The instant application contains a Sequence Listing which has been submitted electronically in XML format and is hereby incorporated by reference in its entirety. Said XML copy, created on Nov. 29, 2022, is named 203477-732301_US_SL.xml and is 111,033 bytes in size.
Detection of ailments, especially at the early stages of disease or infection, can provide guidance on treatment or intervention to reduce the progression or transmission of said ailments. Such ailments can be detected at the point of need by devices capable of running diagnostic assays. Various biological species associated with an organism, disease state, phenotype, or genotype can be detected by these devices. Challenges in deploying such devices include developing methods to immobilize diagnostic assay components on surfaces without compromising the performance of the assay, as well as performing amplification of samples without significant additional instrumentation.
In an aspect, the present disclosure provides a programmable nuclease diagnostic device that may comprise a sample interface configured to receive a sample that may comprise at least one sequence of interest; a channel in fluid communication with the sample interface and a detection chamber, said channel comprising one or more movable mechanisms to separate the sample into a plurality of droplets, wherein said detection chamber is configured to receive and contact the plurality of droplets with at least one programmable nuclease probe disposed on a surface of said detection chamber, wherein said at least one programmable nuclease probe may comprise a guide nucleic acid complexed with a programmable nuclease; and a plurality of sensors that determine a presence of said at least one sequence of interest by detecting a signal produced upon cleavage of a target nucleic acid region of said at least one sequence of interest by said at least one programmable nuclease probe. In some embodiments, the cleavage of said target nucleic acid region occurs after a complementary binding of said target nucleic acid region to said guide nucleic acid of said at least one programmable nuclease probe. In some embodiments, the programmable nuclease probe may comprise a CRISPR/Cas enzyme. In some embodiments, the guide nucleic acid may comprise a guide RNA. In some embodiments, the one or more movable mechanisms comprise one or more valves configured to restrict flow through one or more sections of the channel. In some embodiments, the one or more movable mechanisms comprise a plunger or a bristle that is configured to restrict flow through one or more sections of the channel. In some embodiments, the one or more movable mechanisms are operatively coupled to a power source that is integrated with or insertable into the device. In some embodiments, the power source may comprise a battery. In some embodiments, the device may comprise a physical filter to filter one or more particles from the sample that do not comprise the sequence of interest. In some embodiments, the device may comprise a sample preparation chamber. In some embodiments, the sample preparation chamber may comprise a lysing agent. In some embodiments, the sample preparation chamber may comprise a heating unit configured for heat inactivation. In some embodiments, the sample preparation chamber may comprise one or more reagents for nucleic acid purification. In some embodiments, the channel may comprise a plurality of heating elements and a plurality of heat sinks for amplifying the at least one sequence of interest or a portion thereof. In some embodiments, the plurality of heating elements and the plurality of heat sinks are configured to perform one or more thermocycling operations on the plurality of droplets. In some embodiments, the device may comprise a plurality of programmable nuclease probes comprising different guide RNAs. In some embodiments, the signal is associated with a physical, chemical, or electrochemical change or reaction. In some embodiments, the signal may comprise an optical signal. In some embodiments, the signal may comprise a fluorescent or colorimetric signal. In some embodiments, the signal may comprise a potentiometric or amperometric signal. In some embodiments, the signal may comprise a piezo-electric signal. In some embodiments, the signal is associated with a change in an index of refraction of a solid or gel volume in which said at least one programmable nuclease probe is disposed.
In another aspect, the present disclosure provides a device that may comprise a sample interface configured to receive a sample that may comprise one or more target sequences of interest; one or more channels comprising one or more movable mechanisms to separate the sample into partitioned samples, wherein the one or more channels are in fluid communication with the sample interface and a reaction chamber that is configured to receive and contact the partitioned samples with an enzyme, reagent, or programmable detection agent that is configured to cleave a nucleic acid of said one or more target sequences of interest; and a plurality of sensors for determining a presence of the one or more target sequences of interest by detecting one or more reporters released upon said cleavage of said nucleic acid. In some embodiments, the programmable detection agent may comprise a CRISPR/Cas enzyme. In some embodiments, the one or more target sequences of interest comprise a sequence of nucleic acids comprising said nucleic acid. In some embodiments, the one or more movable mechanisms comprise a plurality of valves configured to restrict flow in a first direction through the one or more channels towards the sample interface. In some embodiments, the plurality of valves are configured to selectively permit flow in a second direction through the one or more channels towards the reaction chamber. In some embodiments, a first valve and a second valve of the plurality of valves are configured to physically, fluidically, or thermally isolate a first portion of the sample from a second portion of the sample when the first valve and the second valve are in a closed state. In some embodiments, the one or more channels comprise a plurality of heating elements and a plurality of heat sinks to perform thermocycling on the partitioned samples. In some embodiments, a first heating element of the plurality of heating elements and a first heat sink of the plurality of heat sinks are positioned between a first movable mechanism and a second movable mechanism of the one or more movable mechanisms. In some embodiments, the reporter may comprise a nucleic acid and a detection moiety. In some embodiments, the reporter may comprise at least one ribonucleotide or at least one deoxyribonucleotide. In some embodiments, the reporter may comprise a DNA nucleic acid or an RNA nucleic acid. In some embodiments, the device may comprise a telemedicine unit configured to provide one or more detection results to a computing unit that is remote from the device, wherein the one or more detection results indicate a presence or an absence of a target nucleic acid of interest in the sample.
In another aspect, the present disclosure provides a method for target detection, comprising: contacting a sample with any of the devices described herein; and detecting a presence or an absence of one or more genes of interest in said sample. In some embodiments, the method may comprise generating one or more detection results indicating the presence or the absence of the one or more genes of interest in the sample. In some embodiments, the method may comprise transmitting the one or more detection results to a remote computing unit. In some embodiments, the remote computing unit may comprise a mobile device. In another aspect, the present disclosure provides a method for target detection, comprising: providing a sample comprising at least one gene of interest; separating the sample into a plurality of sub-samples using one or more movable mechanisms; receiving the plurality of sub-samples in a detection chamber and contacting the plurality of sub-samples with at least one programmable nuclease probe disposed on a surface of said detection chamber, wherein said at least one programmable nuclease probe may comprise a guide nucleic acid complexed with a programmable nuclease; and using a plurality of sensors to determine a presence or an absence of said at least one gene of interest by detecting a signal produced upon cleavage of a target nucleic acid region in said at least one gene of interest by said at least one programmable nuclease probe. In some embodiments, the method may comprise amplifying the at least one gene of interest after separating the sample into a plurality of sub-samples. In some embodiments, the method may comprise amplifying the at least one gene of interest before the plurality of sub-samples are received in the detection chamber. In some embodiments, amplifying the at least one gene of interest may comprise using a plurality of heating elements and a plurality of heat sinks to perform thermocycling on the plurality of sub-samples.
In some embodiments, the programmable nuclease probe may comprise a CRISPR/Cas enzyme. In some embodiments, the guide nucleic acid may comprise a guide RNA. In some embodiments, the one or more movable mechanisms comprise one or more valves configured to restrict flow through one or more sections of the channel. In some embodiments, the one or more movable mechanisms comprise a plunger or a bristle that is configured to restrict flow through one or more sections of the channel. In some embodiments, the method may comprise using a physical filter to filter one or more particles from the sample that do not comprise the at least one gene of interest. In some embodiments, the method may comprise lysing the sample before detecting the at least one gene of interest. In some embodiments, the method may comprise performing heat inactivation on the sample. In some embodiments, the method may comprise performing nucleic acid purification on the sample. In some embodiments, the method may comprise contacting the plurality of sub-samples with a plurality of programmable nuclease probes comprising different guide RNAs. In some embodiments, the signal is associated with a physical, chemical, or electrochemical change or reaction. In some embodiments, the signal is selected from the group consisting of an optical signal, a fluorescent signal, a colorimetric signal, a potentiometric signal, an amperometric signal, and a piezo-electric signal. In some embodiments, the signal is associated with a change in an index of refraction of a solid or gel volume in which said at least one programmable nuclease probe is disposed. In some embodiments, the method may comprise using the signal to detect pathogenic viruses, pathogenic bacteria, pathogenic worms, pathogenic fungi, or cancer cells. In some embodiments, the pathogenic viruses are selected from the group consisting of respiratory viruses, adenoviruses, parainfluenza viruses, severe acute respiratory syndrome (SARS), coronavirus, SARS-CoV, SARS-CoV-2, MERS, gastrointestinal viruses, noroviruses, rotaviruses, astroviruses, exanthematous viruses, hepatic viral diseases, cutaneous viral diseases, herpes, hemorrhagic viral diseases, Ebola, Lassa fever, dengue fever, yellow fever, Marburg hemorrhagic fever, Crimean-Congo hemorrhagic fever, neurologic viruses, polio, viral meningitis, viral encephalitis, rabies, sexually transmitted viruses, HIV, HPV, immunodeficiency viruses, influenza virus, dengue virus, West Nile virus, herpes virus, yellow fever virus, Hepatitis Virus C, Hepatitis Virus A, Hepatitis Virus B, and papillomavirus. In some embodiments, the method may comprise amplifying or modifying the signal using a physical or chemical interaction between a reporter that is released upon cleavage and another material, entity, or molecular species in the detection chamber. In some embodiments, the devices of the present disclosure are configured to detect pathogenic viruses, pathogenic bacteria, pathogenic worms, pathogenic fungi, or cancer cells based on the signal. In some embodiments, the pathogenic viruses are selected from the group consisting of respiratory viruses, adenoviruses, parainfluenza viruses, severe acute respiratory syndrome (SARS), coronavirus, SARS-CoV, SARS-CoV-2, MERS, gastrointestinal viruses, noroviruses, rotaviruses, astroviruses, exanthematous viruses, hepatic viral diseases, cutaneous viral diseases, herpes, hemorrhagic viral diseases, Ebola, Lassa fever, dengue fever, yellow fever, Marburg hemorrhagic fever, Crimean-Congo hemorrhagic fever, neurologic viruses, polio, viral meningitis, viral encephalitis, rabies, sexually transmitted viruses, HIV, HPV, immunodeficiency viruses, influenza virus, dengue virus, West Nile virus, herpes virus, yellow fever virus, Hepatitis Virus C, Hepatitis Virus A, Hepatitis Virus B, and papillomavirus. In some embodiments, the detection chamber or the reaction chamber of the device may comprise another material, entity, or molecular species that is configured to physically or chemically interact or react with a reporter that is released upon cleavage to amplify or modify the signal. In some embodiments, the sequence of interest may comprise a biological sequence. The biological sequence can comprise a nucleic acid sequence or an amino acid sequence. In some embodiments, the sequence of interest is associated with an organism of interest, a disease of interest, a disease state of interest, a phenotype of interest, a genotype of interest, or a gene of interest.
In another aspect, a reaction chamber may comprise a surface wherein a probe comprising at least one of said enzyme, said reagent, said programmable detection reagent, a programmable nuclease, a guide nucleic acid, a reporter or a combination thereof, and wherein said probe is immobilized to said surface by a linkage. In some embodiments, a linkage may comprise a surface functionality and a probe functionality. In some embodiments, a surface functionality is disposed on said surface. In some embodiments, a surface functionality is streptavidin. In some embodiments, an amino acid residue of said programmable nuclease is connected to said surface by said linkage. In some embodiments, an amino acid residue is modified with said probe functionality. In some embodiments, a probe functionality is biotin. In some embodiments, a guide nucleic acid is connected to said surface by said linkage. In some embodiments, a guide nucleic acid is modified at the 3′ end or 5′ end with said probe functionality. In some embodiments, a reporter is connected to said surface by said linkage. In some embodiments, a reporter may comprise at least one of said nucleic acid, said probe functionality, a detection moiety, a quencher or a combination thereof. In some embodiments, a reporter is configured for said detection moiety to remain immobilized to said surface and said quencher to be released into solution upon cleavage of said reporter. In some embodiments, a reporter is configured for said quencher to remain immobilized to said surface and for said detection moiety to be released into solution, upon cleavage of said reporter.
In various aspects described herein, a reporter is connected to said surface by a linkage. In some embodiments, a linkage may comprise a surface functionality and a probe functionality. In some embodiments, a surface functionality is disposed on said surface and said reporter may comprise said probe functionality.
In certain aspects, described herein are embodiments of a method for target detection, comprising: providing a sample comprising at least one sequence of interest; separating the sample into a plurality of sub-samples using one or more movable mechanisms; receiving the plurality of sub-samples in a detection chamber and contacting the plurality of sub-samples with at least one probe, wherein said at least one probe is connected to a surface of said detection chamber by a linkage, wherein said at least one probe may comprise a programmable nuclease, a guide nucleic acid, a reporter or a combination thereof; and using a plurality of sensors to determine a presence of said at least one sequence of interest by detecting a signal produced upon cleavage of said reporter by said programmable nuclease.
Described herein are various embodiments of a device comprising: a sample interface configured to receive a sample that may comprise one or more target sequences of interest; one or more channels comprising one or more movable mechanisms to separate said sample into partitioned samples, wherein said one or more channels are in fluid communication with said sample interface and a reaction chamber comprising a surface, wherein at least one probe may comprise a programmable nuclease, a guide nucleic acid, a reporter or a combination thereof, wherein said at least one probe is connected to said surface by a linkage; and a plurality of sensors for determining a presence of said one or more target sequences of interest by detecting a signal emitted upon cleavage of said reporter by said programmable nuclease.
Described herein are various devices for detecting a target nucleic acid, comprising: a sample interface configured to receive a sample comprising a target nucleic acid; a reaction chamber (e.g., a heating region) in fluid communication with the sample interface and configured to amplify the sample received via the sample interface; a detection region in fluid communication with the heating region; and a programmable nuclease probe disposed within the sample interface, the heating region, and/or the detection region, wherein a signal is produced via selective binding between the programmable nuclease probe and the target nucleic acid within the heating region, the sample interface, and/or the detection region, wherein the detection region is configured to detect the signal corresponding to a presence of the target nucleic acid, and wherein the presence or absence of the target nucleic acid is determined within a time of less than 30 minutes after the sample is received at the sample interface. In some embodiments, a reagent mix comprising amplification reagents. In some embodiments, the reagent mix is lyophilized. In some embodiments, the reagent mix is located in a region of the device that is in fluid communication with both the sample interface and the heating region. In some embodiments, the reagent mix is located within the sample interface, the heating region, the detection region, and/or a region between the sample interface and the heating region. In some embodiments, the heating region comprises amplification reagents. In some embodiments, the sample is amplified via Loop-Mediated Isothermal Amplification (LAMP). In some embodiments, the heating region is configured to maintain an isothermal, or non-cycled temperature profile. In some embodiments, the isothermal, or non-cycled temperature profile is between about 30° C. to about 60° C. In some embodiments, the isothermal, or non-cycled temperature profile is about 55° C. to about 60° C. In some embodiments, the sample interface comprises a compartment configured to receive a swab containing the sample. In some embodiments, the compartment comprises a scraper configured to transfer the sample from the swab to the device. In some embodiments, the compartment contains a interface solution configured to extract the sample from the swab. In some embodiments, the interface solution comprises a buffer solution or a lysis buffer solution. In some embodiments, the sample interface is configured to receive the sample from a swab via pipetting. In some embodiments, the sample interface comprises a compartment configured to receive the sample from a container containing the sample. In some embodiments, the container comprises a syringe. In some embodiments, the syringe interface comprises an opening for receiving the sample therethrough. In some embodiments, the syringe interface opening is in fluid communication with i) the heating region, and/or ii) another compartment that is in fluid communication with the heating region. In some embodiments, the sample interface is configured to receive the sample as a fluid. In some embodiments, the heating region and detection region are disposed on the same location on the device. In some embodiments, the heating region and the detection region are disposed within a same compartment of the device. In some embodiments, the heating region comprises a channel for fluid movement therethrough. In some embodiments, the channel is in fluid communication with the sample interface and the detection region, either directly or indirectly, thereby enabling the sample to move from the sample interface to the detection region. In some embodiments, the channel comprises a spiral configuration or a serpentine configuration. In some embodiments, two or more channels for fluid movement therethrough, wherein at least one channel of the two or more channels configured to move the sample from the sample interface to the detection region. In some embodiments, each channel of the heating region comprises one or more movable mechanisms. In some embodiments, the one or more movable mechanisms comprises i) a first movable mechanism between the sample interface and heating region for controlling transfer of the sample therebetween, and/or ii) a second movable mechanism between the heating region and the detecting region for controlling transfer of the sample therebetween. In some embodiments, at least one channel of the heating region comprises two or more heating compartments configured to separate the sample into two or more sub-samples, wherein the two or more compartments are separated from each other via a movable mechanism of the one or more movable mechanisms. In some embodiments, each heating compartment is configured to be heated by a corresponding heating element. In some embodiments, at least one heating element of the device comprises a chemical heating element. In some embodiments, at least one chemical heating element is sodium acetate. In some embodiments, the heating region comprises a chamber in fluid communication with the sample interface and the detection region. In some embodiments, the heating region comprises a reporter immobilized therein, wherein the report is configured to release a detection moiety via the selective binding between the activated programmable nuclease and the target nucleic acid, thereby enabling the signal to be produced. In some embodiments, the reporter is immobilized in the heating region via a support that is immobilized on a surface of the heating region. In some embodiments, the support comprises a bead, a coating, and an interspersed polymer. In some embodiments, the support comprises a solid support. In some embodiments, the surface of the heating region comprises a well that is a recessed portion of the surface, wherein the support is disposed within the well. In some embodiments, one or more channels to move the sample from the sample interface to the detection region. In some embodiments, the one or more channels are located within the sample interface, between the sample interface and the heating region, within the heating region, between the heating region and the detection region, and/or within the detection region. In some embodiments, one or more channels comprises a plurality of channels, wherein the plurality of channels comprises at least one set of channels arranged in series. In some embodiments, the one or more channels comprises a plurality of channels, wherein the plurality of channels comprises at least one set of channels arranged in parallel (parallel channels), thereby enabling the sample to be split into sub-samples within each channel of the at least one set of parallel channels. In some embodiments, the one or more channels comprises a plurality of channels, wherein the plurality of channels comprises at least one set of channels configured to move the sample from a first location within the device to a second location within the device, thereby enabling the sample to be split into sub-samples within each channel of the at least one set of channels. In some embodiments, the at least one set of channels comprises two or more channels having a different length and/or different configuration, thereby enabling specific conditions to be specified for two or more corresponding sub-samples. In some embodiments, the specific conditions comprise a specified heating temperature range, a specified heating duration, a specified residence time within any region or location on the device, a specific incubation time, contact with specific reagents, or any combination thereof. In some embodiments, the at least one set of channels comprises two or more channels having a same length and/or configuration, thereby enabling specific conditions to be specified for two or more corresponding sub-samples. In some embodiments, a channel of the one or more channels comprises a radial configuration, a spiral configuration, a serpentine configuration, a linear configuration, or any combination thereof. In some embodiments, at least one actuator. In some embodiments, the at least one actuator comprises a plunger, a spring-actuated plunger, or a spring mechanism. In some embodiments, the at least one actuator is manually actuated. In some embodiments, a first actuator of the at least one actuator is configured to move the sample from the sample interface to the heating region via manual actuation of the first actuator. In some embodiments, a second actuator of the at least one actuator is configured to move the detection moiety from the heating region to the detection region via manual actuation of the second actuator. In some embodiments, the device is configured to be operated manually without electrical power. In some embodiments, a power source. In some embodiments, the power source comprises one or more batteries. In some embodiments, the heating region is configured to heat the sample via a heating element. In some embodiments, the heating element comprises a chemical heating element. In some embodiments, the chemical heating element is sodium acetate. In some embodiments, the signal is visually detectable. In some embodiments, the programmable nuclease comprises a guide nucleic acid. In some embodiments, the guide nucleic acid is modified. In some embodiments, the guide nucleic acid is modified with at least one methyl group. In some embodiments, the programmable nuclease further comprises a Cas enzyme. In some embodiments, the Cas enzyme is selected from the group consisting Cas12, Cas13, Cas14, Cas14a, Cas14a1, and CasPhi. In some embodiments, the target nucleic acid is indicative of a respiratory disorder or respiratory pathogen. In some embodiments, the respiratory disorder or respiratory pathogen selected from the group consisting of SARS-CoV-2 and corresponding variants, 29E), NL63, OC43, HKU1, MERS-CoV, (MERS), SARS-CoV (SARS, Flu A, Flu B, RSV, Rhinovirus, Strep A, and TB. In some embodiments, the device is configured to differentiate between a viral infection and a bacterial infection. In some embodiments, the target nucleic acid is indicative of a sexually transmitted infection (STI) or infection related to a woman's health. In some embodiments, the STI or infection related to a woman's health is selected from the group consisting of CT, NG, MG, TV, HPV, Candida, B. Vaginosis Syphilis and UTI. In some embodiments, the target nucleic acid comprises a single nucleotide polymorphism (SNP). In some embodiments, the SNP is indicative of NASH disorder or Alpha-1 disorder. In some embodiments, the target nucleic acid is a blood borne pathogen selected from the group consisted of HIV, HBV, HCV and Zika. In some embodiments, the target nucleic acid is indicative of H. Pylori, C. Difficile, Norovirus, HSV and Meningitis. In some embodiments, a physical filter configured to filter one or more particles from the sample that do not comprise the target nucleic acid. In some embodiments, the physical filter is located between and in fluid communication with the sample interface and heating region. In some embodiments, the programmable nuclease, guide nucleic acid, or the reporter are immobilized to a device surface by a linkage. In some embodiments, the linkage comprises a covalent bond, a non-covalent bond, an electrostatic bond, a bond between streptavidin and biotin, an amide bond or any combination thereof. In some embodiments, the linkage comprises non-specific absorption. In some embodiments, the programmable nuclease is immobilized to the device surface by the linkage, wherein the linkage is between the programmable nuclease and the surface. In some embodiments, the reporter is immobilized to the device surface by the linkage, wherein the linkage is between the reporter and the surface. In some embodiments, the guide nucleic acid is immobilized to the surface by the linkage, wherein the linkage is between the 5′ end of the guide nucleic acid and the surface. In some embodiments, the guide nucleic acid is immobilized to the surface by the linkage, wherein the linkage is between the 3′ end of the guide nucleic acid and the surface. In some embodiments, a plurality of guide nucleic acids, wherein each guide nucleic acid of the plurality of guide nucleic acids is complementary, or partially complementary to a different segment of the target nucleic acid. In some embodiments, the sample comprises the sample containing the target nucleic acid(s), the sample containing the amplification reagents, the amplified sample, and/or the sample containing the detection moiety.
Described herein are various devices for detecting a target nucleic acid in a sample, comprising: a sample interface for receiving the sample; a reaction chamber (e.g., a heating region) in fluid communication with the sample interface, the heating region comprising: a programmable nuclease comprising a guide nucleic acid, and a reporter, wherein the programmable nuclease is activated by selective binding between the guide nucleic acid and a target nucleic acid, wherein the reporter is configured to release a detection moiety upon cleavage by the activated programmable nuclease; a chemical heating element configured to heat to the heating region; a detection region in fluid communication with the heating region, wherein the detection region is configured to detect a signal produced by the released detection moiety; a first manual actuator configured to transfer the sample from the heating region to the detection region; and a reagent mix comprising amplification reagents, wherein the reagent mix is disposed within the sample interface, the heating region, the detection region, and/or between the sample interface and the heating region, wherein the device is configured to determine the presence or absence of the target nucleic acid within a time of less than 30 minutes via the produced signal. In some embodiments, the reagent mix is lyophilized. In some embodiments, the heating region is configured to amplify the target nucleic acid. In some embodiments, the heating region comprises the amplification reagents. In some embodiments, the target nucleic acid is amplified via Loop-Mediated Isothermal Amplification (LAMP). In some embodiments, the heating region is configured to maintain an isothermal, or non-cycled temperature profile. In some embodiments, the isothermal, or non-cycled temperature profile is between about 30° C. to about 60° C. In some embodiments, the isothermal, or non-cycled temperature profile is about 55° C. to about 60° C. In some embodiments, the sample interface comprises a compartment configured to receive a swab containing the sample. In some embodiments, the compartment comprises a scraper configured to transfer the sample from the swab to the device. In some embodiments, the compartment contains an interface solution configured to extract the sample from the swab. In some embodiments, the interface solution comprises a buffer solution or a lysis buffer solution. In some embodiments, the sample interface is configured to receive the sample from a swab via pipetting. In some embodiments, the sample interface comprises a compartment configured to receive the sample from a container containing the sample. In some embodiments, the container comprises a syringe. In some embodiments, the syringe interface comprises an opening for receiving the sample therethrough. In some embodiments, the syringe interface opening is in fluid communication with the heating region, or another compartment that is in fluid communication with the heating region. In some embodiments, the sample interface is configured to receive the sample as a fluid. In some embodiments, the heating region and detection region are disposed on the same location on the device. In some embodiments, the heating region and the detection region are disposed within a same compartment of the device. In some embodiments, the heating region comprises a channel for fluid movement therethrough. In some embodiments, the channel is in fluid communication with the sample interface and the detection region, either directly or indirectly, thereby enabling the sample to move from the sample interface to the detection region. In some embodiments, the channel comprises a spiral configuration or a serpentine configuration. In some embodiments, two or more channels for fluid movement therethrough, wherein at least one channel of the two or more channels is configured to move the sample from the sample interface to the detection region. In some embodiments, each channel of the heating region comprises one or more movable mechanisms. In some embodiments, the one or more movable mechanisms comprises i) a first movable mechanism between the sample interface and heating region for controlling transfer of the sample therebetween, and/or ii) a second movable mechanism between the heating region and the detecting region for controlling transfer of the sample therebetween. In some embodiments, at least one channel of the heating region comprises two or more heating compartments configured to separate the sample into two or more sub-samples, wherein the two or more compartments are separated from each other via a movable mechanism of the one or more movable mechanism. In some embodiments, each heating compartment is configured to be heated by a corresponding heating element of at least one heating element. In some embodiments, the at least one heating element of the device comprises a chemical heating element. In some embodiments, the at least one chemical heating element is sodium acetate. In some embodiments, the heating region comprises a chamber. In some embodiments, the heating region comprises the reporter immobilized therein. In some embodiments, the reporter is immobilized in the heating region via a support that is immobilized on a surface of the heating region. In some embodiments, the support comprises a bead, a coating, and an interspersed polymer. In some embodiments, the support comprises a solid support. In some embodiments, the surface of the heating region comprises a well that is recessed portion of the surface, wherein the support is disposed within the well. In some embodiments, one or more channels to move the sample from the sample interface to the detection region. In some embodiments, the one or more channels are located within the sample interface, between the sample interface and the heating region, within the heating region, between the heating region and the detection region, and/or within the detection region. In some embodiments, the one or more channels comprises a plurality of channels, wherein the plurality of channels comprises at least one set of channels arranged in series. In some embodiments, the one or more channels comprises a plurality of channels, wherein the plurality of channels comprises at least one set of parallel channels arranged in parallel (parallel channels), thereby enabling the sample to be split into sub-samples within each channel of the at least one set of parallel channels. In some embodiments, the one or more channels comprises a plurality of channels, wherein the plurality of channels comprises at least one set of channels configured to move the sample from a first location within the device to a second location within the device, thereby enabling the sample to be split into sub-samples within each channel of the at least one set of channels. In some embodiments, the at least one set of channels comprises two or more channels having a different length and/or different configuration, thereby enabling specific conditions to be specified for two or more corresponding sub-samples. In some embodiments, the specific conditions comprise a specified heating temperature range, a specified heating duration, a specified residence time within any region or location on the device, a specific incubation time, contact with specific reagents, or any combination thereof. In some embodiments, the at least one set of channels comprises two or more channels having a same length and/or configuration, thereby enabling specific conditions to be specified for two or more corresponding sub-samples. In some embodiments, a channel of the one or more channels comprises a radial configuration, a spiral configuration, a serpentine configuration, a linear configuration, or any combination thereof. In some embodiments, the at least one actuator comprises a plunger, a spring-actuated plunger, or a spring mechanism. In some embodiments, the device is configured to be operated manually without electrical power. In some embodiments, the device may comprise a power source. In some embodiments, the power source comprises one or more batteries. In some embodiments, the heating region is configured to heat the sample via a heating element. In some embodiments, the heating element comprises a chemical heating element. In some embodiments, the chemical heating element is sodium acetate. In some embodiments, the signal is visually detectable. In some embodiments, the guide nucleic acid is modified. In some embodiments, the guide nucleic acid is modified with at least one methyl group. In some embodiments, the programmable nuclease further comprises a Cas enzyme. In some embodiments, the Cas enzyme is selected from the group consisting Cas12, Cas13, Cas14, Cas14a, Cas14a1, and CasPhi. In some embodiments, the target nucleic acid is indicative of a respiratory disorder or respiratory pathogen. In some embodiments, the respiratory disorder or respiratory pathogen selected from the group consisting of SARS-CoV-2 and corresponding variants, 29E), NL63, OC43, HKU1, MERS-CoV, (MERS), SARS-CoV (SARS, Flu A, Flu B, RSV, Rhinovirus, Strep A, and TB. In some embodiments, the device is configured to differentiate between a viral infection and a bacterial infection. In some embodiments, the target nucleic acid is indicative of a sexually transmitted infection (STI) or infection related to a woman's health. In some embodiments, the STI or infection related to a woman's health is selected from the group consisting of CT, NG, MG, TV, HPV, Candida, B. Vaginosis Syphilis, and UTI. In some embodiments, the target nucleic acid comprises a single nucleotide polymorphism (SNP). In some embodiments, the SNP is indicative of NASH disorder or Alpha-1 disorder. In some embodiments, the target nucleic acid is a blood borne pathogen selected from the group consisted of HIV, HBV, HCV, and Zika. In some embodiments, the target nucleic acid is indicative of H. Pylori, C. Difficile, Norovirus, HSV, and Meningitis. In some embodiments, a physical filter configured to filter one or more particles from the sample that do not comprise the target nucleic acid. In some embodiments, the physical filter is located between and in fluid communication with the sample interface and heating region. In some embodiments, the programmable nuclease, guide nucleic acid, or the reporter are immobilized to a device surface by a linkage. In some embodiments, the linkage comprises a covalent bond, a non-covalent bond, an electrostatic bond, a bond between streptavidin and biotin, an amide bond or any combination thereof. In some embodiments, the linkage comprises non-specific absorption. In some embodiments, the programmable nuclease is immobilized to the device surface by the linkage, wherein the linkage is between the programmable nuclease and the surface. In some embodiments, the reporter is immobilized to the device surface by the linkage, wherein the linkage is between the reporter and the surface. In some embodiments, the guide nucleic acid is immobilized to the surface by the linkage, wherein the linkage is between the 5′ end of the guide nucleic acid and the surface. In some embodiments, the guide nucleic acid is immobilized to the surface by the linkage, wherein the linkage is between the 3′ end of the guide nucleic acid and the surface. In some embodiments, a plurality of guide nucleic acids, wherein each guide nucleic acid of the plurality of guide nucleic acids is complementary, or partially complementary to a different segment of the target nucleic acid. In some embodiments, the sample comprises the sample containing the target nucleic acid(s), the sample containing the amplification reagents, the amplified sample, and/or the sample containing the detection moiety.
Described herein are various embodiments for a microarray device for multiplexed detection of a plurality of target nucleic acids in a sample, comprising: a sample interface for receiving the sample; a reagent mix comprising amplification reagents; a reaction chamber (e.g., a heating region) in fluid communication with the sample interface; and a detection region comprising a surface comprising a plurality of detection spots in a microarray format, wherein each of the plurality of detection spots comprise a reporter probe, wherein each reporter probe is configured to release a detection moiety via cleavage by an activated programmable nuclease, wherein each of the plurality of detection spots comprise a different programmable nuclease probe, and wherein the device is configured to determine the presence or absence of each of the plurality of target nucleic acids within a time of less than 30 minutes via the release of each detection moiety of each reporter at each of the plurality of detection spots. In some embodiments, at least one programmable nuclease probe comprises a Cas enzyme. In some embodiments, each Cas enzyme of the at least one programmable nuclease is selected from the group comprising of Cas12, Cas13, Cas14, Cas14a, and Cas14a1. In some embodiments, the microarray device may comprise all the various embodiments of devices as described herein.
Described herein are various embodiment of a kit for the detection of a target nucleic acid in a sample, the kit comprising: a swab; elution reagents; lysis reagents; a device comprising a sample interface for receiving the sample; a reaction chamber (e.g., a heating region) in fluidic communication with the sample interface and configured to receive the sample, the heating region comprising a programmable nuclease comprising a guide nucleic acid and a reporter disposed within the heating region, wherein the programmable nuclease is activated by selective binding between the guide nucleic acid and the target nucleic acid, wherein the reporter is configured to release a detection moiety via the activated programmable nuclease; a chemical heating element configured to provide heat to the heating region; a detection region in fluid communication with the heating region and the sample interface, wherein the detection region is configured to detect a signal produced by the released detection moiety, thereby detecting the presence of the target nucleic acid; and a reagent mix comprising amplification reagents, wherein the reagent mix is disposed within the sample interface, the heating region, the detection region, and/or between the sample interface and the heating region, and wherein the device is configured to determine the presence or absence of the target nucleic acid within a time of less than 30 minutes via the released detection moiety. In some embodiments, the sample interface is configured to receive the sample from the swab. In some embodiments, a collection tube, wherein the collection tube is configured to accept the swab, wherein the sample contained in the swab is transferred to the collection tube, and wherein the collection tube is separate from the device. In some embodiments, the collection tube is configured to be inserted into the sample interface to transfer the sample to the device. In some embodiments, the collection tube is a syringe. In some embodiments, the kit comprises a first container containing the elution reagents and/or the lysis reagents. In some embodiments, the kit comprises dilution reagents. In some embodiments, the kit comprises a second container containing the dilution reagents. In some embodiments, the programmable nuclease comprises a Cas enzyme. In some embodiments, the Cas enzyme is selected from the group comprising of Cas12, Cas13, Cas14, Cas14a, and Cas14a1. In some embodiments, the kit may comprise all the various embodiments of devices, as described herein.
Described herein are various embodiments of a method for the detection of a target nucleic acid in a sample, the method comprising: providing a device configured to determine a presence or absence of a target nucleic acid in less than 30 minutes after a sample is introduced into the device, the device comprising a sample interface, a heating region in fluid communication with the sample interface, and a detection region in fluid communication with the heating region; introducing the sample into the sample interface of the device; mixing the sample with a reagent mix comprising amplification reagents to generate a mixed sample solution; transferring the mixed sample solution from the sample interface to the heating region; amplifying the sample by heating the mixed sample solution in the heating region; performing a programmable nuclease-based assay, wherein selective binding between a guide nucleic acid and the target nucleic acid activates a programmable nuclease probe configured to cleave a reporter probe, thereby releasing a detection moiety into the sample solution when the target nucleic acid is present; transferring the mixed sample solution with the amplified sample from the heating region to the detection region; and determining the presence or absence of the target nucleic acid in the sample via capture of the released detection moiety in the detection region. In some embodiments, the amplifying the target nucleic acid and the performing the programmable nuclease assay are performed as a one-pot reaction in the heating region. In some embodiments, the one-pot reaction is performed between about 30° C. to 60° C. In some embodiments, the one-pot reaction is performed at about 55° C. In some embodiments, the programmable nuclease of the one-pot reaction comprises a Cas enzyme, the Cas enzyme selected from the group comprising of Cas12, Cas13, Cas14, Cas14a, and Cas14a1. In some embodiments, the method further comprises filtering the sample with the reagent mix prior to entering the heating region. In some embodiments, the method further comprises filtering the sample comprises filtering one or more particles from the sample that do not comprise the target nucleic acid. In some embodiments, the filter is located between and in fluid communication with the sample interface and heating region. In some embodiments, the method further comprises a plurality of guide nucleic acids, each guide nucleic acid of the plurality of guide nucleic acids is complementary, or partially complementary to a different segment of the target nucleic acid. In some embodiments, the method further comprises, prior to step (a): providing a collection tube comprising a sample solution comprising the target nucleic acid; and transferring the sample solution to the device via inserting the collection tube into a sample interface of the device, wherein the sample solution dissolves and mixes with a lyophilized reaction mix comprising amplification reagents. In some embodiments, the method may comprise all of the embodiments the various devices, as described herein.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
The present disclosure provides systems and methods for nucleic acid target detection. The systems and methods of the present disclosure can be implemented using devices that are configured for programmable nuclease-based detection. In some embodiments, the devices can be configured for single reaction detection. In some embodiments, the devices can be disposable devices. The devices disclosed herein can be particularly well suited for carrying out highly efficient, rapid, and accurate reactions for detecting whether a target is present in a sample. The target can comprise a target sequence or target nucleic acid. As used herein, a target can be referred to interchangeably as a target nucleic acid. Further, a target can be referred to as a target amplicon or a target nucleic acid amplicon if such target undergoes amplification (e.g., through a thermocycling process as described elsewhere herein). The target nucleic acid can be a portion of a nucleic acid of interest, e.g., a target nucleic acid from any plant, animal, virus, or microbe of interest. The devices provided herein can be used to perform rapid tests in a single integrated system.
The target nucleic acid can be a nucleic acid or a portion of a nucleic acid from a pathogen, virus, bacterium, fungi, protozoa, worm, or other agent(s) or organism(s) responsible for and/or related to a disease or condition in living organisms (e.g., humans, animals, plants, crops, and the like). The target nucleic acid can be a nucleic acid, or a portion thereof. The target nucleic acid can be a portion of a nucleic acid from a gene expressed in a cancer or genetic disorder in the sample. The target nucleic acid can be a portion of an RNA or DNA from any organism in the sample. In some embodiments, one or more programmable nucleases as disclosed herein can be activated to initiate trans cleavage activity of a reporter (also referred to herein as a reporter molecule). A programmable nuclease as disclosed herein can, in some cases, bind to a target sequence or target nucleic acid to initiate trans cleavage of a reporter. The programmable nuclease can be referred to as an RNA-activated programmable RNA nuclease. In some instances, the programmable nuclease as disclosed herein can bind to a target DNA to initiate trans cleavage of an RNA reporter. Such a programmable nuclease can be referred to herein as a DNA-activated programmable RNA nuclease. In some cases, a programmable nuclease as described herein can be activated by a target RNA or a target DNA. For example, a programmable nuclease, e.g., a Cas enzyme, can be activated by a target RNA nucleic acid or a target DNA nucleic acid to cleave RNA reporters. In some embodiments, the Cas enzyme can bind to a target ssDNA which initiates trans cleavage of RNA reporters. In some instances, a programmable nuclease as disclosed herein can bind to a target DNA to initiate trans cleavage of a DNA reporter, and this programmable nuclease can be referred to as a DNA-activated programmable DNA nuclease.
The nucleic acids described and referred to herein can comprise a plurality of base pairs. A base pair can be a biological unit comprising two nucleobases bound to each other by hydrogen bonds. Nucleobases can comprise adenine, guanine, cytosine, thymine, and/or uracil. In some cases, the nucleic acids described and referred to herein can comprise different base pairs. In some cases, the nucleic acids described and referred to herein can comprise one or more modified base pairs. The one or more modified base pairs can be produced when one or more base pairs undergo a chemical modification leading to new bases. The one or more modified base pairs can be, for example, Hypoxanthine, Inosine, Xanthine, Xanthosine, 7-Methylguanine, 7-Methylguanosine, 5,6-Dihydrouracil, Dihydrouridine, 5-Methylcytosine, 5-Methylcytidine, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxylcytosine (5caC).
The programmable nuclease can become activated after binding of a guide nucleic acid that is complexed with the programmable nuclease with a target nucleic acid, and the activated programmable nuclease can cleave the target nucleic acid, which can result in a trans cleavage activity. Trans cleavage activity can be non-specific cleavage of nearby single-stranded nucleic acids by the activated programmable nuclease, such as trans cleavage of detector nucleic acids with a detection moiety. Once the target nucleic acid is cleaved by the activated programmable nuclease, the detection moiety can be released or separated from the reporter and can directly or indirectly generate a detectable signal. The reporter and/or the detection moiety can be immobilized on a support medium. Often the detection moiety is at least one of a fluorophore, a dye, a polypeptide, or a nucleic acid. Sometimes the detection moiety binds to a capture molecule on the support medium to be immobilized. The detectable signal can be visualized on the support medium to assess the presence or concentration of one or more target nucleic acids associated with an ailment, such as a disease, cancer, or genetic disorder.
The systems and methods of the present disclosure can be implemented using a device that is compatible with any type of programmable nuclease that is human-engineered or naturally occurring. The programmable nuclease can comprise a nuclease that is capable of being activated when complexed with a guide nucleic acid and a target nucleic acid segment or a portion thereof. A programmable nuclease can become activated when complexed with a guide nucleic acid and a target sequence of a target gene of interest. The programmable nuclease can be activated upon binding of a guide nucleic acid to a target nucleic acid and can exhibit or enable trans cleavage activity once activated. In any instances or embodiments where a CRISPR-based programmable nuclease is described or used, it is recognized herein that any other type of programmable nuclease can be used in addition to or in substitution of such CRISPR-based programmable nuclease.
The systems and methods of the present disclosure can be implemented using a device that is compatible with a plurality of programmable nucleases. The device can comprise a plurality of programmable nuclease probes comprising the plurality of programmable nucleases and one or more corresponding guide nucleic acids. The plurality of programmable nuclease probes can be the same. Alternatively, the plurality of programmable nuclease probes can be different. For example, the plurality of programmable nuclease probes can comprise different programmable nucleases and/or different guide nucleic acids associated with the programmable nucleases.
As used herein, a programmable nuclease generally refers to any enzyme that can cleave nucleic acid. The programmable nuclease can be any enzyme that can be or has been designed, modified, or engineered by human contribution so that the enzyme targets or cleaves the nucleic acid in a sequence-specific manner. Programmable nucleases can include, for example, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and/or RNA-guided nucleases such as the bacterial clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated) nucleases or Cpf1. Programmable nucleases can also include, for example, PfAgo and/or NgAgo.
ZFNs can cut genetic material in a sequence-specific matter and can be designed, or programmed, to target specific viral targets. A ZFN is composed of two domains: a DNA-binding zinc-finger protein linked to the Fokl nuclease domain. The DNA-binding zinc-finger protein is fused with the non-specific Fokl cleave domain to create ZFNs. The protein will typically dimerize for activity. Two ZFN monomers form an active nuclease; each monomer binds to adjacent half-sites on the target. The sequence specificity of ZFNs is determined by ZFPs. Each zinc-finger recognizes a 3-bp DNA sequence, and 3-6 zinc-fingers are used to generate a single ZFN subunit that binds to DNA sequences of 9-18 bp. The DNA-binding specificities of zinc-fingers is altered by mutagenesis. New ZFPs are programmed by modular assembly of pre-characterized zinc fingers.
Transcription activator-like effector nucleases (TALENs) can cut genetic material in a sequence-specific matter and can be designed, or programmed, to target specific viral targets. TALENs contain the Fokl nuclease domain at their carboxyl termini and a class of DNA binding domains known as transcription activator-like effectors (TALEs). TALENs are composed of tandem arrays of 33-35 amino acid repeats, each of which recognizes a single base-pair in the major groove of target viral DNA. The nucleotide specificity of a domain comes from the two amino acids at positions 12 and 13 where Asn-Asn, Asn-Ile, His-Asp and Asn-Gly recognize guanine, adenine, cytosine and thymine, respectively. That pattern allows one to program TALENs to target various nucleic acids.
The programmable nuclease can comprise any type of human engineered enzymes. Alternatively, the programmable nuclease can comprise CRISPR enzymes derived from naturally occurring bacteria or phage. A programmable nuclease can be a Cas protein (also referred to, interchangeably, as a Cas nuclease). A crRNA and Cas protein can form a CRISPR enzyme. The programmable nuclease can be a CRISPR-Cas (clustered regularly interspaced short palindromic repeats—CRISPR associated) nucleoprotein complex with trans cleavage activity, which can be activated by binding of a guide nucleic acid with a target nucleic acid. The programmable nuclease can comprise one or more amino acid modifications. The programmable nuclease be a nuclease derived from a CRISPR-Cas system. The programmable nuclease can be a nuclease derived from recombineering.
Disclosed herein are programmable nucleases and uses thereof, e.g., detection and editing of target nucleic acids. In some instances, programmable nucleases comprise a Type V CRISPR/Cas protein. In some instances, Type V CRISPR/Cas proteins comprise nucleic acid cleavage activity. In some instances, Type V CRISPR/Cas proteins cleave or nick single-stranded nucleic acids, double, stranded nucleic acids, or a combination thereof. In some cases, Type V CRISPR/Cas proteins cleave single-stranded nucleic acids. In some cases, Type V CRISPR/Cas proteins cleave double-stranded nucleic acids. In some cases, Type V CRISPR/Cas proteins nick double-stranded nucleic acids. Typically, guide RNAs of Type V CRISPR/Cas proteins hybridize to ssDNA or dsDNA. However, the trans cleavage activity of Type V CRISPR/Cas protein is typically directed towards ssDNA. [41] In some cases, the Type V CRISPR/Cas protein comprises a catalytically inactive nuclease domain. In some cases, the Type V CRISPR/Cas protein comprises a catalytically inactive nuclease domain. A catalytically inactive domain of a Type V CRISPR/Cas protein may comprise at least 1, at least 2, at least 3, at least 4, or at least 5 mutations relative to a wild type nuclease domain of the Type V CRISPR/Cas protein. Said mutations may be present within a cleaving or active site of the nuclease. [42] The Type V CRISPR/Cas protein may be a Cas14 protein. The Cas 14 protein may be a Cas14a.1 protein. The Cas14a.1 protein may be represented by SEQ ID NO: 1, presented in Table 1. The Cas14 protein may comprise an amino acid sequence that is at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100% identical to SEQ ID NO: 1. The Cas14 protein may consist of an amino acid sequence that is at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100% identical to SEQ ID NO: 1. The Cas14 protein may comprise at least about 50, at least about 100, at least about 150, at least about 200, at least about 250, at least about 300, at least about 350, at least about 400, at least about 450, at least about 500 consecutive amino acids of SEQ ID NO: 1.
In some instances, the Type V CRISPR/Cas protein has been modified (also referred to as an engineered protein). For example, a Type V CRISPR/Cas protein disclosed herein or a variant thereof may comprise a nuclear localization signal (NLS). In some cases, the NLS may comprise a sequence of KRPAATKKAGQAKKKKEF (SEQ ID NO: 2).Type V CRISPR/Cas proteins may be codon optimized for expression in a specific cell, for example, a bacterial cell, a plant cell, a eukaryotic cell, an animal cell, a mammalian cell, or a human cell. In some embodiments, the Type V CRISPR/Cas protein is codon optimized for a human cell.
In some instances, the Type V CRISPR/Cas protein has been modified (also referred to as an engineered protein). For example, a Type V CRISPR/Cas protein disclosed herein or a variant thereof may comprise a nuclear localization signal (NLS). In some cases, the NLS may comprise a sequence of KRPAATKKAGQAKKKKEF (SEQ ID NO: 2). Type V CRISPR/Cas proteins may be codon optimized for expression in a specific cell, for example, a bacterial cell, a plant cell, a eukaryotic cell, an animal cell, a mammalian cell, or a human cell. In some embodiments, the Type V CRISPR/Cas protein is codon optimized for a human cell.
In some instances, the TypeV CRISPR/Cas protein comprises a Cas14 protein. Cas14 proteins may comprise a bilobed structure with distinct amino-terminal and carboxy-terminal domains. The amino- and carboxy-terminal domains may be connected by a flexible linker. The flexible linker may affect the relative conformations of the amino- and carboxyl-terminal domains. The flexible linker may be short, for example less than 10 amino acids, less than 8 amino acids, less than 6 amino acids, less than 5 amino acids, or less than 4 amino acids in length. The flexible linker may be sufficiently long to enable different conformations of the amino- and carboxy-terminal domains among two Cas14 proteins of a Cas14 dimer complex (e.g., the relative orientations of the amino- and carboxy-terminal domains differ between two Cas14 proteins of a Cas14 homodimer complex). The linker domain may comprise a mutation which affects the relative conformations of the amino- and carboxyl-terminal domains. The linker may comprise a mutation which affects Cas14 dimerization. For example, a linker mutation may enhance the stability of a Cas14 dimer.
In some instances, the amino-terminal domain of a Cas14 protein comprises a wedge domain, a recognition domain, a zinc finger domain, or any combination thereof. The wedge domain may comprise a multi-strand β-barrel structure. A multi-strand β-barrel structure may comprise an oligonucleotide/oligosaccharide-binding fold that is structurally comparable to those of some Cas12 proteins. The recognition domain and the zinc finger domain may each (individually or collectively) be inserted between O-barrel strands of the wedge domain. The recognition domain may comprise a 4-α-helix structure, structurally comparable but shorter than those found in some Cas12 proteins. The recognition domain may comprise a binding affinity for a guide nucleic acid or for a guide nucleic acid-target nucleic acid heteroduplex. In some cases, a REC lobe may comprise a binding affinity for a PAM sequence in the target nucleic acid. The amino-terminal may comprise a wedge domain, a recognition domain, and a zinc finger domain. The carboxy-terminal may comprise a RuvC domain, a zinc finger domain, or any combination thereof. The carboxy-terminal may comprise one RuvC and one zinc finger domain.
Cas14 proteins may comprise a RuvC domain or a partial RuvC domain. The RuvC domain may be defined by a single, contiguous sequence, or a set of partial RuvC domains that are not contiguous with respect to the primary amino acid sequence of the Cas14 protein. In some instances, a partial RuvC domain does not have any substrate binding activity or catalytic activity on its own. A Cas14 protein of the present disclosure may include multiple partial RuvC domains, which may combine to generate a RuvC domain with substrate binding or catalytic activity. For example, a Cas14 may include 3 partial RuvC domains (RuvC-I, RuvC-II, and RuvC-III, also referred to herein as subdomains) that are not contiguous with respect to the primary amino acid sequence of the Cas14 protein, but form a RuvC domain once the protein is produced and folds. A Cas14 protein may comprise a linker loop connecting a carboxy terminal domain of the Cas14 protein with the amino terminal domain of the Cas 14 protein, and wherein the carboxy terminal domain comprises one or more RuvC domains and the amino terminal domain comprises a recognition domain.
Cas14 proteins may comprise a zinc finger domain. In some instances, a carboxy terminal domain of a Cas14 protein comprises a zinc finger domain. In some instances, an amino terminal domain of a Cas14 protein comprises a zinc finger domain. In some instances, the amino terminal domain comprises a wedge domain (e.g., a multi-β-barrel wedge structure), a zinc finger domain, or any combination thereof. In some cases, the carboxy terminal domain comprises the RuvC domains and a zinc finger domain, and the amino terminal domain comprises a recognition domain, a wedge domain, and a zinc finger domain.
Cas14 proteins may be relatively small compared to many other Cas proteins, making them suitable for nucleic acid detection or gene editing. For instance, a Cas14 protein may be less likely to adsorb to a surface or another biological species due to its small size. The smaller nature of these proteins also allows for them to be more easily packaged as a reagent in a system or assay, and delivered with higher efficiency as compared to other larger Cas proteins. In some cases, a Cas14 protein is 400 to 800 amino acid residues long, 400 to 600 amino acid residues long, 440 to 580 amino acid residues long, 460 to 560 amino acid residues long, 460 to 540 amino acid residues long, 460 to 500 amino acid residues long, 400 to 500 amino acid residues long, or 500 to 600 amino acid residues long. In some cases, a Cas14 protein is less than about 550 amino acid residues long. In some cases, a Cas14 protein is less than about 500 amino acid residues long.
In some instances, a Cas14 protein may function as an endonuclease that catalyzes cleavage at a specific position within a target nucleic acid. In some instances, a Cas14 protein is capable of catalyzing non-sequence-specific cleavage of a single stranded nucleic acid. In some cases, a Cas14 protein is activated to perform trans cleavage activity after binding of a guide nucleic acid with a target nucleic acid. This trans cleavage activity is also referred to as “collateral” or “transcollateral” cleavage. Trans cleavage activity may be non-specific cleavage of nearby single-stranded nucleic acid by the activated programmable nuclease, such as trans cleavage of detector nucleic acids with a detection moiety.
Disclosed herein are non-naturally occurring compositions and systems comprising at least one of an engineered Cas protein and an engineered guide nucleic acid, which may simply be referred to herein as a Cas protein and a guide nucleic acid, respectively. In general, an engineered Cas protein and an engineered guide nucleic acid refer to a Cas protein and a guide nucleic acid, respectively, that are not found in nature. In some instances, systems and compositions comprise at least one non-naturally occurring component. For example, compositions and systems may comprise a guide nucleic acid, wherein the sequence of the guide nucleic acid is different or modified from that of a naturally-occurring guide nucleic acid. In some instances, compositions and systems comprise at least two components that do not naturally occur together. For example, compositions and systems may comprise a guide nucleic acid comprising a repeat region and a spacer region which do not naturally occur together. Also, by way of example, composition and systems may comprise a guide nucleic acid and a Cas protein that do not naturally occur together. Conversely, and for clarity, a Cas protein or guide nucleic acid that is “natural,” “naturally-occurring,” or “found in nature” includes Cas proteins and guide nucleic acids from cells or organisms that have not been genetically modified by a human or machine.
In some instances, the guide nucleic acid may comprise a non-natural nucleobase sequence. In some instances, the non-natural sequence is a nucleobase sequence that is not found in nature. The non-natural sequence may comprise a portion of a naturally occurring sequence, wherein the portion of the naturally occurring sequence is not present in nature absent the remainder of the naturally-occurring sequence. In some instances, the guide nucleic acid may comprise two naturally occurring sequences arranged in an order or proximity that is not observed in nature. In some instances, compositions and systems comprise a ribonucleotide complex comprising a CRISPR/Cas effector protein and a guide nucleic acid that do not occur together in nature. Engineered guide nucleic acids may comprise a first sequence and a second sequence that do not occur naturally together. For example, an engineered guide nucleic acid may comprise a sequence of a naturally occurring repeat region and a spacer region that is complementary to a naturally occurring eukaryotic sequence. The engineered guide nucleic acid may comprise a sequence of a repeat region that occurs naturally in an organism and a spacer region that does not occur naturally in that organism. An engineered guide nucleic acid may comprise a first sequence that occurs in a first organism and a second sequence that occurs in a second organism, wherein the first organism and the second organism are different. The guide nucleic acid may comprise a third sequence disposed at a 3′ or 5′ end of the guide nucleic acid, or between the first and second sequences of the guide nucleic acid. For example, an engineered guide nucleic acid may comprise a naturally occurring crRNA and tracrRNA coupled by a linker sequence.
In some instances, compositions and systems described herein comprise an engineered Cas protein that is similar to a naturally occurring Cas protein. The engineered Cas protein may lack a portion of the naturally occurring Cas protein. The Cas protein may comprise a mutation relative to the naturally-occurring Cas protein, wherein the mutation is not found in nature. The Cas protein may also comprise at least one additional amino acid relative to the naturally-occurring Cas protein. For example, the Cas protein may comprise an addition of a nuclear localization signal relative to the natural occurring Cas protein. In certain embodiments, the nucleotide sequence encoding the Cas protein is codon optimized (e.g., for expression in a eukaryotic cell) relative to the naturally occurring sequence.
In some instances, compositions and systems provided herein comprise a multi-vector system encoding a Cas protein and a guide nucleic acid described herein, wherein the guide nucleic acid and the Cas protein are encoded by the same or different vectors. In some embodiments, the engineered guide and the engineered Cas protein are encoded by different vectors of the system.
Described herein are various embodiments of thermostable programmable nucleases. In some embodiments, a programmable nuclease is referred to as an effector protein. An effector protein may be thermostable. In some instances, known effector proteins (e.g., Cas12 nucleases) are relatively thermo-sensitive and only exhibit activity (e.g., cis and/or trans cleavage) sufficient to produce a detectable signal in a diagnostic assay at temperatures less than 40° C., and optimally at about 37° C. A thermostable protein may have enzymatic activity, stability, or folding comparable to those at 37° C. In some instances, the trans cleavage activity (e.g., the maximum trans cleavage rate as measured by fluorescent signal generation) of an effector protein in a trans cleavage assay at 40° C. may be at least 50% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 55% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 60% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 65% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 70% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 75% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 80% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 85% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 90% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 95% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 100% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 1-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 2-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 3-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 4-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 5-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 6-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 7-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 8-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 9-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 10-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 40° C. may be at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold or more of that at 37° C.
In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 50% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 55% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 60% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 65% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 70% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 75% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 80% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 85% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 90% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 95% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 100% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 1-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 2-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 3-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 4-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 5-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 6-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 7-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 8-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 9-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 10-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 45° C. may be at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold or more of that at 37° C.
In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 50% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 55% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 60% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 65% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 70% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 75% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 80% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 85% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 90% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 95% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 100% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 1-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 2-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 3-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 4-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 5-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 6-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 7-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 8-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 9-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 10-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 50° C. may be at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold or more of that at 37° C.
In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 50% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 55% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 60% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 65% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 70% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 75% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 80% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 85% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 90% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 95% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 100% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 1-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 2-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 3-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 4-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 5-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 6-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 7-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 8-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 9-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 10-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 55° C. may be at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold or more of that at 37° C.
In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 50% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 55% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 60% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 65% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 70% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 75% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 80% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 85% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 90% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 95% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 100% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 1-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 2-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 3-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 4-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 5-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 6-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 7-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 8-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 9-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 10-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 60° C. may be at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold or more of that at 37° C.
In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 50% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 55% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 60% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 65% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 70% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 75% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 80% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 85% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 90% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 95% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 100% of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 1-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 2-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 3-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 4-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 5-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 6-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 7-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 8-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 9-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 10-fold of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 65° C. may be at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold or more of that at 37° C. In some instances, the trans cleavage activity of an effector protein in a trans cleavage assay at 70° C., 75° C. 80° C., or more may be at least 50, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 95%, at least 100%, at least 1-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, at least 10-fold, at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold or more of that at 37° C.
In some instances, the trans cleavage activity may be measured against a negative control in a trans cleavage assay. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 37° C. may be at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 1-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold of that against a negative control nucleic acid. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 37° C. may be at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold or more of that against a negative control nucleic acid. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 40° C. may be at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 1-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold of that against a negative control nucleic acid. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 40° C. may be at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold or more of that against a negative control nucleic acid. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 45° C. may be at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 1-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold of that against a negative control nucleic acid. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 45° C. may be at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold or more of that against a negative control nucleic acid. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 50° C. may be at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 1-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold of that against a negative control nucleic acid. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 50° C. may be at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold or more of that against a negative control nucleic acid. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 55° C. may be at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 1-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold of that against a negative control nucleic acid. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 55° C. may be at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold or more of that against a negative control nucleic acid. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 60° C. may be at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 1-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold of that against a negative control nucleic acid. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 60° C. may be at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold or more of that against a negative control nucleic acid. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 65° C. may be at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 1-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold of that against a negative control nucleic acid. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 65° C. may be at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold or more of that against a negative control nucleic acid. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 70° C., 75° C., 80° C., or more may be at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 1-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold of that against a negative control nucleic acid. In some instances, the trans cleavage activity of an effector protein against a nucleic acid in a trans cleavage assay at 70° C., 75° C., 80° C., or more may be at least 11-fold, at least 12-fold, at least 13-fold, at least 14-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold or more of that against a negative control nucleic acid.
The reporters described herein can be RNA reporters. The RNA reporters can comprise at least one ribonucleic acid and a detectable moiety. In some embodiments, a programmable nuclease probe or a CRISPR probe comprising a Cas enzyme can recognize and detect ssDNA and, further, can specifically trans-cleave RNA reporters. The detection of the target nucleic acid in the sample can indicate the presence of the disease (or disease-causing agent) in the sample and can provide information for taking action to reduce the transmission of the disease to individuals in the disease-affected environment or near the disease-carrying individual.
Cleavage of a reporter (e.g., a protein-nucleic acid) can produce a signal. The signal can indicate a presence of the target nucleic acid in the sample, and an absence of the signal can indicate an absence of the target nucleic acid in the sample. In some cases, cleavage of the protein-nucleic acid can produce a calorimetric signal, a potentiometric signal, an amperometric signal, an optical signal, or a piezo-electric signal. Various devices and/or sensors can be used to detect these different types of signals, which indicate whether a target nucleic acid is present in the sample. The sensors usable to detect such signals can include, for example, optical sensors (e.g., imaging devices for detecting fluorescence or optical signals with various wavelengths and frequencies), electric potential sensors, surface plasmon resonance (SPR) sensors, interferometric sensors, or any other type of sensor suitable for detecting calorimetric signals, potentiometric signals, amperometric signals, optical signals, or piezo-electric signals.
In an aspect, the present disclosure provides a method for target detection. The method can comprise sample collection. The method can further comprise sample preparation. The method can further comprise detection of one or more target molecules in the collected and prepared sample.
In another aspect, the present disclosure provides a detection device for target detection. The detection device can be configured for multiplexed target detection. The detection device can be used to collect one or more samples, prepare or process the one or more samples for detection, and optionally divide the one or more samples into a plurality of droplets, aliquots, or subsamples for amplification of one or more target sequences or target nucleic acids. The target sequences may comprise, for example, a biological sequence. The biological sequence can comprise a nucleic acid sequence or an amino acid sequence. In some embodiments, the target sequences are associated with an organism of interest, a disease of interest, a disease state of interest, a phenotype of interest, a genotype of interest, or a gene of interest.
The detection device can be configured to amplify target nucleic acids contained within the plurality of droplets, aliquots, or subsamples. The detection device can be configured to amplify the target sequences or target nucleic acids contained within the plurality of droplets by individually processing each of the plurality of droplets (e.g., by using a thermocycling process or any other suitable amplification process as described in greater detail below). In some cases, the plurality of droplets can undergo separate thermocycling processes. In some cases, the thermocycling processes can occur simultaneously. In other cases, the thermocycling processes can occur at different times for each droplet.
The detection device can be further configured to remix the droplets, aliquots, or subsamples after the target nucleic acids in each of the droplets undergo amplification. The detection device can be configured to provide the remixed sample comprising the droplets, aliquots, or subsamples to a detection chamber of the device. The detection chamber can be configured to direct the remixed droplets, aliquots, or subsamples to a plurality of programmable nuclease probes. The detection chamber can be configured to direct the remixed droplets, aliquots, or subsamples along one or more fluid flow paths such that the remixed droplets, aliquots, or subsamples are positioned adjacent to and/or in contact with the one or more programmable nuclease probes. In some cases, the detection chamber can be configured to recirculate or recycle the remixed droplets, aliquots, or subsamples such that the remixed droplets, aliquots, or subsamples are repeatedly placed in contact with one or more programmable nuclease probes over a predetermined period of time.
The detection device can comprise one or more sensors. The one or more sensors of the detection device can be configured to detect one or more signals that are generated after one or more programmable nucleases of the one or more programmable nuclease probes become activated due to a binding of a guide nucleic acid of the programmable nuclease probes with a target nucleic acid present in the sample. As described elsewhere herein, the activated programmable nuclease can cleave the target nucleic acid, which can result in a trans cleavage activity. Trans cleavage activity can be a non-specific cleavage of nearby single-stranded nucleic acids by the activated programmable nuclease, such as trans cleavage of target nucleic acids with a detection moiety. Once the target nucleic acids are cleaved by the activated programmable nucleases, the detection moiety can be released or separated from the reporter, thereby generating one or more detectable signals. The one or more sensors of the detection device can be configured to register and/or process the one or more detectable signals to confirm a presence and/or an absence of a particular target (e.g., a target nucleic acid).
The one or more programmable nuclease probes of the detection device can be configured for multiplexed detection. In some cases, each programmable nuclease probe can be configured to detect a particular target. In other cases, each programmable nuclease probe can be configured to detect a plurality of targets. In some cases, a first programmable nuclease probe can be configured to detect a first target or a first set of targets, and a second programmable nuclease probe can be configured to detect a second target or a second set of targets. In other cases, a first programmable nuclease probe can be configured to detect a first set of targets, and a second programmable nuclease probe can be configured to detect a second set of targets. The programmable nuclease probes of the present disclosure can be used to detect a plurality of different target sequences or target nucleic acids. In any of the embodiments described herein, the sample provided to the detection device can comprise a plurality of target sequences or target nucleic acids. In any of the embodiments described herein, the sample provided to the detection device can comprise multiple classes of target sequences or target nucleic acids. Each class of target sequences or class of target nucleic acids can comprise a plurality of target sequences or target nucleic acids associated with a particular organism, disease state, phenotype, or genotype present within the sample. In some cases, each programmable nuclease probe can be used to detect a particular class of target sequences or a particular class of target nucleic acids associated with a particular organism, disease state, phenotype, or genotype present within the sample. In some cases, two or more programmable nuclease probes can be used to detect different classes of target sequences or different classes of target nucleic acids. In such cases, the two or more programmable nuclease probes can comprise different sets or classes of guide nucleic acids complexed to the programmable nucleases of the probes.
In any of the embodiments described herein, the detection device can comprise a single integrated system that is configured to perform sample collection, sample processing, droplet generation, droplet processing (e.g., amplification of target nucleic acids in droplets), droplet remixing, and/or circulation of the remixed droplets within a detection chamber so that at least a portion of the remixed droplets is placed in contact with one or more programmable nuclease probes coupled to the detection chamber. The detection devices of the present disclosure can be disposable devices configured to perform one or more rapid single reaction or multi-reaction tests to detect a presence and/or an absence of one or more target sequences or target nucleic acids.
The systems and methods of the present disclosure can be used to detect one or more target sequences or nucleic acids in one or more samples. The one or more samples can comprise one or more target sequences or nucleic acids for detection of an ailment, such as a disease, cancer, or genetic disorder, or genetic information, such as for phenotyping, genotyping, or determining ancestry and are compatible with the reagents and support mediums as described herein. Generally, a sample can be taken from any place where a nucleic acid can be found. Samples can be taken from an individual/human, a non-human animal, or a crop, or an environmental sample can be obtained to test for presence of a disease, virus, pathogen, cancer, genetic disorder, or any mutation or pathogen of interest. A biological sample can be blood, serum, plasma, lung fluid, exhaled breath condensate, saliva, spit, urine, stool, feces, mucus, lymph fluid, peritoneal, cerebrospinal fluid, amniotic fluid, breast milk, gastric secretions, bodily discharges, secretions from ulcers, pus, nasal secretions, sputum, pharyngeal exudates, urethral secretions/mucus, vaginal secretions/mucus, anal secretion/mucus, semen, tears, an exudate, an effusion, tissue fluid, interstitial fluid (e.g., tumor interstitial fluid), cyst fluid, tissue, or, in some instances, any combination thereof. A sample can be an aspirate of a bodily fluid from an animal (e.g., human, animals, livestock, pet, etc.) or plant. A tissue sample can be from any tissue that can be infected or affected by a pathogen (e.g., a wart, lung tissue, skin tissue, and the like). A tissue sample (e.g., from animals, plants, or humans) can be dissociated or liquified prior to application to detection system of the present disclosure. A sample can be from a plant (e.g., a crop, a hydroponically grown crop or plant, and/or house plant). Plant samples can include extracellular fluid, from tissue (e.g., root, leaves, stem, trunk etc.). A sample can be taken from the environment immediately surrounding a plant, such as hydroponic fluid/water, or soil. A sample from an environment can be from soil, air, or water. In some instances, the environmental sample is taken as a swab from a surface of interest or taken directly from the surface of interest. In some instances, the raw sample is applied to the detection system. In some instances, the sample is diluted with a buffer or a fluid or concentrated prior to application to the detection system. In some cases, the sample is contained in no more than about 200 nanoliters (nL). In some cases, the sample is contained in about 200 nL. In some cases, the sample is contained in a volume that is greater than about 200 nL and less than about 20 microliters (μL). In some cases, the sample is contained in no more than 20 μl. In some cases, the sample is contained in no more than 1, 5, 10, 15, 20, 25, 30, 35 40, 45, 50, 55, 60, 65, 70, 75, 80, 90, 100, 200, 300, 400, 500 μl, or any of value from 1 μl to 500 μl. In some cases, the sample is contained in from 1 μL to 500 μL, from 10 μL to 500 μL, from 50 μL to 500 μL, from 100 μL to 500 μL, from 200 μL to 500 μL, from 300 μL to 500 μL, from 400 μL to 500 μL, from 1 μL to 200 μL, from 10 μL to 200 μL, from 50 μL to 200 μL, from 100 μL to 200 μL, from 1 μL to 100 μL, from 10 μL to 100 μL, from 50 μL to 100 μL, from 1 μL to 50 μL, from 10 μL to 50 μL, from 1 μL to 20 μL, from 10 μL to 20 μL, or from 1 μL to 10 μL. Sometimes, the sample is contained in more than 500 μl.
In some instances, the sample is taken from a single-cell eukaryotic organism; a plant or a plant cell; an algal cell; a fungal cell; an animal or an animal cell, tissue, or organ; a cell, tissue, or organ from an invertebrate animal; a cell, tissue, fluid, or organ from a vertebrate animal such as fish, amphibian, reptile, bird, and mammal; a cell, tissue, fluid, or organ from a mammal such as a human, a non-human primate, an ungulate, a feline, a bovine, an ovine, and a caprine. In some instances, the sample is taken from nematodes, protozoans, helminths, or malarial parasites. In some cases, the sample may comprise nucleic acids from a cell lysate from a eukaryotic cell, a mammalian cell, a human cell, a prokaryotic cell, or a plant cell. In some cases, the sample may comprise nucleic acids expressed from a cell.
The sample used for disease testing can comprise at least one target sequence that can bind to a guide nucleic acid of the reagents described herein. In some cases, the target sequence is a portion of a nucleic acid. A nucleic acid can be from a genomic locus, a transcribed mRNA, or a reverse transcribed cDNA. A nucleic acid can be from 5 to 100, 5 to 90, 5 to 80, 5 to 70, 5 to 60, 5 to 50, 5 to 40, 5 to 30, 5 to 25, 5 to 20, 5 to 15, or 5 to 10 nucleotides in length. A nucleic acid can be from 10 to 90, from 20 to 80, from 30 to 70, or from 40 to 60 nucleotides in length. A nucleic acid sequence can be from 10 to 95, from 20 to 95, from 30 to 95, from 40 to 95, from 50 to 95, from 60 to 95, from 10 to 75, from 20 to 75, from 30 to 75, from 40 to 75, from 50 to 75, from 5 to 50, from 15 to 50, from 25 to 50, from 35 to 50, or from 45 to 50 nucleotides in length. A nucleic acid can be 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 60, 70, 80, 90, or 100 nucleotides in length. The target nucleic acid can be reverse complementary to a guide nucleic acid. In some cases, at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 60, 70, 80, 90, or 100 nucleotides of a guide nucleic acid can be reverse complementary to a target nucleic acid.
In some cases, the target sequence is a portion of a nucleic acid from a virus or a bacterium or other agents responsible for a disease in the sample. The target sequence, in some cases, is a portion of a nucleic acid from a sexually transmitted infection or a contagious disease, in the sample. The target sequence, in some cases, is a portion of a nucleic acid from an upper respiratory tract infection, a lower respiratory tract infection, or a contagious disease, in the sample. The target sequence, in some cases, is a portion of a nucleic acid from a hospital acquired infection or a contagious disease, in the sample. The target sequence, in some cases, is a portion of a nucleic acid from sepsis, in the sample. These diseases can include but are not limited to respiratory viruses (e.g., SARS-CoV-2 (i.e., a virus that causes COVID-19), SARS, MERS, influenza, Adenovirus, Coronavirus HKU1, Coronavirus NL63, Coronavirus 229E, Coronavirus OC43, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Human Metapneumovirus (hMPV), Human Rhinovirus/Enterovirus, Influenza A, Influenza A/H1, Influenza A/H3, Influenza A/H1-2009, Influenza B, Influenza C, Parainfluenza Virus 1, Parainfluenza Virus 2, Parainfluenza Virus 3, Parainfluenza Virus 4, Respiratory Syncytial Virus) and respiratory bacteria (e.g. Bordetella parapertussis, Bordetella pertussis, Chlamydia pneumoniae, Mycoplasma pneumoniae). Other viruses include human immunodeficiency virus (HIV), human papillomavirus (HPV), chlamydia, gonorrhea, syphilis, trichomoniasis, sexually transmitted infection, malaria, Dengue fever, Ebola, chikungunya, and leishmaniasis. Pathogens include viruses, fungi, helminths, protozoa, malarial parasites, Plasmodium parasites, Toxoplasma parasites, and Schistosoma parasites. Helminths include roundworms, heartworms, and phytophagous nematodes, flukes, Acanthocephala, and tapeworms. Protozoan infections include infections from Giardia spp., Trichomonas spp., African trypanosomiasis, amoebic dysentery, babesiosis, balantidial dysentery, Chaga's disease, coccidiosis, malaria and toxoplasmosis. Examples of pathogens such as parasitic/protozoan pathogens include, but are not limited to: Plasmodium falciparum, P. vivax, Trypanosoma cruzi and Toxoplasma gondii. Fungal pathogens include, but are not limited to Cryptococcus neoformans, Histoplasma capsulatum, Coccidioides immitis, Blastomyces dermatitidis, Chlamydia trachomatis, Chlamydia pneumoniae, Chlamydia psittaci, and Candida albicans. Pathogenic viruses include but are not limited to: respiratory viruses (e.g., adenoviruses, parainfluenza viruses, severe acute respiratory syndrome (SARS), coronavirus, MERS), gastrointestinal viruses (e.g., noroviruses, rotaviruses, some adenoviruses, astroviruses), exanthematous viruses (e.g., the virus that causes measles, the virus that causes rubella, the virus that causes chickenpox/shingles, the virus that causes roseola, the virus that causes smallpox, the virus that causes fifth disease, chikungunya virus infection); hepatic viral diseases (e.g., hepatitis A, B, C, D, E); cutaneous viral diseases (e.g., warts (including genital, anal), herpes (including oral, genital, anal), molluscum contagiosum); hemmorhagic viral diseases (e.g. Ebola, Lassa fever, dengue fever, yellow fever, Marburg hemorrhagic fever, Crimean-Congo hemorrhagic fever); neurologic viruses (e.g., polio, viral meningitis, viral encephalitis, rabies), sexually transmitted viruses (e.g., HIV, HPV, and the like), immunodeficiency virus (e.g., HIV); influenza virus; dengue; West Nile virus; herpes virus; yellow fever virus; Hepatitis Virus C; Hepatitis Virus A; Hepatitis Virus B; papillomavirus; and the like. Pathogens include, e.g., HIV virus, Mycobacterium tuberculosis, Klebsiella pneumoniae, Acinetobacter baumannii, Bacillus anthracis, Bortadella pertussis, Burkholderia cepacia, Corynebacterium diphtheriae, Coxiella burnetii, Streptococcus agalactiae, methicillin-resistant Staphylococcus aureus, Legionella longbeachae, Legionella pneumophila, Leptospira interrogans, Moraxella catarrhalis, Streptococcus pyogenes, Escherichia coli, Neisseria gonorrhoeae, Neisseria meningitidis, Neisseria elongate, Neisseria gonorrhoeae, Parechovirus, Pneumococcus, Pneumocystis jirovecii, Cryptococcus neoformans, Histoplasma capsulatum, Haemophilus influenzae B, Treponema pallidum, Lyme disease spirochetes, Pseudomonas aeruginosa, Mycobacterium leprae, Brucella abortus, rabies virus, influenza virus, cytomegalovirus, herpes simplex virus I, herpes simplex virus II, human serum parvo-like virus, respiratory syncytial virus (RSV), M genitalium, T. Vaginalis, varicella-zoster virus, hepatitis B virus, hepatitis C virus, measles virus, adenovirus, human T-cell leukemia viruses, Epstein-Barr virus, murine leukemia virus, mumps virus, vesicular stomatitis virus, Sindbis virus, lymphocytic choriomeningitis virus, wart virus, blue tongue virus, Sendai virus, feline leukemia virus, Reovirus, polio virus, simian virus 40, mouse mammary tumor virus, dengue virus, rubella virus, West Nile virus, Plasmodium falciparum, Plasmodium vivax, Toxoplasma gondii, Trypanosoma rangeli, Trypanosoma cruzi, Trypanosoma rhodesiense, Trypanosoma brucei, Schistosoma mansoni, Schistosoma japonicum, Babesia bovis, Eimeria tenella, Onchocerca volvulus, Leishmania tropica, Mycobacterium tuberculosis, Trichinella spiralis, Theileria parva, Taenia hydatigena, Taenia ovis, Taenia saginata, Echinococcus granulosus, Mesocestoides corti, Mycoplasma arthritidis, M. hyorhinis, M. orale, M. arginini, Acholeplasma laidlawii, M. salivarium, M. pneumoniae, Enterobacter cloacae, Kiebsiella aerogenes, Proteus vulgaris, Serratia macesens, Enterococcus faecalis, Enterococcus faecium, Streptococcus intermdius, Streptococcus pneumoniae, and Streptococcus pyogenes. Often the target nucleic acid may comprise a sequence from a virus or a bacterium or other agents responsible for a disease that can be found in the sample. In some cases, the target nucleic acid is a portion of a nucleic acid from a genomic locus, a transcribed mRNA, or a reverse transcribed cDNA from a gene locus in at least one of: human immunodeficiency virus (HIV), human papillomavirus (HPV), chlamydia, gonorrhea, syphilis, trichomoniasis, sexually transmitted infection, malaria, Dengue fever, Ebola, chikungunya, and leishmaniasis. Pathogens include viruses, fungi, helminths, protozoa, malarial parasites, Plasmodium parasites, Toxoplasma parasites, and Schistosoma parasites. Helminths include roundworms, heartworms, and phytophagous nematodes, flukes, Acanthocephala, and tapeworms. Protozoan infections include infections from Giardia spp., Trichomonas spp., African trypanosomiasis, amoebic dysentery, babesiosis, balantidial dysentery, Chaga's disease, coccidiosis, malaria and toxoplasmosis. Examples of pathogens such as parasitic/protozoan pathogens include, but are not limited to: Plasmodium falciparum, P. vivax, Trypanosoma cruzi and Toxoplasma gondii. Fungal pathogens include, but are not limited to Cryptococcus neoformans, Histoplasma capsulatum, Coccidioides immitis, Blastomyces dermatitidis, Chlamydia trachomatis, and Candida albicans. Pathogenic viruses include but are not limited to immunodeficiency virus (e.g., HIV); influenza virus; dengue; West Nile virus; herpes virus; yellow fever virus; Hepatitis Virus C; Hepatitis Virus A; Hepatitis Virus B; papillomavirus; and the like. Pathogens include, e.g., HIV virus, Mycobacterium tuberculosis, Streptococcus agalactiae, methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Legionella pneumophila, Streptococcus pyogenes, Streptococcus salivarius, Escherichia coli, Neisseria gonorrhoeae, Neisseria meningitidis, Pneumococcus, Cryptococcus neoformans, Histoplasma capsulatum, Hemophilus influenzae B, Treponema pallidum, Lyme disease spirochetes, Pseudomonas aeruginosa, Mycobacterium leprae, Brucella abortus, rabies virus, influenza virus, cytomegalovirus, herpes simplex virus I, herpes simplex virus II, human serum parvo-like virus, respiratory syncytial virus (RSV), M genitalium, T. vaginalis, varicella-zoster virus, hepatitis B virus, hepatitis C virus, measles virus, adenovirus, human T-cell leukemia viruses, Epstein-Barr virus, murine leukemia virus, mumps virus, vesicular stomatitis virus, Sindbis virus, lymphocytic choriomeningitis virus, wart virus, blue tongue virus, Sendai virus, feline leukemia virus, Reovirus, polio virus, simian virus 40, mouse mammary tumor virus, dengue virus, rubella virus, West Nile virus, Plasmodium falciparum, Plasmodium vivax, Toxoplasma gondii, Trypanosoma rangeli, Trypanosoma cruzi, Trypanosoma rhodesiense, Trypanosoma brucei, Schistosoma mansoni, Schistosoma japonicum, Babesia bovis, Eimeria tenella, Onchocerca volvulus, Leishmania tropica, Mycobacterium tuberculosis, Trichinella spiralis, Theileria parva, Taenia hydatigena, Taenia ovis, Taenia saginata, Echinococcus granulosus, Mesocestoides corti, Mycoplasma arthritidis, M. hyorhinis, M. orale, M. arginini, Acholeplasma laidlawii, M. salivarium and M pneumoniae. In some cases, the target sequence is a portion of a nucleic acid from a genomic locus, a transcribed mRNA, or a reverse transcribed cDNA from a gene locus of bacterium or other agents responsible for a disease in the sample comprising a mutation that confers resistance to a treatment, such as a single nucleotide mutation that confers resistance to antibiotic treatment.
The sample used for cancer testing or cancer risk testing can comprise at least one target sequence or target nucleic acid segment that can bind to a guide nucleic acid of the reagents described herein. The target nucleic acid segment, in some cases, is a portion of a nucleic acid from a gene with a mutation associated with cancer, from a gene whose overexpression is associated with cancer, a tumor suppressor gene, an oncogene, a checkpoint inhibitor gene, a gene associated with cellular growth, a gene associated with cellular metabolism, or a gene associated with cell cycle. Sometimes, the target nucleic acid encodes for a cancer biomarker, such as a prostate cancer biomarker or non-small cell lung cancer. In some cases, the assay can be used to detect “hotspots” in target nucleic acids that can be predictive of cancer, such as lung cancer, cervical cancer, in some cases, the cancer can be a cancer that is caused by a virus. Some non-limiting examples of viruses that cause cancers in humans include Epstein-Barr virus (e.g., Burkitt's lymphoma, Hodgkin's Disease, and nasopharyngeal carcinoma); papillomavirus (e.g., cervical carcinoma, anal carcinoma, oropharyngeal carcinoma, penile carcinoma); hepatitis B and C viruses (e.g., hepatocellular carcinoma); human adult T-cell leukemia virus type 1 (HTLV-1) (e.g., T-cell leukemia); and Merkel cell polyomavirus (e.g., Merkel cell carcinoma). One skilled in the art will recognize that viruses can cause or contribute to other types of cancers. In some cases, the target nucleic acid is a portion of a nucleic acid that is associated with a blood fever. In some cases, the target nucleic acid segment is a portion of a nucleic acid from a genomic locus, a transcribed mRNA, or a reverse transcribed cDNA from a locus of at least one of: ALK, APC, ATM, AXIN2, BAP1, BARDi, BLM, BMPR1A, BRCA1, BRCA2, BRIP1, CASR, CDC73, CDH1, CDK4, CDKN1B, CDKN1C, CDKN2A, CEBPA, CHEK2, CTNNA1, DICER1, DIS3L2, EGFR, EPCAM, FH, FLCN, GATA2, GPC3, GREM1, HOXB13, HRAS, KIT, MAX, MEN1, MET, MITF, MLH1, MSH2, MSH3, MSH6, MUTYH, NBN, NF1, NF2, NTHL1, PALB2, PDGFRA, PHOX2B, PMS2, POLD1, POLE, POT1, PRKAR1A, PTCH1, PTEN, RAD50, RAD51C, RAD51D, RBT, RECQL4, RET, RUNX1, SDHA, SDHAF2, SDHB, SDHC, SDHD, SMAD4, SMARCA4, SMARCB1, SMARCE1, STKTT, SUFU, TERC, TERT, TMEM127, TP53, TSC1, TSC2, VHL, WRN, and WT1.
The sample used for genetic disorder testing can comprise at least one target sequence or target nucleic acid segment that can bind to a guide nucleic acid of the reagents described herein. In some embodiments, the genetic disorder is hemophilia, sickle cell anemia, β-thalassemia, Duchene muscular dystrophy, severe combined immunodeficiency, or cystic fibrosis. The target nucleic acid segment, in some cases, is a portion of a nucleic acid from a gene with a mutation associated with a genetic disorder, from a gene whose overexpression is associated with a genetic disorder, from a gene associated with abnormal cellular growth resulting in a genetic disorder, or from a gene associated with abnormal cellular metabolism resulting in a genetic disorder. In some cases, the target nucleic acid segment is a portion of a nucleic acid from a genomic locus, a transcribed mRNA, or a reverse transcribed cDNA from a locus of at least one of: CFTR, FMR1, SMN1, ABCB11, ABCC8, ABCD1, ACAD9, ACADM, ACADVL, ACAT1, ACOX1, ACSF3, ADA, ADAMTS2, ADGRG1, AGA, AGL, AGPS, AGXT, AIRE, ALDH3A2, ALDOB, ALG6, ALMS1, ALPL, AMT, AQP2, ARGI, ARSA, ARSB, ASL, ASNS, ASPA, ASS1, ATM, ATP6V1B1, ATP7A, ATP7B, ATRX, BBS1, BBS10, BBS12, BBS2, BCKDHA, BCKDHB, BCS1L, BLM, BSND, CAPN3, CBS, CDH23, CEP290, CERKL, CHM, CHRNE, CIITA, CLN3, CLN5, CLN6, CLN8, CLRN1, CNGB3, COL27A1, COL4A3, COL4A4, COL4A5, COL7A1, CPS1, CPT1A, CPT2, CRB1, CTNS, CTSK, CYBA, CYBB, CYP11B1, CYP11B2, CYP17A1, CYP19A1, CYP27A1, DBT, DCLRElC, DHCR7, DHDDS, DLD, DMD, DNAH5, DNAI1, DNAI2, DYSF, EDA, EIF2B5, EMD, ERCC6, ERCC8, ESCO2, ETFA, ETFDH, ETHEl, EVC, EVC2, EYS, F9, FAH, FAM161A, FANCA, FANCC, FANCG, FH, FKRP, FKTN, G6PC, GAA, GALC, GALKI, GALT, GAMT, GBA, GBE1, GCDH, GFM1, GJB1, GJB2, GLA, GLB1, GLDC, GLE1, GNE, GNPTAB, GNPTG, GNS, GRHPR, HADHA, HAX1, HBA1, HBA2, HBB, HEXA, HEXB, HGSNAT, HLCS, HMGCL, HOGA1, HPS1, HPS3, HSD17B4, HSD3B2, HYAL1, HYLS1, IDS, IDUA, IKBKAP, IL2RG, IVD, KCNJ11, LAMA2, LAMA3, LAMB3, LAMC2, LCA5, LDLR, LDLRAP1, LHX3, LIFR, LIPA, LOXHD1, LPL, LRPPRC, MAN2B1, MCOLN1, MED17, MESP2, MFSD8, MKS1, MLC1, MMAA, MMAB, MMACHC, MMADHC, MPI, MPL, MPV17, MTHFR, MTM1, MTRR, MTTP, MUT, MYO7A, NAGLU, NAGS, NBN, NDRG1, NDUFAF5, NDUFS6, NEB, NPC1, NPC2, NPHS1, NPHS2, NR2E3, NTRK1, OAT, OPA3, OTC, PAH, PC, PCCA, PCCB, PCDH15, PDHA1, PDHB, PEXI, PEX10, PEX12, PEX2, PEX6, PEX7, PFKM, PHGDH, PKHD1, PMM2, POMGNT1, PPT1, PROP1, PRPS1, PSAP, PTS, PUS1, PYGM, RAB23, RAG2, RAPSN, RARS2, RDH12, RMRP, RPE65, RPGRIP1L, RS1, RTEL1, SACS, SAMHD1, SEPSECS, SGCA, SGCB, SGCG, SGSH, SLC12A3, SLC12A6, SLC17A5, SLC22A5, SLC25A13, SLC25A15, SLC26A2, SLC26A4, SLC35A3, SLC37A4, SLC39A4, SLC4A11, SLC6A8, SLC7A7, SMARCAL1, SMPD1, STAR, SUMF1, TAT, TCIRG1, TECPR2, TFR2, TGM1, TH, TMEM216, TPP1, TRMU, TSFM, TTPA, TYMP, USH1C, USH2A, VPS13A, VPS13B, VPS45, VRK1, VSX2, WNT10A, XPA, XPC, and ZFYVE26.
The sample used for phenotyping testing can comprise at least one target nucleic acid segment that can bind to a guide nucleic acid of the reagents described herein. The target nucleic acid segment, in some cases, is a portion of a nucleic acid from a gene associated with a phenotypic trait.
The sample used for genotyping testing can comprise at least one target nucleic acid segment that can bind to a guide nucleic acid of the reagents described herein. The target nucleic acid segment, in some cases, is a portion of a nucleic acid from a gene associated with a genotype.
The sample used for ancestral testing can comprise at least one target nucleic acid segment that can bind to a guide nucleic acid of the reagents described herein. The target nucleic acid segment, in some cases, is a portion of a nucleic acid from a gene associated with a geographic region of origin or ethnic group.
The sample can be used for identifying a disease status. For example, a sample is any sample described herein, and is obtained from a subject for use in identifying a disease status of a subject. The disease can be a cancer or genetic disorder. Sometimes, a method may comprise obtaining a serum sample from a subject; and identifying a disease status of the subject. Often, the disease status is prostate disease status. In any of the embodiments described herein, the device can be configured for asymptomatic, pre-symptomatic, and/or symptomatic diagnostic applications, irrespective of immunity. In any of the embodiments described herein, the device can be configured to perform one or more serological assays on a sample (e.g., a sample comprising blood).
In some embodiments, the sample can be used to identify a mutation in a target nucleic acid of a plant or of a bacteria, virus, or microbe associated with a plant or soil. The devices and methods of the present disclosure can be used to identify a mutation of a target nucleic acid that affects the expression of a gene. A mutation that affects the expression of gene can be a mutation of a target nucleic acid within the gene, a mutation of a target nucleic acid comprising RNA associated with the expression of a gene, or a target nucleic acid comprising a mutation of a nucleic acid associated with regulation of expression of a gene, such as an RNA or a promoter, enhancer, or repressor of the gene. Often, the mutation is a single nucleotide mutation
In some instances, the target nucleic acid is a single stranded nucleic acid. Alternatively, or in combination, the target nucleic acid is a double stranded nucleic acid and is prepared into single stranded nucleic acids before or upon contacting the reagents. The target nucleic acid can be a RNA, DNA, synthetic nucleic acids, or nucleic acids found in biological or environmental samples. The target nucleic acids include but are not limited to mRNA, rRNA, tRNA, non-coding RNA, long non-coding RNA, and microRNA (miRNA). In some cases, the target nucleic acid is mRNA. In some cases, the target nucleic acid is from a virus, a parasite, or a bacterium described herein. In some cases, the target nucleic acid is transcribed from a gene as described herein.
A number of target nucleic acids are consistent with the systems and methods disclosed herein. Some methods described herein can detect a target nucleic acid present in the sample in various concentrations or amounts as a target nucleic acid population. In some cases, the sample has at least 2 target nucleic acids. In some cases, the sample has at least 3, 5, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, or 10000 target nucleic acids. In some cases, the sample has from 1 to 10,000, from 100 to 8000, from 400 to 6000, from 500 to 5000, from 1000 to 4000, or from 2000 to 3000 target nucleic acids. In some cases, the sample has from 100 to 9500, from 100 to 9000, from 100 to 8500, from 100 to 8000, from 100 to 7500, from 100 to 7000, from 100 to 6500, from 100 to 6000, from 100 to 5500, from 100 to 5000, from 250 to 9500, from 250 to 9000, from 250 to 8500, from 250 to 8000, from 250 to 7500, from 250 to 7000, from 250 to 6500, from 250 to 6000, from 250 to 5500, from 250 to 5000, from 2500 to 9500, from 2500 to 9000, from 2500 to 8500, from 2500 to 8000, from 2500 to 7500, from 2500 to 7000, from 2500 to 6500, from 2500 to 6000, from 2500 to 5500, or from 2500 to 5000 target nucleic acids. In some cases, the method detects target nucleic acid present at least at one copy per 101 non-target nucleic acids, 102 non-target nucleic acids, 103 non-target nucleic acids, 104 non-target nucleic acids, 105 non-target nucleic acids, 106 non-target nucleic acids, 107 non-target nucleic acids, 108 non-target nucleic acids, 109 non-target nucleic acids, or 1010 non-target nucleic acids.
A number of target nucleic acid populations are consistent with the systems and methods disclosed herein. Some methods described herein can be implemented to detect two or more target nucleic acid populations present in the sample in various concentrations or amounts. In some cases, the sample has at least 2 target nucleic acid populations. In some cases, the sample has at least 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, or 50 target nucleic acid populations. In some cases, the sample has from 3 to 50, from 5 to 40, or from 10 to 25 target nucleic acid populations. In some cases, the sample has from 2 to 50, from 5 to 50, from 10 to 50, from 2 to 25, from 3 to 25, from 4 to 25, from 5 to 25, from 10 to 25, from 2 to 20, from 3 to 20, from 4 to 20, from 5 to 20, from 10 to 20, from 2 to 10, from 3 to 10, from 4 to 10, from 5 to 10, from 6 to 10, from 7 to 10, from 8 to 10, or from 9 to 10 target nucleic acid populations. In some cases, the methods of the present disclosure can be implemented to detect target nucleic acid populations that are present at least at one copy per 101 non-target nucleic acids, 102 non-target nucleic acids, 103 non-target nucleic acids, 104 non-target nucleic acids, 105 non-target nucleic acids, 106 non-target nucleic acids, 107 non-target nucleic acids, 108 non-target nucleic acids, 109 non-target nucleic acids, or 1010 non-target nucleic acids. The target nucleic acid populations can be present at different concentrations or amounts in the sample.
The method can comprise generating one or more droplets, aliquots, or subsamples from the sample. The one or more droplets, aliquots, or subsamples can correspond to a volumetric portion of the sample. The sample can be divided into 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, or more droplets, aliquots, or subsamples. In some embodiments, the sample is not divided into subsamples.
The method can comprise amplifying one or more targets within each droplet, aliquot, or subsample. Amplification of the one or more targets within each droplet can be performed in parallel and/or simultaneously for each droplet. Dividing the sample into a plurality of droplets can enhance a speed and/or an efficiency of the amplification process (e.g., a thermocycling process) since the droplets comprise a smaller volume of material than the bulk sample introduced. Amplifying the one or more targets within each individual droplet can also permit effective amplification of various target nucleic acids that cannot be amplified as efficiently in a bulk sample containing the various target nucleic acids if the bulk sample were to undergo a singular amplification process. In some embodiments, amplification is performed on the bulk sample without first dividing the sample into subsamples.
The method can further comprise using a CRISPR-based or programmable nuclease-based detection module to detect one or more targets (e.g., target sequences or target nucleic acids) in the sample. In some cases, the sample can be divided into a plurality of droplets, aliquots, or subsamples to facilitate sample preparation and to enhance the detection capabilities of the devices of the present disclosure. In some cases, the sample is not divided into subsamples.
In some embodiments, the sample can be provided manually to the detection device of the present disclosure. For example, a swab sample can be dipped into a solution and the sample/solution can be pipetted into the device. In other embodiments, the sample can be provided via an automated syringe. The automated syringe can be configured to control a flow rate at which the sample is provided to the detection device. The automated syringe can be configured to control a volume of the sample that is provided to the detection device over a predetermined period.
In some embodiments, the sample can be provided directly to the detection device of the present disclosure. For example, a swab sample can be inserted into a sample chamber on the detection device.
The sample can be prepared before one or more targets are detected within the sample. The sample preparation steps described herein can process a crude sample to generate a pure or purer sample. Sample preparation can one or more physical or chemical processes, including, for example, nucleic acid purification, lysis, binding, washing, and/or eluting. In certain instances, sample preparation can comprise the following steps, in any order, including sample collection, nucleic acid purification, heat inactivation, and/or base/acid lysis.
In some embodiments, nucleic acid purification can be performed on the sample. Purification can comprise disrupting a biological matrix of a cell to release nucleic acids, denaturing structural proteins associated with the nucleic acids (nucleoproteins), inactivating nucleases that can degrade the isolated product (RNase and/or DNase), and/or removing contaminants (e.g., proteins, carbohydrates, lipids, biological or environmental elements, unwanted nucleic acids, and/or other cellular debris).
In some embodiments, lysis of a collected sample can be performed. Lysis can be performed using a protease (e.g., a Proteinase K or PK enzyme). In some cases, a solution of reagents can be used to lyse the cells in the sample and release the nucleic acids so that they are accessible to the programmable nuclease. Active ingredients of the solution can be chaotropic agents, detergents, salts, and can be of high osmolality, ionic strength, and pH. Chaotropic agents or chaotropes are substances that disrupt the three-dimensional structure in macromolecules such as proteins, DNA, or RNA. One example protocol may comprise a 4 M guanidinium isothiocyanate, 25 mM sodium citrate.2H20, 0.5% (w/v) sodium lauryl sarcosinate, and 0.1 M (3-mercaptoethanol), but numerous commercial buffers for different cellular targets can also be used. Alkaline buffers can also be used for cells with hard shells, particularly for environmental samples. Detergents such as sodium dodecyl sulphate (SDS) and cetyl trimethylammonium bromide (CTAB) can also be implemented to chemical lysis buffers. Cell lysis can also be performed by physical, mechanical, thermal or enzymatic means, in addition to chemically-induced cell lysis mentioned previously. In some cases, depending on the type of sample, nanoscale barbs, nanowires, acoustic generators, integrated lasers, integrated heaters, and/or microcapillary probes can be used to perform lysis.
In certain instances, heat inactivation can be performed on the sample. In some embodiments, a processed/lysed sample can undergo heat inactivation to inactivate, in the lysed sample, the proteins used during lysing (e.g., a PK enzyme or a lysing reagent). In some cases, a heating element integrated into the detection device can be used for heat-inactivation. The heating element can be powered by a battery or another source of thermal or electric energy that is integrated with the detection device.
In some cases, a target nucleic acid within the sample can undergo amplification before binding to a guide nucleic acid, for example a crRNA of a CRISPR enzyme. The target nucleic acid within a purified sample can be amplified. In some instances, amplification can be accomplished using loop mediated amplification (LAMP), isothermal recombinase polymerase amplification (RPA), and/or polymerase chain reaction (PCR). In some instances, digital droplet amplification can used. Such nucleic acid amplification of the sample can improve at least one of a sensitivity, specificity, or accuracy of the detection of the target RNA. The reagents for nucleic acid amplification can comprise a recombinase, an oligonucleotide primer, a single-stranded DNA binding (SSB) protein, and a polymerase. The nucleic acid amplification can be transcription mediated amplification (TMA). Nucleic acid amplification can be helicase dependent amplification (HDA) or circular helicase dependent amplification (cHDA). In additional cases, nucleic acid amplification is strand displacement amplification (SDA). The nucleic acid amplification can be recombinase polymerase amplification (RPA). The nucleic acid amplification can be at least one of loop mediated amplification (LAMP) or the exponential amplification reaction (EXPAR). Nucleic acid amplification is, in some cases, by rolling circle amplification (RCA), ligase chain reaction (LCR), simple method amplifying RNA targets (SMART), single primer isothermal amplification (SPIA), multiple displacement amplification (MDA), nucleic acid sequence-based amplification (NASBA), hinge-initiated primer-dependent amplification of nucleic acids (HIP), nicking enzyme amplification reaction (NEAR), or improved multiple displacement amplification (IMDA). The nucleic acid amplification can be performed for no greater than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, or 60 minutes. Sometimes, the nucleic acid amplification is performed for from 1 to 60, from 5 to 55, from 10 to 50, from 15 to 45, from 20 to 40, or from 25 to 35 minutes. Sometimes, the nucleic acid amplification is performed for from 5 to 60, from 10 to 60, from 15 to 60, from 30 to 60, from 45 to 60, from 1 to 45, from 5 to 45, from 10 to 45, from 30 to 45, from 1 to 30, from 5 to 30, from 10 to 30, from 15 to 30, from 1 to 15, from 5 to 15, or from 10 to 15 minutes.
In some embodiments, amplification can comprise thermocycling of the sample. Thermocycling can be carried out for one or more droplets of the sample in parallel and/or independently in separate locations. This can be accomplished by methods such as (1) by holding droplets stationary in locations where a heating element is in close proximity to the droplet on one of the droplet sides and a heat sink element is in close proximity to the other side of the droplet, or (2) flowing the droplet through zones in a fluid channel where heat flows across it from a heating source to a heat sink. In some cases, one or more resistive heating elements can be used to perform thermocycling. Sometimes, the nucleic acid amplification reaction is performed at a temperature of around 20-45° C. The nucleic acid amplification reaction can be performed at a temperature no greater than 20° C., 25° C., 30° C., 35° C., 37° C., 40° C., 45° C., 50° C., 55° C., 60° C., or 65° C. The nucleic acid amplification reaction can be performed at a temperature of at least 20° C., 25° C., 30° C., 35° C., 37° C., 40° C., 45° C., 50° C., 55° C., 60° C., or 65° C. In some cases, the nucleic acid amplification reaction is performed at a temperature of from 20° C. to 45° C., from 25° C. to 40° C., from 30° C. to 40° C., or from 35° C. to 40° C. In some cases, the nucleic acid amplification reaction is performed at a temperature of from 45° C. to 65° C., from 50° C. to 65° C., from 55° C. to 65° C., or from 60° C. to 65° C. In some cases, the nucleic acid amplification reaction can be performed at a temperature that ranges from about 20° C. to 45° C., from 25° C. to 45° C., from 30° C. to 45° C., from 35° C. to 45° C., from 40° C. to 45° C., from 20° C. to 37° C., from 25° C. to 37° C., from 30° C. to 37° C., from 35° C. to 37° C., from 20° C. to 30° C., from 25° C. to 30° C., from 20° C. to 25° C., or from about 22° C. to 25° C. In some cases, the nucleic acid amplification reaction can be performed at a temperature that ranges from about 40° C. to 65° C., from 45° C. to 65° C., from 50° C. to 65° C., from 55° C. to 65° C., from 60° C. to 65° C., from 40° C. to 60° C., from 45° C. to 60° C., from 50° C. to 60° C., from 55° C. to 60° C., from 40° C. to 55° C., from 45° C. to 55° C., from 50° C. to 55° C., from 40° C. to 50° C., or from about 45° C. to 50° C.
Additionally, target nucleic acid can optionally be amplified before binding to the guide nucleic acid (e.g., crRNA) of the programmable nuclease (e.g., CRISPR enzyme). This amplification can be PCR amplification or isothermal amplification. This nucleic acid amplification of the sample can improve at least one of sensitivity, specificity, or accuracy of the detection the target RNA. The reagents for nucleic acid amplification can comprise a recombinase, a oligonucleotide primer, a single-stranded DNA binding (SSB) protein, and a polymerase. The nucleic acid amplification can be transcription mediated amplification (TMA). Nucleic acid amplification can be helicase dependent amplification (HDA) or circular helicase dependent amplification (cHDA). In additional cases, nucleic acid amplification is strand displacement amplification (SDA). The nucleic acid amplification can be recombinase polymerase amplification (RPA). The nucleic acid amplification can be at least one of loop mediated amplification (LAMP) or the exponential amplification reaction (EXPAR). Nucleic acid amplification is, in some cases, by rolling circle amplification (RCA), ligase chain reaction (LCR), simple method amplifying RNA targets (SMART), single primer isothermal amplification (SPIA), multiple displacement amplification (MDA), nucleic acid sequence based amplification (NASBA), hinge-initiated primer-dependent amplification of nucleic acids (HIP), nicking enzyme amplification reaction (NEAR), or improved multiple displacement amplification (IMDA). The nucleic acid amplification can be performed for no greater than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, or 60 minutes. Sometimes, the nucleic acid amplification reaction is performed at a temperature of around 20-45° C. Sometimes, the nucleic acid amplification reaction is performed at a temperature of around 45-65° C. The nucleic acid amplification reaction can be performed at a temperature no greater than 20° C., 25° C., 30° C., 35° C., 37° C., 40° C., 45° C., 50° C., 55° C., 60° C., or 65° C. The nucleic acid amplification reaction can be performed at a temperature of at least 20° C., 25° C., 30° C., 35° C., 37° C., 40° C., 45° C., 50° C., 55° C., 60° C., or 65° C.
In some cases, the movable mechanism can comprise a plurality of valves. The plurality of valves can comprise, for example, a check valve. In some cases, the movable mechanism can comprise a plunger or a bristle. The plunger or bristle can have an open configuration and a closed configuration. As described above, the open configuration can permit a continuous flow of the sample through one or more sections of the channel, and the closed configuration can restrict or completely inhibit a flow of the sample through one or more sections of the channel. The closed configuration can permit a physical and/or thermal separation of one or more volumes or portions of the sample flowing through the channel. When in the open configuration, the plunger or the bristle can be positioned flush to a bottom of the channel so that the sample can flow through the channel. When in the closed configuration, the plunger or the bristle can be configured to extend from a bottom portion of the channel to a top portion of the channel so that the sample flow is restricted and the sample is divided into a plurality of different droplets, or partitions, that are physically and/or thermally isolated from each other. In some cases, the movable mechanism can comprise any physical object (e.g., a plate) that can be configured to restrict flow through the channel at one or more sections of the channel. In some cases, the movable mechanism can comprise a hinge or spring mechanism to move the movable mechanism between an open configuration and a closed configuration.
The movable mechanisms can be used to generate one or more droplets, aliquots, or subsamples. Each of the one or more droplets, aliquots, or subsamples generated using the movable mechanism can be physically and/or thermally isolated within a plurality of different portions within the channel. The droplets, aliquots, or subsamples can be physically constrained within different portions within the channel. The droplets, aliquots, or subsamples can be constrained between a first movable mechanism that is in a closed position and a second movable mechanism that is in a closed position. The first movable mechanism can be located at a first distance from an inlet of the channel, and the second movable mechanism can be located at a second distance from the inlet of the channel. The channel can be part of a closed system through which the sample can flow. In some cases, when the sample flow through an inlet of the channel is stopped (e.g., a plunger of a syringe containing the sample is pulled back), the one or more movable mechanisms can be placed in a closed configuration, thereby separating the sample already within the channel into a plurality of thermally and physically isolated droplets. Generating droplets, aliquots, or subsamples can simplify the solution, reduce a complexity of the solution, and enhance an accessibility of targets for amplification.
The one or more droplets, aliquots, or subsamples generated using the movable mechanism can undergo an amplification step or a thermocycling step as described elsewhere herein. In some cases, the one or more droplets generated using the movable mechanisms can come into contact with separate heating units and heat sinks while constrained between two movable mechanisms. Different sections of the channel can comprise a plurality of heating units and heat sinks configured to perform thermocycling for different droplets. Individual thermocycling of the droplets, aliquots, or subsamples can permit more efficient thermocycling of smaller volumes of fluid, and can require less energy usage (e.g., from a battery). One or more valves can control a flow or a movement of the sample through the channel. The one or more valves can comprise a check valve that is configured to restrict a movement of the sample or the one or more droplets such that the sample or the one or more droplets do not travel backwards towards an inlet portion of the channel. The one or more valves can control when the sample or the droplets come into thermal contact with the heating unit and/or the heat sink. The timing of such thermal contact can correspond to a timing of one or more thermocycling steps. In some cases, a first droplet of the sample can be in thermal contact with a first heating unit and a first heat sink, a second droplet of the sample can be in thermal contact with a second heating unit and a second heat sink, and so on.
As described above, the devices of the present disclosure can be configured to perform droplet digitization or droplet generation. Droplet digitization or generation can comprise splitting a volume of the sample into multiple droplets, aliquots, or subsamples. The sample can have a volume that ranges from about 10 microliters to about 500 microliters. The plurality of droplets, aliquots, or subsamples can have a volume that ranges from about 0.01 microliters to about 100 microliters. The plurality of droplets, aliquots, or subsamples can have a same or substantially similar volume. In some cases, the plurality of droplets, aliquots, or subsamples can have different volumes. In some cases, the droplets, aliquots, or subsamples can be generated using a physical filter or the one or more movable mechanisms described above. In some cases, each droplet of the sample can undergo one or more sample preparation steps (e.g., nucleic acid purification, lysis, heat inactivation, amplification, etc.) independently and/or in parallel while the droplets are physically constrained or thermally isolated between two movable mechanisms.
After amplification, the sample can be remixed. The sample can be circulated through the detection chamber using a bulk circulation mechanism that is configured to stir the remixed sample around such that the remixed sample comes into contact with one or more programmable nuclease probes, as shown in
In some embodiments, electrowetting can be used by the device for sample transport. In some cases, the device can be configured for electrowetting-on-dielectric (EWOD) applications. The devices of the present disclosure can comprise an array of independently addressable electrodes integrated into the device.
Described herein are various embodiments of a device for programmable nuclease-based (e.g., CRISPR-based) assays.
In certain instances, as seen in
The programmable nuclease probe can comprise a programmable nuclease and/or a guide nucleic acid. The guide nucleic acid can bind to a target nucleic acid, as described in greater detail below. In some case, to minimize off-target binding (which can slow down detection or inhibit accurate detection), the device can be configured to generate an electro-potential gradient or to provide heat energy to one or more regions proximal to the programmable nuclease probe, to enhance targeting.
In some embodiments, one or more guide nucleic acids can be used to carry out highly efficient, rapid, and accurate reactions for detecting whether a target nucleic acid is present in a sample. The guide nucleic acid binds to the single stranded target nucleic acid comprising a portion of a nucleic acid from a virus or a bacterium or other agents responsible for a disease as described herein. The guide nucleic acid can bind to the single stranded target nucleic acid comprising a portion of a nucleic acid from a bacterium or other agents responsible for a disease as described herein and further comprising a mutation, such as a single nucleotide polymorphism (SNP), which can confer resistance to a treatment, such as antibiotic treatment. The guide nucleic acid binds to the single stranded target nucleic acid comprising a portion of a nucleic acid from a cancer gene or gene associated with a genetic disorder as described herein. The guide nucleic acid is complementary to the target nucleic acid. Often the guide nucleic acid binds specifically to the target nucleic acid. The target nucleic acid can be a RNA, DNA, or synthetic nucleic acids. A guide nucleic acid can comprise a sequence that is reverse complementary to the sequence of a target nucleic acid. A guide nucleic acid can be a crRNA. Sometimes, a guide nucleic acid may comprise a crRNA and tracrRNA. The guide nucleic acid can bind specifically to the target nucleic acid. In some cases, the guide nucleic acid is not naturally occurring and made by artificial combination of otherwise separate segments of sequence. Often, the artificial combination is performed by chemical synthesis, by genetic engineering techniques, or by the artificial manipulation of isolated segments of nucleic acids. The target nucleic acid can be designed and made to provide desired functions. In some cases, the targeting region of a guide nucleic acid is 20 nucleotides in length. The targeting region of the guide nucleic acid can have a length of at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. In some instances, the targeting region of the guide nucleic acid is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. In some cases, the targeting region of a guide nucleic acid has a length from exactly or about 12 nucleotides (nt) to about 80 nt, from about 12 nt to about 50 nt, from about 12 nt to about 45 nt, from about 12 nt to about 40 nt, from about 12 nt to about 35 nt, from about 12 nt to about 30 nt, from about 12 nt to about 25 nt, from about 12 nt to about 20 nt, from about 12 nt to about 19 nt, from about 19 nt to about 20 nt, from about 19 nt to about 25 nt, from about 19 nt to about 30 nt, from about 19 nt to about 35 nt, from about 19 nt to about 40 nt, from about 19 nt to about 45 nt, from about 19 nt to about 50 nt, from about 19 nt to about 60 nt, from about 20 nt to about 25 nt, from about 20 nt to about 30 nt, from about 20 nt to about 35 nt, from about 20 nt to about 40 nt, from about 20 nt to about 45 nt, from about 20 nt to about 50 nt, or from about 20 nt to about 60 nt. In some cases, the targeting region of a guide nucleic acid has a length of from about 10 nt to about 60 nt, from about 20 nt to about 50 nt, or from about 30 nt to about 40 nt. In some cases, the targeting region of a guide nucleic acid has a length of from 15 nt to 55 nt, from 25 nt to 55 nt, from 35 nt to 55 nt, from 45 nt to 55 nt, from 15 nt to 45 nt, from 25 nt to 45 nt, from 35 nt to 45 nt, from 15 nt to 35 nt, from 25 nt to 35 nt, or from 15 nt to 25 nt. It is understood that the sequence of a polynucleotide need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable or bind specifically. The guide nucleic acid can have a sequence comprising at least one uracil in a region from nucleic acid residue 5 to 20 that is reverse complementary to a modification variable region in the target nucleic acid. The guide nucleic acid, in some cases, has a sequence comprising at least one uracil in a region from nucleic acid residue 5 to 9, 10 to 14, or 15 to 20 that is reverse complementary to a modification variable region in the target nucleic acid. The guide nucleic acid can have a sequence comprising at least one uracil in a region from nucleic acid residue 5 to 20 that is reverse complementary to a methylation variable region in the target nucleic acid. The guide nucleic acid, in some cases, has a sequence comprising at least one uracil in a region from nucleic acid residue 5 to 9, 10 to 14, or 15 to 20 that is reverse complementary to a methylation variable region in the target nucleic acid.
The guide nucleic acid can be selected from a group of guide nucleic acids that have been tiled against the nucleic acid of a strain of an infection or genomic locus of interest. The guide nucleic acid can be selected from a group of guide nucleic acids that have been tiled against the nucleic acid of a strain of HPV 16 or HPV 18. Often, guide nucleic acids that are tiled against the nucleic acid of a strain of an infection or genomic locus of interest can be pooled for use in a method described herein. Often, these guide nucleic acids are pooled for detecting a target nucleic acid in a single assay. The pooling of guide nucleic acids that are tiled against a single target nucleic acid can enhance the detection of the target nucleic using the methods described herein. The pooling of guide nucleic acids that are tiled against a single target nucleic acid can ensure broad coverage of the target nucleic acid within a single reaction using the methods described herein. The tiling, for example, is sequential along the target nucleic acid. Sometimes, the tiling is overlapping along the target nucleic acid. In some instances, the tiling may comprise gaps between the tiled guide nucleic acids along the target nucleic acid. In some instances, the tiling of the guide nucleic acids is non-sequential. Often, a method for detecting a target nucleic acid may comprise contacting a target nucleic acid to a pool of guide nucleic acids and a programmable nuclease, wherein a guide nucleic acid of the pool of guide nucleic acids has a sequence selected from a group of tiled guide nucleic acid that is reverse complementary to a sequence of a target nucleic acid; and assaying for a signal produce by cleavage of at least some detector nucleic acids of a population of detector nucleic acids. Pooling of guide nucleic acids can ensure broad spectrum identification, or broad coverage, of a target species within a single reaction. This can be particularly helpful in diseases or indications, like sepsis, that can be caused by multiple organisms.
In some embodiments, programmable nucleases can be used to carry out highly efficient, rapid, and accurate reactions for detecting whether a target nucleic acid is present in a sample. A programmable nuclease can comprise a programmable nuclease capable of being activated when complexed with a guide nucleic acid and target nucleic acid. The programmable nuclease can become activated after binding of a guide nucleic acid with a target nucleic acid, in which the activated programmable nuclease can cleave the target nucleic acid and can have trans cleavage activity. Trans cleavage activity can be non-specific cleavage of nearby single-stranded nucleic acids by the activated programmable nuclease, such as trans cleavage of detector nucleic acids with a detection moiety. Once the detector nucleic acid is cleaved by the activated programmable nuclease, the detection moiety can be released from the detector nucleic acid and can generate a signal. A signal can be a calorimetric, potentiometric, amperometric, optical (e.g., fluorescent, colorimetric, etc.), or piezo-electric signal. Often, the signal is present prior to detector nucleic acid cleavage and changes upon detector nucleic acid cleavage. Sometimes, the signal is absent prior to detector nucleic acid cleavage and is present upon detector nucleic acid cleavage. The detectable signal can be immobilized on a support medium for detection. The programmable nuclease can be a CRISPR-Cas (clustered regularly interspaced short palindromic repeats—CRISPR associated) nucleoprotein complex with trans cleavage activity, which can be activated by binding of a guide nucleic acid with a target nucleic acid. The CRISPR-Cas nucleoprotein complex can comprise a Cas protein (also referred to as a Cas nuclease) complexed with a guide nucleic acid, which can also be referred to as CRISPR enzyme. A guide nucleic acid can be a CRISPR RNA (crRNA). Sometimes, a guide nucleic acid may comprise a crRNA and a trans-activating crRNA (tracrRNA).
The programmable nuclease system used to detect modified target nucleic acids can comprise CRISPR RNAs (crRNAs), trans-activating crRNAs (tracrRNAs), Cas proteins, and detector nucleic acids.
Described herein are reagents comprising a programmable nuclease capable of being activated when complexed with the guide nucleic acid and the target nucleic acid segment or portion. A programmable nuclease can be capable of being activated when complexed with a guide nucleic acid and the target sequence. The programmable nuclease can be activated upon binding of the guide nucleic acid to its target nucleic acid and degrades non-specifically nucleic acid in its environment. The programmable nuclease has trans cleavage activity once activated. A programmable nuclease can be a Cas protein (also referred to, interchangeably, as a Cas nuclease). A crRNA and Cas protein can form a CRISPR enzyme.
Several programmable nucleases are consistent with the methods and devices of the present disclosure. For example, CRISPR/Cas enzymes are programmable nucleases used in the methods and systems disclosed herein. CRISPR/Cas enzymes can include any of the known Classes and Types of CRISPR/Cas enzymes. Programmable nucleases disclosed herein include Class 1 CRISPR/Cas enzymes, such as the Type I, Type IV, or Type III CRISPR/Cas enzymes. Programmable nucleases disclosed herein also include the Class 2 CRISPR/Cas enzymes, such as the Type II, Type V, and Type VI CRISPR/Cas enzymes. Preferable programmable nucleases included in the several devices disclosed herein (e.g., a microfluidic device such as a pneumatic valve device or a sliding valve device or a lateral flow assay) and methods of use thereof include a Type V or Type VI CRISPR/Cas enzyme.
In some embodiments, the Type V CRISPR/Cas enzyme is a programmable Cas12 nuclease. Type V CRISPR/Cas enzymes (e.g., Cas12 or Cas14) lack an HNH domain. A Cas12 nuclease of the present disclosure cleaves a nucleic acid via a single catalytic RuvC domain. The RuvC domain is within a nuclease, or “NUC” lobe of the protein, and the Cas12 nucleases further comprise a recognition, or “REC” lobe. The REC and NUC lobes are connected by a bridge helix and the Cas12 proteins additionally include two domains for PAM recognition termed the PAM interacting (PI) domain and the wedge (WED) domain. In some instances, a programmable Cas12 nuclease can be a Cas12a (also referred to as Cpf1) protein, a Cas12b protein, Cas12c protein, Cas12d protein, or a Cas12e protein.
In some embodiments, the programmable nuclease can be Cas13. Sometimes the Cas13 can be Cas13a, Cas13b, Cas13c, Cas13d, or Cas13e. In some cases, the programmable nuclease can be Mad7 or Mad2. In some cases, the programmable nuclease can be Cas12. Sometimes the Cas12 can be Cas12a, Cas12b, Cas12c, Cas12d, or Cas12e. In some cases, the Cas12 can be Cas12M08, which is a specific protein variant within the Cas12 protein family/classification). In some cases, the programmable nuclease can be Csm1, Cas9, C2c4, C2c8, C2c5, C2c10, C2c9, or CasZ. Sometimes, the Csm1 can also be also called smCms1, miCms1, obCms1, or suCms1. Sometimes Cas13a can also be also called C2c2. Sometimes CasZ can also be called Cas14a, Cas14b, Cas14c, Cas14d, Cas14e, Cas14f, Cas14g, or Cas14h. Sometimes, the programmable nuclease can be a type V CRISPR-Cas system. In some cases, the programmable nuclease can be a type VI CRISPR-Cas system. Sometimes the programmable nuclease can be a type III CRISPR-Cas system. Sometimes the programmable nuclease can be an engineered nuclease that is not from a naturally occurring CRISPR-Cas system. In some cases, the programmable nuclease can be from at least one of Leptotrichia shahii (Lsh), Listeria seeligeri (Lse), Leptotrichia buccalis (Lbu), Leptotrichia wadeu (Lwa), Rhodobacter capsulatus (Rca), Herbinix hemicellulosilytica (Hhe), Paludibacter propionicigenes (Ppr), Lachnospiraceae bacterium (Lba), [Eubacterium] rectale (Ere), Listeria newyorkensis (Lny), Clostridium aminophilum (Cam), Prevotella sp. (Psm), Capnocytophaga canimorsus (Cca, Lachnospiraceae bacterium (Lba), Bergeyella zoohelcum (Bzo), Prevotella intermedia (Pin), Prevotella buccae (Pbu), Alistipes sp. (Asp), Riemerella anatipestifer (Ran), Prevotella aurantiaca (Pau), Prevotella saccharolytica (Psa), Prevotella intermedia (Pin2), Capnocytophaga canimorsus (Cca), Porphyromonas gulae (Pgu), Prevotella sp. (Psp), Porphyromonas gingivalis (Pig), Prevotella intermedia (Pin3), Enterococcus italicus (Ei), Lactobacillus salivarius (Ls), or Thermus thermophilus (Tt). Sometimes the Cas13 is at least one of LbuCas13a, LwaCas13a, LbaCas13a, HheCas13a, PprCas13a, EreCas13a, CamCas13a, or LshCas13a. The trans cleavage activity of the CRISPR enzyme can be activated when the crRNA is complexed with the target nucleic acid. The trans cleavage activity of the CRISPR enzyme can be activated when the guide nucleic acid comprising a tracrRNA and crRNA are complexed with the target nucleic acid. The target nucleic acid can be RNA or DNA.
In some embodiments, a programmable nuclease as disclosed herein is an RNA-activated programmable RNA nuclease. In some embodiments, a programmable nuclease as disclosed herein is a DNA-activated programmable RNA nuclease. In some embodiments, a programmable nuclease is capable of being activated by a target RNA to initiate trans cleavage of an RNA reporter and is capable of being activated by a target DNA to initiate trans cleavage of an RNA reporter, such as a Type VI CRISPR/Cas enzyme (e.g., a Cas13 nuclease). For example, Cas13a of the present disclosure can be activated by a target RNA to initiate trans cleavage activity of the Cas13a for the cleavage of an RNA reporter and can be activated by a target DNA to initiate trans cleavage activity of the Cas13a for trans cleavage of an RNA reporter. An RNA reporter can be an RNA-based reporter. In some embodiments, the Cas13a recognizes and detects ssDNA to initiate transcleavage of RNA reporters. Multiple Cas13a isolates can recognize, be activated by, and detect target DNA, including ssDNA, upon hybridization of a guide nucleic acid with the target DNA. For example, Lbu-Cas13a and Lwa-Cas13a can both be activated to transcollaterally cleave RNA reporters by target DNA. Thus, Type VI CRISPR/Cas enzyme (e.g., a Cas13 nuclease, such as Cas13a) can be DNA-activated programmable RNA nucleases, and therefore can be used to detect a target DNA using the methods as described herein. DNA-activated programmable RNA nuclease detection of ssDNA can be robust at multiple pH values. For example, target ssDNA detection by Cas13 can exhibit consistent cleavage across a wide range of pH conditions, such as from a pH of 6.8 to a pH of 8.2. In contrast, target RNA detection by Cas13 can exhibit high cleavage activity of pH values from 7.9 to 8.2. In some embodiments, a DNA-activated programmable RNA nuclease that also is capable of being an RNA-activated programmable RNA nuclease, can have DNA targeting preferences that are distinct from its RNA targeting preferences. For example, the optimal ssDNA targets for Cas13a have different properties than optimal RNA targets for Cas13a. As one example, gRNA performance on ssDNA can not necessarily correlate with the performance of the same gRNAs on RNA. As another example, gRNAs can perform at a high level regardless of target nucleotide identity at a 3′ position on a target RNA sequence. In some embodiments, gRNAs can perform at a high level in the absence of a G at a 3′ position on a target ssDNA sequence. Furthermore, target DNA detected by Cas13 disclosed herein can be directly taken from organisms or can be indirectly generated by nucleic acid amplification methods, such as PCR and LAMP or any amplification method described herein. Key steps for the sensitive detection of a target DNA, such as a target ssDNA, by a DNA-activated programmable RNA nuclease, such as Cas13a, can include: (1) production or isolation of DNA to concentrations above about 0.1 nM per reaction for in vitro diagnostics, (2) selection of a target sequence with the appropriate sequence features to enable DNA detection as these features are distinct from those required for RNA detection, and (3) buffer composition that enhances DNA detection.
The detection of a target DNA by a DNA-activated programmable RNA nuclease can be connected to a variety of readouts including fluorescence, lateral flow, electrochemistry, or any other readouts described herein. Multiplexing of programmable DNA nuclease, such as a Type V CRISPR-Cas protein, with a DNA-activated programmable RNA nuclease, such as a Type VI protein, with a DNA reporter and an RNA reporter, can enable multiplexed detection of target ssDNAs or a combination of a target dsDNA and a target ssDNA, respectively. Multiplexing of different RNA-activated programmable RNA nucleases that have distinct RNA reporter cleavage preferences can enable additional multiplexing. Methods for the generation of ssDNA for DNA-activated programmable RNA nuclease-based diagnostics can include (1) asymmetric PCR, (2) asymmetric isothermal amplification, such as RPA, LAMP, SDA, etc. (3) NEAR for the production of short ssDNA molecules, and (4) conversion of RNA targets into ssDNA by a reverse transcriptase followed by RNase H digestion. Thus, DNA-activated programmable RNA nuclease detection of target DNA is compatible with the various systems, kits, compositions, reagents, and methods disclosed herein. For example, target ssDNA detection by Cas13a can be employed in a detection device as disclosed herein.
In any of the embodiments described herein, the programmable nuclease can comprise a programmable nuclease capable of being activated when complexed with a guide nucleic acid and target nucleic acid. The programmable nuclease can become activated after binding of a guide nucleic acid with a target nucleic acid, in which the activated programmable nuclease can cleave the target nucleic acid, which can initiate trans cleavage activity. In some cases, the trans cut or trans cleavage can cut and/or release a reporter. In other cases, the trans cut or trans cleavage can produce an analog of a target, which can be directly detected. Trans cleavage activity can be non-specific cleavage of nearby nucleic acids by the activated programmable nuclease, such as trans cleavage of detector nucleic acids with a detection moiety. Once the detector nucleic acid is cleaved by the activated programmable nuclease, the detection moiety can be released from the detector nucleic acid and can generate a signal. For example, the detection moiety can correspond to the element, or moiety, (X) shown in
Reporters, which can be referred to interchangeably as reporters or detector nucleic acids, can be used in conjunction with the compositions disclosed herein (e.g., programmable nucleases, guide nucleic acids, etc.) to carry out highly efficient, rapid, and accurate reactions for detecting whether a target nucleic acid is present in a sample. The reporter can be suspended in solution or immobilized on a surface. For example, the reporter can be immobilized on the surface of a chamber in a device as disclosed herein. In some cases, the reporter can be immobilized on beads, such as magnetic beads, in a chamber of a device as disclosed herein where they are held in position by a magnet placed below the chamber. The reporter can be capable of being cleaved by the activated programmable nuclease, thereby generating a detectable signal. The detectable signal can correspond to a release of one or more elements (X) as illustrated in
As used herein, a detector nucleic acid is used interchangeably with reporter or reporter. In some cases, the detector nucleic acid is a single-stranded nucleic acid comprising deoxyribonucleotides. In other cases, the detector nucleic acid is a single-stranded nucleic acid comprising ribonucleotides. The detector nucleic acid can be a single-stranded nucleic acid comprising at least one deoxyribonucleotide and at least one ribonucleotide. In some cases, the detector nucleic acid is a single-stranded nucleic acid comprising at least one ribonucleotide residue at an internal position that functions as a cleavage site. In some cases, the detector nucleic acid may comprise at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 ribonucleotide residues at an internal position. In some cases, the detector nucleic acid may comprise from 2 to 10, from 3 to 9, from 4 to 8, or from 5 to 7 ribonucleotide residues at an internal position. In some cases, the detector nucleic acid may comprise from 3 to 10, from 4 to 10, from 5 to 10, from 6 to 10, from 7 to 10, from 8 to 10, from 9 to 10, from 2 to 8, from 3 to 8, from 5 to 8, from 6 to 8, from 7 to 8, from 2 to 5, from 3 to 5, or from 4 to 5 ribonucleotide residues at an internal position. Sometimes the ribonucleotide residues are continuous. Alternatively, the ribonucleotide residues are interspersed in between non-ribonucleotide residues. In some cases, the detector nucleic acid has only ribonucleotide residues. In some cases, the detector nucleic acid has only deoxyribonucleotide residues. In some cases, the detector nucleic acid may comprise nucleotides resistant to cleavage by the programmable nuclease described herein. In some cases, the detector nucleic acid may comprise synthetic nucleotides. In some cases, the detector nucleic acid may comprise at least one ribonucleotide residue and at least one non-ribonucleotide residue. In some cases, the detector nucleic acid is 5-20, 5-15, 5-10, 7-20, 7-15, or 7-10 nucleotides in length. In some cases, the detector nucleic acid is from 3 to 20, from 4 to 20, from 5 to 20, from 6 to 20, from 7 to 20, from 8 to 20, from 9 to 20, from 10 to 20, from 15 to 20, from 3 to 15, from 4 to 15, from 5 to 15, from 6 to 15, from 7 to 15, from 8 to 15, from 9 to 15, from 10 to 15, from 3 to 10, from 4 to 10, from 5 to 10, from 6 to 10, from 7 to 10, from 8 to 10, from 9 to 10, from 3 to 8, from 4 to 8, from 5 to 8, from 6 to 8, or from 7 to 8 nucleotides in length. In some cases, the detector nucleic acid may comprise at least one uracil ribonucleotide. In some cases, the detector nucleic acid may comprise at least two uracil ribonucleotides. Sometimes the detector nucleic acid has only uracil ribonucleotides. In some cases, the detector nucleic acid may comprise at least one adenine ribonucleotide. In some cases, the detector nucleic acid may comprise at least two adenine ribonucleotides. In some cases, the detector nucleic acid has only adenine ribonucleotides. In some cases, the detector nucleic acid may comprise at least one cytosine ribonucleotide. In some cases, the detector nucleic acid may comprise at least two cytosine ribonucleotides. In some cases, the detector nucleic acid may comprise at least one guanine ribonucleotide. In some cases, the detector nucleic acid may comprise at least two guanine ribonucleotides. A detector nucleic acid can comprise only unmodified ribonucleotides, only unmodified deoxyribonucleotides, or a combination thereof. In some cases, the detector nucleic acid is from 5 to 12 nucleotides in length. In some cases, the detector nucleic acid is at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. In some cases, the detector nucleic acid is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. For cleavage by a programmable nuclease comprising Cas13, a detector nucleic acid can be 5, 8, or 10 nucleotides in length. For cleavage by a programmable nuclease comprising Cas12, a detector nucleic acid can be 10 nucleotides in length.
The single stranded detector nucleic acid can comprise a detection moiety capable of generating a first detectable signal. Sometimes the detector nucleic acid may comprise a protein capable of generating a signal. A signal can be a calorimetric, potentiometric, amperometric, optical (e.g., fluorescent, colorometric, etc.), or piezo-electric signal. In some cases, a detection moiety is on one side of the cleavage site. Optionally, a quenching moiety is on the other side of the cleavage site. Sometimes the quenching moiety is a fluorescence quenching moiety. In some cases, the quenching moiety is 5′ to the cleavage site and the detection moiety is 3′ to the cleavage site. In some cases, the detection moiety is 5′ to the cleavage site and the quenching moiety is 3′ to the cleavage site. Sometimes the quenching moiety is at the 5′ terminus of the detector nucleic acid. Sometimes the detection moiety is at the 3′ terminus of the detector nucleic acid. In some cases, the detection moiety is at the 5′ terminus of the detector nucleic acid. In some cases, the quenching moiety is at the 3′ terminus of the detector nucleic acid. In some cases, the single-stranded detector nucleic acid is at least one population of the single-stranded nucleic acid capable of generating a first detectable signal. In some cases, the single-stranded detector nucleic acid is a population of the single stranded nucleic acid capable of generating a first detectable signal. Optionally, there are more than one population of single-stranded detector nucleic acid. In some cases, there are 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, or greater than 50, or any number spanned by the range of this list of different populations of single-stranded detector nucleic acids capable of generating a detectable signal. In some cases, there are from 2 to 50, from 3 to 40, from 4 to 30, from 5 to 20, or from 6 to 10 different populations of single-stranded detector nucleic acids capable of generating a detectable signal. In some cases there are from 2 to 50, from 5 to 50, from 10 to 50, from 15 to 50, from 20 to 50, from 25 to 50, from 30 to 50, from 35 to 50, from 40 to 50, from 2 to 40, from 5 to 40, from 10 to 40, from 15 to 40, from 20 to 40, from 25 to 40, from 30 to 40, from 35 to 40, from 2 to 30, from 5 to 30, from 10 to 30, from 15 to 30, from 20 to 30, from 25 to 30, from 2 to 20, from 5 to 20, from 10 to 20, from 15 to 20, from 2 to 10, or from 5 to 10 different populations of single-stranded detector nucleic acids capable of generating a detectable signal.
In some embodiments, target nucleic acid amplicons are detected by immobilized programmable nuclease probes, such as, for example, CRISPR CAS guide RNA probes (referred to as CRISPR probe). Upon a complementary binding event between a target nucleic acid amplicon and a programmable nuclease probe (e.g., an immobilized CRISPR CAS/guide RNA complex) a cutting event will occur that release a reporter that is then detected by a sensor. There are two main schemes for detection of the binding events between the target and the programmable nuclease probe, a mobile phase scheme as illustrated in
In certain circumstances, a mobile phase detection scheme (
In some embodiments, a stationary phase detection scheme is used. In these embodiments the remixed sample can contain one or more target nucleic acid amplicon sequence types and copies thereof.
The plurality of programmable nuclease probes shown in
As described above, the single stranded detector nucleic acid can comprise a detection moiety capable of generating a first detectable signal. Sometimes the detector nucleic acid may comprise a protein capable of generating a signal. A signal can be a colorimetric, potentiometric, amperometric, optical (e.g., fluorescent, colorometric, etc.), or piezo-electric signal. The generation of the detectable signal from the release of the detection moiety indicates that cleavage by the programmable nuclease has occurred and that the sample contains the target nucleic acid. A detection moiety can be any moiety capable of generating a colorimetric, potentiometric, amperometric, optical (e.g., fluorescent, colorometric, etc.), or piezo-electric signal. A detector nucleic acid, sometimes, is protein-nucleic acid that can generate a calorimetric, potentiometric, amperometric, optical (e.g., fluorescent, colorometric, etc.), or piezo-electric signal upon cleavage of the nucleic acid. Often a calorimetric signal is heat produced after cleavage of the detector nucleic acids. Sometimes, a calorimetric signal is heat absorbed after cleavage of the detector nucleic acids. A potentiometric signal, for example, is electrical potential produced after cleavage of the detector nucleic acids. An amperometric signal can be movement of electrons produced after the cleavage of detector nucleic acid. Often, the signal is an optical signal, such as a colorometric signal or a fluorescence signal. An optical signal is, for example, a light output produced after the cleavage of the detector nucleic acids. Sometimes, an optical signal is a change in light absorbance between before and after the cleavage of detector nucleic acids. Often, a piezo-electric signal is a change in mass between before and after the cleavage of the detector nucleic acid.
Detecting the presence or absence of a target nucleic acid of interest can involve measuring a signal emitted from a detection moiety present in a reporter, after cleavage of the reporter by an activated programmable nuclease. The signal can be measured using one or more sensors integrated with the device or operatively coupled to the device. Thus, the detecting steps disclosed herein can involve measuring the presence of a target nucleic acid, quantifying how much of the target nucleic acid is present, or, measuring a signal indicating that the target nucleic acid is absent in a sample. In some embodiments, a signal is generated upon cleavage of the detector nucleic acid by the programmable nuclease. In other embodiments, the signal changes upon cleavage of the detector nucleic acid by the programmable nuclease. In other embodiments, a signal can be present in the absence of detector nucleic acid cleavage and disappear upon cleavage of the target nucleic acid by the programmable nuclease. For example, a signal can be produced in a microfluidic device or lateral flow device after contacting a sample with a composition comprising a programmable nuclease.
In some cases, the signal can comprise a colorimetric signal or a signal visible by eye. In some instances, the signal is fluorescent, electrical, chemical, electrochemical, or magnetic. A signal can be a calorimetric, potentiometric, amperometric, optical (e.g., fluorescent, colorometric, etc.), or piezo-electric signal. In some cases, the detectable signal is a colorimetric signal or a signal visible by eye. In some instances, the detectable signal is fluorescent, electrical, chemical, electrochemical, or magnetic. In some cases, the first detection signal is generated by binding of the detection moiety to the capture molecule in the detection region, where the first detection signal indicates that the sample contained the target nucleic acid. Sometimes the system can detect more than one type of target nucleic acid, wherein the system may comprise more than one type of guide nucleic acid and more than one type of detector nucleic acid. In some cases, the detectable signal is generated directly by the cleavage event. Alternatively, or in combination, the detectable signal is generated indirectly by the signal event. Sometimes the detectable signal is not a fluorescent signal. In some instances, the detectable signal is a colorimetric or color-based signal. In some cases, the detected target nucleic acid is identified based on its spatial location on the detection region of the support medium.
In some cases, the one or more detectable signals generated after cleavage can produce an index of refraction change or one or more electrochemical changes. In some cases, real-time detection of the Cas reaction can be achieved using fluorescence, electrochemical detection, and/or electrochemiluminescence.
In some cases, the detectable signals can be detected and analyzed in various ways. For example, the detectable signals can be detected using an imaging device. The imaging device can a digital camera, such a digital camera on a mobile device. The mobile device can have a software program or a mobile application that can capture fluorescence, ultraviolet (UV), infrared (IR), or visible wavelength signals. Any suitable detection or measurement device can be used to detect and/or analyze the colorimetric, fluorescence, amperometric, potentiometric, or electrochemical signals described herein. In some embodiments, the colorimetric, fluorescence, amperometric, potentiometric, or another electrochemical sign can be detected using a measurement device connected to a detection chamber of the device (e.g., a fluorescence measurement device, a spectrophotometer, and/or an oscilloscope).
In certain aspects of this disclosure, multiplexing refers to parallel sensing of multiple target nucleic acid sequences in one sample by multiple probes.
The devices of the present disclosure can be used to implement for detection of one or more target nucleic acids within the sample. The devices of the present disclosure can comprise one or multiple pumps, valves, reservoirs, and chambers for sample preparation, optional amplification of a target nucleic acid within the sample, mixing with a programmable nuclease, and detection of a detectable signal arising from cleavage of detector nucleic acids by a programmable nuclease.
Methods consistent with the present disclosure include a multiplexing method of assaying for a plurality of target nucleic acids in a sample. A multiplexing method may comprise contacting the sample to a complex comprising a guide nucleic acid comprising a segment that is reverse complementary to a segment of the target nucleic acid and a programmable nuclease that exhibits sequence independent cleavage upon forming a complex comprising the segment of the guide nucleic acid binding to the segment of the target nucleic acid; and assaying for a signal indicating cleavage of at least some reporters (e.g., protein-nucleic acids) of a population of reporter molecules (e.g., protein-nucleic acids), wherein the signal indicates a presence of the target nucleic acid in the sample and wherein absence of the signal indicates an absence of the target nucleic acid in the sample.
Multiplexing can comprise spatial multiplexing wherein multiple different target nucleic acids are detected at the same time, but the reactions are spatially separated. In some cases, the multiple target nucleic acids are detected using the same programmable nuclease, but different guide nucleic acids. The multiple target nucleic acids sometimes are detected using the different programmable nucleases. In the case wherein multiple target nucleic acids are detected using the different programmable nucleases, the method involves using a first programmable nuclease, which upon activation (e.g., after binding of a first guide nucleic acid to a first target), cleaves a nucleic acid of a first reporter and using a second programmable nuclease, which upon activation (e.g., after binding of a second guide nucleic acid to a second target), cleaves a nucleic acid of a second reporter.
Sometimes, multiplexing can be single reaction multiplexing wherein multiple different target acids are detected in a single reaction volume. Often, at least two different programmable nucleases are used in single reaction multiplexing. For example, multiplexing can be enabled by immobilization of multiple categories of detector nucleic acids within a fluidic system, to enable detection of multiple target nucleic acids within a single fluidic system. Multiplexing allows for detection of multiple target nucleic acids in one kit or system. In some cases, the multiple target nucleic acids comprise different target nucleic acids to a virus, a bacterium, or a pathogen responsible for one disease. In some cases, the multiple target nucleic acids comprise different target nucleic acids associated with a cancer or genetic disorder. Multiplexing for one disease, cancer, or genetic disorder increases at least one of sensitivity, specificity, or accuracy of the assay to detect the presence of the disease in the sample. In some cases, the multiple target nucleic acids comprise target nucleic acids directed to different viruses, bacteria, or pathogens responsible for more than one disease. In some cases, multiplexing allows for discrimination between multiple target nucleic acids, such as target nucleic acids that comprise different genotypes of the same bacteria or pathogen responsible for a disease, for example, for a wild-type genotype of a bacteria or pathogen and for genotype of a bacteria or pathogen comprising a mutation, such as a single nucleotide polymorphism (SNP) that can confer resistance to a treatment, such as antibiotic treatment. Multiplexing, thus, allows for multiplexed detection of multiple genomic alleles. For example, multiplexing may comprise method of assaying comprising a single assay for a microorganism species using a first programmable nuclease and an antibiotic resistance pattern in a microorganism using a second programmable nuclease. Sometimes, multiplexing allows for discrimination between multiple target nucleic acids of different HPV strains, for example, HPV16 and HPV18. In some cases, the multiple target nucleic acids comprise target nucleic acids directed to different cancers or genetic disorders. Often, multiplexing allows for discrimination between multiple target nucleic acids, such as target nucleic acids that comprise different genotypes, for example, for a wild-type genotype and for SNP genotype. Multiplexing for multiple diseases, cancers, or genetic disorders provides the capability to test a panel of diseases from a single sample. For example, multiplexing for multiple diseases can be valuable in a broad panel testing of a new patient or in epidemiological surveys. Often multiplexing is used for identifying bacterial pathogens in sepsis or other diseases associated with multiple pathogens.
Furthermore, signals from multiplexing can be quantified. For example, a method of quantification for a disease panel may comprise assaying for a plurality of unique target nucleic acids in a plurality of aliquots from a sample, assaying for a control nucleic acid control in a second aliquot of the sample, and quantifying a plurality of signals of the plurality of unique target nucleic acids by measuring signals produced by cleavage of detector nucleic acids compared to the signal produced in the second aliquot. In this context, a unique target nucleic acid refers to the sequence of a nucleic acid that has an at least one nucleotide difference from the sequences of the other nucleic acids in the plurality. Multiple copies of each target nucleic acid can be present. For example, a unique target nucleic population can comprise multiple copies of the unique target nucleic acid. Often the plurality of unique target nucleic acids is from a plurality of bacterial pathogens in the sample.
In some instances, the multiplexed devices, systems, fluidic devices, kits, and methods detect at least 2 different target nucleic acids in a single reaction. In some instances, the multiplexed devices, systems, fluidic devices, kits, and methods detect at least 3 different target nucleic acids in a single reaction. In some instances, the multiplexed devices, systems, fluidic devices, kits, and methods detect at least 4 different target nucleic acids in a single reaction. In some instances, the multiplexed devices, systems, fluidic devices, kits, and methods detect at least 5 different target nucleic acids in a single reaction. In some cases, the multiplexed devices, systems, fluidic devices, kits, and methods detect at least 6, 7, 8, 9, or 10 different target nucleic acids in a single reaction. In some instances, the multiplexed kits detect at least 2 different target nucleic acids in a single kit. In some instances, the multiplexed kits detect at least 3 different target nucleic acids in a single kit. In some instances, the multiplexed kits detect at least 4 different target nucleic acids in a single kit. In some instances, the multiplexed kits detect at least 5 different target nucleic acids in a single kit. In some instances, the multiplexed kits detect at least 6, 7, 8, 9, or 10 different target nucleic acids in a single kit. In some instances, the multiplexed kits detect from 2 to 10, from 3 to 10, from 4 to 10, from 5 to 10, from 6 to 10, from 7 to 10, from 8 to 10, from 9 to 10, from 2 to 9, from 3 to 9, from 4 to 9, from 5 to 9, from 6 to 9, from 7 to 9, from 8 to 9, from 2 to 8, from 3 to 8, from 4 to 8, from 5 to 8, from 6 to 8, from 7 to 8, from 2 to 7, from 3 to 7, from 4 to 7, from 5 to 7, from 6 to 7, from 2 to 6, from 3 to 6, from 4 to 6, from 5 to 6, from 2 to 5, from 3 to 5, from 4 to 5, from 2 to 4, from 3 to 4, or from 2 to 3 different target nucleic acids in a single kit. Multiplexing can be carried out in a single-pot or “one-pot” reaction, where reverse transcription, amplification, in vitro transcription, or any combination thereof, and detection are carried out in a single volume. Multiplexing can be carried out in a “two-pot reaction”, where reverse transcription, amplification, in vitro transcription, or any combination thereof, are carried out in a first volume and detection is carried out in a second volume.
In some cases, multiplexing can comprise detecting multiple targets with a single probe. Alternatively, multiplexing can comprise detecting multiple targets with multiple probes. The multiple probes can be configured to detect a presence of a particular sequence, target nucleic acid, or a plurality of different target sequences or nucleic acids.
The devices of the present disclosure can be manufactured from a variety of different materials. Exemplary materials that can be used include plastic polymers, such as poly-methacrylate (PMMA), cyclic olefin polymer (COP), cyclic olefin copolymer (COC), polyethylene (PE), high-density polyethylene (HDPE), polypropylene (PP); glass; and silicon. Features of the device (e.g., chambers, channels, etc.) can be manufactured by various processes. For example, the features can be (1) embossed using injection molding, (2) micro-milled or micro-engraved using computer numerical control (CNC) micromachining or non-contact laser drilling (by means of a CO2 laser source); (3) generated using additive manufacturing, and/or (4) generated using one or more photolithographic or stereolithographic methods.
In some embodiments, any of the devices of the present disclosure can comprise a sample interface configured to receive a sample that may comprise at least one gene of interest. The device can further comprise a channel in fluid communication with the sample interface and a detection chamber. In some cases, the channel may comprise one or more movable mechanisms to separate the sample into a plurality of droplets. As used herein, a droplet can refer to a volumetric portion of the sample, a partitioned sub-sample of the sample, and/or an aliquot of the sample. In some cases, the detection chamber is configured to receive and contact the plurality of droplets with at least one programmable nuclease probe disposed on a surface of said detection chamber. The at least one programmable nuclease probe can comprise a guide nucleic acid complexed with a programmable nuclease. In some cases, the programmable nuclease probe may comprise a CRISPR/Cas enzyme. In some cases, the guide nucleic acid may comprise a guide RNA. In some embodiments, the device may comprise a plurality of programmable nuclease probes comprising different guide RNAs.
The device can further comprise a plurality of sensors that determine a presence of said at least one gene of interest by detecting a signal produced upon cleavage of a target nucleic acid region in said at least one gene of interest by said at least one programmable nuclease probe. The cleavage of the target nucleic acid region can occur after a complementary binding of said target nucleic acid region to said guide nucleic acid of said at least one programmable nuclease probe.
As described elsewhere herein, the one or more movable mechanisms can comprise one or more valves configured to restrict flow through one or more sections of the channel. The one or more movable mechanisms can comprise a plunger or a bristle that is configured to restrict flow through one or more sections of the channel. The one or more movable mechanisms can be operatively coupled to a power source that is integrated with or insertable into the device. The power source can comprise a battery.
In some cases, any of the devices described herein may comprise a physical filter to filter one or more particles from the sample that do not comprise the one or more targets (e.g., a gene of interest). In some cases, the device may comprise a sample preparation chamber. The sample preparation chamber can comprise a lysing agent. The sample preparation chamber can comprise a heating unit configured for heat inactivation. The sample preparation chamber can comprise one or more reagents for nucleic acid purification.
In some cases, the channel between the sample interface and the detection chamber may comprise a plurality of heating elements and a plurality of heat sinks for amplifying the at least one gene of interest or a portion thereof. The plurality of heating elements and the plurality of heat sinks can be configured to perform one or more thermocycling operations on the sample or at least a portion of the sample (e.g., the plurality of droplets).
As described elsewhere herein, the signal produced upon cleavage of a target nucleic acid can be associated with a physical, chemical, or electrochemical change or reaction. The signal can comprise an optical signal, a fluorescent or colorimetric signal, a potentiometric or amperometric signal, and/or a piezo-electric signal. In some cases, the signal is associated with a change in an index of refraction of a solid or gel volume in which the at least one programmable nuclease probe is disposed.
In some embodiments, the device may comprise a sample interface configured to receive a sample that may comprise one or more genomic targets of interest. In some cases, the one or more genomic targets of interest comprise a sequence of nucleic acids comprising the nucleic acid.
The device can further comprise one or more channels comprising one or more movable mechanisms to separate the sample into partitioned samples. The one or more channels can be in fluid communication with the sample interface and a reaction chamber that is configured to receive and contact the partitioned samples with an enzyme, reagent, or programmable detection agent that is configured to cleave a nucleic acid of said one or more genomic targets of interest.
The device can further comprise a plurality of sensors for determining a presence of the one or more genomic targets of interest by detecting one or more reporters released by said cleavage of said nucleic acid. The programmable detection agent can be a CRISPR/Cas enzyme. In some cases, the reporter may comprise a nucleic acid and a detection moiety. In some cases, the reporter may comprise at least one ribonucleotide or at least one deoxyribonucleotide. In some cases, the reporter may comprise a DNA nucleic acid or an RNA nucleic acid. The reported molecule can be immobilized on a surface of the detection chamber (i.e., a movement of the reporter can be physically or chemically constrained).
In some cases, the one or more movable mechanisms comprise a plurality of valves configured to restrict flow in a first direction through the one or more channels towards the sample interface. The plurality of valves can be configured to selectively permit flow in a second direction through the one or more channels towards the reaction chamber. A first valve and a second valve of the plurality of valves can be configured to physically, fluidically, or thermally isolate a first portion of the sample from a second portion of the sample when the first valve and the second valve are in a closed state.
The one or more channels can comprise a plurality of heating elements and a plurality of heat sinks to perform thermocycling on the partitioned samples. A first heating element of the plurality of heating elements and a first heat sink of the plurality of heat sinks can be positioned between a first movable mechanism and a second movable mechanism of the one or more movable mechanisms.
In any of the embodiments described herein, the device can further comprise a telemedicine unit configured to provide one or more detection results to a computing unit that is remote from the device. In some embodiments, the telemedicine unit provides one or more detection results to a computing unit that is remote to the device through a cloud-based connection. In some embodiments, the telemedicine unit is HIPAA compliant. In some embodiments, the telemedicine unit transmits encrypted data. The computing unit can comprise a mobile device or a computer. The one or more detection results can indicate a presence or an absence of a target nucleic acid of interest in the sample.
In another aspect, the present disclosure provides a method for target detection. The method can comprise contacting a sample with the device of any of the preceding claims and detecting a presence or an absence of one or more genes of interest in said sample. In some cases, the method can comprise generating one or more detection results indicating the presence or the absence of the one or more genes of interest in the sample. In some cases, the method can comprise transmitting the one or more detection results to a remote computing unit. The remote computing unit can comprise, for example, a mobile device.
In another aspect, the present disclosure provides a method for target detection. The method can comprise providing a sample comprising at least one gene of interest. The method can comprise separating the sample into a plurality of sub-samples using one or more movable mechanisms described herein. The method can comprise receiving the plurality of sub-samples in a detection chamber and contacting the plurality of sub-samples with at least one programmable nuclease probe disposed on a surface of said detection chamber. The at least one programmable nuclease probe can comprise a guide nucleic acid complexed with a programmable nuclease. In some cases, the method can comprise contacting the plurality of sub-samples with a plurality of programmable nuclease probes comprising different guide RNAs. The method can comprise using a plurality of sensors to determine a presence or an absence of said at least one gene of interest by detecting a signal produced upon cleavage of a target nucleic acid region in said at least one gene of interest by said at least one programmable nuclease probe.
In some cases, the method can further comprise amplifying the at least one gene of interest after separating the sample into a plurality of sub-samples. In some cases, the method can further comprise amplifying the at least one gene of interest before mixing the plurality of sub-samples in the detection chamber. Amplifying the at least one gene of interest can comprise using a plurality of heating elements and a plurality of heat sinks to perform thermocycling on the plurality of sub-samples.
In some cases, the method can comprise using a physical filter to filter one or more particles from the sample that do not comprise the one or more target genes of interest. In some cases, the method can comprise lysing the sample before detecting the one or more target genes of interest. In some cases, the method can comprise performing heat inactivation on the sample. In some cases, the method can comprise performing nucleic acid purification on the sample.
In some cases, the detection devices described herein can be configured to implement process control procedures to ensure that the sample preparation, target amplification, and target detection processes are performed accurately and as intended.
Described herein are various embodiments, for point of need (PON) programmable nuclease-based devices. In some embodiments, the PON device is configured for a 5-plex respiratory panel as shown in
Described herein are various Point-of-need (PON) diagnostics that can rapidly identify causes of ailments on location where needed by patients. In some embodiments, disposable PON devices can be manufactured and delivered to the user in a sterile condition to help fill this need. However, in some embodiments, transferring assays from the lab to a point-of-need device can be a challenge. In some embodiments, integrating a fluidic system capable of delivering rapid, reliable, and easy to interpret results while still being disposable is especially challenging.
Disclosed herein are various embodiments of methods, devices, and compositions for a disposable fluidic workflow. In some embodiments, the workflow method may comprise: (1) sample collection from the patient and delivery to the device, (2) lysis, (3) amplification, and (4) detection/readout. In some embodiments, any of the disposable fluidic devices described herein, may comprise an exterior housing and an interior control printed circuit board (PCB) on which to mount sub-components. In some embodiments, such subcomponents may comprise a swab to collect a sample from patient, a mechanism for extracting sample from the swab (e.g., a scraper), fluidics configured to move the sample within the device, one or more sample chambers, one or more reagent storage bags or chambers, amplification mechanisms, detectors, valves and heating elements. In some embodiments, described herein, valves may be rotary valves capable of diverting sample to and from one chamber or channel to multiple other chambers or channels.
The present disclosure provides various devices, systems, fluidic devices, and kits for rapid tests, which may quickly assess whether a target nucleic acid is present in a sample by using a programmable nuclease that can interact with functionalized surfaces of the fluidic systems to generate a detectable signal. For example, disclosed herein are particular microfluidic devices, lateral flow devices, sample preparation devices, and compositions (e.g., programmable nucleases, guide RNAs, reagents for in vitro transcription, amplification, reverse transcription, and reporters, or any combination thereof) for use in said devices that are particularly well suited to carry out a highly efficient, rapid, and accurate reactions for detecting the presence of a target nucleic acid (e.g., a DETECTR reaction). The systems and programmable nucleases disclosed herein can be used as a companion diagnostic with any of the diseases disclosed herein (e.g., RSV, sepsis, flu, COVID-19), or can be used in reagent kits, point-of-care diagnostics, or over-the-counter diagnostics. The systems may be used as a point of care diagnostic or as a lab test for detection of a target nucleic acid and, thereby, detection of a condition, for example, in a subject from which the sample was taken. The systems may be used in various sites or locations, such as in laboratories, in hospitals, in physician offices/laboratories (POLs), in clinics, at remotes sites, or at home. Sometimes, the present disclosure provides various devices, systems, fluidic devices, and kits for consumer genetic use or for over-the-counter use.
Guide nucleic acids are compatible for use in the devices described herein (e.g., pneumatic valve devices, sliding valve devices, rotating valve devices, and lateral flow devices) and may be used in conjunction with compositions disclosed herein (e.g., programmable nucleases, reagents for in vitro transcription, reagents for amplification, reagents for reverse transcription, and reporters, or any combination thereof) to carry out highly efficient, rapid, and accurate reactions for detecting whether a target nucleic acid is present in a sample (e.g., DETECTR reactions). The guide nucleic acid binds to the single stranded target nucleic acid comprising a portion of a nucleic acid from a virus or a bacterium or other agents responsible for a disease as described herein. The guide nucleic acid can bind to the single stranded target nucleic acid comprising a portion of a nucleic acid from a bacterium or other agents responsible for a disease as described herein and further comprising a mutation, such as a single nucleotide polymorphism (SNP), which can confer resistance to a treatment, such as antibiotic treatment. The guide nucleic acid binds to the single stranded target nucleic acid comprising a portion of a nucleic acid from a cancer gene or gene associated with a genetic disorder as described herein. The guide nucleic acid is complementary to the target nucleic acid. Often the guide nucleic acid binds specifically to the target nucleic acid. The target nucleic acid may be a RNA, DNA, or synthetic nucleic acids. A guide nucleic acid can comprise a sequence that is reverse complementary to the sequence of a target nucleic acid. A guide nucleic acid can be a crRNA. Sometimes, a guide nucleic acid may comprise a crRNA and tracrRNA. The guide nucleic acid can bind specifically to the target nucleic acid. In some cases, the guide nucleic acid is not naturally occurring and made by artificial combination of otherwise separate segments of sequence. Often, the artificial combination is performed by chemical synthesis, by genetic engineering techniques, or by the artificial manipulation of isolated segments of nucleic acids. The target nucleic acid can be designed and made to provide desired functions. In some cases, the targeting region of a guide nucleic acid is 20 nucleotides in length. The targeting region of the guide nucleic acid may have a length of at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. In some instances, the targeting region of the guide nucleic acid is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. In some cases, the targeting region of a guide nucleic acid has a length from exactly or about 12 nucleotides (nt) to about 80 nt, from about 12 nt to about 50 nt, from about 12 nt to about 45 nt, from about 12 nt to about 40 nt, from about 12 nt to about 35 nt, from about 12 nt to about 30 nt, from about 12 nt to about 25 nt, from about 12 nt to about 20 nt, from about 12 nt to about 19 nt, from about 19 nt to about 20 nt, from about 19 nt to about 25 nt, from about 19 nt to about 30 nt, from about 19 nt to about 35 nt, from about 19 nt to about 40 nt, from about 19 nt to about 45 nt, from about 19 nt to about 50 nt, from about 19 nt to about 60 nt, from about 20 nt to about 25 nt, from about 20 nt to about 30 nt, from about 20 nt to about 35 nt, from about 20 nt to about 40 nt, from about 20 nt to about 45 nt, from about 20 nt to about 50 nt, or from about 20 nt to about 60 nt. In some cases, the targeting region of a guide nucleic acid has a length of from about 10 nt to about 60 nt, from about 20 nt to about 50 nt, or from about 30 nt to about 40 nt. In some cases, the targeting region of a guide nucleic acid has a length of from 15 nt to 55 nt, from 25 nt to 55 nt, from 35 nt to 55 nt, from 45 nt to 55 nt, from 15 nt to 45 nt, from 25 nt to 45 nt, from 35 nt to 45 nt, from 15 nt to 35 nt, from 25 nt to 35 nt, or from 15 nt to 25 nt. It is understood that the sequence of a polynucleotide need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable or hybridizable or bind specifically. The guide nucleic acid can have a sequence comprising at least one uracil in a region from nucleic acid residue 5 to 20 that is reverse complementary to a modification variable region in the target nucleic acid. The guide nucleic acid, in some cases, has a sequence comprising at least one uracil in a region from nucleic acid residue 5 to 9, 10 to 14, or 15 to 20 that is reverse complementary to a modification variable region in the target nucleic acid. The guide nucleic acid can have a sequence comprising at least one uracil in a region from nucleic acid residue 5 to 20 that is reverse complementary to a methylation variable region in the target nucleic acid. The guide nucleic acid, in some cases, has a sequence comprising at least one uracil in a region from nucleic acid residue 5 to 9, 10 to 14, or 15 to 20 that is reverse complementary to a methylation variable region in the target nucleic acid.
The guide nucleic acid can be selected from a group of guide nucleic acids that have been tiled against the nucleic acid of a strain of an infection or genomic locus of interest. The guide nucleic acid can be selected from a group of guide nucleic acids that have been tiled against the nucleic acid of a strain of HPV 16 or HPV 18. Often, guide nucleic acids that are tiled against the nucleic acid of a strain of an infection or genomic locus of interest can be pooled for use in a method described herein. Often, these guide nucleic acids are pooled for detecting a target nucleic acid in a single assay. The pooling of guide nucleic acids that are tiled against a single target nucleic acid can enhance the detection of the target nucleic using the methods described herein. The pooling of guide nucleic acids that are tiled against a single target nucleic acid can ensure broad coverage of the target nucleic acid within a single reaction using the methods described herein. The tiling, for example, is sequential along the target nucleic acid. Sometimes, the tiling is overlapping along the target nucleic acid. In some instances, the tiling may comprise gaps between the tiled guide nucleic acids along the target nucleic acid. In some instances, the tiling of the guide nucleic acids is non-sequential. Often, a method for detecting a target nucleic acid may comprise contacting a target nucleic acid to a pool of guide nucleic acids and a programmable nuclease, wherein a guide nucleic acid of the pool of guide nucleic acids has a sequence selected from a group of tiled guide nucleic acid that is reverse complementary to a sequence of a target nucleic acid; and assaying for a signal produce by cleavage of at least some detector nucleic acids of a population of detector nucleic acids. Pooling of guide nucleic acids can ensure broad spectrum identification, or broad coverage, of a target species within a single reaction. This can be particularly helpful in diseases or indications, like sepsis, that may be caused by multiple organisms.
Reporters, which can be referred to interchangeably reporters, or detector nucleic acids, described herein are compatible for use in the devices described herein (e.g., pneumatic valve devices, sliding valve devices, rotating valve devices, and lateral flow devices) and may be used in conjunction with compositions disclosed herein (e.g., programmable nucleases, guide nucleic acids, reagents for in vitro transcription, reagents for amplification, reagents for reverse transcription, reporters, or any combination thereof) to carry out highly efficient, rapid, and accurate reactions for detecting whether a target nucleic acid is present in a sample (e.g., DETECTR reactions). Described herein is a reporter comprising a single stranded detector nucleic acid comprising a detection moiety, wherein the reporter is capable of being cleaved by the activated programmable nuclease, thereby generating a first detectable signal. As used herein, a detector nucleic acid is used interchangeably with reporter or reporter. In some cases, the detector nucleic acid is a single-stranded nucleic acid comprising deoxyribonucleotides. In other cases, the detector nucleic acid is a single-stranded nucleic acid comprising ribonucleotides. The detector nucleic acid can be a single-stranded nucleic acid comprising at least one deoxyribonucleotide and at least one ribonucleotide. In some cases, the detector nucleic acid is a single-stranded nucleic acid comprising at least one ribonucleotide residue at an internal position that functions as a cleavage site. In some cases, the detector nucleic acid may comprise at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 ribonucleotide residues at an internal position. In some cases, the detector nucleic acid may comprise from 2 to 10, from 3 to 9, from 4 to 8, or from 5 to 7 ribonucleotide residues at an internal position. In some cases, the detector nucleic acid may comprise from 3 to 10, from 4 to 10, from 5 to 10, from 6 to 10, from 7 to 10, from 8 to 10, from 9 to 10, from 2 to 8, from 3 to 8, from 5 to 8, from 6 to 8, from 7 to 8, from 2 to 5, from 3 to 5, or from 4 to 5 ribonucleotide residues at an internal position. Sometimes the ribonucleotide residues are continuous. Alternatively, the ribonucleotide residues are interspersed in between non-ribonucleotide residues. In some cases, the detector nucleic acid has only ribonucleotide residues. In some cases, the detector nucleic acid has only deoxyribonucleotide residues. In some cases, the detector nucleic acid may comprise nucleotides resistant to cleavage by the programmable nuclease described herein. In some cases, the detector nucleic acid may comprise synthetic nucleotides. In some cases, the detector nucleic acid may comprise at least one ribonucleotide residue and at least one non-ribonucleotide residue. In some cases, the detector nucleic acid is 5-20, 5-15, 5-10, 7-20, 7-15, or 7-10 nucleotides in length. In some cases, the detector nucleic acid is from 3 to 20, from 4 to 20, from 5 to 20, from 6 to 20, from 7 to 20, from 8 to 20, from 9 to 20, from 10 to 20, from 15 to 20, from 3 to 15, from 4 to 15, from 5 to 15, from 6 to 15, from 7 to 15, from 8 to 15, from 9 to 15, from 10 to 15, from 3 to 10, from 4 to 10, from 5 to 10, from 6 to 10, from 7 to 10, from 8 to 10, from 9 to 10, from 3 to 8, from 4 to 8, from 5 to 8, from 6 to 8, or from 7 to 8 nucleotides in length. In some cases, the detector nucleic acid may comprise at least one uracil ribonucleotide. In some cases, the detector nucleic acid may comprise at least two uracil ribonucleotides. Sometimes the detector nucleic acid has only uracil ribonucleotides. In some cases, the detector nucleic acid may comprise at least one adenine ribonucleotide. In some cases, the detector nucleic acid may comprise at least two adenine ribonucleotide. In some cases, the detector nucleic acid has only adenine ribonucleotides. In some cases, the detector nucleic acid may comprise at least one cytosine ribonucleotide. In some cases, the detector nucleic acid may comprise at least two cytosine ribonucleotide. In some cases, the detector nucleic acid may comprise at least one guanine ribonucleotide. In some cases, the detector nucleic acid may comprise at least two guanine ribonucleotide. A detector nucleic acid can comprise only unmodified ribonucleotides, only unmodified deoxyribonucleotides, or a combination thereof. In some cases, the detector nucleic acid is from 5 to 12 nucleotides in length. In some cases, the detector nucleic acid is at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. In some cases, the detector nucleic acid is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. For cleavage by a programmable nuclease comprising Cas13, a detector nucleic acid can be 5, 8, or 10 nucleotides in length. For cleavage by a programmable nuclease comprising Cas12, a detector nucleic acid can be 10 nucleotides in length.
The devices, systems, fluidic devices, kits, and methods for detecting the presence of a target nucleic acid in a sample described herein may comprise a generation of a signal indicative of the presence or absence of the target nucleic acid in the sample. The generation of a signal indicative of the presence or absence of the target nucleic acid in the sample as described herein is compatible with the methods and devices described herein (e.g., pneumatic valve devices, sliding valve devices, rotating valve devices, and lateral flow devices) and may result from the use of compositions disclosed herein (e.g. programmable nucleases, guide nucleic acids, reagents for in vitro transcription, reagents for amplification, reagents for reverse transcription, reporters, or any combination thereof) to carry out highly efficient, rapid, and accurate reactions for detecting whether a target nucleic acid is present in a sample (e.g., DETECTR reactions). As disclosed herein, in some embodiments, detecting the presence or absence of a target nucleic acid of interest involves measuring a signal emitted from a detection moiety present in a reporter, after cleavage of the reporter by an activated programmable nuclease. Alternatively, or in combination, in some embodiments, detecting the presence or absence of a target nucleic acid of interest involves measuring a signal emitted from a conjugate bound to a detection moiety present in a reporter, after cleavage of the reporter by an activated programmable nuclease. The conjugates may comprise a nanoparticle, a gold nanoparticle, a latex nanoparticle, a quantum dot, a chemiluminescent nanoparticle, a carbon nanoparticle, a selenium nanoparticle, a fluorescent nanoparticle, a liposome, or a dendrimer. The surface of the conjugate may be coated by a conjugate binding molecule that binds to the detection moiety or another affinity molecule of the cleaved detector molecule as described herein. Thus, the detecting steps disclosed herein involve indirectly (e.g., via a reporter) measuring the presence of a target nucleic acid, quantifying how much of the target nucleic acid is present, or, measuring a signal indicating that the target nucleic acid is absent in a sample. In some embodiments, a signal is generated upon cleavage of the detector nucleic acid by the programmable nuclease. In other embodiments, the signal changes upon cleavage of the detector nucleic acid by the programmable nuclease. In other embodiments, a signal may be present in the absence of detector nucleic acid cleavage and disappear upon cleavage of the target nucleic acid by the programmable nuclease. For example, a signal may be produced in a microfluidic device or lateral flow device after contacting a sample with a composition comprising a programmable nuclease.
The reagents described herein can also include buffers, which are compatible with the devices, systems, fluidic devices, kits, and methods disclosed herein. The buffers described herein are compatible for use in the devices described herein (e.g., pneumatic valve devices, sliding valve devices, rotating valve devices, and lateral flow devices) and may be used in conjunction with compositions disclosed herein (e.g., programmable nucleases, guide nucleic acids, reagents for in vitro transcription, reagents for amplification, reagents for reverse transcription, reporters, or any combination thereof) to carry out highly efficient, rapid, and accurate reactions for detecting whether the target nucleic acid is in the sample (e.g., DETECTR reactions). These buffers are compatible with the other reagents, samples, and support mediums as described herein for detection of an ailment, such as a disease, cancer, or genetic disorder, or genetic information, such as for phenotyping, genotyping, or determining ancestry. The methods described herein can also include the use of buffers, which are compatible with the methods disclosed herein. For example, a buffer may comprise HEPES, MES, TCEP, EGTA, Tween 20, KCl, MgCl2, glycerol, or any combination thereof. In some instances, a buffer may comprise Tris-HCl pH 8.8, VLB, EGTA, CH3COOH, TCEP, IsoAmp, (NH4)2SO4, KCl, MgSO4, Tween20, KOAc, MgOAc, BSA, TCEP, or any combination thereof. In some instances the buffer may comprise from 0 to 100, 0 to 75, 0 to 50, 0 to 25, 0 to 20, 0 to 10, 0 to 5, 5 to 10, 5 to 15, 5 to 20, 5 to 25, to 30, 5 to 40, 5 to 50, 5 to 75, 5 to 100, 10 to 20, 10 to 30, 10 to 40, 10 to 50, 15 to 20, 15 to 25, 15 to 30, 15 to 4, 15 to 50, 20 to 25, 20 to 30, 20 to 40, or 20 to 50 mM HEPES pH 6.8. The buffer can comprise to 0 to 500, 0 to 400, 0 to 300, 0 to 250, 0 to 200, 0 to 150, 0 to 100, 0 to 75, 0 to 50, 0 to 25, 0 to 20, 0 to 10, 0 to 5, 5 to 10, 5 to 15, 5 to 20, 5 to 25, to 30, 5 to 40, 5 to 50, 5 to 75, 5 to 100, 5 to 150, 5 to 200, 5 to 250, 5 to 300, 5 to 400, 5 to 500, 25 to 50, 25 to 75, 25 to 100, 50 to 100, 50 150, 50 to 200, 50 to 250, 50 to 300, 100 to 200, 100 to 250, 100 to 300, or 150 to 250 mM KCl. In other instances the buffer may comprise 0 to 100, 0 to 75, 0 to 50, 0 to 25, 0 to 20, 0 to 10, 0 to 5, 5 to 10, 5 to 15, 5 to 20, 5 to 25, to 30, 5 to 40, 5 to 50, 5 to 75, 5 to 100, 10 to 20, 10 to 30, 10 to 40, 10 to 50, 15 to 20, 15 to 25, 15 to 30, 15 to 4, 15 to 50, 20 to 25, 20 to 30, 20 to 40, or 20 to 50 mM MgCl2. The buffer can comprise 0 to 25, 0 to 20, 0 to 10, 0 to 5, 5 to 10, 5 to 15, 5 to 20, 5 to 25, 5 to 30% glycerol. The buffer can comprise from 0% to 30%, from 5% to 30%, from 10% to 30%, from 15% to 30%, from 20% to 30%, from 25% to 30%, from 0% to 25%, from 2% to 25%, from 5% to 25%, from 10% to 25%, from 15% to 25%, from 20% to 25%, from 0% to 20%, from 5% to 20%, from 10% to 20%, from 15% to 20%, from 0% to 15%, from 5% to 15%, from 10% to 15%, from 0% to 10%, from 5% to 10%, or from 0% to 5% glycerol. The buffer can comprise to 0 to 500, 0 to 400, 0 to 300, 0 to 250, 0 to 200, 0 to 150, 0 to 100, 0 to 75, 0 to 50, 0 to 25, 0 to 20, 0 to 10, 0 to 5, 5 to 10, 5 to 15, 5 to 20, 5 to 25, to 30, 5 to 40, 5 to 50, 5 to 75, 5 to 100, 5 to 150, 5 to 200, 5 to 250, 5 to 300, 5 to 400, 5 to 500, 25 to 50, 25 to 75, 25 to 100, 50 to 100, 50 150, 50 to 200, 50 to 250, 50 to 300, 100 to 200, 100 to 250, 100 to 300, or 150 to 250 mM Tris-HCl pH 8.8. The buffer can comprise to 0 to 500, 0 to 400, 0 to 300, 0 to 250, 0 to 200, 0 to 150, 0 to 100, 0 to 75, 0 to 50, 0 to 25, 0 to 20, 0 to 10, 0 to 5, 5 to 10, 5 to 15, 5 to 20, 5 to 25, to 30, 5 to 40, 5 to 50, 5 to 75, 5 to 100, 5 to 150, 5 to 200, 5 to 250, 5 to 300, 5 to 400, 5 to 500, 25 to 50, 25 to 75, 25 to 100, 50 to 100, 50 150, 50 to 200, 50 to 250, 50 to 300, 100 to 200, 100 to 250, 100 to 300, or 150 to 250 mM KOAc. The buffer can comprise to 0 to 500, 0 to 400, 0 to 300, 0 to 250, 0 to 200, 0 to 150, Oto 100, 0 to 75, 0 to 50, 0 to 25, 0 to 20, 0 to 10, 0 to 5, 5 to 10, 5 to 15, 5 to 20, 5 to 25, to 30, 5 to 40, 5 to 50, 5 to 75, 5 to 100, 5 to 150, 5 to 200, 5 to 250, 5 to 300, 5 to 400, 5 to 500, 25 to 50, 25 to 75, 25 to 100, 50 to 100, 50 150, 50 to 200, 50 to 250, 50 to 300, 100 to 200, 100 to 250, 100 to 300, or 150 to 250 mM MgOAc. In some instances the buffer may comprise from 0 to 100, 0 to 75, 0 to 50, 0 to 25, 0 to 20, 0 to 10, 0 to 5, 5 to 10, 5 to 15, 5 to 20, 5 to 25, to 30, 5 to 40, 5 to 50, 5 to 75, 5 to 100, 10 to 20, 10 to 30, 10 to 40, 10 to 50, 15 to 20, 15 to 25, 15 to 30, 15 to 4, 15 to 50, 20 to 25, 20 to 30, 20 to 40, or 20 to 50 mM EGTA. The buffer can comprise from 0% to 30%, from 5% to 30%, from 10% to 30%, from 15% to 30%, from 20% to 30%, from 25% to 30%, from 0% to 25%, from 2% to 25%, from 5% to 25%, from 10% to 25%, from 15% to 25%, from 20% to 25%, from 0% to 20%, from 5% to 20%, from 10% to 20%, from 15% to 20%, from 0% to 15%, from 5% to 15%, from 10% to 15%, from 0% to 10%, from 5% to 10%, or from 0% to 5% Tween 20.
In some embodiments, a sliding valve device may comprise a first chamber for sample lysis, a second chamber for detection, and a third chamber for amplification. Another way of referring to these chambers is a sample chamber (e.g., the first chamber), a detection chamber (e.g., the second chamber), and an amplification chamber (e.g., the third chamber). In this layout, the present disclosure provides a device for measuring a signal which may comprise: a sliding layer comprising a channel with an opening at a first end of the channel and an opening at a second end of the channel; and a fixed layer comprising: i) a first chamber having an opening; ii) a second chamber having an opening, wherein the second chamber may comprise a programmable nuclease and a reporter comprising a nucleic acid and a detection moiety; iii) a first side channel having an opening aligned with the opening of the first chamber; and iv) a second side channel having an opening aligned with the opening of the second chamber, wherein the sliding layer and the fixed layer move relative to each other to fluidically connect the first chamber and the first side channel via the opening at the first end of the channel, the opening at the second end of the channel, the opening of the first chamber, and the opening of the first side channel, and wherein the sliding layer and the fixed layer move relative to each other to fluidically connect the second chamber and the second side channel via the opening at the first end of the channel, the opening at the second end of the channel, the opening of the second chamber, and the opening of the second side channel. The fixed layer further may comprise i) a third chamber having an opening; and ii) a third side channel having an opening aligned with the opening of the third chamber, wherein the sliding layer and the fixed layer move relative to each other to fluidically connect the third chamber and the third side channel via the opening at the first end of the channel, the opening at the second end of the channel, the opening of the third chamber, and the opening of the third side channel. The second chamber is coupled to a measurement device for measuring the signal from the detection moiety produced by cleavage of the nucleic acid of the reporter. Additionally, the opening of the first end of the channel overlaps with the opening of the first chamber and the opening of the second end of the channel overlaps with the opening of the first side channel. The opening of the first end of the channel overlaps with the opening of the second chamber and the opening of the second end of the channel overlaps with the opening of the second side channel. The opening of the first end of the channel overlaps with the opening of the third chamber and the opening of the second end of the channel overlaps with the opening of the third channel. Additionally, the first side channel, the second side channel, and the third side channel are fluidically connected to a mixing chamber. In this embodiment, the second chamber additionally includes a guide nucleic acid.
In another embodiment, a sliding valve device may comprise a first chamber for sample lysis and a second chamber for detection. Another way of referring to these chambers is a sample chamber (e.g., the first chamber) and a detection chamber. In this layout, the present disclosure provides a device for measuring a signal may comprise: a sliding layer comprising a channel with an opening at a first end of the channel and an opening at a second end of the channel; and a fixed layer comprising: i) a first chamber having an opening; ii) a second chamber having an opening, wherein the second chamber may comprise a programmable nuclease and a reporter comprising a nucleic acid and a detection moiety; iii) a first side channel having an opening aligned with the opening of the first chamber; and iv) a second side channel having an opening aligned with the opening of the second chamber, wherein the sliding layer and the fixed layer move relative to each other to fluidically connect the first chamber and the first side channel via the opening at the first end of the channel, the opening at the second end of the channel, the opening of the first chamber, and the opening of the first side channel, and wherein the sliding layer and the fixed layer move relative to each other to fluidically connect the second chamber and the second side channel via the opening at the first end of the channel, the opening at the second end of the channel, the opening of the second chamber, and the opening of the second side channel. The second chamber is coupled to a measurement device for measuring the signal from the detection moiety produced by cleavage of the nucleic acid of the reporter. Additionally, the opening of the first end of the channel overlaps with the opening of the first chamber and the opening of the second end of the channel overlaps with the opening of the first side channel. The opening of the first end of the channel overlaps with the opening of the second chamber and the opening of the second end of the channel overlaps with the opening of the second side channel. Additionally, the first side channel and the second side channel are fluidically connected to a mixing chamber. In this embodiment, the second chamber additionally includes a guide nucleic acid.
In some embodiments, the DETECTR assay relies on fluorescence-based detection. In certain embodiments, the DETECTR assay relies on electrochemical-based detection. Electrochemical-based assays have been found to have a lower limit of detection than fluorescence-based assays by roughly two orders of magnitude (Lou et al., 2015).
In some embodiments, electrochemical probes are incorporated into the DETECTR assay to achieve a lower limit of detection. For example, the following electrochemical probe may comprise: 5′-2XXTTATTXX-3′, where 2=5′ 6-FAM; X=ferrocene dT; and 3′=3′ Biotin TEG, where TEG is a 15 atom triethylene glycol spacer. In some embodiments, electrochemical probes are tested with cyclic voltammetry. In some embodiments, electrochemical probes are tested with square wave voltammetry. In some embodiments, a DropSens pSTAT ECL instrument is used for electrochemical measurements. In some embodiments, DropSens screen-printed carbon electrodes are used for electrochemical measurements.
In certain embodiments, described herein DETECTR has been demonstrated to be a powerful technology for detection of pathogens such as SARS-CoV-2 (Broughton et al., 2020). In some embodiments, electrochemical probes are utilized in the DETECTR assay for detection of pathogens. In some embodiments, the electrochemical probe-based DETECTR assay is configured for detection of the pathogen SARS-CoV-2. In some embodiments, the electrochemical probe is 5′-2XXTTATTXX-3′, where 2=5′ 6-FAM; X=ferrocene dT; and 3=3′ BiotinTEG.
CRISPR diagnostic reactions are generally performed in solution where the Cas protein-RNA complexes can freely bind target molecules and reporters. However, reactions where all components are in solution limit the designs of CRISPR diagnostic assays, especially in microfluidic devices. A system where various components of the CRISPR diagnostic reaction are immobilized on a surface enables designs where multiple readouts can be accomplished within a single reaction chamber.
Described herein are various methods to immobilize CRISPR diagnostic reaction components to the surface of a reaction chamber or other surface (e.g., a surface of a bead). Any of the devices described herein may comprise one or more immobilized detection reagent components (e.g., programmable nuclease, guide nucleic acid, and/or reporter). In certain instances, methods include immobilization of programmable nucleases (e.g., Cas proteins or Cas enzymes), reporters, and guide nucleic acids (e.g., gRNAs). In some embodiments, various CRISPR diagnostic reaction components are modified with biotin. In some embodiments, these biotinylated CRISPR diagnostic reaction components are tested for immobilization on surfaces coated with streptavidin. In some embodiments, the biotin-streptavidin interaction is used as a model system for other immobilization chemistries.
Mammuthus primigenius
For some embodiments, described herein,
In some embodiments, the programmable nuclease, guide nucleic acid, or the reporter are immobilized to a device surface by a linkage or linker. In some embodiments, the linkage comprises a covalent bond, a non-covalent bond, an electrostatic bond, a bond between streptavidin and biotin, an amide bond or any combination thereof. In some embodiments, the linkage comprises non-specific absorption. In some embodiments, the programmable nuclease is immobilized to the device surface by the linkage, wherein the linkage is between the programmable nuclease and the surface. In some embodiments, the reporter is immobilized to the device surface by the linkage, wherein the linkage is between the reporter and the surface. In some embodiments, the guide nucleic acid is immobilized to the surface by the linkage, wherein the linkage is between the 5′ end of the guide nucleic acid and the surface. In some embodiments, the guide nucleic acid is immobilized to the surface by the linkage, wherein the linkage is between the 3′ end of the guide nucleic acid and the surface.
In some embodiments, various chemical modifications to gRNAs are described as shown in
In some embodiments, the immobilization of gRNAs to a streptavidin surface are described as shown in
In some embodiments, Cas proteins are complexed with RNA complexes as described herein and shown in
In some embodiments, reporters are immobilized to the surface as shown in
In some embodiments, combined RNP and a reporter system are immobilized for functional testing as shown in
In some embodiments, different reporters are immobilized in combination with Cas complexes on a streptavidin surface for evaluation of the DETECTR assay.
In some embodiments, Cy5 dye may be used as a reporter or a component of a reporter.
In some embodiments, gRNAs are modified. In some embodiments, the modified gRNAs are modified with linker molecules for immobilization onto a surface.
In some embodiments, guide RNAs are modified for surface modification. In some embodiments, reporters are modified for surface immobilization. In these embodiments, an immobilized gRNA, or immobilized reporter or a combination thereof participate in a diagnostic assay including a programmable nuclease.
In some embodiments, biomolecules are immobilized to surfaces. In some embodiments, the surfaces were glass.
Experimental parameters for the preparation of an embodiment of a complexing mix are seen in
In some embodiments, fluorescent quencher-based reporters are used in the immobilized DETECTR assay.
Described herein are various embodiments, where both the gRNA and reporter are bound to a plate as opposed to the gRNA, reporter and CAS protein. This removes the need to functionalize the surface with the pre-complex of gRNA and CAS protein, allowing for an easier manufacturing process. Additionally, greater specificity can be achieved by allowing for more stringent washes. An experimental design of this embodiment and conditions for binding a reporter to a plate in this embodiment are seen in
Described herein are various embodiments, that demonstrate target discrimination for immobilized reporters for the DETECTR reaction. An experiment design for such an embodiment is shown in
In some embodiments, a pneumatic pump interfaces with the cartridge. In some embodiments, as shown in a top down view, in the middle of
In some embodiments, the DETECTR assay device may comprise a sliding valve as seen in
In some embodiments, NHS-Amine chemistry is used for immobilization of DETECTR components.
In some embodiments, different combinations of reporter+guide+Cas12M08 are immobilized.
The results for optimizing gRNA and target concentrations to improve single-to-noise ratio for immobilized DETECTR assay are shown in
In some embodiments, amino modifications are used for DETECTR immobilization.
In some embodiments, rapid thermocycling and CRISPR diagnostics are used to detect SARS-CoV-2. Results are shown in
The top enzymes and buffers identified previously at various concentrations and with multiple replicates were tested for the FASTR assay. In some embodiments, the best performing enzymes and buffers as identified in the previously disclosed screening studies were used. Results of such embodiments are shown in
For some embodiments, single copy detection of SARS-CoV-2 with FASTR assay has been demonstrated as shown in
Variations on Across some embodiments, rapid cycling times are varied to evaluate denaturation and annealing/extension for the FASTR assay. Results for such embodiments are shown in
For some embodiments, the FASTR assay compatibility with crude lysis buffers was investigated. Results are shown in
For some embodiments non-optimized multiplexing of FASTR was demonstrated as shown in
In various aspects described herein, FASTR can be used for multiplexed detection, as shown in
In some embodiments, the FASTR assay enables multiplexed detection. Results of a limit of detection (LOD) study of such embodiments are shown in
In some embodiments, key primers and gRNAs have the sequences as listed in
Described herein are various methods of sample preparation and reagent storage. Any of the devices described herein may comprise one or more sample preparation reagents Any of the devices described herein may comprise sample preparation reagents as dried reagents. Dried reagents may comprise solids and/or semi-solids. In certain instances, dried reagents may comprise lyophilized reagents. Any of the devices described herein may comprise one or more lyophilized reagents (e.g., amplification reagents, programmable nucleases, buffers, excipients, etc.). In certain instances, methods include sample lysis, concentration, and/or filtration. In certain instances, methods include reconstitution of one or more lyophilized reagents. In some embodiments, lyophilized reagents may be in the form of lyophilized beads, spheres, and/or particulates. In some embodiments, the lyophilized bead, sphere, and/or particulate may comprise either single or multiple compounds. In some embodiments, the lyophilized bead, sphere, and/or particulate may be adjusted to various moisture levels or hygroscopy. In some embodiments, the lyophilized bead, sphere, and/or particulate may comprise assay internal standards. In some embodiments, the lyophilized bead, sphere, and/or particulate may have diameters between about 0.5 millimeters to about 5 millimeters in diameter.
Described herein are various embodiments of the DETECTR reaction involving optimization of sample preparation and lyophilization. Such embodiments allow for adapting the buffer for binding a substrate to perform a concentration step. In some embodiments, experiments may be performed to evaluate the lysis (sample is evaluated directly in the assay) and binding (the sample is eluted from magnetic beads) characteristics of buffers with different components. In such embodiments, the input sample is the same concentration as the eluted sample. Results showing strong lysis activity, but minimal binding/concentration potential are shown in
In some embodiments, crude lysis buffer is used in a one-pot assay with Cas14a.1. Results can be seen in
In some embodiments, the enzyme Cas12MO8 is used with the DETECR assay. In some embodiments, the sequence of Cas12MO8 is:
For some embodiments, two groups of conditions were evaluated for lyophilization performance. For one embodiment, Group I, Trehalose is used.
In another embodiment, Group II comprising: PVP 40; sorbitol; Mannitol; and Mannosse are used.
In some embodiments, Trehalose is used to control the rate of the reaction.
Described herein are various methods and devices for carrying out DETECTR assays. In some embodiments, DETECTR assays utilize the Cas12M08 protein. In some embodiments, RT-LAMP and DETECTR master mixes of reagents are lyophilized in the same combined master mix. In some embodiments, RT-LAMP and DETECTR master mixes of reagents and target are lyophilized in the same combined master mix.
In some embodiments, the reagents and target from both the RT-LAMP and DETECTR assays were lyophilized in one sample.
In some embodiments, the sample mixtures include multiple target molecules. In some embodiments, the sample mixtures contain multiple copies of nucleic acid targets. In some embodiments, the 1000 copies (cps) of the nucleic acid target are present in one sample. In the legends on the right-hand sides of
In some embodiments, a master mix of assay reagents are reconstituted after lyophilization. In some embodiments, a master mix of DETECTR assay reagents are reconstituted after lyophilization. In some embodiments, a master mix of DETECTR assay reagents, including Cas12M08 protein are reconstituted after lyophilization. In some embodiments, a master mix of amplification and DETECTR assay reagents, including Cas12M08 protein are reconstituted after lyophilization. In some embodiments, a master mix of RT-LAMP and DETECTR assay reagents, including Cas12M08 protein are reconstituted after lyophilization. The results of a reconstituted lyophilized Cas12M08 DETECTR master mix are shown in
In some embodiments, the master mix of reagents and target for one assay is lyophilized. In some embodiments, the master mixes from more than one assay are pooled and lyophilized. In some embodiments, a duration of time occurs between mixing and lyophilization.
In some embodiments, lyophilized master mixes of reagents from more than one assay are prepared in volumes of less than 1 mL. In some embodiments, lyophilized master mixes of reagents from more than one assay are prepared in volumes of less than 250 uL. In some embodiments, lyophilized master mixes of reagents from more than one assay are prepared in volumes of less than 25 uL. In some embodiments, lyophilized master mixes of reagents from more than one assay are prepared in volumes of less than 10 uL.
In some embodiments, lyophilized master mixes of assay reagents are analyzed by dynamic scanning calorimetry (DSC).
In some embodiments, an excipient is used to stabilize the sample throughout the lyophilization process that may comprise freezing and drying steps.
In some embodiments, the hygroscopicity of enzymes and reagents is optimized to improve lyophilization performance.
LAMP Amplification with Cas14a DETECTR in Single Reaction Volume (One-Pot)
Described herein are various methods of sample amplification and detection in a single reaction volume. Any of the devices described herein may be configured to perform amplification and detection in a same well, chamber, channel, or volume in the device. In certain instances, methods include simultaneous amplification and detection in the same volume. In certain instances, methods include sequential amplification and detection in the same volume. In some embodiments, sample amplification may comprise LAMP amplification.
For some embodiments, RT-LAMP can be performed at lower temperatures by using Klenow(exo-) or Bsu polymerases: LowLAMP. RT-LAMP is normally performed at temperatures between 55 C-70 C. Results can be seen in
The Cas14a1 sequence is:
In some embodiments, a tracrRNA, known as R1518 is used and is native for the system and has the sequence of:
In some embodiments, Cas14a.1 uses two RNA components, a tracrRNA and a crRNA. In some embodiments, the native crRNA repeat that occurs with this system is used.
In some embodiments, crRNAs used are:
R3297-SARS-CoV-2 N-gene having the sequence of:
R3298-Mammuthus—having the sequence of:
R4336-SARS-CoV-2—having the sequence of:
R4783-OC43—having the sequence of:
For some embodiments, buffers that were compatible with Cas14a and low temperature RT-LAMP (LowLAMP) were identified. Results are shown in
In some embodiment, primers and dNTPs have the greatest inhibitory effect on Cas14 performance as seen in the results presented in
In some embodiments, LAMP functions with lower concentrations of dNTPs and primers as shown in
In some embodiments, One-pot Cas14 with LowLAMP was tested at 50 C. For such embodiments, one-pot DETECTR using Cas14 and LowLAMP at 50 C using a Klenow(exo-) DNA polymerase was shown to be functional as seen in
In some embodiments, Cas14 is used with a polymerase (e.g., a Bsm DNA polymerase, a Bst DNA polymerase, a Klenow(exo-) DNA polymerase, or a Bsu DNA polymerase) (55 C) for the OnePot assay. The one-pot reaction may be faster if the reaction temperature is increased from 50 C to 55 C. However, the DNA polymerase used in LowLAMP is not functional at 55 C, so here Bsm DNA polymerase was used which works more robustly at 55 C than other LAMP polymerases such as Bst. Several different concentrations of dNTPs and primers were tested and performance of the assay was assessed. Results shown in
For some embodiments, the initial performance of the one-pot DETECTR reaction, called HotPot was evaluated. Results are shown in
For some embodiments, the limit of detection experiments were performed two different DNA polymerases at 55 C. Results are shown in
For various embodiments described herein, the assay turn-around time is 5 minutes. In some embodiments, the assay turn-around time is 10 minutes. In some embodiments, the turn-around time is 15 minutes. In some embodiments, the turn-around time is 20 minutes. In some embodiments, the turn-around time is 30 minutes. In some embodiments, the turn-around time is 40 minutes or less.
Described herein are various methods of sample amplification and detection in a single reaction volume. Any of the devices described herein may be configured to perform amplification and detection in a same well, chamber, channel, or volume in the device. In certain instances, methods include simultaneous amplification and detection in the same volume. In certain instances, methods include sequential amplification and detection in the same volume. In some embodiments, sample amplification may comprise NEAR amplification.
For some embodiments, replacing Bst polymerase in NEAR can enable SARS-CoV-2 detection at lower temperatures as shown in
For some embodiments, NEAR amplification functions in Cas14a optimal buffers as shown in
In some embodiments, Cas14a functions in a range of KOAc salt concentrations as shown in
In some embodiments, increasing concentrations of KOAc improve NEAR performance in Cas14a optimal buffers, as seen in
Performance of Cas14a.1 crRNAs on SARS-CoV-2 E-gene amplicon are shown in
In some embodiments, the performance of Klenow(exo-) NEAR assay in IB13 buffer at decreasing salt concentrations was evaluated as shown in
One-Pot sRCA: Rolling Circle Amplification with Cas14a DETECTR in Single Reaction Volume
Described herein are various methods of sample amplification and detection in a single reaction volume. Any of the devices described herein may be configured to perform amplification and detection in a same well, chamber, channel, or volume in the device. In certain instances, methods include simultaneous amplification and detection in the same volume. In certain instances, methods include sequential amplification and detection in the same volume. In some embodiments, sample amplification may comprise RCA.
In some embodiments, screening dumbbell DNA templates are screened for sRCA performance, as shown in
For some embodiments, the performance of Cas14a to detect product of RCA reaction was monitored, as seen in
In some embodiments, of the One-Pot assay sRCA, Cas14 is used. Functional results for such embodiments are shown in
In some embodiments, a trigger oligo is titrated for a Cas14 One-Pot sRCA assay. For this embodiment, the minimal concentration of trigger oligo that is required to initiate the one-pot Cas14 sRCA reaction was determined. Results shown in
In some embodiments, the Cas12M08 enzyme is used in the one-pot sRCA assay. In other embodiments, it has been shown that Cas14 is capable of functioning in a one-pot sRCA reaction. In this embodiment, it was shown that Cas12M08 is also capable of functioning in this assay at 45 C. The results from the cleavage of ssDNA FQ reporter included in the sRCA reaction are shown in
In some embodiments, Cas13-compatible DNA template is used for RCA.
In some embodiments, the Cas13M26 is used in the one-pot sRCA reaction.
CasPin: Cas13 Positive-Feedback Loop Leveraging Cas13 ssDNA Targeting
Described herein are various methods of signal amplification. Any of the devices described herein may be configured to perform signal amplification after the reporter has been cleaved by the programmable nuclease. Signal amplification may improve detection of rare targets in a complex sample. In certain instances, methods include leveraging ssDNA targeting of the programmable nuclease (e.g., Cas13) to create a positive feedback loop upon biding of the programmable nuclease to the target nucleic acid to cleave additional reporters and amplify the signal generated by the presence of the target nucleic acid.
In some embodiments, two hairpins are used on either end of the target site.
Described herein are various devices and methods for running one-pot DETECTR assays on a handheld device. Any of the devices described herein may be configured to perform a one-pot DETECTR assay. For example, the device shown in
Described herein are various methods of multiplexing detection. Any of the devices described herein may be configured for multiplexing (e.g., detecting multiple target nucleic acids). In certain instances, multiplexed detection may utilize one or more lateral flow assay strips.
Described here are various devices and methods for a DETECTR™ assay based multiplex lateral flow strip as illustrated in
In some embodiments, as illustrated in
In some embodiments, lateral flow assay strips (10710) are used to detect cleaved reporters (10709). In some embodiments, cleaved reporters (10709) are contacted to the sample pad (10711) of the lateral flow strip (10710). In some embodiments, the cleaved reporters (10709) bind to conjugate particles present in the sample pad. In some embodiments, the conjugate particles are gold nanoparticles. In some embodiments, the gold nanoparticles are functionalized with anti-biotin. In some embodiments, the anti-biotin functionalized gold nanoparticles bind to the cleaved reporter which contains one or more biotins in the binding moiety (10705).
In some embodiments, the reporter contains a second linker. In some embodiments, the second linker links one or more binding moieties to the nucleic acid. In some embodiments, the second linker links one or more labels to the nucleic acid. In some embodiments, the second linker links both one or more binding moieties and one or more labels to the nucleic acid of the reporter. In some embodiments, the reporter is a dendrimer or trebler molecule.
In some embodiments, the reporter contains a label. In some embodiments, label is FITC, DIG, TAMRA, Cy5, AF594, Cy3, or any appropriate label for a lateral flow assay.
In some embodiments, the reporter may comprise chemical functional group for binding. In some embodiments, the chemical functional group is biotin. In some embodiments, the chemical functional group is complimentary to a capture probe on the flowing capture probe (e.g. conjugate particle or capture molecule). In some embodiments, the flowing capture probe is a gold nanoparticle functionalized with anti-biotin. In some embodiments, the flow capture probe is located in the sample pad. In some embodiments, the flowing capture probe is located in a conjugate pad in contact with the sample pad, wherein both lateral flow assay strip may comprise both the sample pad and conjugate pad, further wherein both the sample pad and the conjugate pad are in fluid communication with the detection region.
In some embodiments, the lateral flow assay strip (10710) contains a detection region (10712). In some embodiments, the detection region (10712) may comprise one or more detection spots. In some embodiments, the detection spots contain a stationary capture probe (e.g., capture molecule). In some embodiments, the stationary capture probe may comprise one or more capture antibodies. In some embodiments, the capture antibodies are anti-FITC, anti-DIG, anti-TAMRA, anti-Cy5, anti-AF594, or any other appropriate capture antibody capable of binding the detection moiety or conjugate.
In some embodiments, the flowing capture probe comprising FITC is captured by a stationary capture probe comprising anti-FITC antibody. In some embodiments, the flowing capture probe comprising TAMRA is captured by a stationary capture probe comprising anti-TAMRA antibody. In some embodiments, the flowing capture probe comprising DIG is captured by the stationary capture probe comprising anti-DIG antibody. In some embodiments, the flowing capture probe comprising Cy5 is captured by the stationary capture probe comprising anti-Cy5 antibody. In some embodiments, the flowing capture probe comprising AF574 is captured by the stationary capture probe comprising anti-AF594 antibody.
In some embodiments, the lateral flow assay strip (10710) may comprise a control line (10714). In some embodiments, the control line (10714) may comprise anti-IgG that is complimentary to all flowing capture probes. In some embodiments, when a flowing capture probe does not bind to a reporter the flowing capture probe will be captured by the anti-IgG on the control line, ensuring the user that the device is working properly even no signal is read from the test line.
In some embodiments, the lateral flow assay strip (10710) may comprise a sample pad. In some embodiments, the flowing capture probe may comprise anti-biotin. In some embodiments, the flowing capture probe may comprise HRP. In some embodiments, the flowing capture probe may comprise HRP-anti-biotin. In some embodiments, the flowing capture probe is HRP-anti-biotin DAB/TMB.
Described here are various devices and methods for a DETECTR™ assay based multiplex lateral flow strip as illustrated in
Described herein are various embodiments of lateral flow-based detection as illustrated in
Described here are various methods and devices utilizing HRP-enhanced multiplexed DETECTR™ assays utilizing lateral flow assay strips for readout. In some embodiments, an HRP-signal enhanced multiplexed lateral flow assay as illustrated in
Described herein are various embodiments for multiplexed target nucleic acid detection utilizing Cas13 RNA cleaving specificity over DNA, HRP-signal enhancement, and capture oligo probe specificity. In some embodiments, as shown in
In some embodiments, one or more programmable nuclease probes (11300-11302) are used for guide pooling to achieve enhanced signal detection in lateral flow assays as shown in
Described herein are various embodiments of guide pooling to achieve enhanced signal detection in lateral flow assays. For some embodiments as described herein, guide pooling shows enhanced Cas12a activity.
Described herein are various methods and devices for a programmable nuclease (e.g., DETECTR) assay based multiplex lateral flow assay as illustrated in
In some embodiments, the amplification region (12004) may be coated. In some embodiments, a coating may be a hydrophilic coating, a hydrophobic coating, an inorganic coating, or an organic coating. In some embodiments, a coating may comprise a polymer coating. In some embodiments, a coating may comprise a polyethylene glycol coating. In some embodiments, a coating may comprise a streptavidin coating. In some embodiments, the interspersed polymers may be a crowding agent. In some embodiments, the crowding agent may comprise polyethylene glycol.
In some embodiments, the one or more reaction or heating zones may comprise guide nucleic acids (e.g., sgRNAs) immobilized to a surface (e.g., a glass bead disposed within a DETECTR zone). In some embodiments, the guide nucleic acids are part of a programmable nuclease (e.g., Cas-complex) probe immobilized to a surface. In some embodiments, a guide nucleic acid is designed to specifically bind to a target nucleic acid in the sample. In some embodiments, there are different guide nucleic acids corresponding to different locations on the surface and/or different surfaces in the one or more zones, where each different guide nucleic acid is complimentary for a different target nucleic acid sequence that may or may not be present in the sample. In some embodiments, in addition to the programmable nuclease probes containing guide nucleic acids, each surface location is functionalized with one or more reporters having distinct functional groups. In some embodiments, the reporters may be in close enough proximity to be cleaved by the programmable nuclease probes. In some embodiments, as described in example 13, reporters are cleaved and released into the solution upon binding between a particular guide nucleic acid and the target nucleic acid to which the guide nucleic acid is designed to specifically bind. In some embodiments, reporters are functionalized with a detection moiety (e.g., a label).
In some embodiments, chemical heating may be used. In some embodiments, chemical heating may be used to supply energy to initiate and run reactions. In some embodiments, chemical heating may be used to supply energy to initiate and run programmable nuclease assay reactions. In some embodiments, chemical heating may be used to heat reaction or heating zones. In some embodiments, chemical heating may be used to heat regions, chambers, volumes, zones, surfaces, or areas of a device.
In some embodiments, the device may comprise one or more lateral flow assay strips in a detection region disposed downstream of the amplification region. Each lateral flow assay strip contains one or more detection regions or spots, where each detection region or spot contains a different type of capture antibody. In some embodiments, each lateral flow assay strip contains a different type of capture antibody. In some embodiments, each capture antibody type specifically binds to a particular label type of a reporter. In some embodiments, a first lateral flow assay strip contains the capture antibody anti-FITC. In some embodiments, a first DETECTR region or surface location (e.g., within a reaction chamber or heating region) contains the immobilized programmable nuclease (e.g., Cas-complex) including the guide nucleic acid (e.g., sgRNA) specific to the first target nucleic acid sequence. In some embodiments, the first DETECTR region or surface location additionally contains a first immobilized reporter which is labeled with a first detection moiety (e.g., FITC). In some embodiments, upon binding of the first target nucleic acid sequence, the first immobilized reporter is cleaved and released into solution. In some embodiments, the first detection moiety is released into solution and the remainder of the first reporter remains immobilized on the surface. Alternatively, or in combination, in some embodiments, a second lateral flow assay strip contains the capture antibody anti-DIG. In some embodiments, a second DETECTR region or surface location (e.g., within a reaction chamber or heating region) contains the immobilized programmable nuclease (e.g., Cas complex) including the guide nucleic acid (e.g., sgRNA) specific to the second target nucleic acid sequence. In some embodiments, the second DETECTR region or surface location additionally contains a second immobilized reporter which is labeled with a second detection moiety (e.g., DIG). Therefore, in some embodiments, upon binding of the second target nucleic acid sequence, the second immobilized reporter is cleaved and released into solution. In some embodiments, the second detection moiety is released into solution and the remainder of the second reporter remains immobilized on the surface.
In some embodiments, the solution containing the first and second cleaved reporters is transferred from the amplification region to the lateral flow region comprising the first lateral flow assay strip and the second lateral flow assay strip. In some embodiments, a chase buffer or diluent is introduced into a diluent input and negative pressure is applied to the negative pressure port to contact the solution containing the first and second cleaved reporters to the lateral flow assay strips of the lateral flow region, where the reporters are bound to conjugate molecules e.g., anti-biotin-AuNPs. In some embodiments, the AuNP-reporter conjugates having the first reporter labeled with the first detection moiety (e.g., FITC) will selectively bind to a first detection region or spot containing the first capture antibody (e.g., anti-FITC) on the first lateral flow assay strip, thus indicating the presence of the first target nucleic acid sequence in the sample. In some embodiments, the AuNP-reporter conjugates having mostly the second reporter labeled with the second detection moiety (e.g., DIG) will selectively bind to a second detection region or spot containing the second capture antibody (e.g., anti-DIG) on the second lateral flow assay strip, thus indicating the presence of the second target nucleic acid sequence in the sample. In this manner, for some embodiments, parallel detection of two or more target nucleic acid sequences present in a multiplexed sample is enabled.
In some embodiments, the amplification region is configured to hold about 200 μL of liquid (e.g., sample solution and reagent(s)). In some embodiments, each lateral flow assay strip is configured to hold about 80 μL of liquid (e.g., sample solution and/or chase buffer). In some embodiments, the device may comprise more than one lateral flow assay strip. For example, the device may comprise two, three, four, five, six, seven, eight, nine, ten, or more lateral flow assay strips. In some embodiments, one or more lateral flow assay strips are configured to detect a control sequence instead of or in addition to a target sequence. For example, a device comprising six lateral flow assay strips may comprise five lateral flow assay strips configured to detect one or more target sequences (e.g., five different target sequences) and one lateral flow assay strip configured to detect a control sequence.
Described herein are various methods and devices for a programmable nuclease assay based multiplex lateral flow assay as illustrated in
In some embodiments, the one or more programmable nuclease reagent(s) comprise guide nucleic acids immobilized to a surface (e.g., a glass bead). In some embodiments, the guide nucleic acids are part of a programmable nuclease (e.g., Cas-complex) probe immobilized to a surface. In some embodiments, a guide nucleic acid may be designed to specifically bind to a target nucleic acid in the sample. In some embodiments, there are different guide nucleic acids corresponding to different locations on the surface and/or different surfaces in the one or more zones, where each different guide nucleic acid is complimentary for a different target nucleic acid sequence that may or may not be present in the sample. In some embodiments, in addition to the programmable nuclease probes containing guide nucleic acids, each surface location may be functionalized with one or more reporters having distinct functional groups. In some embodiments, the reporters are in close enough proximity to be cleaved by the programmable nuclease probes. In some embodiments, as described in example 13, reporters are cleaved and released into the solution upon binding between a particular sgRNA and the target nucleic acid to which the guide nucleic acid is designed to specifically bind. In some embodiments, reporters are functionalized with a detection moiety (e.g., a label).
In some embodiments, the device may comprise one or more lateral flow assay strips in a detection region disposed downstream of the amplification region. Each lateral flow assay strip contains one or more detection regions or spots, where each detection region or spot contains a different type of capture antibody. In some embodiments, each lateral flow assay strip may contain a different type of capture antibody. In some embodiments, each capture antibody type specifically binds to a particular label type of a reporter. In some embodiments, a first lateral flow assay strip contains a first capture antibody (e.g., anti-FITC). In some embodiments, a first surface (e.g., bead) contains the immobilized programmable nuclease (e.g., Cas-complex) including the guide nucleic acid (e.g., sgRNA) specific to the first target nucleic acid sequence. In some embodiments, the first surface additionally contains a first immobilized reporter which is labeled with a first detection moiety (e.g., FITC). In some embodiments, upon binding of the first target nucleic acid sequence, the first immobilized reporter is cleaved and released into solution as described herein. Alternatively, or in combination, in some embodiments, a second lateral flow assay strip contains a second capture antibody (e.g., anti-DIG). In some embodiments, a second surface (e.g., bead) contains the second immobilized programmable nuclease including the guide nucleic acid specific to the second target nucleic acid sequence. In some embodiments, the second surface additionally contains a second immobilized reporter which is labeled with a second detection moiety (e.g., DIG). Therefore, in some embodiments, upon binding of the second target nucleic acid sequence, the second immobilized reporter is cleaved and released into solution.
In some embodiments, the solution containing the first and second cleaved reporters is transferred from the amplification region to the lateral flow region comprising the first lateral flow assay strip and the second lateral flow assay strip. In some embodiments, a chase buffer or diluent is introduced into a diluent input or reservoir and negative pressure is applied to the negative pressure port to contact lateral flow region. A pressure valve may be disposed between the amplification region and the lateral flow region in order to regulate flow of the sample solution from the amplification region to the lateral flow region before amplification has occurred. Actuation of the pressure valve enables the solution containing the first and second cleaved reporters to contact the lateral flow assay strips of the lateral flow region, where the reporters are bound to congugate molecules, e.g., anti-biotin-AuNPs. In some embodiments, the AuNP-reporter conjugates having the first reporter labeled with the first detection moiety (e.g., FITC) will selectively bind to a first detection region or spot containing a first capture antibody (e.g., anti-FITC) on the first lateral flow assay strip, thus indicating the presence of the first target nucleic acid sequence in the sample. In some embodiments, the AuNP-reporter conjugates having mostly the second reporter labeled with the second detection moiety (e.g., DIG) will selectively bind to a second detection region or spot containing a second capture antibody (e.g., anti-DIG) on the second lateral flow assay strip, thus indicating the presence of the second target nucleic acid sequence in the sample. In this manner, for some embodiments, parallel detection of two or more target nucleic acid sequences present in a multiplexed sample is enabled.
In some embodiments, the amplification region is configured to hold about 200 μL of liquid (e.g., sample solution and reagent(s)). In some embodiments, each lateral flow assay strip is configured to hold about 80 μL of liquid (e.g., sample solution and/or chase buffer). In some embodiments, the device may comprise more than one lateral flow assay strip. For example, the device may comprise two, three, four, five, six, seven, eight, nine, ten, or more lateral flow assay strips. In some embodiments, one or more lateral flow assay strips are configured to detect a control sequence instead of or in addition to a target sequence. For example, a device comprising six lateral flow assay strips may comprise five lateral flow assay strips configured to detect one or more target sequences (e.g., five different target sequences) and one lateral flow assay strip configured to detect a control sequence.
Described herein are various methods and devices for a DETECTR assay based multiplex lateral flow assay as illustrated in
Described herein are various methods and devices for a handheld assay device as illustrated in
Described herein are various methods and devices for a handheld assay device as illustrated in
Described herein are various methods and devices for a handheld assay device as illustrated in
Disclosed herein are methods for optimizing proteins and formulations for diagnostic applications. An ideal Cas protein for CRISPR diagnostics is one that is fast, robust, and sensitive. A fast protein enables reduced turnaround times for diagnostic assays. Robust enzymes are more likely to be successful when combined with other molecular processes, such as in the one-pot DETECTR assay. Sensitive enzymes enable lower limits of detection from either small amounts of amplified product or when eliminating pre-amplification and doing direct detection of target nucleic acids.
Initial optimization of programmable nuclease systems (e.g., the combination of Cas protein and guide nucleic acids) involved screening the performance of candidate systems in a variety of buffers and at temperatures from 35° C. to 60° C. The buffers selected for screening included buffers used in DETECTR assays and other Cas activity buffers. The buffers may comprise a range of salt types, salt concentrations, counter ion types, and various additives important for polymerase performance.
The terms “sample interface”, “sample input”, “input port”, “input”, “port” as used herein, generally refers to a portion of a device that is configured to receive a sample.
The terms “heating region”, “heated region”, “heat chambers”, “heat volumes”, “heat zones”, “heat surfaces”, “heat areas”, and the like, as used herein, generally refers to a portion of a device that is in thermal communication with a heating unit.
The terms “heater”, “heating unit”, “heating element”, “heat source”, and the like, as used herein, generally refers to an element that is configured to produce heat and is in thermal communication with a portion of a device.
The term “reagent mix”, “reagent master mix”, “reagents”, and the like, as used herein, generally refers to a formulation comprising one or more chemicals that partake in a reaction that the reagent mix is formulated for.
The term “non-cycled temperature profile,” as used herein, generally refers to a temperature profile that is cyclical or sinusoidal in that the temperature profile has an initial temperature, a target temperature, and a final temperature.
The term “capture probe”, “capture molecule”, and the like, as used herein, generally refers to a molecule that selectively binds to a target molecule and only nonspecifically binds to other molecules that can be washed away.
The term “collection tube,” as used herein, generally refers to a compartment that is used to collect a sample and deliver the sample to the sample interface of a device. In some embodiments, the collection tube may be portable. In some embodiments, the collection tube is a syringe.
The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion. The present examples, along with the methods described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes therein and other uses which are encompassed within the spirit of the invention as defined by the scope of the claims will occur to those skilled in the art.
DETECTR has previously been demonstrated to be a powerful technology for detection of pathogens such as SARS-CoV-2 (Broughton et al., 2020). Electrochemical detection has been demonstrated to show a lower limit of detection than fluorescence-based assays by roughly two orders of magnitude (Lou et al., 2015). In this example, an electrochemical probe is incorporated into the DETECTR assay.
The following electrochemical probe: 5′-2XXTTATTXX-3′; Where 2=5′ 6-FAM; X=ferrocene dT and 3=3′ Biotin TEG was used. Additionally, both cyclic voltammetry and square wave voltammetry with the probe, using a DropSens pSTAT. ECL instrument and DropSens screen-printed carbon electrodes were used. A difference in signal between the initial and final timepoints of the DETECTR reaction was observed. A detection of 50 fM. HERC2 target, which is much lower than has been observed with the fluorescence assay was achieved.
The following electrochemical probe: 5′-2XXTTATTXX-3′; where 2=5′ 6-FAM; X=ferrocene dT; and 3=3′ Biotin TEG was used with a DNA sequence, part of the genome of SARS-CoV-2. Square wave voltammetry measurements were performed using a DropSens pSTAT ECL instrument and DropSens screen-printed carbon electrodes. A difference in signal between the initial and final timepoints of the DETECTR reaction, using 500 fM of target, was detected.
Data Analysis was carried out as follows. The first 2 scans were discarded because they typically have anomalous signals from debris on the electrode that is cleared by voltage application. The remaining 3 scans are averaged for each sample, and the standard deviation and coefficient of variance is calculated. The mean current traces were then imported into PeakFit software for a baseline correction. The corrected traces were then exported and the original CV values were used to calculate standard deviations for the error. It should be noted that the aliquot of reporter used had experienced multiple freeze-thaw cycles. The data from the measurements with the original parameter set were noisy and were not fully analyzed. The location of this peak was different from previous experiments, where a peak was observed around 0.15 V. It is worth noting that the aliquot of reporter had experienced multiple freeze thaw cycles, so it may have degraded. As a control, LAMP buffer to determine the relative signal was also run. The LAMP buffer was already activated with magnesium in a previous experiment, then refrozen). The LAMP buffer was run neat, without any dilution. The signal from the LAMP buffer was much higher than the signal from the DETECTR reactions, as is visible in
The purpose of this experiment was to evaluate biotinylated gRNA functionality with Cas13a both in solution and immobilized on a surface. In this experiment three replicate runs of a biotin-modified gRNA (mod023) and three replicate runs of a non-biotin modified gRNA (R0003) were carried out. Three replicate “no target control,” or NTC runs were carried out for both the mod023 reporter and R0003 control. The procedure was carried out as follows:
The objective of this experiment was to verify if a 30 min incubation time was sufficient to produce a strong signal assay signal. Two concentrations were run. The procedure used is as follows:
Fluorescent quencher-based reporters were tested in an immobilized DETECTR assay. Streptavidin functionalized plates and biotin labeled reporters were used.
Results are illustrated in
The objective of this experiment was to determine whether binding both the gRNA and reporter to a plate allows the DETECTR assay to be as effective as binding the CAS protein-gRNA complex and reporter. This removes the need to functionalize the surface with the pre-complex of gRNA and CAS protein, allowing for an easier manufacturing process. Additionally, greater specificity can be achieved by allowing for more stringent washes. The following procedure was used.
The results of this experiment are shown in
The purpose of this experiment was to demonstrate target discrimination for immobilized reporters for the DETECTR reaction. The experiment design used in this experiment is shown in
Results are shown
The purpose of this experiment was to test the functionality of a one-pot reaction composed of both RT-LAMP and Cas12M08 enzyme-based DETECTR master mixes. Both master mixes were co-lyophilized together into one master mix. The reactions are functionally incompatible due to optimal reaction temperature differences, so they were evaluated independently. The RT-LAMP master mix shows reaction characteristics like the liquid controls. Results are shown for the RT-LAMP assay in
The purpose of this experiment was to investigate Cas14a1 which is functional at higher temperatures than RT-LAMP assay requires. In this example the temperatures were run up to 55° C. The results shown in
The purpose of this experiment was to investigate the performance of pooled and lyophilized master mixes containing both RT-LAMP and DETECTR reaction reagents together. Further this study showed that the pre-lyophilized mixture is stable for two weeks prior to lyophilization. The master mix of RT-LAMP and Cas12M08-based DETECTR lyophilized together, was functionally tested separately, since the Cas12M08 is not compatible with the RT-LAMP amplification conditions. These data show robust RT-LAMP and Cas12M08-based DETECTR activity, comparable to the master mix that was stored at 4° C. for two weeks prior to lyophilization. Results are shown in
Previous to this example, lyophilized sample volume was demonstrated at 250 μL and performed in glass vials. This example provides data for lyophilization of 25 μL samples in 8-well plastic strip tubes. Additionally, the pre-lyophilization (3 weeks at 4° C.) and values are comparable showing stability of the master mix as seen in
In this experiment, the performance of the one-pot DETECTR assay in a handheld microfluidic device was evaluated. Here, one-pot refers to both the RT-LAMP and DETECTR reagents lyophilized as one master mix of reagents. The functions performed on the handheld, microfluidic device included: sample intake; RNA extraction from sample; mixing of the sample with CRISPR reactants; and the transfer of the mixture to a well to heat the mixture to the reaction temperature. In the device, the mixture was heated, and fluorescence was monitored continuously over time.
The purpose of this example is to demonstrate a DETECTR™-based multiplexed assay using a lateral flow assay (LFA) strip for parallel readout as illustrated in
The purpose of this example is to demonstrate a lateral flow assay strip workflow utilizing a multiplex “Hotpot” assay as illustrated in
The purpose of this example is to demonstrate horse radish peroxidase (HRP) paper-based detection as illustrated in
The purpose of this example is to demonstrate an HRP-signal enhanced multiplexed lateral flow assay as illustrated in
The purpose of this example is to demonstrate multiplexed target nucleic acid detection utilizing Cas13 RNA cleaving specificity over DNA, HRP-signal enhancement, and capture oligo probe specificity as shown in
The purpose of this example is to demonstrate horse radish peroxidase (HRP) paper-based detection as illustrated in
The purpose of this example was to demonstrate an HRP and DETECTR™-based assay. In this example, reporters were cleaved by a Cas complex, or a DNAse enzyme in solution. The cleaved reporter was reacted to HRP-T20-biotin (SEQ ID NO: 73). The supernatant solution was then added to a reaction volume that contained TMB and H2O2 to generate a color signal. The cleaved reporter-HRP conjugate was then detected by optical density measurement of the solution. Optical density measurements were acquired from the beginning of the reaction. The experiment was performed in two sets comprising 2 runs each, where each set was run 1 week apart. DNase and DETECTR™ were used separately in each run of each set. In the DNase runs, 1 nM of HRP target oligo was used in the filled in circle series. Results are shown in
Guide RNAs that were designed to bind to a different region within a single target molecule were pooled as a strategy for enhancing the target detection signal from DETECTR assays. For examples, in this strategy, each DETECTR™ reaction contained a pool of CRISPR-Cas RNP complexes each of which targeted a different region within a single molecule. As discussed in the paragraphs below, this strategy resulted in increased sensitivity to target detection by using increased number of complexes/single target such that the signal is strong enough to detect within a Poisson distribution (sub-one copy/droplet) and provide a quantitative evaluation of target numbers within a sample.
To test the effect of guide pooling on target detection using the Cas12a nuclease, first, a Cas12a complexing mix was prepared. The R1965 (off-target guide), R1767, R3164, R3178 guides were present in the Cas12a complexing mix in either a pooled-gRNA format (a pool of two or more of the three guides selected from R1767, R3164, or R3178) or in a single-gRNA format (wherein R1767, R3164, R3178 were present individually) and the mix was incubated for 20 minutes at 37° C. A 2-fold dilution series for the template RNA (GF184) was created from a starting dilution concentration (wherein 5.4 μl of GF184 at 0.1 ng/μL was added to 44.6 μl of nuclease-free water). DETECTR master mixes which included the Cas12 complex, Reporter substrate, Fluorescein, Buffer, and diluted template (GF184 or off-target template GF577) were then assembled as shown in Table 2. The DETECTR mixes were then loaded into a Stilla Sapphire chip and placed into the Naica Geode. Crystals were created from thousands of droplets from each sample. No amplification step was performed. The signal from the Sapphire chips was measured in the Red channel. The results of the DETECTR assay showed enhanced Cas12a-based detection of the GF184 target using a pooled-guide format compared to DETECTR Cas12a-based assay using an individual guide format. For example, the DETECTR assays showed an enhanced signal from chamber 5 containing a pool of two guides R1767 and R3178, compared to the signal from chamber 2 or chamber 4 which contained the R1767 and R3178 in individual guide format, respectively, as shown in
Enhanced sensitivity to target detection with guide-pooling was observed in the case of Cas13a nuclease also. In these assays, a Cas13a complexing mix was prepared wherein the R002(off-target guide), R4517, R4519, R4530 guides were present in either a pooled-gRNA format (a pool of two or more of the three guides R4517, R4519, and R4530) or single-gRNA format (wherein R4517, R4519, and R4530 were present individually) and the mix was incubated for 20 minutes at 37 C. DETECTR master mixes which included the Cas13a complex, FAM-U5 Reporter substrate, Buffer, and diluted template SC2 RNA (or off-target template 5S-87) was then assembled as shown in Table 3. The DETECTR mixes were then loaded into a Stilla Sapphire chip and placed into the Naica® Geode system. Crystals were generated from the droplets from each of the samples and incubated at 37° C. (no amplification step was performed). The signal from the Sapphire chips was measured in the Cy5 channel. The results of the DETECTR assay showed enhanced Cas13a-based detection of the SC2 target RNA using a pooled-guide format compared to a Cas13a-based detection of the SC2 target RNA using a single-guide format. For example, the DETECTR assays showed an enhanced signal from chamber 8 (saturated—not displayed), containing the template at a concentration of 1×106 copies, and a pool of the three guides R4517, R4519, and R4530, compared to the signal from chamber 2, chamber 4, or chamber 6 which contained the template at a concentration of 1×106 copies, and the guides R4517, R4519, and R4530 in individual guide format, respectively, as shown in
Next, the sensitivity of a target detection in Cas13a digital droplet DETECTR assays containing guide RNA in either a pooled-guide format versus a single guide format was assayed. DETECTR reaction master-mixes was prepared for each gRNA (R4637, R4638, R4667, R4676, R4684, R4689, R4691, or R4785 (RNaseP)) and included, in addition to the gRNA, the Cas13a nuclease, and the reporter substrate. After complexing, 2 μL of each RNP was combined in either a pooled-gRNA format (a pool of the seven gRNAs, i.e., R4637, R4638, R4676, R4689, R4691, R4667, and R4684) or remained in the single-gRNA format (wherein R4667, R4684, and R4785 (RNAse P were present individually). The template RNAs (Twist SC2, ATCC SC2, and 5s-87 off-target) were diluted to obtain a series of template concentrations. DETECTR reactions directed to the detection of the template RNAs (Twist SC2, ATCC SC2, and 5s-87 off-target template RNAs) were assembled by combining the Cas13a-gRNA RNPs with the diluted template RNA from the previous step as shown in Table 4. The assembled DETECTR reactions were loaded into chambers on a Stilla Sapphire Chip. The Chips were placed into the Naica® Geode system and crystals were generated using the droplet generation program and imaged to reveal droplets that contain detected targets.
The sensitivity of target detection by the DETECTR assays containing the pooled guides (R4637, R4638, R4667, R4676, R4684, R4689, R4691) was compared with the sensitivity of target detection by the DETECTR assays containing the single guides R4684, R4667, R4785 (RNAseP guide) in individual format. Relative quantification performed by counting the number of these positive droplets showed that the samples containing the pooled guide RNAs generated more crystals containing the amplified products per copy of starting target RNA than the samples containing the guide RNAs in individual format as shown in
Relative quantification of the number of droplets containing amplified target (per copy of starting target RNA) observed in chamber 5 (containing the seven-guide pool and the ATCC SC2 template RNA) is higher than the number of droplets observed in chamber 6 (containing the gRNA R4684 in individual format and the ATCC SC2 RNA), the number of droplets observed in chamber 8 (containing the control RNaseP gRNA in individual format with the ATCC SC2 template RNA) and the number of droplets observed in chamber 12 (containing the seven pooled gRNAs with no template RNA) as shown in
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments described herein can be employed. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
This application claims the benefit of U.S. Provisional Application No. 63/032,455, filed on May 29, 2020; U.S. Provisional Application No. 63/113,798, filed on Nov. 13, 2020; U.S. Provisional Application No. 63/151,592 filed on Feb. 19, 2021; U.S. Provisional Application No. 63/166,538 filed on Mar. 26, 2021; and U.S. Provisional Application No. 63/181,130, filed on Apr. 28, 2021, each of which is incorporated herein by reference in its entirety.
This invention was made with government support under Contract No. N66001-21-C-4048 awarded by the Department of Defense, Defense Advanced Research Projects Agency (DARPA). The US government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
63181130 | Apr 2021 | US | |
63151592 | Feb 2021 | US | |
63166538 | Mar 2021 | US | |
63113798 | Nov 2020 | US | |
63032455 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US21/35031 | May 2021 | WO |
Child | 18058122 | US |