Programmable logic devices

Information

  • Patent Application
  • 20050172070
  • Publication Number
    20050172070
  • Date Filed
    December 06, 2004
    20 years ago
  • Date Published
    August 04, 2005
    19 years ago
Abstract
An improved programmable logic device provides increased efficiency and enhanced flexibility in configuration of block memories and includes one or more memory blocks and a vertical shift register that receives the data to be loaded in the memory blocks. The PLD further provides a selection device for selecting the memory cells in the memory blocks that are to store the received data, and a control block for controlling the loading of the data in the memory blocks. The selection device includes an address counter connected to the input of an address decoder so as to enable the selection of addresses in the memory blocks.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates to improved programmable logic devices. More particularly this invention relates to programmable logic devices that provide more efficient configuration of block memories


2. Description of the Related Art


Programmable logic devices include configuration memory cells, configuration control elements and a matrix of logic blocks, 10 blocks and block RAMs. Field programmable gate arrays (FPGAs) are one of the most commonly used programmable logic devices. FIG. 1 shows the block diagram of a typical FPGA. The FPGA includes vertical shift register (VSR) 13 and select register HFF 11 both connected to a control unit 14 and core 12 comprising a plurality of routing lines and an array of memory latches. The control unit 14 has input data, control and status busses to control the operation of the FPGA. To configure the core of the FPGA a data frame is loaded into the VSR 13 and the control unit enables one select line of the select register HFF 11 to shift the column of data from VSR 13 to one column of the core.



FIG. 2 shows the memory latch. A memory latch comprises cross-coupled inverters 22 having transistors 23, 24 connected to them for reading and writing the data. The control terminals of the transistors enable the read or write operation into/from latch.


Block memories are often provided in FPGAs for storing data. FIG. 3 shows an embodiment of the FPGA with block memories 33, 31. The block memories are generally arranged in columns around the array of PLB and routing resources. The figure shows only two column of the block memory, however there can be more columns of block memories.



FIG. 3 show an FPGA with block memories having a core 32, which is made out of a programmable logic block (PLB) 37 and routing resources 38, 39. The routing resources also interact with the memory. The data in the frames is loaded in the VSR 34, the appropriate line is selected using HFF 36 and the data is transferred from VSR 34 to the corresponding latches. The control unit 35 controls the operation of VSR 34 and HFF 36. The control unit 35 is responsible for accepting the data from the external environment, verifying the data and then loading the data using control signals. Block memories 33 are used as Random Access Memories (RAM) in which the data is loaded during runtime in accordance with the functionality implemented in FPGA. The FPGAs have additional controls (not shown) to control the operation of the block memories as RAMs.


The block memories can also be used as Read Only Memories (ROMs) to augment the configuration memory (or PLB) of the FPGA.


U.S. Pat. No. 5,787,007 describes a scheme for configuring block memories, utilizing the reconfiguration option of the FPGA. In this particular scheme the FPGA is first configured as a RAM loader circuit using which the data is loaded into the RAM after which it is reconfigured for other desired functions. The control blocks, address counters, and data shift registers for block memory loading are programmed using the block memory. The major disadvantage of this scheme is the requirement of reconfiguration of system which results in increased total configuration time. Also the control block of such a system is significantly more complex because it is required to detect the completion of the initial configuration, after which it is required to perform the configuration of the internal memories followed by the reinitialization for the desired logic device.


BRIEF SUMMARY OF THE INVENTION

One embodiment of the invention is directed to a method and device that overcomes the above drawbacks and provides a flexible mechanism of configuration of block memories.


One embodiment of the invention provides an improved programmable logic device providing increased efficiency and enhanced flexibility in configuration of block memories. The PLD includes:

    • one or more memory blocks,
    • a vertical shift register that receives the data to be loaded in the memory blocks,
    • a selection means for selecting the memory cells in the memory blocks that are to store the received data, and
    • a control block for controlling the loading of the data in the memory blocks. The selection means includes an address counter connected to the input of an address decoder so as to enable the selection of addresses in the memory blocks.


The counter is reused for general logic functions once the configuration of the block memories has been completed.


Another embodiment of the present invention provides an improved method for configuring block memories in programmable logic device providing increased efficiency and enhanced flexibility. The method includes:

    • shifting the configuration data into a vertical shift register,
    • selecting the memory locations in which the shifted data is to be stored, and
    • providing the control signals for storing the data in the selected locations. The selection of the memory location is performed by generating the desired memory addresses using an address counter.




BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The invention will now be described with reference to the accompanying drawings.



FIG. 1 shows the block diagram of an FPGA.



FIG. 2 shows the schematic of a memory latch.



FIG. 3 shows the block diagram of an FPGA with block memories.



FIG. 4 shows a block memory in accordance with the present invention.



FIG. 5 shows the block diagram of an FPGA with block memories in accordance with the present invention.




DETAILED DESCRIPTION OF THE INVENTION


FIGS. 1, 2 and 3 have already been described in the background to the invention.


One embodiment of the present invention provides block memory as shown in FIG. 4. A memory block 45 receives inputs from a VSR (not shown in FIG. 4) and an address counter 41. Memory block 45 comprises an array of memory latches 42, receiving a first set of inputs from a data register 44 and a second set of inputs from an address decoder 43. Data register 44 receives inputs from the VSR. The address decoder 43 obtains the input from counter 41 which is controlled by the control unit of the FPGA (not shown in FIG. 4). While the memory organization is configurable in terms of the data and address bus width of the memory array, it is assumed for the purposes of this description that the memory by default is in a mode where the largest width of data bus is selected (n×m). When enabled for configuration the block memory receives data frames from the VSR and a counter value from the address counter 41 is decoded by the address decoder 43 to enable the corresponding column of the block memory for configuration.



FIG. 5 shows the block diagram of an FPGA with block memories 51 in accordance with present invention. Each block memory 51 is configured like the block memory 45 of FIG. 4. Each column of block memories 51 receives inputs 52, 53, 54 from the VSR 59 and an enable signal from control unit 57. A counter 55 (such as the counter 41 of FIG. 4) also receives a control signal 56 from the control unit 57. The FPGA also includes a core 511 (such as the cores 12, 32 of FIGS. 1 and 3) that is connected to a VSR 59 and HFF selection unit 58. The control unit 57 controls the VSR 59 and HFF 58.


The above FPGA can be partially or completely configured by selecting the appropriate mode. In this process first the block memories 51 are chosen to be used as RAM or ROM. If the block memories are to be used as ROM then the block memories are configured along with the rest of the PLBs of the core 511 of the FPGA. An enable signal is generated for enabling the configuration of the block memories from the control unit 57 of the FPGA which allows the block memories to receive data from the VSR 59 and starts the counters 55 to provide the address to the address decoder of the block memories. Since the block memories receive dedicated lines from the VSR 59 these memories can be simultaneously configured along with the rest of the PLBs.


For the case of partial configuration in which only a few memories 51 in a particular column are to be configured, then control bits can be provided to select only those memories which will be configured, rest of memories will remain disabled.


As an additional embodiment of the above invention, the counter used for configuration of the memories 51, can also be used to access the memories in any of the desired modes. After the configuration of memory has been completed, the control of the counter is disabled from configuration ‘control unit’ making it available for the user for use as an up/down counter with/without terminal count provision. Typical applications include implementation of LIFO, FIFO functions.


The above description is merely illustrative of the configuration of block memories. A person skilled in the art will appreciate that other circuits could be used to realize the concept of configuration of block memories.


All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, including but not limited to U.S. Pat. No. 5,787,007 and Indian Patent Application No. 1519/Del/2003 filed on Dec. 5, 2003, are incorporated herein by reference, in their entirety.


From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Claims
  • 1. A programmable logic device, comprising: one or more memory blocks; a vertical shift register that receives data to be loaded in the memory blocks; a selection means for selecting memory cells in the memory blocks that are to store the received data; and a control block for controlling the loading of the data in the memory blocks, wherein the selection means includes an address counter connected to the input of an address decoder so as to enable the selection of addresses in the memory blocks.
  • 2. A programmable logic device as claimed in claim 1 wherein the counter is reused for general logic functions once the configuration of the block memories has been completed.
  • 3. A programmable logic device as claimed in claim 1, further comprising a field programmable gate array core that is connected to the memory blocks.
  • 4. A method for configuring block memories in a programmable logic device, comprising the steps of: shifting configuration data into a vertical shift register; selecting memory locations in which the shifted data is to be stored; and providing control signals for storing the data in the selected locations, wherein selecting the memory locations is performed by generating desired memory addresses using an address counter.
  • 5. A programmable logic device, comprising: a memory block; a control block for controlling the loading of data in the memory block; an address counter that provides an address for selecting memory locations in the memory block; and an address decoder connected between the address counter and the memory block and structured to enable access to the selected memory locations in the memory block.
  • 6. The programmable logic device of claim 5 wherein the counter is reused for general logic functions after configuration of the block memory has been completed.
  • 7. The programmable logic device of claim 5, further comprising a field programmable gate array core that is connected to the memory block.
  • 8. The programmable logic device of claim 5, wherein the memory block is one of a plurality of memory blocks, each associated with a separate address decoder and a separate address counter, the control block being structured to control the address counters and enable the memory blocks.
Priority Claims (1)
Number Date Country Kind
1519/DEL/2003 Dec 2003 IN national