The disclosed technology relates generally to medical examination and procedure equipment including tables and chairs. The equipment typically has a surface upon which a patient is placed for the examination or procedure. Parts of the tables and chairs can be moved to different positions to accommodate the needs of the patient and the needs of the medical service provider.
A wide variety of examination and procedure tables and chairs known in the art require some manual manipulation to orient different parts of the tables and chairs into different positions. Other tables and chairs have one or more interdependent mechanical linkages which are used to orient different parts of the tables and chairs into different positions.
The movement of many different parts of the known tables and chairs is limited resulting in ranges of use and positioning that do not meet many needs of patients and medical service providers. Due to the interdependence of the movements of the known tables and chairs, certain movements and positions cannot be achieved in an efficient or desirable way. The disclosed and claimed technology herein disclosed technology provides examination and procedure tables and chairs with advantageous movement, ranges of motion and positions to meet previously unmet but desired needs of the patient and medical service provider.
The disclosed technology of the technology presented in this patent relates generally to examination and procedure tables and chairs which can be moved into positions in more efficient and desirable ways to better meet the needs of the patient and medical service providers. For purposes of this patent when the term “chair” is used it refers equally to an examination or procedure chair or table. In particular, a plurality of actuators which can be independently programmed to cause independent, mechanical movement of the seat/seat assembly, leg rest/leg rest assembly and foot rest/foot rest assembly of the disclosed technology to desirable positions needed to provide ease of entry or transfer by the patient to the chair including positioning the highest portion of the seat to a home or patient entry position no more than nineteen inches from the floor.
The programmable movement of the disclosed chairs permits the medical service provider to efficiently and accurately move the patient into positions which provide ergonomically desirable access by the medical service provider to the patient to ensure efficient and competent diagnosis or treatment services taking into account the specific needs of each individual patient.
The programmable and mechanically independent movement of the surface of the seat, leg rest assembly and foot rest of the disclosed technology moves the leg rest and/or foot rest over an increased range of lateral extension and/or positioning to properly support and present the patient for examination or procedure and to provide for the comfort of patients whether tall or short.
Chairs embodying the disclosed technology efficiently and safely move the table or chair from an examination/procedure position to a desired home, entry or other position avoiding any contact of the leg rest or foot rest with the floor during programmable, synchronized, and/or simultaneous movement of different parts of the table/chair. This synchronized and/or simultaneous coordination of movement of the seat assembly, leg rest assembly and foot rest allow the medical service provider to focus on the treatment, comfort and safety of the patient without requiring the medical service provider to select a number of movements in order to have the chair move to the desired positions.
Chairs embodying the disclosed technology eliminate the need of the medical service provider to manually manipulate different parts of the table or chair in order to reach a desired or maximum extension, retraction or other position. Chairs of the disclosed technology eliminate any requirement that the medical service provider manually move a portion of the table or chair such as the leg rest assembly in order to reach its maximum extension or to retract it from a maximum extension. Doing so frees the hands of the medical service provider from touching portions of the chair which may be less clean or which are subject to a less clean environment. By eliminating any manual manipulation of chair parts the medical service provider frees time to provide the needed examination or procedure services without the inconvenience of stopping, delaying or interrupting the examination or procedure to manually position the chair.
Chairs embodying the disclosed technology comprise a plurality of programmably controlled actuators used to cause a variety of movements of the seat assembly, leg rest assembly and/or foot rest to the desired positions wherein the plurality of movements occurs synchronized, simultaneously and/or mechanically independent of each other.
Implementations of the disclosed technology take place in association with other independent movement of other parts of the chair including a head or face rest, a back rest hinged to the seat or transfer surface, arm other limb rests, etc. Such chairs also comprise a base having means for raising and lowering the seat and other means for moving the parts of the chair into desired configurations, such as into a reclined position, an upright position, a semi-reclined position or other positions desired by the medical service provider.
These and other features and advantages of the disclosed technology will be set forth or will become more fully apparent in the description that follows and in the appended claims. The features and advantages may be realized and obtained by employing the disclosure of this patent and as particularly pointed out in the appended claims and their equivalents. Furthermore, the features and advantages of the disclosed technology may be learned by the practice of it or will be obvious from the description, as set forth hereinafter.
In order that the manner in which the above referenced and other features and advantages of the disclosed technology are achieved, a more particular description of the invention will be rendered through reference to exemplary embodiments illustrated in the appended drawings. It will be appreciated by one of skill in the art that the following descriptions and drawings depict only exemplary embodiments of the disclosed technology and are not, therefore, to be considered as limiting in scope. Therefore, the disclosed technology is described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The disclosed technology relates generally to medical chairs, and more specifically, to combinations of movements of parts of the chair such as a seat assembly, leg rest assembly and/or foot rest which can be moved to desired locations using independently programmed and/or synchronized actuators.
As shown in
The chair 10 is shown in
As shown in
One feature of the disclosed technology includes an advantageous mechanism for extending and retracting leg rest 60. The disclosed technology includes means for programmably extending and retracting leg rest 60 independent of other movement of parts of chair 10. The nature of programmably moving leg rest 60 being mechanically independent of other movement of the chair will be discussed below.
Another aspect of the disclosed technology is illustrated in
As shown in
The disclosed technology also contemplates raising leg rest 60. For example as shown in
Lifting system 30, comprises a telescoping housing 31 as shown in
Seat 40 may also be inclined as desired by the medical service provider. This is accomplished using inclination actuator 34 depicted in
As shown in
The disclosed technology also contemplates a foot rest 70 as illustrated in
The disclosed technology also contemplates a chair swivel system 90 and a swivel lock system 80. As shown in
Platform 91 defines an opening 95 in which a cam follower bearing 92 is mounted to permit platform 91 to rotate on disc 94; cam follower bearings 92 maintain the gap between swivel disc 94 and swivel platform 91. As shown in further detail in
Swivel lock system 80 further comprises legs 83 and 85. Leg 83 rotates within housing 81 around plug 183. Leg 85 rotates within housing 81 around plug 185. Leg 83 is coupled to leg 85 by a spring 82. In the repose, locked position, plate 87 is positioned by actuator 84 such that raised portion 87′ of plate 87 does not engage leg 83 because plate 87 has been moved in the direction shown by arrow B in
The friction and/or resistance between disc 94 and the contact faces of distal end 83′ and/or distal end 85′ cause platform 91 and disc 94 to remain in a fixed relation to each other preventing platform 91 from rotating or swiveling above base 20 and disc 94. This fixed and stationary position is typically the preferred non-swivel or locked position of the chair when a medical service provider is examining or conducting a procedure on the patient. That is, the medical service provider does not normally want the chair rotating during a medical examination or procedure.
However, when the medical service provider does desire chair 10 to swivel the swivel lock system 80 may be disengaged. This is accomplished by actuating swivel lock actuator 84 causing spindle 88 and spindle connector 89 to move plate 87 in the direction of arrow A in
The disclosed technology also contemplates a chair mobility system 100 as shown in
The disclosed technology provides the advantage of a chair comprising a combination of a seat or patient surface, a seat/patient surface lifting system, a swivel system, a swivel lock system and a base such that the highest point 41 of seat 40 may be positioned no higher than nineteen inches from floor 11 by using unique combinations of independently programmable actuators which cause chair parts to move mechanically independently.
The disclosed technology also provides the advantage of a chair comprising a combination of a seat, a seat/patient surface lifting system, a base and a chair mobility system such that the highest point 41 of seat 40 may be positioned no higher than nineteen inches from floor 11.
As used in this patent, the terms independently programmable and independent programmability mean that each respective actuator is given distinct electronic signals from an electronic source such as a circuit board as to when and how the actuator is to operate. One of skill in the art knows how to generate such signals using a circuit board. The independently programmable nature of the lift actuator, the seat inclination actuator, the seat back inclination actuator, the leg rest rotation actuator, the leg rest extension actuator, the foot rest rotation actuator and the swivel lock actuator permit chair 10 to be manipulated to ensure that the highest point 41 of seat 40 may be moved to a position no more than nineteen inches from floor 11 from any position without requiring the medical service provider to manually manipulate any portion of the chair. Also, the independently programmable nature of the lift actuator, the seat inclination actuator, the seat back inclination actuator, the leg rest rotation actuator, the leg rest extension actuator, the foot rest rotation actuator and the swivel lock actuator permit seat 40, back rest 50, leg rest 60 and foot rest 70 to be moved to the desired examination or procedure position needed by the medical service provider independent of the movement of each other. This provides the medical service provider a limitless variation of relative positions of seat 40, seat back 50, leg rest 60 and foot rest 70. Because there are no interdependent mechanical linkages required between seat 40, back rest 50, leg rest 60 and foot rest 70, the variable positions of each of these parts of chair 10 may be independently controlled. Further, depending upon the selection of leg rest actuator 64, leg rest 60 maybe extended to a distance needed or desired by the medical service provider without requiring the medical service provider to manually extend or retract leg rest 60 by pulling or pushing it.
In another alternative combination of chair parts, if desired, an interdependent mechanical linkage may be used between back rest 50 and leg rest 60 to raise and lower leg rest 60, not shown. In such a combination, a back rest actuator would not only incline back rest 50 but through an interdependent mechanical linkage cause the raising and lowering of leg rest 60.
Another important feature of the disclosed technology that provides advantages over the known prior art also derives from the independently programmable and mechanically independent movement of different parts of chair 10. For example, when seat 40 has been raised to an examination height or inclination, leg rest 60 may be extended 3-7 inches, or to whatever range of motion leg rest actuator 64 is a capable of providing. Or, seat 40 may be inclined forward. In either chair position, if the medical service provider desires to have chair 10 then return to the patient entry position no higher than nineteen inches from the floor, the position of leg rest 60 and/or foot rest 70 need to be controlled so that they do not contact floor 11 or trap something between leg rest 60 and/or foot rest 70 and the floor. The disclosed technology provides a chair which programmably controls the relative position of leg rest 60 and/or foot rest 70 from contacting the floor while moving chair 10 from a raised position to a patient entry position. This is achieved through the preparation and execution of executable computer code to independently send actuation signals to a plurality of actuators to mechanically and independently direct the movement of the actuators which control the relative position of seat 40, leg rest 60 and foot rest 70. One of ordinary skill in the art knows how to prepare computer executable code or programs that sense and monitor the extension, retraction and relative position of actuators used to move the different parts of chair 10. Such executable computer code can send distinct actuation signals to a plurality of actuators such that the plurality of actuators operate independently, synchronized and/or simultaneously to bring seat/patient surface 40 from a raised to the patient entry position.
For example, when chair 10 is in the examination position shown in
The advantage of using independently programmable actuators allows one or more actuators operating simultaneously or in synchronization to be programmed to temporarily pause certain movement of the chair while one or more other actuators cause other movement of the chair. For example, if chair 10 is in a raised, inclined examination position with leg rest 60 fully extended and the user directs chair 10 to return to the patient entry position, a lift, seat inclination and leg rest actuator may simultaneously begin movement of different parts of chair 10. However, actuators such as a lift actuator and/or a seat inclination actuator may need to be temporarily paused from further lowering the seat to first allow a leg rest actuator to sufficiently reduce the leg rest extension to prevent the leg rest from contacting the floor. As a result, with the touch of a button, chair 10 can be moved from a raised and/or inclined examination position with full extension of the leg rest to the patient entry position without any further control input or manual manipulation of the chair by the medical service provider.
Similarly, if chair 10 is in the patient entry position and the user directs chair 10 to move to a raised and/or inclined examination position with the leg rest extended, it may be necessary or desirable to temporarily pause the leg extension actuator to first allow a lift or seat inclination actuator to position the chair such that actuation of the leg rest actuator does not cause the leg rest to contact the floor. These types of chair movement can be done programmably by monitoring or detecting the deployment history of the actuators which alter the position, height and extension of the different parts of chair 10.
Another feature of the disclosed technology is the programmable nature of controlling foot rest 70. When chair 10 is in its patient entry position and when chair 10 also comprises a foot rest 70, leg rest 60 is substantially vertical and foot rest 70 is typically positioned substantially parallel to floor 11, that is, at a right angle to leg rest 60. For examination, chair 10 may be raised and/or inclined into an examination position. The advantage of using independently programmable actuators allows the rotation of foot rest 70 about hinge 72 to be independently controlled to meet the needs of the medical service provider and/or to provide for the comfort or safety of the patent.
For example, the timing and sequence of the rotation of foot rest 70 about hinge 72 can be independently programmable. Use of an independently programmable foot rest actuator 74 permits the rotation of foot rest 70 about hinge 72 to be controlled independent of the mechanical movement of leg rest 60. Thus, if it is desired to maintain foot rest 70 at a right angle relative to leg rest 60, regardless of the lowered or raised position of leg rest 60, actuator 74 is not actuated. However, if it is desired to rotate foot rest 70 about hinge 72, the timing, sequence and/or rate of actuation of foot rest actuator 74 causing that rotation may be programmably controlled to permit and/or limit the rotation of foot rest 70 about hinge 72 as desired thereby meeting the particularized needs of the medical service provider or the particularized comfort or safety of the patient. For example, it may be desirable to not rotate foot rest 70 until leg rest 60 has been raised to a particular inclination. Unlike the prior art, the disclosed technology provides this kind of independent control of the rotation of foot rest 70.
Further, with leg rest 60 in the raised position with foot rest 70 positioned substantially horizontally as illustrated in
The operation of the other actuators of chair 10 may be synchronized, selectively and/or temporarily paused or slowed to permit actuator 74 to rotate foot rest 70 toward leg rest 60 sufficiently to avoid hitting the floor. This may involve pausing actuation function or varying the rate of operation of the actuation function of the other actuators. For example, any actuator which causes seat 40 to be lowered may be paused to first allow foot rest actuator 74 to properly rotate foot rest 70 to a safe position. Or, the rate of actuation of any actuator used to lower seat 40 may be reduced or varied while the rate of actuation of foot rest actuator 74 is held constant, increased or otherwise varied as needed to rotate foot rest 70 to avoid foot rest 70 from hitting the floor. The ability of the disclosed technology to independently control the rotation of foot rest 70 in these ways is not known in prior art.
The independently programmable and mechanically independent combination of the operation of actuators 32, 34, 54, 64, 64′ and 74 of the disclosed technology permit the medical service provider to readily, efficiently, safely, and accurately control the relative movement of the parts of chair 10. The independently programmable and mechanically independent combination of the operation of actuators 32, 34, 54, 64, 64′, and 74 permit the medical service provider to readily, efficiently, safely, and accurately maintain examination positions of chair 10, transition positions of chair 10 and descend positions of chair 10 to a patient entry position no more than nineteen inches from the floors in ways not provided by the prior art.
A combination of a seat, lift system, swivel system, swivel lock system and base of the disclosed technology provide a chair which when in a patient entry position is no more than nineteen inches from the floor.
A combination of a seat, lift system and mobility system of the disclosed technology provide a chair which when in a patient entry position is no more than nineteen inches from the floor.
A combination of a seat, lift system, leg rest, swivel system, swivel lock system and base of the disclosed technology provide a chair which when in a patient entry position is no more than nineteen inches from the floor.
A combination of a seat, lift system, leg rest, foot rest, swivel system, swivel lock system and base of the disclosed technology provide a chair which when in a patient entry position is no more than nineteen inches from the floor.
The disclosed technology may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.