that can be programmed to perform a wide variety of functions.



FIGS. 1 and 2 illustrate the main components of the digital label 10 according to one exemplary embodiment. The digital label 10 comprises a processing circuit 12, memory 14, display 16, a communications interface 18, and a battery 19 to provide power for the digital label 10. The processing circuit 12 controls the overall operation of the digital label 10 according to program instructions stored in memory 14 and may comprises one or more digital processing devices, such as microprocessors, microcontrollers, hardware, firmware, or a combination thereof. Memory 14 stores program instructions and data needed for operation. An extensible program (FIG. 4) stored in memory 14 controls the basic functions of the digital label 10. As described in greater detail below, the extensible program is configured to execute custom applications or custom program code stored in memory 14 to expand the functionality of the digital label 10. The display 16 may comprise a liquid crystal display (LCD) or an organic light emitting diode (OLED). Additionally, the display 16 may use printed electronic displays, electronic paper displays, or electronic ink technology provide a thin, flexible and durable display to enable users to view information. The communications interface 18 may comprise a short-range wireless interface, such as a BLUETOOTH interface, ZIGBEE, or WIFI interface, a long range cellular phone or satellite communications interface, or a wired interface, such as a RS 232, USB or FIREWARE interface. There may be more than one communications interface 18.


Some embodiments of the digital label 10 may additionally include one or more user input devices indicated generally by the numeral 20. User input devices 20 for the digital label 10 may comprise any known input device including buttons, keypads, touch pads, wheels, dials, mouse devices, trackballs, etc. A touch screen display could also be used for user input. Imaging systems and motion or movement systems for recognizing hand gestures, and voice recognition systems may also be used for receiving user input. In FIG. 2, three soft keys denoted by the numerals 22, 24, 26 are provided to receive user input. The soft keys 22, 24, 26 may have different functions depending on the current context. The function of the soft keys 22, 24, 26 may be displayed to the user on display 16 when the soft keys 22, 24, 26 are active. For example, the middle key 26 shown in FIG. 2 has the text MENU displayed above the key 26 on the display 16. Pressing the soft key 26 in this context will invoke an onscreen menu. In some embodiments, more sophisticated user input devices can be used to enable users to input user information.


The digital label 10 may include or receive input from one or more sensors or detectors 30 that sense environmental conditions such as temperature, pressure and humidity; or product characteristics, such as size, volume, weight of the product, or chemical changes in the product. Sensors or detectors 30 may also be used to detect product usage and/or tampering. Sensors or detectors 30 for the digital label 10 may also detect location, distance or proximity. The digital label 10 may incorporate a GPS receiver 50 or other location detector to determine location and history of locations. Clocks and counters may provide additional input to the processing circuit 12. Those skilled in the art will appreciate, however, that the processing circuit 12 may include internal clocks and counters.


The digital label 10 may include or control one or more alerting devices 40 for alerting the user of specified events or conditions. The alerting devices 40 may comprise indicator lights that illuminate or generate lighting effects; speakers, beepers, buzzers, or other sound devices; and vibrators or other tactile devices. The digital label 10 could also play MP3 or other audio files to alert the user. The alerting devices 40 are controlled by the system processor to notify the user when predetermined events or conditions occur. The alerts can be personalized and customized by the user to distinguish the alerts. FIG. 2 illustrates an indicator lamp 42 that is used as an alerting device 40.


The digital label 10 may include a primary casing 60 to house the components of the digital label 10. The primary casing 60 is preferably waterproof or water-resistant to protect the components. The primary casing 60 should also be impact resitant and shock-resistant. The casing 60 may be constructed of plastic, rubber, metal, ceramic, or other materials or organic, environmentally friendly protein based material that is easily recycled or returned to the earth. In some embodiments, the digital label 10 can be integrated with a product or product container or product packaging. In still other embodiments, a secondary encasement 62 can also be used that allows the digital label 10 to be removed from the product as shown in FIG. 3. This can enable the user to take the digital label 10 with them to interact, monitor and control the product remotely.


Any suitable method of attaching the digital label 10 to the product may also be used. For example, the digital label 10 or secondary encasement 62 may be secured to products by adhesives, by magnets, by sewing or stitching, by sonic welding laser welding or heat welding, by VELCRO-type fasteners, or by mechanical fasteners such as hooks, screws, buckles, zippers, snaps, or pins. The digital label 10 could also be entrapped or retained by other features of the product which function as the secondary encasement 62. For example, the label 10 could be designed as a cartridge which slides in a pocket or pouch on the product or snapped into the product and released by a mechanism. The digital label 10 may also be suspended from or secured to the product by means of a hanger, strap or cord that passes though an opening (not shown) in the casing 60.



FIG. 4 illustrates the relationship of the extensible program with other elements of the digital label 10. The extensible program may comprise, for example, an operating system program with an application interface (API) to enable manufacturers, retailers, and end users to develop custom applications for the digital label 10. The operating system may, for example, be an embedded operating system such as Windows CE, Symbian, QNX, or embedded Linux. A proprietary operating system could also be used. A label application for managing and displaying label information can be preloaded and stored in the memory 104 of the digital label 10 by the label manufacturer. Additional user-defined application programs can be input and stored to add additional functions to the digital label 10 by the product manufacturer, by retailers of the products, or by end users of the products. The custom application programs can be input via one of the communication interfaces 18. The operating system or other extensible program is able to execute the custom applications developed by the product manufacturer, retailer, or end user. The type of functions that can be performed by custom applications is virtually unlimited. For example, the application programs can perform functions such as product authentication, location tracking, scheduling, usage tracking, etc.


One advantage of the digital label 10 is its ability to communicate and share information with other devices. The digital label 10 may have its own IP address assigned so that it can communicate directly with other devices across the Internet. FIG. 5 illustrates different ways the digital label 10 can communicate with other devices. FIG. 5 illustrates a local computer 110, a web-based server system 120, and a cell phone or PDA 140. The digital label 10 communicates with the local computer 110 over a local area network. The digital label 10 may communicate with a web-based server system 120 by connecting to a web access point 130. The digital label 10 may also communicate with the cell phone or PDA 140, using a standard cellular or satellite transceiver.


The digital label 10 may store, process and communicate user information. The user information may be entered directly by the user or may be transferred over the communications interface 18 to the digital label 10. For example, the digital label 10 may collect information about the use of the product and store the information for subsequent viewing and analysis. The digital label 10 may generate history reports that can be viewed by the user on the display 16 or transferred to other devices. Also, label information stored in the digital label 10 at the time of purchase by the customer can be updated via the communications interface 18.


The variety of applications that can be developed for the digital label is virtually limitless. A few exemplary applications for the digital label 10 are described below.


EXAMPLE 1
Tag for Authentication and Product Tracking

A recurring problem with branded and successful goods, such as designer and luxury clothing, handbags, accessories, jewelry, luggage, medication, liquor, and replacement parts, is the prevalence of counterfeit goods. As noted above, the digital label 10 of the present invention may store authentication data that enables purchasers of such goods to verify the authenticity of the products they purchase. The authentication data may comprise, for example, a serial number or code that can be used by the purchaser to authenticate genuine products. In some exemplary embodiments, the authentication data may be encrypted with a secret code to prevent counterfeiters from duplicating digital labels 10. The authentication data may also change over time to make it more difficult to mimic. The digital label 10 may also include a GPS receiver to enable tracking of the product in case that the product is lost or stolen.



FIG. 6 illustrates a tag including a digital label 10 for products such and luggage, handbags, and brief cases. The digital label 10 stores an authentication number or serial number in memory 14 to enable users to authenticate genuine goods. The memory 14 for storing the authentication data may be a secure, tamper-proof memory to prevent tampering. The serial number may also be encrypted by the manufacturer with a secret key. For example, the serial number may be encrypted or signed with the manufacturer's private key and can be verified by the user by decrypting the serial number using the manufacturer's corresponding public key, which can be obtained from the manufacturer's web site. If the authentication data is successfully decrypted, the user can be confident that the product is a genuine product so long as the manufacturer's private key has not been compromised. The user can also verify the authenticity of the product by sending the serial number to the manufacturer during product registration for verification. The authentication number could be read by the user from the digital label 10, or could be transmitted from the digital label 10 to the user's computer or other device. In some embodiments, the digital label 10 could transmit the authentication number via the Internet to a server maintained by the manufacturer for verification.


The digital label 10 can be programmed to change or update the serial number at a predetermined interval to make it more difficult to mimic. FIG. 7 illustrates a digital label 10 that has a changing serial number. In this embodiment, the digital label 10 may include an algorithm for generating the authentication number that is known only to the product manufacturer. For example, the algorithm may comprises a function that generates an authentication code based on the current time and a secret key that is stored in a secure, tamper-proof memory.


The tag or digital label may include a GPS system 50 to enable tracking of the product. The global positioning system in the digital label 10 can determine and record the product's location periodically. This feature can be activated, for example, when the user is traveling to keep a history of the product's movement. The product manufacturer may maintain the web-based server to track products for its registered customers. An application program in the digital label 10 can report the current position of the product to the server at predetermined time intervals or in response to predetermined events or conditions. FIG. 8 illustrates an interface for a web-based tracking system that can be accessed by the user via the Internet to track the product.


EXAMPLE 2
Product Container for Medications


FIGS. 9 and 10 illustrate a pharmaceutical container 100 for medications including a digital label 10 according to one embodiment of the invention. The pharmaceutical container 100 comprises a bottle 102 and a cap 104. The digital label 10 is embedded in the walls of the bottle 102. The digital label 10 includes three buttons 22, 24 and 26 for receiving user input. Buttons 22 and 24 are used to navigate on-screen menus and to scroll through information on the display 16. The center button 26 is used to invoke the on-screen menu and make menu selections. The digital label 10 includes an indicator lamp 42 and weight sensor 32, which are integrated with the bottle 102. The indicator lamp 42 functions as an alerting device 40 for alerting the user when it is time to take medication as described more fully below. The weight sensor 32 located in the bottom of the product container 100 is used to detect the amount of remaining medication in the pharmaceutical container. The digital label 10 also includes a wireless communications interface 18 for communicating with remote devices, such as a computer 150.


The digital label 10 stores and displays prescription data customized for the user as well as detailed drug data. The prescription data and drug data may be uploaded from a computer 150 to the digital label 10 by the manufacturer, pharmacist, doctor, or end user. In this example, the prescription data includes the medication, patient's name, and dosage information. Drug data may include information about medications, such as ingredients and chemical composition, possible side effects and drug interactions, precautions, warnings, government regulations, legal notices, disclaimers and disclosures, notifications, medication updates, recalls, etc. Such information is typically too voluminous to print on a conventional printed label, but can be easily stored and displayed on the digital label 10. Drug information including updates could also be transmitted to a computer 150 over the communications interface 18 for viewing or printing. The digital label 10 could also communicate with a web-based server, cell phone, personal digital assistant, etc., to transmit and receive information.


An application program stored in the digital label 10 alerts the user when it is time to take medications, provides instructions on how to take medications, and records dosages taken by the user. The application program may also keep track of the remaining amount of medication and alert the user when it is time to have medications refilled. The amount of remaining medication may be determined from the input of the weight sensor 32. Alternatively, the user may manually input usage information when the user takes medication to record such event. The user can be alerted to take or refill medication by activating the indicator lamp 42 and displaying a message to the user on the display 16 as shown in FIG. 10. The digital label 10 may also, if desired, send a message to the user's cell phone or computer when it is time to take or refill medications. For example, the application may send an email or text message to the user's cell phone or computer. When it is time to refill medications, the digital label 10 may also send a notification to the user's pharmacist to avoid the need for calling in prescriptions in advance.


The application program may also collect and store usage information, such as the date and time that the medication is taken, the amount taken, the location, and environmental conditions (temperature, humidity, altitude, etc.) at the time medication is taken. Usage information may be determined based on input from the weight, temperature, humidity and other sensors 32. Alternatively, the user can manually enter and record usage information using the available user input devices 20. The usage information may be output to the display 16 or transmitted to a computer 150 or other external device, or processed along with information from other digital labels and products to coordinate multiple usage and consumption.


The application program in the digital label 10 may cooperate with or integrate with medication management software on computer 150 or other device, such as a cell phone, PDA, or web-based server system. The digital label 10 can exchange prescription data, drug data and/or user data with the computer 150 or other device. The medication management software on the computer 150 can thus keep track of all medications being taken by the user and alert the user to potential problems and provide updates to the digital label 10 when necessary. The medication management software may include a database of pharmaceutical products. The medication management software can alert the user of potentially adverse drug interactions and side effects due to combinations of medications being taken. The medication management software may also include scheduling algorithms for suggesting times to take different medications to minimize drug interactions and maximize efficacy. A medication schedule can then be generated and transferred to the digital label 10 by the medication management software. The medication management software can also store information concerning the user's diet and suggest foods and beverages that should be used or avoided. Usage information indicating the dosages taken by the user can be transferred from the digital label 10 to the medication management software for evaluation and/or storage. This medication history may be transferred or uploaded to a physician. Alternatively, the digital label 10 can store medication history for later transfer to a computer at a physician's office.


Several examples of the invention have been described. However, the present invention may be carried out in other specific ways than those herein set forth without departing from the spirit and essential characteristics of the invention. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.

Claims
  • 1. A container for containing medicine, the container comprising: a bottle with a bottom and sidewalls that form an interior space for holding the medicine;a weight sensor positioned at the bottom of the interior space and configured to sense an amount of remaining medicine within the bottle;a wireless communications interface integrated with the bottle for communicating with a remote device; anda processor integrated with the bottle and configured to receive the amount of the remaining medicine within the bottle and to wirelessly contact the remote device when a change is detected in the amount of remaining medicine within the bottle.
  • 2. The container of claim 1, further comprising a cap that extends across an opening formed by the sidewalls to enclose the interior space and prevent the escape of the medicine.
  • 3. The container of claim 1, wherein the processor is configured to monitor usage of the medicine based on output signals generated by the weight sensor.
  • 4. The container of claim 1, further comprising a display integrated with the bottle to display an indicator when the processor determines that the medicine has been taken.
  • 5. The container of claim 1, further comprising a humidity sensor that senses humidity and to forward the humidity information to the processor.
  • 6. The container of claim 1, wherein the processor is configured to send a refill request through the wireless communications interface when the medicine usage reaches a predetermined setting, the refill request effective to obtain an additional amount of the medicine.
  • 7. A container for containing medicine, the container comprising: a bottle with a bottom and sidewalls that form an interior space for holding the medicine;a weight sensor positioned at the bottom of the interior space;a temperature sensor integrated with the bottle to detect a temperature;a processor integrated with the bottle and configured to collect information received from the weight sensor and the temperature sensor; anda wireless communications interface integrated with the bottle to communicate the information to a remote device.
  • 8. The container of claim 7, wherein the temperature sensor is positioned within the interior space of the bottle.
  • 9. The container of claim 7, further comprising a cap that extends across an opening formed by the sidewalls to enclose the interior space and prevent the escape of the medicine.
  • 10. The container of claim 7, wherein the processor is configured to monitor medicine usage based on the information received from the weight sensor.
  • 11. The container of claim 7, further comprising a display integrated with the bottle for displaying medicine usage.
  • 12. The container of claim 7, wherein the processor is configured to send a refill request through the wireless communications interface when an amount of the medicine remaining in the interior space reaches a predetermined setting, the refill request effective to obtain an additional amount of the medicine.
  • 13. A container for containing medicine, the container comprising: a bottle with an interior space for holding the medicine;a memory integrated with the bottle to store one or more dosage times during a day for a patient to take the medicine, the memory further comprising contact information for a remote device;a weight sensor positioned within the interior space and configured to determine a weight of the medicine in the bottle;a wireless communications interface integrated with the bottle to communicate with the remote device; anda processor integrated with the bottle and configured to determine whether the medicine was taken based on a change of the weight of the medicine in the bottle and to wirelessly contact the remote device through the wireless communications interface when the medicine is not taken during the dosage time.
  • 14. The container of claim 13, further comprising a display integrated with the bottle to display a message when the processor determines that the medicine was not taken during one of the dosage times.
  • 15. The container of claim 13, wherein the processor is configured to send a refill request through the wireless communications interface when the weight of the remaining medicine within the bottle reaches a predetermined setting, the refill request effective to obtain an additional amount of the medicine.
  • 16. The container of claim 13, further comprising at least one input device on the bottle.
  • 17. The container of claim 13, further comprising a cap that extends across an opening formed by the sidewalls to enclose the interior space and prevent the escape of the prescription medicine.
  • 18. The container of claim 13, further comprising a sensor integrated with the bottle to detect movement of the bottle.
  • 19. The container of claim 13, further comprising an alerting device controlled by the processor to generate an alert signal based upon medicine usage.
  • 20. The container of claim 13, wherein the processor is further configured to wirelessly contact another remote device when the processor determines that the medicine was taken during the dosage time, the processor sending an amount of the medicine taken, and a time the medicine was taken.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/164,941, filed Jun. 30, 2008, entitled “Programmable Digital Labels for a Medicine Container,” which is a continuation of U.S. patent application Ser. No. 11/371,530 filed Mar. 9, 2006, now U.S. Pat. No. 7,392,953 entitled “Programmable Digital Labels,” which claims benefit of U.S. Provisional Application Ser. No. 60/660,500 filed Mar. 10, 2005, entitled “Transmittable Digital Product and Label Data.” Each of the '941, '530, and '500 applications are incorporated herein by reference in their entirety.

Provisional Applications (1)
Number Date Country
60660500 Mar 2005 US
Continuations (2)
Number Date Country
Parent 12164941 Jun 2008 US
Child 13769054 US
Parent 11371530 Mar 2006 US
Child 12164941 US