In order to accelerate charged particles to high energies, many types of particle accelerators have been developed since the 1930s. One type of particle accelerator is a cyclotron. A cyclotron accelerates charged particles in an axial magnetic field by applying an alternating voltage to one or more “dees” in a vacuum chamber. The name “dee” is descriptive of the shape of the electrodes in early cyclotrons, although they may not resemble the letter D in some cyclotrons. The spiral path produced by the accelerating particles is normal to the magnetic field. As the particles spiral out, an accelerating electric field is applied at the gap between the dees. The radio frequency (RF) voltage creates an alternating electric field across the gap between the dees. The RF voltage, and thus the field, is synchronized to the orbital period of the charged particles in the magnetic field so that the particles are accelerated by the radio frequency waveform as they repeatedly cross the gap. The energy of the particles increases to an energy level far in excess of the peak voltage of the applied radio frequency (RF) voltage. As the charged particles accelerate, their masses grow due to relativistic effects. Consequently, the acceleration of the particles becomes non-uniform and the particles arrive at the gap asynchronously with the peaks of the applied voltage.
Two types of cyclotrons presently employed, an isochronous cyclotron and a synchrocyclotron, overcome the challenge of increase in relativistic mass of the accelerated particles in different ways. The isochronous cyclotron uses a constant frequency of the voltage with a magnetic field that increases with radius to maintain proper acceleration. The synchrocyclotron uses a decreasing magnetic field with increasing radius and varies the frequency of the accelerating voltage to match the mass increase caused by the relativistic velocity of the charged particles.
In a synchrocyclotron, discrete “bunches” of charged particles are accelerated to the final energy before the cycle is started again. In isochronous cyclotrons, the charged particles can be accelerated continuously, rather than in bunches, allowing higher beam power to be achieved.
In a synchrocyclotron, capable of accelerating a proton, for example, to the energy of 250 MeV, the final velocity of protons is 0.61 c, where c is the speed of light, and the increase in mass is 27% above rest mass. The frequency has to decrease by a corresponding amount, in addition to reducing the frequency to account for the radially decreasing magnetic field strength. The frequency's dependence on time will not be linear, and an optimum profile of the function that describes this dependence will depend on a large number of details.
Accurate and reproducible control of the frequency over the range required by a desired final energy that compensates for both relativistic mass increase and the dependency of magnetic field on the distance from the center of the dee has historically been a challenge. Additionally, the amplitude of the accelerating voltage may need to be varied over the accelerating cycle to maintain focusing and increase beam stability. Furthermore, the dees and other hardware comprising a cyclotron define a resonant circuit, where the dees may be considered the electrodes of a capacitor. This resonant circuit is described by Q-factor, which contributes to the profile of voltage across the gap.
A synchrocyclotron for accelerating charged particles, such as protons, can comprise a magnetic field generator and a resonant circuit that comprising electrodes, disposed between magnetic poles. A gap between the electrodes can be disposed across the magnetic field. An oscillating voltage input drives an oscillating electric field across the gap. The oscillating voltage input can be controlled to vary over the time of acceleration of the charged particles. Either or both the amplitude and the frequency of the oscillating voltage input can be varied. The oscillating voltage input can be generated by a programmable digital waveform generator.
The resonant circuit can further include a variable reactive element in circuit with the voltage input and electrodes to vary the resonant frequency of the resonant circuit. The variable reactive element may be a variable capacitance element such as a rotating condenser or a vibrating reed. By varying the reactance of such a reactive element and adjusting the resonant frequency of the resonant circuit, the resonant conditions can be maintained over the operating frequency range of the synchrocyclotron.
The synchrocyclotron can further include a voltage sensor for measuring the oscillating electric field across the gap. By measuring the oscillating electric field across the gap and comparing it to the oscillating voltage input, resonant conditions in the resonant circuit can be detected. The programmable waveform generator can be adjusting the voltage and frequency input to maintain the resonant conditions.
The synchrocyclotron can further include an injection electrode, disposed between the magnetic poles, under a voltage controlled by the programmable digital waveform generator. The injection electrode is used for injecting charged particles into the synchrocyclotron. The synchrocyclotron can further including an extraction electrode, disposed between the magnetic poles, under a voltage controlled by the programmable digital waveform generator. The extraction electrode is used to extract a particle beam from the synchrocyclotron.
The synchrocyclotron can further include a beam monitor for measuring particle beam properties. For example, the beam monitor can measure particle beam intensity, particle beam timing or spatial distribution of the particle beam. The programmable waveform generator can adjust at least one of the voltage input, the voltage on the injection electrode and the voltage on the extraction electrode to compensate for variations in the particle beam properties.
This invention is intended to address the generation of the proper variable frequency and amplitude modulated signals for efficient injection into, acceleration by, and extraction of charged particles from an accelerator.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
This invention relates to the devices and methods for generating the complex, precisely timed accelerating voltages across the “dee” gap in a synchrocyclotron. This invention comprises an apparatus and a method for driving the voltage across the “dee” gap by generating a specific waveform, where the amplitude, frequency and phase is controlled in such a manner as to create the most effective particle acceleration given the physical configuration of the individual accelerator, the magnetic field profile, and other variables that may or may not be known a priori. A synchrocyclotron needs a decreasing magnetic field in order to maintain focusing of the particles beam, thereby modifying the desired shape of the frequency sweep. There are predictable finite propagation delays of the applied electrical signal to the effective point on the dee where the accelerating particle bunch experiences the electric field that leads to continuous acceleration. The amplifier used to amplify the radio frequency (RF) signal that drives the voltage across the dee gap may also have a phase shift that varies with frequency. Some of the effects may not be known a priori, and may be only observed after integration of the entire synchrocyclotron. In addition, the timing of the particle injection and extraction on a nanosecond time scale can increase the extraction efficiency of the accelerator, thus reducing stray radiation due to particles lost in the accelerating and extraction phases of operation.
Referring to
The accelerating electrodes comprise “dee” 10 and “dee” 12, having gap 13 therebetween. Dee 10 is connected to an alternating voltage potential whose frequency is changed from high to low during the accelerating cycle in order to account for the increasing relativistic mass of a charged particle and radially decreasing magnetic field (measured from the center of vacuum chamber 8) produced by coils 2a and 2b and pole portions 4a and 4b. The characteristic profile of the alternating voltage in dees 10 and 12 is show in
Ion source 18 that includes ion source electrode 20, located at the center of vacuum chamber 8, is provided for injecting charged particles. Extraction electrodes 22 are provided to direct the charge particles into extraction channel 24, thereby forming beam 26 of the charged particles. The ion source may also be mounted externally and inject the ions substantially axially into the acceleration region.
Dees 10 and 12 and other pieces of hardware that comprise a cyclotron, define a tunable resonant circuit under an oscillating voltage input that creates an oscillating electric field across gap 13. This resonant circuit can be tuned to keep the Q-factor high during the frequency sweep by using a tuning means.
As used herein, Q-factor is a measure of the “quality” of a resonant system in its response to frequencies close to the resonant frequency. Q-factor is defined as
Q=1/R×√(L/C),
where R is the active resistance of a resonant circuit, L is the inductance and C is the capacitance of this circuit.
Tuning means can be either a variable inductance coil or a variable capacitance. A variable capacitance device can be a vibrating reed or a rotating condenser. In the example shown in
The blade rotation can be synchronized with the RF frequency generation so that by varying the Q-factor of the RF cavity, the resonant frequency of the resonant circuit, defined by the cyclotron, is kept close to the frequency of the alternating voltage potential applied to “dees” 10 and 12.
The rotation of the blades can be controlled by the digital waveform generator, described below with reference to
A sensor that detects the peak resonant condition (not shown) can also be employed to provide feedback to the clock of the digital waveform generator to maintain the highest match to the resonant frequency. The sensors for detecting resonant conditions can measure the oscillating voltage and current in the resonant circuit. In another example, the sensor can be a capacitance sensor. This method can accommodate small irregularities in the relationship between the profile of the meshing blades of the rotating condenser and the angular position of the shaft.
A vacuum pumping system 40 maintains vacuum chamber 8 at a very low pressure so as not to scatter the accelerating beam.
To achieve uniform acceleration in a synchrocyclotron, the frequency and the amplitude of the electric field across the “dee” gap needs to be varied to account for the relativistic mass increase and radial (measured as distance from the center of the spiral trajectory of the charged particles) variation of magnetic field as well as to maintain focus of the beam of particles.
The instant invention uses a set of high speed digital to analog converters (DAC) that can generate, from a high speed memory, the required signals on a nanosecond time scale. Referring to
Referring to
Synchrocyclotron 300 includes digital waveform generator 319. Digital waveform generator 319 comprises one or more digital-to-analog converters (DACs) 320 that convert digital representations of waveforms stored in memory 322 into analog signals. Controller 324 controls addressing of memory 322 to output the appropriate data and controls DACs 320 to which the data is applied at any point in time. Controller 324 also writes data to memory 322. Interface 326 provides a data link to an outside computer (not shown). Interface 326 can be a fiber optic interface.
The clock signal that controls the timing of the “analog-to-digital” conversion process can be made available as an input to the digital waveform generator. This signal can be used in conjunction with a shaft position encoder (not shown) on the rotating condenser (see
The signal generated by DAC 320c is passed on to amplifying system 330, operated under the control of RF amplifier control system 332. In amplifying system 330, the signal from DAC 320c is applied by RF driver 334 to RF splitter 336, which sends the RF signal to be amplified by an RF power amplifier 338. In the example shown in
Upon exit from amplifying system 330, the signal from DAC 320c is passed on to particle accelerator 302 through matching network 348. Matching network 348 matches impedance of a load (particle accelerator 302) and a source (amplifying system 330). Matching network 348 includes a set of variable reactive elements.
Synchrocyclotron 300 can further include optimizer 350. Using measurement of the intensity of beam 318 by beam monitor 316, optimizer 350, under the control of a programmable processor can adjust the waveforms produced by DACs 320a, b and c and their timing to optimize the operation of the synchrocyclotron 300 and achieve a optimum acceleration of the charged particles.
The principles of operation of digital waveform generator 319 and adaptive feedback system 350 will now be discussed with reference to
The initial conditions for the waveforms can be calculated from physical principles that govern the motion of charged particles in magnetic field, from relativistic mechanics that describe the behavior of a charged particle mass as well as from the theoretical description of magnetic field as a function of radius in a vacuum chamber. These calculations are performed at step 402. The theoretical waveform of the voltage at the dee gap, RF(ω, t), where ω is the frequency of the electrical field across the dee gap and t is time, is computed based on the physical principles of a cyclotron, relativistic mechanics of a charged particle motion, and theoretical radial dependency of the magnetic field.
Departures of practice from theory can be measured and the waveform can be corrected as the synchrocyclotron operates under these initial conditions. For example, as will be described below with reference to
The timing of the accelerator waveform can be adjusted and optimized, as described below, on a cycle-by-cycle basis to correct for propagation delays present in the physical arrangement of the radio frequency wiring; asymmetry in the placement or manufacture of the dees can be corrected by placing the peak positive voltage closer in time to the subsequent peak negative voltage or vice versa, in effect creating an asymmetric sine wave.
In general, waveform distortion due to characteristics of the hardware can be corrected by pre-distorting the theoretical waveform RF(ω, t) using a device-dependent transfer function A, thus resulting in the desired waveform appearing at the specific point on the acceleration electrode where the protons are in the acceleration cycle. Accordingly, and referring again to
At step 405, a waveform that corresponds to an expression RF(ω, t)/A(ω,t) is computed and stored in memory 322. At step 406, digital waveform generator 319 generates RF /A waveform from memory. The driving signal RF(ω, t)/A(ω, t) is amplified at step 408, and the amplified signal is propagated through the entire device 300 at step 410 to generate a voltage across the dee gap at step 412. A more detailed description of a representative transfer function A(ω,t) will be given below with reference to
After the beam has reached the desired energy, a precisely timed voltage can be applied to an extraction electrode or device to create the desired beam trajectory in order to extract the beam from the accelerator, where it is measured by beam monitor at step 414a. RF voltage and frequency is measured by voltage sensors at step 414b. The information about beam intensity and RF frequency is relayed back to digital waveform generator 319, which can now adjust the shape of the signal RF(ω, t)/A(ω, t) at step 406.
The entire process can be controlled at step 416 by optimizer 350. Optimizer 350 can execute a semi- or fully automatic algorithm designed to optimize the waveforms and the relative timing of the waveforms. Simulated annealing is an example of a class of optimization algorithms that may be employed. On-line diagnostic instruments can probe the beam at different stages of acceleration to provide feedback for the optimization algorithm. When the optimum conditions have been found, the memory holding the optimized waveforms can be fixed and backed up for continued stable operation for some period of time. This ability to adjust the exact waveform to the properties of the individual accelerator decreases the unit-to-unit variability in operation and can compensate for manufacturing tolerances and variation in the properties of the materials used in the construction of the cyclotron.
The concept of the rotating condenser (such as condenser 28 shown in
The structure of rotating condenser 28 (see
As mentioned above, the timing of the waveform of the oscillating voltage input can be adjusted to correct for propagation delays that arise in the device.
In
As described above, the digital waveform generator produces an oscillating input voltage of the form RF(ω, t)/A(ω, t), where RF(ω, t) is a desired voltage across the dee gap and A(ω, t) is a transfer function. A representative device-specific transfer function A, is illustrated by curve 600 in
Another example of the type of effects that can be controlled with the programmable waveform generator is shown in
With the use of the programmable waveform generator, the amplitude of accelerating voltage 708 can be modulated in the desired fashion, as shown in
As mentioned above, the programmable waveform generator can be used to control the ion injector (ion source) to achieve optimal acceleration of the charged particles by precisely timing particle injections.
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application is a reissue application of U.S. application Ser. No. 12/603,934 filed on Oct. 22, 2009 now U.S. Pat. No. 8,952,634, which is a continuation of U.S. application Ser. No. 12/011,466, filed Jan. 25, 2008 now U.S. Pat. No. 7,626,347, which is a continuation of U.S. application Ser. No. 11/371,622, filed Mar. 9, 2006, now U.S. Pat. No. 7,402,963, which is a continuation of U.S. application Ser. No. 11/187,633, filed Jul. 21, 2005, now abandoned, which claims the benefit of U.S. Provisional Application No. 60/590,089, filed on Jul. 21, 2004. The entire teachings of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2280606 | Van et al. | Apr 1942 | A |
2492324 | Salisbury | Dec 1949 | A |
2615129 | McMillan | Oct 1952 | A |
2616042 | Weeks | Oct 1952 | A |
2659000 | Salisbury | Nov 1953 | A |
2701304 | Dickinson | Dec 1955 | A |
2789222 | Marvin et al. | Apr 1957 | A |
3175131 | Burleigh et al. | Mar 1965 | A |
3432721 | Naydan et al. | Mar 1969 | A |
3582650 | Avery | Jun 1971 | A |
3679899 | Dimeff | Jul 1972 | A |
3689847 | Verster | Sep 1972 | A |
3757118 | Hodge et al. | Sep 1973 | A |
3868522 | Bigham et al. | Feb 1975 | A |
3886367 | Castle | May 1975 | A |
3925676 | Bigham et al. | Dec 1975 | A |
2958327 | Marancik et al. | May 1976 | A |
3955089 | McIntyre et al. | May 1976 | A |
3958327 | Marancik et al. | May 1976 | A |
3992625 | Schmidt et al. | Nov 1976 | A |
4038622 | Purcell | Jul 1977 | A |
4047068 | Ress et al. | Sep 1977 | A |
4112306 | Nunan | Sep 1978 | A |
4129784 | Tschunt et al. | Dec 1978 | A |
4139777 | Rautenbach | Feb 1979 | A |
4197510 | Szu | Apr 1980 | A |
4220866 | Symmons et al. | Sep 1980 | A |
4230129 | LeVeen | Oct 1980 | A |
4256966 | Heinz | Mar 1981 | A |
4293772 | Stieber | Oct 1981 | A |
4336505 | Meyer | Jun 1982 | A |
4342060 | Gibson | Jul 1982 | A |
4345210 | Tran | Aug 1982 | A |
4353033 | Karasawa | Oct 1982 | A |
4425506 | Brown et al. | Jan 1984 | A |
4490616 | Cipollina et al. | Dec 1984 | A |
4507614 | Prono et al. | Mar 1985 | A |
4507616 | Blosser et al. | Mar 1985 | A |
4589126 | Augustsson et al. | May 1986 | A |
4598208 | Brunelli et al. | Jul 1986 | A |
4628523 | Heflin | Dec 1986 | A |
4633125 | Blosser et al. | Dec 1986 | A |
4641057 | Blosser et al. | Feb 1987 | A |
4641104 | Blosser et al. | Feb 1987 | A |
4651007 | Perusek et al. | Mar 1987 | A |
4680565 | Jahnke | Jul 1987 | A |
4705955 | Mileikowsky | Nov 1987 | A |
4710722 | Jahnke | Dec 1987 | A |
4726046 | Nunan | Feb 1988 | A |
4734653 | Jahnke | Mar 1988 | A |
4736173 | Basil, Jr. et al. | Apr 1988 | A |
4737727 | Yamada et al. | Apr 1988 | A |
4739173 | Blosser et al. | Apr 1988 | A |
4745367 | Dustmann et al. | May 1988 | A |
4754147 | Maughan et al. | Jun 1988 | A |
4763483 | Olsen | Aug 1988 | A |
4767930 | Stieber et al. | Aug 1988 | A |
4769623 | Marsing et al. | Sep 1988 | A |
4771208 | Jongen et al. | Sep 1988 | A |
4783634 | Yamamoto et al. | Nov 1988 | A |
4808941 | Marsing | Feb 1989 | A |
4812658 | Koehler | Mar 1989 | A |
4843333 | Marsing et al. | Jun 1989 | A |
4845371 | Stieber | Jul 1989 | A |
4865284 | Gosis et al. | Sep 1989 | A |
4868843 | Nunan | Sep 1989 | A |
4868844 | Nunan | Sep 1989 | A |
4870287 | Cole et al. | Sep 1989 | A |
4880985 | Jones | Nov 1989 | A |
4894541 | Ono | Jan 1990 | A |
4896206 | Denham | Jan 1990 | A |
4902993 | Krevet | Feb 1990 | A |
4904949 | Wilson | Feb 1990 | A |
4905267 | Miller et al. | Feb 1990 | A |
4917344 | Prechter et al. | Apr 1990 | A |
4943781 | Wilson et al. | Jul 1990 | A |
4945478 | Merickel et al. | Jul 1990 | A |
4968915 | Wilson et al. | Nov 1990 | A |
4987309 | Klasen et al. | Jan 1991 | A |
4992744 | Fujita et al. | Feb 1991 | A |
4996496 | Kitamura et al. | Feb 1991 | A |
5006759 | Krispel | Apr 1991 | A |
5010562 | Hernandez et al. | Apr 1991 | A |
5012111 | Ueda | Apr 1991 | A |
5017789 | Young et al. | May 1991 | A |
5017882 | Finlan | May 1991 | A |
5036290 | Sonobe et al. | Jul 1991 | A |
5039057 | Prechter et al. | Aug 1991 | A |
5039867 | Nishihara et al. | Aug 1991 | A |
5046078 | Hernandez et al. | Sep 1991 | A |
5072123 | Johnsen | Dec 1991 | A |
5111042 | Sullivan et al. | May 1992 | A |
5111173 | Matsuda et al. | May 1992 | A |
5117194 | Nakanishi et al. | May 1992 | A |
5117212 | Yamamoto et al. | May 1992 | A |
5117829 | Miller et al. | Jun 1992 | A |
5148032 | Hernandez | Sep 1992 | A |
5166531 | Huntzinger | Nov 1992 | A |
5189687 | Bova et al. | Feb 1993 | A |
5191706 | Cosden | Mar 1993 | A |
5240218 | Dye | Aug 1993 | A |
5260579 | Yasuda et al. | Nov 1993 | A |
5260581 | Lesyna et al. | Nov 1993 | A |
5278533 | Kawaguchi | Jan 1994 | A |
5285166 | Hiramoto et al. | Feb 1994 | A |
5297037 | Ifuku | Mar 1994 | A |
5317164 | Kurokawa | May 1994 | A |
5336891 | Crewe | Aug 1994 | A |
5341104 | Anton et al. | Aug 1994 | A |
5349198 | Takanaka | Sep 1994 | A |
5365742 | Boffito et al. | Nov 1994 | A |
5374913 | Pissantezky et al. | Dec 1994 | A |
5382914 | Hamm et al. | Jan 1995 | A |
5401973 | McKeown et al. | Mar 1995 | A |
5405235 | Lebre et al. | Apr 1995 | A |
5434420 | McKeown et al. | Jul 1995 | A |
5440133 | Moyers et al. | Aug 1995 | A |
5451794 | McKeown et al. | Sep 1995 | A |
5461773 | Kawaguchi | Oct 1995 | A |
5463291 | Carroll et al. | Oct 1995 | A |
5464411 | Schulte et al. | Nov 1995 | A |
5492922 | Palkowitz | Feb 1996 | A |
5511549 | Legg et al. | Apr 1996 | A |
5521469 | Laisne | May 1996 | A |
5538942 | Koyama et al. | Jul 1996 | A |
5549616 | Schulte et al. | Aug 1996 | A |
5561697 | Takafuji et al. | Oct 1996 | A |
5585642 | Britton et al. | Dec 1996 | A |
5633747 | Nikoonahad | May 1997 | A |
5635721 | Bardi et al. | Jun 1997 | A |
5668371 | Deasy et al. | Sep 1997 | A |
5672878 | Yao | Sep 1997 | A |
5691679 | Ackermann et al. | Nov 1997 | A |
5726448 | Smith et al. | Mar 1998 | A |
5727554 | Kalend et al. | Mar 1998 | A |
5730745 | Schulte et al. | Mar 1998 | A |
5744919 | Mishin | Apr 1998 | A |
5751781 | Brown et al. | May 1998 | A |
5778047 | Mansfield et al. | Jul 1998 | A |
5783914 | Hiramoto et al. | Jul 1998 | A |
5784431 | Kalend et al. | Jul 1998 | A |
5797924 | Schulte et al. | Aug 1998 | A |
5811944 | Sampayan et al. | Sep 1998 | A |
5818058 | Nakanishi et al. | Oct 1998 | A |
5821705 | Caporaso et al. | Oct 1998 | A |
5825845 | Blair et al. | Oct 1998 | A |
5841237 | Alton | Nov 1998 | A |
5846043 | Spath | Dec 1998 | A |
5851182 | Sahadevan | Dec 1998 | A |
5866912 | Slater et al. | Feb 1999 | A |
5874811 | Finlan et al. | Feb 1999 | A |
5895926 | Britton et al. | Apr 1999 | A |
5917293 | Saito et al. | Jun 1999 | A |
5920601 | Nigg et al. | Jul 1999 | A |
5929458 | Nemezawa et al. | Jul 1999 | A |
5963615 | Egley et al. | Oct 1999 | A |
5993373 | Nonaka et al. | Nov 1999 | A |
6008499 | Hiramoto et al. | Dec 1999 | A |
6034377 | Pu | Mar 2000 | A |
6057655 | Jongen | May 2000 | A |
6061426 | Linders et al. | May 2000 | A |
6064807 | Arai et al. | May 2000 | A |
6066851 | Madono et al. | May 2000 | A |
6080992 | Nonaka et al. | Jun 2000 | A |
6087670 | Hiramoto et al. | Jul 2000 | A |
6094760 | Nonaka et al. | Aug 2000 | A |
6118848 | Reiffel | Sep 2000 | A |
6140021 | Nakasuji et al. | Oct 2000 | A |
6144875 | Schweikard et al. | Nov 2000 | A |
6158708 | Egley et al. | Dec 2000 | A |
6207952 | Kan et al. | Mar 2001 | B1 |
6219403 | Nishihara | Apr 2001 | B1 |
6222905 | Yoda et al. | Apr 2001 | B1 |
6241671 | Ritter et al. | Jun 2001 | B1 |
6246066 | Yuehu | Jun 2001 | B1 |
6256591 | Yoda et al. | Jul 2001 | B1 |
6265837 | Akiyama et al. | Jul 2001 | B1 |
6268610 | Pu | Jul 2001 | B1 |
6278239 | Caporaso et al. | Aug 2001 | B1 |
6279579 | Riaziat et al. | Aug 2001 | B1 |
6307914 | Kunieda et al. | Oct 2001 | B1 |
6316776 | Hiramoto et al. | Nov 2001 | B1 |
6366021 | Meddaugh et al. | Apr 2002 | B1 |
6369585 | Yao | Apr 2002 | B2 |
6380545 | Yan | Apr 2002 | B1 |
6407505 | Bertsche | Jun 2002 | B1 |
6414614 | Melanson | Jul 2002 | B1 |
6417634 | Bergstrom | Jul 2002 | B1 |
6433336 | Jongen et al. | Aug 2002 | B1 |
6433349 | Akiyama et al. | Aug 2002 | B2 |
6433494 | Kulish et al. | Aug 2002 | B1 |
6441569 | Janzow | Aug 2002 | B1 |
6443349 | Van Der Burg | Sep 2002 | B1 |
6465957 | Whitham et al. | Oct 2002 | B1 |
6472834 | Hiramoto et al. | Oct 2002 | B2 |
6476403 | Dolinskii et al. | Nov 2002 | B1 |
6492922 | New | Dec 2002 | B1 |
6493424 | Whitham | Dec 2002 | B2 |
6498444 | Hanna et al. | Dec 2002 | B1 |
6501981 | Schweikard et al. | Dec 2002 | B1 |
6519316 | Collins | Feb 2003 | B1 |
6576916 | Smith et al. | Jun 2003 | B2 |
6593696 | Ding et al. | Jul 2003 | B2 |
6594336 | Nishizawa et al. | Jul 2003 | B2 |
6600164 | Badura et al. | Jul 2003 | B1 |
6617598 | Matsuda | Sep 2003 | B1 |
6621889 | Mostafavi | Sep 2003 | B1 |
6627875 | Afeyan | Sep 2003 | B2 |
6639234 | Badura et al. | Oct 2003 | B1 |
6646383 | Bertsche et al. | Nov 2003 | B2 |
6670618 | Hartmann et al. | Dec 2003 | B1 |
6683318 | Haberer et al. | Jan 2004 | B1 |
6683426 | Kleeven | Jan 2004 | B1 |
6693283 | Eickhoff et al. | Feb 2004 | B2 |
6703613 | Kaji | Mar 2004 | B2 |
6710362 | Kraft et al. | Mar 2004 | B2 |
6713773 | Lyons et al. | Mar 2004 | B1 |
6713976 | Zumoto et al. | Mar 2004 | B1 |
6717162 | Jongen | Apr 2004 | B1 |
6736831 | Hartmann et al. | May 2004 | B1 |
6745072 | Badura et al. | Jun 2004 | B1 |
6769806 | Moyers | Aug 2004 | B2 |
6774383 | Norimine et al. | Aug 2004 | B2 |
6777689 | Nelson | Aug 2004 | B2 |
6777700 | Yanagisawa et al. | Aug 2004 | B2 |
6780149 | Schulte | Aug 2004 | B1 |
6799068 | Hartmann et al. | Sep 2004 | B1 |
6800866 | Amemiya et al. | Oct 2004 | B2 |
6803591 | Muramatsu et al. | Oct 2004 | B2 |
6814694 | Pedroni | Nov 2004 | B1 |
6819117 | Wilsher | Nov 2004 | B2 |
6822244 | Beloussov et al. | Nov 2004 | B2 |
6853142 | Chistyakov | Feb 2005 | B2 |
6853703 | Svatos et al. | Feb 2005 | B2 |
6864770 | Nemoto et al. | Mar 2005 | B2 |
6865254 | Nafstadius | Mar 2005 | B2 |
6873123 | Marchand et al. | Mar 2005 | B2 |
6891177 | Kraft et al. | May 2005 | B1 |
6891924 | Yoda et al. | May 2005 | B1 |
6894300 | Reimoser et al. | May 2005 | B2 |
6897451 | Kaercher et al. | May 2005 | B2 |
6902646 | Mahoney | Jun 2005 | B2 |
6914396 | Symons et al. | Jul 2005 | B1 |
6936832 | Norimine et al. | Aug 2005 | B2 |
6953943 | Yanagisawa et al. | Oct 2005 | B2 |
6965116 | Wagner et al. | Nov 2005 | B1 |
6969194 | Nafstadius | Nov 2005 | B1 |
6979832 | Yanagisawa et al. | Dec 2005 | B2 |
6984835 | Harada | Jan 2006 | B2 |
6992312 | Yanagisawa et al. | Jan 2006 | B2 |
6993112 | Hesse | Jan 2006 | B2 |
7008105 | Amann et al. | Mar 2006 | B2 |
7011447 | Moyers | Mar 2006 | B2 |
7012267 | Moriyama et al. | Mar 2006 | B2 |
7014361 | Ein-Gal | Mar 2006 | B1 |
7026636 | Yanagisawa et al. | Apr 2006 | B2 |
7038403 | Mastrangeli et al. | May 2006 | B2 |
7041479 | Swartz et al. | May 2006 | B2 |
7045781 | Adamec et al. | May 2006 | B2 |
7049613 | Yanagisawa et al. | May 2006 | B2 |
7053389 | Yanagisawa et al. | May 2006 | B2 |
7054801 | Sakamoto et al. | May 2006 | B2 |
7060997 | Norimine et al. | Jun 2006 | B2 |
7071479 | Yanagisawa et al. | Jul 2006 | B2 |
7073508 | Moyers | Jul 2006 | B2 |
7081619 | Bashkirov et al. | Jul 2006 | B2 |
7084410 | Beloussov et al. | Aug 2006 | B2 |
7091478 | Haberer | Aug 2006 | B2 |
7102144 | Matsuda et al. | Sep 2006 | B2 |
7122811 | Matsuda et al. | Oct 2006 | B2 |
7122966 | Norling et al. | Oct 2006 | B2 |
7122978 | Nakanishi et al. | Oct 2006 | B2 |
7135678 | Wang et al. | Nov 2006 | B2 |
7138771 | Bechthold et al. | Nov 2006 | B2 |
7154107 | Yanagisawa et al. | Dec 2006 | B2 |
7154108 | Tadokoro et al. | Dec 2006 | B2 |
7154991 | Earnst et al. | Dec 2006 | B2 |
7162005 | Bjorkholm | Jan 2007 | B2 |
7173264 | Moriyama et al. | Feb 2007 | B2 |
7173265 | Miller et al. | Feb 2007 | B2 |
7173385 | Caporaso et al. | Feb 2007 | B2 |
7186991 | Kato et al. | Mar 2007 | B2 |
7193227 | Hiramoto et al. | Mar 2007 | B2 |
7199382 | Rigney et al. | Apr 2007 | B2 |
7208748 | Sliski et al. | Apr 2007 | B2 |
7212608 | Nagamine et al. | May 2007 | B2 |
7212609 | Nagamine et al. | May 2007 | B2 |
7221733 | Takai et al. | May 2007 | B1 |
7227161 | Matsuda et al. | Jun 2007 | B2 |
7247869 | Tadokoro et al. | Jul 2007 | B2 |
7257191 | Sommer | Aug 2007 | B2 |
7259529 | Tanaka | Aug 2007 | B2 |
7262424 | Moriyama et al. | Aug 2007 | B2 |
7262565 | Fujisawa | Aug 2007 | B2 |
7274018 | Adamec et al. | Sep 2007 | B2 |
7280633 | Cheng et al. | Oct 2007 | B2 |
7295649 | Johnsen | Nov 2007 | B2 |
7297967 | Yanagisawa et al. | Nov 2007 | B2 |
7301162 | Matsuda et al. | Nov 2007 | B2 |
7307264 | Brusasco et al. | Dec 2007 | B2 |
7317192 | Ma | Jan 2008 | B2 |
7318805 | Schweikard et al. | Jan 2008 | B2 |
7319231 | Moriyama et al. | Jan 2008 | B2 |
7319336 | Baur et al. | Jan 2008 | B2 |
7323682 | McCauley | Jan 2008 | B2 |
7331713 | Moyers | Feb 2008 | B2 |
7332880 | Ina et al. | Feb 2008 | B2 |
7345291 | Kats | Mar 2008 | B2 |
7345292 | Moriyama et al. | Mar 2008 | B2 |
7348557 | Armit | Mar 2008 | B2 |
7348579 | Pedroni | Mar 2008 | B2 |
7351988 | Naumann et al. | Apr 2008 | B2 |
7355189 | Yanagisawa et al. | Apr 2008 | B2 |
7368740 | Beloussov et al. | May 2008 | B2 |
7372053 | Yamashita et al. | May 2008 | B2 |
7378672 | Harada | May 2008 | B2 |
7381979 | Yamashita et al. | Jun 2008 | B2 |
7397054 | Natori et al. | Jul 2008 | B2 |
7397901 | Johnsen | Jul 2008 | B1 |
7398309 | Baumann et al. | Jul 2008 | B2 |
7402822 | Guertin et al. | Jul 2008 | B2 |
7402823 | Guertin et al. | Jul 2008 | B2 |
7402824 | Guertin et al. | Jul 2008 | B2 |
7402963 | Sliski | Jul 2008 | B2 |
7405407 | Hiramoto et al. | Jul 2008 | B2 |
7425717 | Matsuda et al. | Sep 2008 | B2 |
7432516 | Peggs et al. | Oct 2008 | B2 |
7439528 | Nishiuchi et al. | Oct 2008 | B2 |
7446328 | Rigney et al. | Nov 2008 | B2 |
7446490 | Jongen et al. | Nov 2008 | B2 |
7449701 | Fujimaki et al. | Nov 2008 | B2 |
7453076 | Welch et al. | Nov 2008 | B2 |
7456415 | Yanagisawa et al. | Nov 2008 | B2 |
7465944 | Ueno et al. | Dec 2008 | B2 |
7466085 | Nutt | Dec 2008 | B2 |
7468506 | Rogers et al. | Dec 2008 | B2 |
7473913 | Hermann et al. | Jan 2009 | B2 |
7476867 | Fritsch et al. | Jan 2009 | B2 |
7476883 | Nutt | Jan 2009 | B2 |
7482606 | Groezinger et al. | Jan 2009 | B2 |
7491161 | Taguchi | Feb 2009 | B2 |
7492556 | Atkins et al. | Feb 2009 | B2 |
7507975 | Mohr | Mar 2009 | B2 |
7518108 | Frey et al. | Apr 2009 | B2 |
7525104 | Harada | Apr 2009 | B2 |
7541905 | Antaya | Jun 2009 | B2 |
7547901 | Guertin et al. | Jun 2009 | B2 |
7554096 | Ward et al. | Jun 2009 | B2 |
7554097 | Ward et al. | Jun 2009 | B2 |
7555103 | Johnsen | Jun 2009 | B2 |
7557358 | Ward et al. | Jul 2009 | B2 |
7557359 | Ward et al. | Jul 2009 | B2 |
7557360 | Ward et al. | Jul 2009 | B2 |
7557361 | Ward et al. | Jul 2009 | B2 |
7560715 | Pedroni | Jul 2009 | B2 |
7560717 | Matsuda et al. | Jul 2009 | B2 |
7567694 | Lu et al. | Jul 2009 | B2 |
7574251 | Lu et al. | Aug 2009 | B2 |
7576499 | Caporaso et al. | Aug 2009 | B2 |
7579603 | Birgy et al. | Aug 2009 | B2 |
7579610 | Grozinger et al. | Aug 2009 | B2 |
7582866 | Furuhashi et al. | Sep 2009 | B2 |
7582885 | Katagiri et al. | Sep 2009 | B2 |
7582886 | Trbojevic | Sep 2009 | B2 |
7586112 | Chiba et al. | Sep 2009 | B2 |
7598497 | Yamamoto et al. | Oct 2009 | B2 |
7609009 | Tanaka et al. | Oct 2009 | B2 |
7609809 | Kapatoes et al. | Oct 2009 | B2 |
7609811 | Siljamaki et al. | Oct 2009 | B1 |
7615942 | Sanders et al. | Nov 2009 | B2 |
7626347 | Sliski et al. | Dec 2009 | B2 |
7627267 | Saiki | Dec 2009 | B2 |
7629598 | Harada | Dec 2009 | B2 |
7639853 | Olivera et al. | Dec 2009 | B2 |
7639854 | Schnarr et al. | Dec 2009 | B2 |
7643661 | Ruchala et al. | Jan 2010 | B2 |
7656258 | Antaya et al. | Feb 2010 | B1 |
7659521 | Pedroni | Feb 2010 | B2 |
7659528 | Uematsu | Feb 2010 | B2 |
7668291 | Nord et al. | Feb 2010 | B2 |
7672429 | Urano et al. | Mar 2010 | B2 |
7679073 | Urano et al. | Mar 2010 | B2 |
7682078 | Rietzel | Mar 2010 | B2 |
7692166 | Muraki et al. | Apr 2010 | B2 |
7692168 | Moriyama et al. | Apr 2010 | B2 |
7696499 | Miller et al. | Apr 2010 | B2 |
7696847 | Antaya | Apr 2010 | B2 |
7701677 | Schultz et al. | Apr 2010 | B2 |
7709818 | Matsuda et al. | May 2010 | B2 |
7710051 | Caporaso et al. | May 2010 | B2 |
7718982 | Sliski et al. | May 2010 | B2 |
7728311 | Gall | Jun 2010 | B2 |
7746978 | Cheng et al. | Jun 2010 | B2 |
7755305 | Umezawa et al. | Jul 2010 | B2 |
7759642 | Nir | Jul 2010 | B2 |
7763867 | Birgy et al. | Jul 2010 | B2 |
7767988 | Kaiser et al. | Aug 2010 | B2 |
7770231 | Prater et al. | Aug 2010 | B2 |
7772577 | Saito et al. | Aug 2010 | B2 |
7773723 | Nord et al. | Aug 2010 | B2 |
7773788 | Lu et al. | Aug 2010 | B2 |
7778488 | Nord et al. | Aug 2010 | B2 |
7783010 | Clayton | Aug 2010 | B2 |
7784127 | Kuro et al. | Aug 2010 | B2 |
7786451 | Ward et al. | Aug 2010 | B2 |
7786452 | Ward et al. | Aug 2010 | B2 |
7789560 | Moyers | Sep 2010 | B2 |
7791051 | Beloussov et al. | Sep 2010 | B2 |
7796731 | Nord et al. | Sep 2010 | B2 |
7801269 | Cravens et al. | Sep 2010 | B2 |
7801270 | Nord et al. | Sep 2010 | B2 |
7801988 | Baumann et al. | Sep 2010 | B2 |
7807982 | Nishiuchi et al. | Oct 2010 | B2 |
7809107 | Nord et al. | Oct 2010 | B2 |
7812319 | Diehl et al. | Oct 2010 | B2 |
7812326 | Grozinger et al. | Oct 2010 | B2 |
7816657 | Hansmann et al. | Oct 2010 | B2 |
7817778 | Nord et al. | Oct 2010 | B2 |
7817836 | Chao et al. | Oct 2010 | B2 |
7834334 | Grozinger et al. | Nov 2010 | B2 |
7834336 | Boeh et al. | Nov 2010 | B2 |
7835494 | Nord et al. | Nov 2010 | B2 |
7835502 | Spence et al. | Nov 2010 | B2 |
7839972 | Ruchala et al. | Nov 2010 | B2 |
7839973 | Nord et al. | Nov 2010 | B2 |
7848488 | Mansfield | Dec 2010 | B2 |
7857756 | Warren et al. | Dec 2010 | B2 |
7860216 | Jongen et al. | Dec 2010 | B2 |
7860550 | Saracen et al. | Dec 2010 | B2 |
7868301 | Diehl | Jan 2011 | B2 |
7875861 | Huttenberger et al. | Jan 2011 | B2 |
7875868 | Moriyama et al. | Jan 2011 | B2 |
7881431 | Aoi et al. | Feb 2011 | B2 |
7894574 | Nord et al. | Feb 2011 | B1 |
7906769 | Blasche et al. | Mar 2011 | B2 |
7914734 | Livingston | Mar 2011 | B2 |
7919765 | Timmer | Apr 2011 | B2 |
7920040 | Antaya et al. | Apr 2011 | B2 |
7920675 | Lomax et al. | Apr 2011 | B2 |
7928415 | Bert et al. | Apr 2011 | B2 |
7934869 | Ivanov et al. | May 2011 | B2 |
7940881 | Jongen et al. | May 2011 | B2 |
7943913 | Balakin | May 2011 | B2 |
7947969 | Pu | May 2011 | B2 |
7949096 | Cheng et al. | May 2011 | B2 |
7950587 | Henson et al. | May 2011 | B2 |
7960710 | Kruip et al. | Jun 2011 | B2 |
7961844 | Takeda et al. | Jun 2011 | B2 |
7977648 | Westerly et al. | Jul 2011 | B2 |
7977656 | Fujimaki et al. | Jul 2011 | B2 |
7977657 | Flynn et al. | Jul 2011 | B2 |
7982198 | Nishiuchi et al. | Jul 2011 | B2 |
7982416 | Tanaka et al. | Jul 2011 | B2 |
7984715 | Moyers | Jul 2011 | B2 |
7986768 | Nord et al. | Jul 2011 | B2 |
7987053 | Schaffner | Jul 2011 | B2 |
7989785 | Emhofer et al. | Aug 2011 | B2 |
7990524 | Jureller et al. | Aug 2011 | B2 |
7997553 | Sloan et al. | Aug 2011 | B2 |
8002466 | Von Neubeck et al. | Aug 2011 | B2 |
8003964 | Stark et al. | Aug 2011 | B2 |
8009803 | Nord et al. | Aug 2011 | B2 |
8009804 | Siljamaki et al. | Aug 2011 | B2 |
8039822 | Rietzel | Oct 2011 | B2 |
8041006 | Boyden et al. | Oct 2011 | B2 |
8044364 | Yamamoto | Oct 2011 | B2 |
8049187 | Tachikawa | Nov 2011 | B2 |
8053508 | Korkut et al. | Nov 2011 | B2 |
8053739 | Rietzel | Nov 2011 | B2 |
8053745 | Moore | Nov 2011 | B2 |
8053746 | Timmer et al. | Nov 2011 | B2 |
8063381 | Tsoupas et al. | Nov 2011 | B2 |
8067748 | Balakin | Nov 2011 | B2 |
8069675 | Radovinsky et al. | Dec 2011 | B2 |
8071966 | Kaiser et al. | Dec 2011 | B2 |
8080801 | Safai | Dec 2011 | B2 |
8085899 | Nord et al. | Dec 2011 | B2 |
8089054 | Balakin | Jan 2012 | B2 |
8093564 | Balakin | Jan 2012 | B2 |
8093568 | Mackie et al. | Jan 2012 | B2 |
8111125 | Antaya et al. | Feb 2012 | B2 |
8129699 | Balakin | Mar 2012 | B2 |
8144832 | Balakin | Mar 2012 | B2 |
8153989 | Tachikawa et al. | Apr 2012 | B2 |
8173981 | Trbojevic | May 2012 | B2 |
8188688 | Balakin | May 2012 | B2 |
8198607 | Balakin | Jun 2012 | B2 |
8222613 | Tajiri et al. | Jul 2012 | B2 |
8227768 | Smick et al. | Jul 2012 | B2 |
8232536 | Harada | Jul 2012 | B2 |
8288742 | Balakin | Oct 2012 | B2 |
8291717 | Radovinsky et al. | Oct 2012 | B2 |
8294127 | Tachibana | Oct 2012 | B2 |
8304725 | Komuro et al. | Nov 2012 | B2 |
8304750 | Preikszas et al. | Nov 2012 | B2 |
8309941 | Balakin | Nov 2012 | B2 |
8330132 | Guertin et al. | Dec 2012 | B2 |
8334520 | Otaka et al. | Dec 2012 | B2 |
8335397 | Takane et al. | Dec 2012 | B2 |
8344340 | Gall et al. | Jan 2013 | B2 |
8350214 | Otaki et al. | Jan 2013 | B2 |
8368038 | Balakin | Feb 2013 | B2 |
8368043 | Havelange et al. | Feb 2013 | B2 |
8373143 | Balakin | Feb 2013 | B2 |
8373145 | Balakin | Feb 2013 | B2 |
8373146 | Balakin | Feb 2013 | B2 |
8378299 | Frosien | Feb 2013 | B2 |
8378321 | Balakin | Feb 2013 | B2 |
8382943 | Clark | Feb 2013 | B2 |
8389949 | Harada et al. | Mar 2013 | B2 |
8399866 | Balakin | Mar 2013 | B2 |
8405042 | Honda et al. | Mar 2013 | B2 |
8405056 | Amaldi et al. | Mar 2013 | B2 |
8415643 | Balakin | Apr 2013 | B2 |
8416918 | Nord et al. | Apr 2013 | B2 |
8421041 | Balakin | Apr 2013 | B2 |
8426833 | Trbojevic | Apr 2013 | B2 |
8436323 | Iseki et al. | May 2013 | B2 |
8440987 | Stephani et al. | May 2013 | B2 |
8445872 | Behrens et al. | May 2013 | B2 |
8466441 | Iwata et al. | Jun 2013 | B2 |
8472583 | Star-Lack et al. | Jun 2013 | B2 |
8483357 | Siljamaki et al. | Jul 2013 | B2 |
8487278 | Balakin | Jul 2013 | B2 |
8552406 | Phaneuf et al. | Oct 2013 | B2 |
8552408 | Hanawa et al. | Oct 2013 | B2 |
8569717 | Balakin | Oct 2013 | B2 |
8575563 | Cameron et al. | Nov 2013 | B2 |
8581215 | Balakin | Nov 2013 | B2 |
8581523 | Gall et al. | Nov 2013 | B2 |
8581525 | Antaya et al. | Nov 2013 | B2 |
8637833 | Balakin | Jan 2014 | B2 |
8653314 | Pelati et al. | Feb 2014 | B2 |
8653473 | Yajima | Feb 2014 | B2 |
8766218 | Jongen | Jul 2014 | B2 |
8791435 | Balakin | Jul 2014 | B2 |
8901509 | Balakin | Dec 2014 | B2 |
8905908 | Matsuguma et al. | Dec 2014 | B2 |
8907311 | Gall et al. | Dec 2014 | B2 |
8952634 | Sliski et al. | Feb 2015 | B2 |
8963112 | Balakin | Feb 2015 | B1 |
8970137 | Gall et al. | Mar 2015 | B2 |
8975816 | Scheitrum et al. | Mar 2015 | B2 |
9012866 | Benna et al. | Apr 2015 | B2 |
9028384 | Iikura | May 2015 | B2 |
9044600 | Balakin | Jun 2015 | B2 |
9056199 | Balakin | Jun 2015 | B2 |
9176468 | Ueno et al. | Nov 2015 | B2 |
9451688 | Jongen | Sep 2016 | B2 |
9452301 | Gall et al. | Sep 2016 | B2 |
9723705 | Gall et al. | Aug 2017 | B2 |
20020172317 | Maksimchuk et al. | Nov 2002 | A1 |
20030048080 | Amemiya et al. | Mar 2003 | A1 |
20030125622 | Schweikard et al. | Jul 2003 | A1 |
20030136924 | Kraft et al. | Jul 2003 | A1 |
20030146759 | Bashkirov et al. | Aug 2003 | A1 |
20030152197 | Moyers | Aug 2003 | A1 |
20030163015 | Yanagisawa et al. | Aug 2003 | A1 |
20030183779 | Norimine et al. | Oct 2003 | A1 |
20030234369 | Glukhoy | Dec 2003 | A1 |
20040000650 | Yanagisawa et al. | Jan 2004 | A1 |
20040017888 | Seppi et al. | Jan 2004 | A1 |
20040056212 | Yanagisawa et al. | Mar 2004 | A1 |
20040061077 | Muramatsu et al. | Apr 2004 | A1 |
20040061078 | Muramatsu et al. | Apr 2004 | A1 |
20040085023 | Chistyakov | May 2004 | A1 |
20040098445 | Baumann et al. | May 2004 | A1 |
20040111134 | Muramatsu et al. | Jun 2004 | A1 |
20040118081 | Reimoser et al. | Jun 2004 | A1 |
20040149934 | Yanagisawa et al. | Aug 2004 | A1 |
20040159795 | Kaercher et al. | Aug 2004 | A1 |
20040173763 | Moriyama et al. | Sep 2004 | A1 |
20040174958 | Moriyama et al. | Sep 2004 | A1 |
20040183033 | Moriyama et al. | Sep 2004 | A1 |
20040183035 | Yanagisawa et al. | Sep 2004 | A1 |
20040200982 | Moriyama et al. | Oct 2004 | A1 |
20040200983 | Fujimaki et al. | Oct 2004 | A1 |
20040213381 | Harada | Oct 2004 | A1 |
20040227104 | Matsuda et al. | Nov 2004 | A1 |
20040232356 | Norimine et al. | Nov 2004 | A1 |
20040240626 | Moyers | Dec 2004 | A1 |
20050058245 | Ein-Gal | Mar 2005 | A1 |
20050089141 | Brown | Apr 2005 | A1 |
20050161618 | Pedroni | Jul 2005 | A1 |
20050184686 | Caporaso et al. | Aug 2005 | A1 |
20050228255 | Saracen et al. | Oct 2005 | A1 |
20050234327 | Saracen et al. | Oct 2005 | A1 |
20050238134 | Brusasco et al. | Oct 2005 | A1 |
20050247890 | Norimine et al. | Nov 2005 | A1 |
20060017015 | Sliski et al. | Jan 2006 | A1 |
20060067468 | Rietzel | Mar 2006 | A1 |
20060126792 | Li | Jun 2006 | A1 |
20060145088 | Ma | Jul 2006 | A1 |
20060170381 | Amaldi et al. | Aug 2006 | A1 |
20060173294 | Ein-Gal | Aug 2006 | A1 |
20060175991 | Fujisawa | Aug 2006 | A1 |
20060273264 | Nakayama et al. | Dec 2006 | A1 |
20060284562 | Hruby et al. | Dec 2006 | A1 |
20070001128 | Sliski et al. | Jan 2007 | A1 |
20070013273 | Albert et al. | Jan 2007 | A1 |
20070014654 | Haverfield et al. | Jan 2007 | A1 |
20070023699 | Yamashita et al. | Feb 2007 | A1 |
20070029510 | Hermann et al. | Feb 2007 | A1 |
20070051904 | Kaiser et al. | Mar 2007 | A1 |
20070061937 | Gall | Mar 2007 | A1 |
20070092812 | Caporaso et al. | Apr 2007 | A1 |
20070114945 | Mattaboni et al. | May 2007 | A1 |
20070133752 | Ein-Gal | Jun 2007 | A1 |
20070145916 | Caporaso et al. | Jun 2007 | A1 |
20070170994 | Peggs et al. | Jul 2007 | A1 |
20070171015 | Antaya | Jul 2007 | A1 |
20070181519 | Khoshnevis | Aug 2007 | A1 |
20070252093 | Fujimaki et al. | Nov 2007 | A1 |
20070284548 | Kaiser et al. | Dec 2007 | A1 |
20080067452 | Moriyama et al. | Mar 2008 | A1 |
20080078937 | Tsuchiya et al. | Apr 2008 | A1 |
20080093567 | Gall | Apr 2008 | A1 |
20080218102 | Sliski | Sep 2008 | A1 |
20080234531 | Welch et al. | Sep 2008 | A1 |
20080270517 | Baumann et al. | Oct 2008 | A1 |
20090096179 | Stark et al. | Apr 2009 | A1 |
20090101832 | Diehl | Apr 2009 | A1 |
20090140671 | O'Neal et al. | Jun 2009 | A1 |
20090140672 | Gall et al. | Jun 2009 | A1 |
20090200483 | Gall et al. | Aug 2009 | A1 |
20090230299 | Shichi et al. | Sep 2009 | A1 |
20090236545 | Timmer | Sep 2009 | A1 |
20090296885 | Boeh et al. | Dec 2009 | A1 |
20090309046 | Balakin | Dec 2009 | A1 |
20090314960 | Balakin | Dec 2009 | A1 |
20090321665 | Timmer et al. | Dec 2009 | A1 |
20100006770 | Balakin | Jan 2010 | A1 |
20100027745 | Balakin | Feb 2010 | A1 |
20100038552 | Trbojevic | Feb 2010 | A1 |
20100045213 | Sliski et al. | Feb 2010 | A1 |
20100046697 | Balakin | Feb 2010 | A1 |
20100051833 | Guertin et al. | Mar 2010 | A1 |
20100192303 | Miller et al. | Aug 2010 | A1 |
20100209335 | Mills | Aug 2010 | A1 |
20100230617 | Gall | Sep 2010 | A1 |
20100308235 | Sliski et al. | Dec 2010 | A1 |
20110006212 | Shchory et al. | Jan 2011 | A1 |
20110220809 | Yajima et al. | Sep 2011 | A1 |
20110233423 | Balakin | Sep 2011 | A1 |
20110240874 | Iwata | Oct 2011 | A1 |
20110284760 | Balakin | Nov 2011 | A1 |
20110299919 | Stark et al. | Dec 2011 | A1 |
20120014501 | Pelc et al. | Jan 2012 | A1 |
20120081041 | Cheung et al. | Apr 2012 | A1 |
20120126140 | Gall et al. | May 2012 | A1 |
20120217903 | Tanaka et al. | Aug 2012 | A1 |
20120313003 | Trbojevic | Dec 2012 | A1 |
20130053616 | Gall et al. | Feb 2013 | A1 |
20130127375 | Sliski et al. | May 2013 | A1 |
20130131424 | Sliski et al. | May 2013 | A1 |
20130193352 | Bert et al. | Aug 2013 | A1 |
20130237425 | Leigh et al. | Sep 2013 | A1 |
20130249443 | Antaya et al. | Sep 2013 | A1 |
20140028220 | Bromberg et al. | Jan 2014 | A1 |
20140042934 | Tsutsui | Feb 2014 | A1 |
20140062344 | Gall et al. | Mar 2014 | A1 |
20140094643 | Gall et al. | Apr 2014 | A1 |
20140097920 | Goldie et al. | Apr 2014 | A1 |
20150009917 | Cho et al. | Jan 2015 | A1 |
20150009918 | Yeoum et al. | Jan 2015 | A1 |
20150161793 | Takahashi | Jun 2015 | A1 |
20170028224 | Gall et al. | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
2005267078 | Feb 2006 | AU |
2005267078 | Jul 2009 | AU |
2629333 | May 2007 | CA |
2629333 | May 2007 | CA |
1377521 | Oct 2002 | CN |
1537657 | Oct 2004 | CN |
1631061 | Jun 2005 | CN |
1816243 | Aug 2006 | CN |
101061759 | Oct 2007 | CN |
101061759 | Oct 2007 | CN |
101361156 | Feb 2009 | CN |
101932361 | Dec 2010 | CN |
101932361 | Dec 2010 | CN |
101933405 | Dec 2010 | CN |
101933405 | Dec 2010 | CN |
101933406 | Dec 2010 | CN |
101933406 | Dec 2010 | CN |
102036461 | Apr 2011 | CN |
102036461 | Apr 2011 | CN |
101061759 | May 2011 | CN |
2005800245224 | May 2011 | CN |
102172106 | Aug 2011 | CN |
2010105813842 | Nov 2012 | CN |
104244562 | Dec 2014 | CN |
104812443 | Jul 2015 | CN |
104812444 | Jul 2015 | CN |
104822417 | Aug 2015 | CN |
2753397 | Jun 1978 | DE |
2753397 | Jun 1978 | DE |
2753397 | Sep 1978 | DE |
3148100 | Jun 1983 | DE |
3148100 | Jun 1983 | DE |
35 30 446 | Aug 1984 | DE |
3530446 | Mar 1986 | DE |
3530446 | Mar 1986 | DE |
31 48 100 | Jun 1986 | DE |
4101094 | May 1992 | DE |
4411171 | Oct 1995 | DE |
4411171 | Oct 1995 | DE |
0044153 | Jan 1982 | EP |
0044153 | Jan 1982 | EP |
0 194 728 | Sep 1986 | EP |
0194728 | Sep 1986 | EP |
0208163 | Jan 1987 | EP |
0 221 987 | May 1987 | EP |
0221987 | May 1987 | EP |
0222786 | May 1987 | EP |
0276123 | Jul 1988 | EP |
0 277 521 | Aug 1988 | EP |
0277521 | Aug 1988 | EP |
0 208 163 | Jan 1989 | EP |
0306966 | Mar 1989 | EP |
0 222 786 | Jul 1990 | EP |
0388123 | Sep 1990 | EP |
0 221 987 | Jan 1991 | EP |
0465597 | Jan 1992 | EP |
0 499 253 | Aug 1992 | EP |
0499253 | Aug 1992 | EP |
0 306 966 | Apr 1995 | EP |
0 388 123 | May 1995 | EP |
0 465 597 | May 1997 | EP |
0776595 | Jun 1997 | EP |
0 911 064 | Jun 1998 | EP |
0 864 337 | Sep 1998 | EP |
0864337 | Sep 1998 | EP |
0 776 595 | Dec 1998 | EP |
0911064 | Apr 1999 | EP |
1 069 809 | Jan 2001 | EP |
1069809 | Jan 2001 | EP |
1 153 398 | Apr 2001 | EP |
1 153 398 | Nov 2001 | EP |
1153398 | Nov 2001 | EP |
1265462 | Dec 2002 | EP |
1 348 465 | Jan 2003 | EP |
1 294 445 | Mar 2003 | EP |
1294445 | Mar 2003 | EP |
1 348 465 | Oct 2003 | EP |
1348465 | Oct 2003 | EP |
1 358 908 | Nov 2003 | EP |
1358908 | Nov 2003 | EP |
1 371 390 | Dec 2003 | EP |
1371390 | Dec 2003 | EP |
1 402 923 | Mar 2004 | EP |
1402923 | Mar 2004 | EP |
0 911 064 | Jun 2004 | EP |
1 430 932 | Jun 2004 | EP |
1430932 | Jun 2004 | EP |
1 454 653 | Sep 2004 | EP |
1 454 654 | Sep 2004 | EP |
1 454 655 | Sep 2004 | EP |
1 454 656 | Sep 2004 | EP |
1 454 657 | Sep 2004 | EP |
1454653 | Sep 2004 | EP |
1454654 | Sep 2004 | EP |
1454655 | Sep 2004 | EP |
1454656 | Sep 2004 | EP |
1454657 | Sep 2004 | EP |
1 477 206 | Nov 2004 | EP |
1477206 | Nov 2004 | EP |
1 605 742 | Dec 2005 | EP |
1605742 | Dec 2005 | EP |
1 738 798 | Jan 2007 | EP |
1738798 | Jan 2007 | EP |
1 371 390 | Mar 2007 | EP |
1790203 | May 2007 | EP |
1790203 | May 2007 | EP |
1 826 778 | Aug 2007 | EP |
1826778 | Aug 2007 | EP |
1 454 653 | Sep 2007 | EP |
1 477 206 | Jan 2008 | EP |
1 949 404 | Jul 2008 | EP |
1949404 | Jul 2008 | EP |
2026640 | Feb 2009 | EP |
2183753 | Feb 2010 | EP |
2394498 | Feb 2010 | EP |
2 227 295 | May 2010 | EP |
2183753 | May 2010 | EP |
2227295 | May 2010 | EP |
2 232 961 | Sep 2010 | EP |
2 232 962 | Sep 2010 | EP |
2227295 | Sep 2010 | EP |
2227295 | Sep 2010 | EP |
2232961 | Sep 2010 | EP |
2232961 | Sep 2010 | EP |
2232962 | Sep 2010 | EP |
2232962 | Sep 2010 | EP |
2259664 | Dec 2010 | EP |
2259664 | Dec 2010 | EP |
1 605 742 | Jun 2011 | EP |
2 363 170 | Sep 2011 | EP |
2 363 171 | Sep 2011 | EP |
2363170 | Sep 2011 | EP |
2363170 | Sep 2011 | EP |
2363171 | Sep 2011 | EP |
2363171 | Sep 2011 | EP |
2394498 | Dec 2011 | EP |
2814304 | Dec 2014 | EP |
2900324 | Aug 2015 | EP |
2900325 | Aug 2015 | EP |
2900326 | Aug 2015 | EP |
2 560 421 | Aug 1985 | FR |
2560421 | Aug 1985 | FR |
2911843 | Aug 2008 | FR |
2911843 | Aug 2008 | FR |
0 957 342 | May 1964 | GB |
0957342 | May 1964 | GB |
1360085 | Jul 1974 | GB |
1485329 | Sep 1977 | GB |
2 015 821 | Sep 1979 | GB |
2015821 | Sep 1979 | GB |
1583400 | Jan 1981 | GB |
2 361 523 | Oct 2001 | GB |
2361523 | Oct 2001 | GB |
43-23267 | Oct 1968 | JP |
S48-108098 | Dec 1973 | JP |
U48-108098 | Dec 1973 | JP |
57-162527 | Oct 1982 | JP |
58-141000 | Aug 1983 | JP |
58-141000 | Sep 1983 | JP |
61-80800 | Apr 1986 | JP |
S61-80800 | Apr 1986 | JP |
61-225798 | Oct 1986 | JP |
S63-218200 | Oct 1986 | JP |
62-150804 | Jul 1987 | JP |
S62-150804 | Jul 1987 | JP |
62-186500 | Aug 1987 | JP |
S62-186500 | Aug 1987 | JP |
62-186500 | Nov 1987 | JP |
10-071213 | Mar 1988 | JP |
63-149344 | Jun 1988 | JP |
S63-149344 | Jun 1988 | JP |
63-218200 | Sep 1988 | JP |
63-226899 | Sep 1988 | JP |
S63-226899 | Sep 1988 | JP |
64-89621 | Apr 1989 | JP |
10247600 | Sep 1989 | JP |
01-276797 | Nov 1989 | JP |
01-302700 | Dec 1989 | JP |
H01-276797 | Dec 1989 | JP |
H01-302700 | Dec 1989 | JP |
4-94198 | Mar 1992 | JP |
04-128717 | Apr 1992 | JP |
04-129768 | Apr 1992 | JP |
04-273409 | Sep 1992 | JP |
04-337300 | Nov 1992 | JP |
05-341352 | Dec 1993 | JP |
06-036893 | Feb 1994 | JP |
H06-036893 | Feb 1994 | JP |
06-233831 | Aug 1994 | JP |
H06-233831 | Aug 1994 | JP |
06-036893 | Oct 1994 | JP |
06-036893 | Dec 1994 | JP |
07-260939 | Oct 1995 | JP |
07-263196 | Oct 1995 | JP |
2007 260939 | Oct 1995 | JP |
H07-260939 | Oct 1995 | JP |
H07-263196 | Oct 1995 | JP |
08-173890 | Jul 1996 | JP |
H08-173890 | Jul 1996 | JP |
08-264298 | Oct 1996 | JP |
H08-264298 | Oct 1996 | JP |
09-162585 | Jun 1997 | JP |
H09-162585 | Jun 1997 | JP |
10-071213 | Mar 1998 | JP |
H10-071213 | Mar 1998 | JP |
10270200 | Oct 1998 | JP |
11-047287 | Feb 1999 | JP |
11-47287 | Feb 1999 | JP |
11-102800 | Mar 1999 | JP |
11-102800 | Apr 1999 | JP |
H11-102800 | Apr 1999 | JP |
11-243295 | Sep 1999 | JP |
2000-243309 | Sep 2000 | JP |
2000-294399 | Oct 2000 | JP |
2000-294399 | Oct 2000 | JP |
2001-6900 | Jan 2001 | JP |
2001-009050 | Jan 2001 | JP |
2011 505191 | Feb 2001 | JP |
2001-129103 | May 2001 | JP |
2001-129103 | May 2001 | JP |
2001-346893 | Dec 2001 | JP |
2002-164686 | Jun 2002 | JP |
2002-164686 | Jun 2002 | JP |
2003-504628 | Feb 2003 | JP |
2003-517755 | May 2003 | JP |
2003-517755 | May 2003 | JP |
2004-139944 | May 2004 | JP |
2005-526578 | Sep 2005 | JP |
2006-032282 | Feb 2006 | JP |
2006233831 | Sep 2006 | JP |
2007260939 | Oct 2007 | JP |
2007-319439 | Dec 2007 | JP |
2008-012121 | Jan 2008 | JP |
05-046928 | Mar 2008 | JP |
2008-507826 | Mar 2008 | JP |
2008-507826 | Mar 2008 | JP |
5046928 | Mar 2008 | JP |
2008-089341 | Apr 2008 | JP |
04-128717 | Jul 2008 | JP |
04-129768 | Aug 2008 | JP |
2008-270039 | Nov 2008 | JP |
2009 515671 | Apr 2009 | JP |
2009-515671 | Apr 2009 | JP |
2009-516905 | Apr 2009 | JP |
2009-516905 | Apr 2009 | JP |
04-273409 | Jun 2009 | JP |
04-337300 | Sep 2009 | JP |
43-23267 | Sep 2009 | JP |
2010-204020 | Sep 2010 | JP |
2010-536130 | Nov 2010 | JP |
2011-505191 | Feb 2011 | JP |
2011-505191 | Feb 2011 | JP |
2011-505670 | Feb 2011 | JP |
2011-505670 | Feb 2011 | JP |
2011 507151 | Mar 2011 | JP |
2011-507151 | Mar 2011 | JP |
2011-521425 | Jul 2011 | JP |
2011-210494 | Oct 2011 | JP |
2011-224342 | Nov 2011 | JP |
05-046928 | Oct 2012 | JP |
05-341352 | Nov 2013 | JP |
300137 | Nov 1969 | RU |
569635 | Aug 1977 | RU |
300137 | Nov 1969 | SU |
569635 | Aug 1977 | SU |
200934682 | Aug 2008 | TW |
200930160 | Jul 2009 | TW |
200930160 | Jul 2009 | TW |
2009 34682 | Aug 2009 | TW |
200934682 | Aug 2009 | TW |
200939908 | Sep 2009 | TW |
200939908 | Sep 2009 | TW |
200940120 | Oct 2009 | TW |
200940120 | Oct 2009 | TW |
201422278 | Jun 2014 | TW |
201422279 | Jun 2014 | TW |
201424466 | Jun 2014 | TW |
S64-89621 | Jun 2014 | TW |
201429514 | Aug 2014 | TW |
201433331 | Sep 2014 | TW |
201434508 | Sep 2014 | TW |
201438787 | Oct 2014 | TW |
WO 8607229 | Dec 1986 | WO |
WO-8607229 | Dec 1986 | WO |
WO-9012413 | Oct 1990 | WO |
WO 9203028 | Feb 1992 | WO |
WO-9203028 | Feb 1992 | WO |
WO 9302536 | Feb 1993 | WO |
WO-9302536 | Feb 1993 | WO |
WO 9817342 | Apr 1998 | WO |
WO-9817342 | Apr 1998 | WO |
WO 9939385 | Aug 1999 | WO |
WO-9939385 | Aug 1999 | WO |
WO 0040064 | Jul 2000 | WO |
WO-0040064 | Jul 2000 | WO |
WO 0049624 | Aug 2000 | WO |
WO-0049624 | Aug 2000 | WO |
WO 01026230 | Apr 2001 | WO |
WO 01126569 | Apr 2001 | WO |
WO-0126230 | Apr 2001 | WO |
WO-01126569 | Apr 2001 | WO |
WO-2001126569 | Apr 2001 | WO |
WO-0207817 | Jan 2002 | WO |
WO 03039212 | May 2003 | WO |
WO-03039212 | May 2003 | WO |
WO 03092812 | Nov 2003 | WO |
WO-2003092340 | Nov 2003 | WO |
WO-03092812 | Nov 2003 | WO |
WO 2004026401 | Apr 2004 | WO |
WO-2004026401 | Apr 2004 | WO |
WO 2004101070 | Nov 2004 | WO |
WO-2004101070 | Nov 2004 | WO |
WO-2005102453 | Nov 2005 | WO |
WO-2006012452 | Feb 2006 | WO |
WO 2006012467 | Feb 2006 | WO |
WO-2006012467 | Feb 2006 | WO |
WO-2006012467 | Feb 2006 | WO |
WO 2006-012467 | Dec 2006 | WO |
WO 2007061937 | May 2007 | WO |
WO-2007061937 | May 2007 | WO |
WO 2007084701 | Jul 2007 | WO |
WO-2007084701 | Jul 2007 | WO |
WO 2007130164 | Nov 2007 | WO |
WO-2007130164 | Nov 2007 | WO |
WO 2007145906 | Dec 2007 | WO |
WO-2007145906 | Dec 2007 | WO |
WO 2008030911 | Mar 2008 | WO |
WO-2008030911 | Mar 2008 | WO |
WO-2008081480 | Jul 2008 | WO |
WO 2008081480 | Oct 2008 | WO |
WO 2009048745 | Apr 2009 | WO |
WO-2009048745 | Apr 2009 | WO |
WO-2009056165 | May 2009 | WO |
WO 2009070173 | Jun 2009 | WO |
WO 2009070588 | Jun 2009 | WO |
WO 2009073480 | Jun 2009 | WO |
WO 2009073480 | Jun 2009 | WO |
WO-2009070173 | Jun 2009 | WO |
WO-2009070588 | Jun 2009 | WO |
WO-2009073480 | Jun 2009 | WO |
WO-2009080080 | Jul 2009 | WO |
WO 2009048745 | Nov 2009 | WO |
WO-2010089574 | Aug 2010 | WO |
WO-2010149740 | Dec 2010 | WO |
WO-2012044957 | Apr 2012 | WO |
WO-2012071142 | May 2012 | WO |
WO-2013079311 | Jun 2013 | WO |
WO-2013098089 | Jul 2013 | WO |
WO-2013142409 | Sep 2013 | WO |
WO-2014018876 | Jan 2014 | WO |
WO-2014052708 | Apr 2014 | WO |
WO-2014052709 | Apr 2014 | WO |
WO-2014052716 | Apr 2014 | WO |
WO-2014052718 | Apr 2014 | WO |
WO-2014052719 | Apr 2014 | WO |
WO-2014052721 | Apr 2014 | WO |
WO-2014052722 | Apr 2014 | WO |
Entry |
---|
US 8,581,524 B2, 11/2013, O'Neil et al. (withdrawn) |
Angert, N (GSI, Darmstadt), CAS—CERN Accelerator School : 5th General Accelerator Physics Course, Jyväskylä, Finland, Sep. 7-18, 1992, pp. 619-642 (CERN-1994-001). |
Communication pursuant to Rule 71(3) EPC Annex to EPO Form 2004 for EP10175727.6, 42 pages (Jul. 28, 2017). |
File history of U.S. Appl. No. 14/039,307 (downloaded Mar. 13, 2017). |
Extended Search Report for EP10175727, 7 pages (Dec. 19, 2015). |
First Office Action for 201380062111.9, 46 pages (Jun. 1, 2016). |
International Preliminary Report on Patentability issued in PCT application No. PCT/US2013/062103 on Apr. 9, 2015, (11 pages). |
Office Action for JP2015-534721, 14 pages (Feb. 3, 2016). |
Pedroni, E. et al., Cancer Therapy with 200 MEV Protons at PSI. Development of a Fast Beam Scanning Method and Future Plans for a Hospital Based Facility, pp. 277-279 (1990). |
U.S. Appl. No. 11/371,622, filed on Mar. 9, 2006. |
File History of U.S. Appl. No. 11/187,633. |
File History of U.S. Appl. No. 13/618,939. |
File History of U.S. Pat. No. 7402963. |
File History of U.S. Pat. No. 7626347. |
File History of U.S. Pat. No. 8952634. |
Communication under Rule 71(3) EPC for EP1719182.9, 36 pages (Oct. 16, 2018). |
An Accelerated Collaboration Meets with Beaming Success, Lawrence Livermore National Laboratory, Apr. 12, 2006, S&TR, Livermore, California, pp. 1-3, http://www.llnl.gov/str/April06/Caporaso.html. |
Cohen, R. et al., Nevis Synchrocyclotron Conversion Project, IEEE Transactions on Nuclear Science, IEEE SelVice Center, New York, NY, US, vol. 16, No. 3, Jun. 1, 1969, pp. 421-425, XP011351570, ISSN: 0018-9499, DOI: 10.1109/TNS.1969.4325264 abstract; figures I-4a Chap. 1, p. 421-2; chap. 11 from p. 423, col. 2 to p. 425, col. 1. (5 pages). |
Dey, M.K., et al., Coil Centering for the Kolkata Superconducting Cyclotron Magnet, Cyclotrons and their applications, Proceedings, 18th International Conference, Cyclotrons 2007, Giardini Naxo, Italy, Oct. 1-5, 2007 (3 pages). |
Elo, Don, et al., Mechanical Design of Regenerative Deflector for the Berkeley 88-Inch Cyclotron, Proceedings of the International Conference on Isochronous Cyclotrons, Gatlinburg, Tennessee, Aug. 1966 (7 pages). |
European Communication issued in European application No. 13774886.9 on Jun. 12, 2015, with amended claims filed on Jun. 12, 2015 (20 pages). |
European Communication issued in European application No. 13783422.2 on Jun. 12, 2015 (2 pages). |
File History for U.S. Appl. 14/039,307 as of Sep. 12, 2017, 836 pages (retrieved Nov. 27, 2018). |
File history of U.S. Appl. No. 10/949,734 (now U.S. Pat. No. 7,208,748) (downloaded Mar. 14, 2017). |
File history of U.S. Appl. No. 11/371,622 (now U.S. Pat. No. 7,402,963) (downloaded Mar. 14, 2017). |
File history of U.S. Appl. No. 11/463,403 (now U.S. Pat. No. 7,656,258) (downloaded Mar. 14, 2017). |
File history of U.S. Appl. No. 11/517,490 (now U.S. Pat. No. 7,701,677) (downloaded Mar. 14, 2017). |
File history of U.S. Appl. No. 11/601,056 (now U.S. Pat. No. 7,728,311) (downloaded Mar. 14, 2017). |
File history of U.S. Appl. No. 11/624,769 (now U.S. Pat. No. 7,541,905) (downloaded Mar. 14, 2017). |
File history of U.S. Appl. No. 11/724,055 (now U.S. Pat. No. 7,718,982) (downloaded Mar. 14, 2017). |
File history of U.S. Appl. No. 11/870,961 (now U.S. Pat. No. 8,003,964) (downloaded Mar. 14, 2017). |
File history of U.S. Appl. No. 11/948,662 (now U.S. Pat. No. 8581523) (downloaded Mar. 14, 2017). |
File history of U.S. Appl. No. 12/275,103 (now U.S. Pat. No. 8,344,340) (downloaded Mar. 14, 2017). |
File history of U.S. Appl. No. 60/590,088 (downloaded Mar. 14, 2017). |
File history of U.S. Appl. No. 60/850,565 (downloaded Mar. 14, 2017). |
File history of U.S. Appl. No. 60/991,454 (downloaded Mar. 14, 2017). |
First Chinese Office Action for CN201380062115.7, 7 pages (Dec. 12, 2016), and English translation 9 pages (Dec. 12, 2016). |
International Preliminary Report on Patentability from PCT application No. PCT/US2013/062119 dated Mar. 31, 2015 (7 pages). |
International Preliminary Report on Patentability from PCT application No. PCT/US2013/062137 dated Mar. 31, 2015 (9 pages). |
International Search Report and Written Opinion from PCT application No. PCT/US2013/062119 dated Nov. 26, 2013 (9 pages). |
Japanese Office Action for Application JP2015-534728, 6 pages (dated Mar. 28, 2016). Note: English translation has not been received from Associate. |
Japanese Office Action for Application JP2015-534721, 14 pages (dated Feb. 3, 2016) (with English Translation). |
Ormrod, J.H., et al., The Chalk-River Superconducting Cyclotron, Proceedings of the International Conference on Cyclotrons and their applications '79, 1979 (6 pages). |
Rainwater, James, Status of the Nevis Synchrocyclotron Modification, AIP Conference Proceedings No. 9, 1972 (14 pages). |
Response to European Communication issued in European application No. 13774886.9 on Jun. 12, 2015, filed on Dec. 9, 2015 (26 pages). |
Response to European Communication issued in European application No. 13783422.2 on Jun. 12, 2015, filed on Dec. 8, 2015 (19 pages). |
Second Chinese Office Action for CN201380062111.9, 10 pages (Apr. 5, 2017), and English Translation 16 pages (Apr. 5, 2017). |
U.S. Appl. No. 13/830,792 filed on Mar. 14, 2013, including the USPTO electronic file for 13/830,792. |
U.S. Appl. No. 13/949,459 filed on Jul. 24, 2013, including the USPTO electronic file for 13/949,459. |
U.S. Appl. No. 61/676,377 filed Jul. 27, 2012, including the USPTO electronic file for 61/676,377. |
Verster, N. F., Regenerative Beam Extraction from the 150-MeV Synchrocyclotron at the Laboratoire Curie, Proceedings of Sector-Focused Cyclotrons 1959, 1959, pp. 224-229 (6 pages). |
Enchevich, I B et al. “Minimizing Phase Losses in the 680 Mev Synchrocyclotron by Correcting the Accelerating Voltage Amplitude”, in Atomnaja Energya. (Soviet Atomic Energy) Soviet Atomic Energy, Atomnaja Energya. (Moscow, SU, Mar. 1, 1969), vol. 26, No. 3, pp. 315-316, XP008069829. |
Extended European Search Report (EP 19165255.1) 7 pages, Sep. 24, 2019. |
Amaldi, Cyclinacs, Novel Fast-Cycling Accelerators for Hadrontherapy, 2007, Cyclotrons and Their Applications, 18th International Conference, pp. 166-168. |
Appun, J. “Various Problems of Magnet Fabrication for High-Energy Accelerators, ” Journal for All Engineers Interested in the Nuclear Field, pp. 10-16 (1967) [Lang.: German], English bibliographic information(http://www.osti.gov/energycitations/product.biblio.jsp?osti.sub.--id=444- 2292). |
Blom, Mikael, Development of a Scanning System for Proton Therapy in Uppsala, Department of Radiation Sciences, Uppsala University, 2450-2451. |
Blosser, H., et. al. “A Compact Superconducting Cyclotron for the Production of High Intensity Protons,” Proceedings of the 1997 Particle Accelerator Conference, vol. 1, pp. 1054-1056 (May 12-16, 1997). |
Canadian Office action from Canadian application No. 2,629,333 dated Aug. 30, 2010 (5 pages). |
Chichili, D.R., et al., “Fabrication of Nb.sup.3Sn Shell-Type Coils with Pre-Preg Ceramic Insulation,” American Institute of Physics Conference Proceedings, AIP USA, No. 711, (XP-002436709, ISSN: 0094-243X), 2004, pp. 450-457. |
Chinese Office action from Chinese application No. 200880125832.9, dated Sep. 22, 2011 (11 pages). |
Chinese Office action from Chinese application No. 200880125918.1, dated Sep. 15, 2011 (111 pages). |
English translation of Chinese Office action from Chinese application No. 200880125832.9, dated Jun. 5, 2012 (5 pages). |
European Communication from corresponding European application No. 11/65422.4 dated Sep. 2, 2011 (5 pages). |
European Communication from corresponding European application No. 11/65423.2 dated Sep. 2, 2011 (5 pages). |
European Communication from European application No. 07868958.5, dated Nov. 26, 2010 (50 pages). |
European Patent Office communication from European application No. 07868958.5, dated Jul. 16, 2010 (2 pages). |
European Patent Office communication from European application No. 08856764.9, dated Jul. 30, 2010 (2 pages). |
European Search Report from European Application No. 10175751.6 dated Nov. 18, 2010 (8 pages). |
Favale, A. et al., Pre-conceptual Design of a Rapid Cycling Medical Synchrotron, The AES/BNL collaboration, 45 pages (Oct. 27, 1999). |
File History for U.S. Appl. No. 14/039,307 as of Jan. 13, 2017, 343 pages. |
Fish & Richardson P.C., Response to Non Final Office action dated Aug. 20, 2010 in U.S. Appl. No. 11/948,359, filed on Feb. 22, 2011 (17 pages). |
Grözinger, Sven Oliver, Volume Conformal Irradiation of Moving Target Volumes with Scanned Ion Beams, Vom Fachbereich Physik der Technischen Universität Darmstadt, 110 pages (2004). |
International Preliminary Report on Patentability for PCT application No. PCT/US2007/001506 dated Jul. 5, 2007 (15 pages). |
International Preliminary Report on Patentability from PCT application No. PCT/US2007/086109, dated Jun. 10, 2010 (7 pages). |
International Preliminary Report on Patentability from PCT application No. PCT/US2008/084695, dated Jun. 10, 2010 (10 pages). |
International Preliminary Report on Patentability from PCT application No. PCT/US2008/084699, dated Jun. 10, 2010 (8 pages). |
International Preliminary Report on Patentability issued in PCT application PCT/US2013/062103 dated Apr. 9, 2015 (11 pages). |
International Search Report and Written Opinion for PCT application No. PCT/US2007/001506 dated Jul. 5, 2007, Publication No. WO 2007/084701, Published Jul. 26, 2007 (14 pages). |
International Search Report and Written Opinion for PCT application No. PCT/US2008/084695 dated Jan. 26, 2009 (15 pages). |
International Search Report and Written Opinion from corresponding PCT application No. PCT/US2013/062103 dated Apr. 14, 2014 (13 pages). |
International Search Report for PCT/US2007/001628 dated Feb. 18, 2008 (4 pages). |
Invitation to Pay Additional Fees and, where applicable, Protest Fees with partial search report for application No. PCT/US2008/077513 dated Jul. 3, 2009 (62 pages). |
Jones et al., “Status Report of the NAC Particle Therapy Programme,” Stralentherapie and Onkologie, vol. 175, Suppl. II, Jun. 1999, pp. 30-32. |
Kanazawa, M. et al., Beam Control in the Spot Scanning Irradiation, Proceedings of the Second Asian Particle Accelerator Conference, China; 846-848 (2001). |
Kawachi, K. et al., Three Dimensional Spot Beam Scanning Method for Proton Conformation Radiation Therapy, Acta Radiologica, Supplementum 364, 10 pages (1982). |
Lorin, S. et al., Development of a compact proton scanning system in Uppsala with a moveable second magnet, Phys. Med. Biol, 45:1151-1163 (2000). |
Murphy, M. and Lin, P., Intra-fraction dose delivery timing during stereotactic radiotherapy can influence the radiobiological effect, Med. Phys., 34(2):481-484 (2007). |
Non Final Office Action from U.S. Appl. No. 12/275,103 dated Feb. 1, 2011 (6 pages). |
Non Final Office Action from U.S. Appl. No. 12/618,297 dated May 13, 2011 (44 pages). |
Office Action and response history of U.S. Appl. No. 11/601,056 dated Aug. 24, 2009. |
Office Action and response history of U.S. Appl. No. 11/601,056 dated Mar. 24, 2009. |
Office Action and response history of U.S. Appl. No. 11/601,056 up dated Jan. 14, 2010. |
Office Action for JP2015-534721, 14 pages, dated (Feb. 3, 2016). |
Office action from U.S. Appl. No. 11/948,662, dated Oct. 14, 2011 (5 pages). |
Pardo, J. et al., Simulation of the performance of the CNAO facility's Beam Delivery System, PTCOG 46, Zibo, China, 17 pages (2007). |
PCT application No. PCT/US2005/25942 filed on Jul. 21, 2005, with Publication No. WO 2006/012452. |
Pourrahimi, S. et al., “Powder Metallurgy Processed Nb.sup.3Sn(Ta) Wire for High Field NMR Magnets,” IEEE Transactions on Applied Superconductivity, vol. 5, No. 2, (Jun. 1995), pp. 1603-1606. |
Response to Non Final Office Action dated Feb. 1, 2011 in U.S. Appl. No. 12/275,103 filed May 2, 2011 (13 pages). |
Second Office Action (English) for JP2015-534721, 5 pages (Dec. 26, 2016). |
Second Office Action (Japanese) for JP2015-534721, 5 pages (Dec. 26, 2016). |
Shinji Sato et al., “Dynamic Intensity Control System with RF-knockout Slow-Extraction in the HIMAC Synchrotron—” Nuclear Instruments and Methods in Physics Research A 574, 2007, pp. 226-231. |
Superconducting Cyclotron Contract awarded by Paul Scherrer Institute (PSI), Villigen, Switzerland, http://www.accel.de/News/superconducting.sub.--cyclotron.sub.--contract.h- tml (Feb. 3, 2005). |
Takayama, T., et al. , “Compact Cyclotron for Proton Therapy,” Proceedings of the 8.sup.th Symposium on Accelerator Science and Technology, Japan (Nov. 25-27, 1991) pp. 380-382. |
U.S. Appl. No. 10/949,734, filed Sep. 24, 2004, Patent No. 7,208,748, issued on Apr. 24, 2007. |
U.S. Appl. No. 11/187,633, filed on Jul. 21, 2005. |
U.S. Appl. No. 11/371,622, filed Mar. 9, 2006. |
U.S. Appl. No. 11/463,403, filed Aug. 9, 2006. |
U.S. Appl. No. 11/517,490, filed Sep. 7, 2006. |
U.S. Appl. No. 11/601,056, filed Nov. 17, 2006. |
U.S. Appl. No. 11/624,769, filed Jan. 19, 2007. |
U.S. Appl. No. 11/724,055, filed Mar. 14, 2007. |
U.S. Appl. No. 11/870,961, filed Oct. 11, 2007. |
U.S. Appl. No. 11/948,662, filed Nov. 30, 2007. |
U.S. Appl. No. 12/275,103, filed Nov. 20, 2008. |
USPTO Non Final Office Action in U.S. Appl. No. 11/948,359, dated Aug. 20, 2010 (12 pages). |
U.S. Appl. No. 60/590,088, filed Jul. 21, 2004. |
U.S. Appl. No. 60/738,404, filed Nov. 18, 2005. |
U.S. Appl. No. 60/850,565, filed Oct. 10, 2006. |
U.S. Appl. No. 60/991,454, filed on Nov. 30, 2007. |
Uli Weber et al., “Depth Scanning for a Conformal Ion Beam Treatment of Deep Seated Tumours—” Physics in Medicine and Biology IOP Publishing UK, vol. 45, No. 12, Dec. 2000, pp. 3627-3641. |
Umegaki et al., “Development of an Advance Proton Beam Therapy System for Cancer Treatment” Hitachi Hyoron, 2003, 85(9):605-608 [Lang.: Japanese], English Abstract, http://www.hitachi.com/ICSFiles/afieldfile/2004/06/01/r2003.sub.--04.sub.- --104.pdfor http://www.hitachi.com/rev/archive/2003/2005649.sub.--12626.html (full text) [Hitachi, 52(4), Dec. 2003]. |
van Steenbergen, A. “Superconducting Synchroton Development at BNL,” Proceedings of the 8.sup.th International Conference on High-Energy Accelerators CERN 1971, pp. 196-198 (1971). |
Written Opinion for PCT/US2007/001628, dated Feb. 18, 2008 (11 pages). |
Yudelev, M., et. al. “Hospital Based Superconducting Cyclotron for Neutron Therapy: Medical Physics Perspective,” Cyclotrons and their applications 2001, 16th International Conference. American Institute of Physics Conference Proceedings, vol. 600,pp. 40-43 (May 13-17, 2001). http://www.osti.gov/energycitations/productbiblio.jsp?osti.sub.--id=20468- 164 http://adsabs. harvard.edu/abs/2001A1PC..600 . . . 40Y http://scitation.aip.org/getabs/servlet/GetabsServlet?prog= normal&id=APCPCS000600000001000040000001&idtype=cvips&gifs=yes. |
Zherbin, E. A., et al., “Proton Beam Therapy at the Leningrad Synchrocyclotron (Clinicomethodological Aspects and Therapeutic Results),” pp. 17-22, Aug. 1987, vol. 32(8)(German with English abstract on .about.es 21-22). |
Extended European Search report for EP17191182.9, 10 pages (Jan. 29, 2018). |
Schneider, R., et al., “Nevis Synchrocyclotron Conversion Program—RF System,” IEEE Transactions on Nuclear Science USA ns16 (3) pp. 430-433 (Jun. 1269). |
Enchevich, B., et al., “Minimizing Phase Losses in the 680 MeV Synchrocyclotron by Correcting the Accelerating Voltage Amplitude,” Atomnaya Energiya 26:(3), pp. 315-316 (1969). |
Allardyce, B.W., et al., “Performance & Prospects of the Reconstructed CERN 600 MeV Synchro-Cyclotron,” IEEE Transactions on Nuclear Science USA ns-24: (3), pp. 1631-1633 (Jun. 1977). |
Blosser, H.G., “Synchrocyclotron Improvement Programs,” IEEE Transactions on Nuclear Science USA ns16: (3), pp. 59-65 (Jun. 1969). |
Blosser, H.G., “Compact Superconducting Synchrocyclotron Systems for Proton Therapy,” Nuclear Instruments & Methods in Physics Research, B40-42, pp. 1326-1330 (Apr. 1989). |
Lecroy, W., et al., “Viewing Probe for High Voltage Pulses,” Review of Scientific Instruments USA 31:;(12), p. 1354 (Dec. 1960). |
Schneider, R., et al., “Nevis Synchrocyclotron Conversion Program-R.F.System,” IEEE Transactions on Nuclear Science USA, vol. ns18, No. 3, pp. 303-306 (Jun. 1971). |
18th Japan Conference on Radiation and Radioisotopes [Japanese], Nov. 25-27, 1987, 9 pages. |
510(k) Summary: Ion Beam Applications SA, FDA, Apr. 13, 2001. |
510(k) Summary: Optivus Proton Beam Therapy System, Jul. 21, 2000, 5 pages. |
Abrosimov, N. K., et al,“1000MeV Proton Beam Therapy Facility at Petersburg Nuclear Physics Institute Synchrocyclotron,” Medical Radiology (Moscow) 32, 10 (1987) revised in Journal of Physics, Conference Series 41, pp. 424-432, Institute of Physics Publishing Limited, 2006. |
Abrosimov, N. K., et al., “Neutron Time-of-Fight Spectrometer Gneis At the Gatchina 1 GeV Proton Synchrocylotron,” Nuclear Instruments & Methods in Physics Research, A242(1): 121-133 (1985). |
Adachi, T., et. al. “A 150MeV FFAG Synchrotron with “Return-Yoke Free” Magnet,” Proceedings of the 2001 Particle Accelerator Conference, Chicago (2001). |
Ageyev, A.I., et. al. “The IHEP Accelerating and Storage Complex (UNK) Status Report,” 11th International Conference on High-Energy Accelerators, pp. 60-70 (Jul. 7-11, 1980). |
Agosteo, S., et al., “Maze Design of a Gantry Room for Proton Therapy,” Nuclear Instruments & Methods in Physics Research, Section A, 382, pp. 573-582 (1996). |
Alexeev, V.P., et al., “R4 Design of Superconducting Magnets for Proton Synchrotrons,” Proceedings of the Fifth International Cryogenic Engineering Conference, pp. 531-533 (1974). |
Allardyce, B.W., et al., “Performance and Prospects of the Reconstructed CERN 600 MeV Synchrocyclotron” IEEE Transactions on Nuclear Science USA NS-24:(3), pp. 1631-1633 (Jun. 1977). |
Amaldi, U. “Overview of the World Landscape of Hadrontherapy and the Projects of the TERA Foundation,” Physica Medica, An International Journal Devoted to the Applications of Physics to Medicine and Biology, vol. XIV, Supplement 1 (Jul. 1998), 6th Workshop on Heavy Charged Particles in Biology and Medicine, Instituto Scientific Europeo (ISE), Baveno, pp. 76-85 (Sep. 29-Oct. 1, 1997). |
Amaldi, U., et al. , “The Italian Project for a Hadrontherapy Centre,” Nuclear Instruments and Methods in Physics Research A, 360, pp. 297-301 (1995). |
Anferov, V., et. al., “Status of the Midwest Proton Radiotherapy Institute,” Proceedings of the 2003 Particle Accelerator Conference, pp. 699-701 (2003). |
Anferov, V., et. al., “The Indiana University Midwest Proton Radiation Institute,” Proceedings of the 2001 Particle Accelerator Conference, Chicago, pp. 645-647 (2001). |
Appun, J. “Various Problems of Magnet Fabrication for High-Energy Accelerators,” Journal for All Engineers Interested in the Nuclear Field, pp. 10-16 (1967) [Lang.: German], English bibliographic information (http://www.osti.gov/energycitations/product.biblio.jsp?osti__id=4442292). |
Arduini, G., et. al., “Physical Specifications of Clinical Proton Beams From a Synchrotron,” Med. Phys. 23 (6), pp. 939-951 (Jun. 1996). |
Beeckman, W., et. al., “Preliminary Design of a Reduced Cost Proton Therapy Facility Using A Compact, High Field Isochronous Cyclotron,” Nuclear Instruments and Methods in Physics Research B56/57, pp. 1201-1204 (1991). |
Bellomo, G., et al., “The Superconducting Cyclotron Program at Michigan State University,” Bulletin of the American Physical Society, vol. 25, No. 7, p. 767 (Sep. 1980). |
Benedikt, M. And Carli, C. “Matching to Gantries for Medical Synchrotrons,” IEEE Proceedings of the 1997 Particle Accelerator Conference, pp. 1379-1381 (1997). |
Bieth, C., et. al., “A Very Compact Proton Therapy Facility Based on an Extensive Use of High Temperature Superconductors (HTS),” Cyclotrons and their Applications 1998, Proceedings of the Fifteenth International Conference on Cyclotrons and their Applications, Caen, France, pp. 669-672 (Jun. 14-19, 1998). |
Bigham, C.B. “Magnetic Trim Rods for Superconducting Cyclotrons,” Nuclear Instruments and Methods (North-Holland Publishing Co.) 141 (1975), pp. 223-228. |
Blackmore, E.W., et. al. “Operation of the Triumf Proton Therapy Facility,” IEEE Proceedings of the 1997 Particle Accelerator Conference, vol. 3, pp. 3831-3833 (May 12-16, 1997). |
Bloch, C. “The Midwest Proton Therapy Center, ” Application of Accelerators in Research and Industry, Proceedings of the Fourteenth Int'l. Conference, Part Two, pp. 1253-1255 (Nov. 1996). |
Blosser, H. “Applications of Superconducting Cyclotrons,” Twelfth International Conference on Cyclotrons and Their Applications, pp. 137-144 (May 8-12, 1989). |
Blosser, H. G. “Compact Superconducting Synchrocyclotron Systems for Proton Therapy,” Nuclear Instruments & Methods in Physics Research, Section B40-41, Part II, pp. 1326-1330 (1989). |
Blosser, H. G. “Synchrocyclotron Improvement Programs,” IEEE Transactions on Nuclear Science USA, http://www.nscl.msu.edu/tech/accelerators/k250photo.html (Feb. 2005).vol. 16,No. 3, Part I, pp. 405-414 (Jun. 1969). |
Blosser, H., “Application of Superconductivity in Cyclotron Construction,” Ninth International Conference on Cyclotrons and their Applications, pp. 147-157 (Sep. 1981). |
Blosser, H., “Present and Future Superconducting Cyclotrons,” Bulletin of the American Physical 314 Society, vol. 32, No. 2, p. 171 (Feb. 1987), Particle Accelerator Conference, Washington, D.C. 1987. |
Blosser, H., et al., “Problems and Accomplishments of Superconducting Cyclotrons,” Proceedings 315 of the 14th International Conference, Cyclotrons and Their Applications, pp. 674-684 (Oct. 1995). |
Blosser, H., et al., “Superconducting Cyclotron for Medical Application,” IEEE Transactions on Magnetics, vol. 25, No. 2, pp. 1746-1754 (Mar. 1989). |
Blosser, H., et al., “Advances in Superconducting Cyclotrons at Michigan State University,” Proceedings of the11th International Conference on Cyclotrons and their Applications, pp. 157-167 (Oct. 1986), Tokyo. |
Blosser, H., et al., “Characteristics of a 400 (Q2/A) MeV Super-Conducting Heavy-Ion Cyclotron,” Bulletin of the American Physical Society, p. 1026 (Oct. 1974). |
Blosser, H., et al., “Preliminary Design Study Exploring Building Features Required for a Proton Therapy Facility for the Ontario Cancer Institute,” MSUCL-760a (Mar. 1991). |
Blosser, H., et al., “Medical Accelerator Projects at Michigan State Univ.,” IEEE Proceedings of the 1989 Particle Accelerator Conference, vol. 2, pp. 742-746 (Mar. 20-23, 1989). |
Blosser, H.G., “Future Cyclotrons,” AIP, The Sixth International Cyclotron Conference, pp. 16-32 (1972). |
Blosser, H.G., “Medical Cyclotrons,” Physics Today, Special Issue Physical Review Centenary, pp. 70-73 (Oct. 1993). |
Blosser, H.G., “Progress on the Coupled Superconducting Cyclotron Project,” Bulletin of the American Physical Society, vol. 26, No. 4, p. 558 (Apr. 1981). |
Blosser, H.G., “Superconducting Cyclotrons at Michigan State University,” Nuclear Instruments & Methods in Physics Research, vol. B 24/25, part II, pp. 752-756 (1987). |
Blosser, H.G., “The Michigan State University Superconducting Cyclotron Program,” Nuclear Science, vol. NS-26, No. 2, pp. 2040-2047 (Apr. 1979). |
Blosser, H.G., et al, “Superconducting Cyclotrons,” Seventh International Conference on Cyclotrons and their Applications, pp. 584-594 (Aug. 19-22, 1975). |
Botha, A.H., et al., “A New Multidisciplinary Separated-Sector Cyclotron Facility,” IEEE Transactions on Nuclear Science, vol. NS-24, No. 3, pp. 1118-1120 (1977). |
Chichili, D.R., et al., “Fabrication of Nb3Sn Shell-Type Coils with Pre-Preg Ceramic Insulation,” American Institute of Physics Conference Proceedings, AIP USA, No. 711, (XP-002436709, ISSN: 0094-243X), 2004, pp. 450-457. |
Chong, C.Y., et al., Radiology Clinic North American 7,3319 (1969). |
Chu, et al., “Instrumentation for Treatment of Cancer Using Proton and Light-ion Beams,” Review of Scientific Instruments, 64 (8), pp. 2055-2122 (Aug. 1993). |
Cole, et al., “Design and Application of a Proton Therapy Accelerator,” Fermi National Accelerator Laboratory, IEEE, (1985). |
Conradie, et al., “Proposed New Facilities for Proton Therapy at iThemba Labs,” Proceedings of EP AC, pp. 560-562 (2002). |
CE/Source of Ions for Use in Sychro-Cyclotrons Search, Jan. 31, 2005, 9 pages. |
Coupland, J.H. “High-field (5T) Pulsed Superconducting Dipole Magnet,” Proceedings of the Institution of Electrical Engineers, vol. 121, No. 7, pp. 771-778 (Jul. 1974). |
Coutrakon, G. et al., “A Prototype Beam Delivery System for the Proton Medical Accelerator At Lorna Linda,” Medical Physics, vol. 18(6), pp. 1093-1099 (Nov./Dec. 1991). |
Coutrakon, G. et al., “Proton Synchrotrons for Cancer Therapy, ” Application of Accelerators in Research and Industry—Sixteenth International Conf., American Institute of Physics, vol. 576, pp. 861-864 (Nov. 1-5, 2000). |
CPAC Highlights Its Proton Therapy Program at ESTRO Annual Meeting, TomoTherapy Incorporated, Sep. 18, 2008, Madison, Wisconsin, pp. 1-2. |
Cuttone, G., “Applications of a Particle Accelerators in Medical Physics,” Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud, V.S. Sofia, 44 Cantania, Italy (17 pages). No date. |
Dahl, P., “Superconducting Magnet System,” American Institute of Physics, AIP Conference Proceedings, vol. 2, pp. 1329-1376 (1987-1988). |
Dugan, G. et al. “Tevatron Status,” IEEE, Particle Accelerator Conference, Accelerator Science & Technology (1989), pp. 426-430. |
Eickhoff, et al. “The Proposed Accelerator Facility for Light Ion Cancer Therapy in Heidelberg,” Proceedings of the 1999 Particle Accelerator Conference, New York, pp. 2513-2515 (1999). |
Endo, K., et. al., “Compact Proton and Carbon Ion Synchrotrons for Radiation Therapy,” Proceedings of EPAC 2002, Paris France, pp. 2733-2735 (2002). |
Flanz, J.B. et al., “Large Medical Gantries,” 1995 Particle Accelerator Conference, Massachusetts General Hospital, pp. 1-5 (1995). |
Flanz, J.B. et al., “The Northeast Proton Therapy Center at Massachusetts General Hospital,” Fifth Workshop on Heavy Charge Particles in Biology and Medicine, GSI, Darmstadt (Aug. 1995). |
Flanz, J.B. et. al. “Treating Patients with the NPTC Accelerator Based Proton Treatment Facility,” Proceedings of the 2003 Particle Accelerator Conference (2003), pp. 690-693. |
Flood, W. S. And Frazier, P. E. “The Wide-Band Driven RF System for the Berkeley 88-Inch Cyclotron,” American Institute of Physics, Conference Proceedings., No. 9, 459-466 (1972). |
Foster, G. W. and Kashikhin, V. S. “Superconducting Superferric Dipole Magent with Cold Iron Core for the VLHC,” IEEE Transactions on Applied Superconductivity, vol. 12, No. 1, pp. 111-115 (Mar. 2002). |
Friesel, D. L. et al. “Design and Construction Progress on the IUCF Midwest Proton Radiation Institute,” Proceedings of EPAC 2002, pp. 2736-2738 (2002). |
Fukumoto, S. “Cyclotron Versus Synchrotron for Proton Beam Therapy,” KEK Preprint, No. 95-122, pp. 533-536 (1995). |
Fukumoto, S. et. al., “A Proton Therapy Facility Plan,” Cyclotrons and their Applications, Proceedings of the 13th International Conference, Vancouver, Canada, pp. 258-261 (Jul. 6-10, 1992). |
Gordon, M.M. et. al., “Design Study for a Compact 200 MeV Cyclotron,” AIP Conference Proceedings Sixth International Cyclotron Conference, No. 9, pp. 78-86 (1972). |
Gordon, M.M., “Extraction Studies for a 250 MeV Superconducting Synchrocyclotron,” Proceedings of the 1987 IEEE Particle Accelerator Conference: Accelerator Engineering and Technology, pp. 1255-1257 (1987). |
Goto, A. et al., “Progress on the Sector Magnets for the Riken SRC,” American Institute of Physics, CP600, Cyclotrons and Their Applications 2001, Sixteenth International Conference (2001), pp. 319-323. |
Graffman, S. et. al., “Design Studies for a 200 MeV Proton Clinic for Radiotherapy,” AIP Conference Proceedings: Cyclotrons 1972, No. 9, pp. 603-615 (1972). |
Graffman, S. et. al. “Proton radiotherapy with the Uppsala cyclotron. Experience and Plans,” Strahlentherapie, 161, No. 12, pp. 764-770 (1985). |
Graffman, S., et al., “Clinical Trials in Radiotherapy and the Merits of High Energy Protons,” Acta Radiol. Therapy Phys. Biol. 9:1-23 (1970). |
Hede, Karyn, Research Groups Promoting Proton Therapy “Lite,” Journal of the National Cancer Institute, 98(23):1682-1684 (2006). |
Heinz, W. “Superconducting Pulsed Magnetic Systems for High-Energy Synchrotrons,” Proceedings of the Fourth International Cryogenic Engineering Conference, pp. 55-63. (May 24-26, 1972). |
Hentschel, R., et. al., “Plans for the German National Neutron Therapy Centre with a Hospital-Based 70 MeV Proton Cyclotron at University Hospital Essen/Germany,” Cyclotrons and their Applications, Proceedings of the Fifteenth International Conference on Cyclotrons and their Applications, Caen, Franco, pp. 21-23 (Jun. 14-19, 1998). |
Hepburn, J.D., et. al., “Superconducting Cyclotron Neutron Source for Therapy,” International Journal of Radiation Oncology Biology Physics, vol. 3 complete, pp. 387-391 (1977). |
Hirabayashi, H. “Development of Superconducting Magnets for Beam Lines and Accelerator at KEK,” IEEE Transaction on Magnetics, vol. Mag-17, No. 1, pp. 728-731 (Jan. 1981). |
Indiana's mega-million proton therapy cancer center welcomes its first patients: [online] Press release, Health & Medicine Week, 2004, retrieved from NewsRx.com, Mar. 1, 2004, pp. 119-120. |
Ishibashi, K. And McInturff, A. “Winding Design Study of Superconducting /OT Dipoles for a Synchrotron,” IEEE Transactions on Magnetics, vol. MAG-19, No. 3, pp. 1364-1367 (1983). |
Ishibashi, K. and McInturff, A., “Stress Analysis of Superconducting /OT Magnets for Synchrotron,” Proceedings of the Ninth International Cryogenic Engineering Conference, pp. 513-516 (May 11-14, 1982). |
Jahnke, A., et. al. “First Superconducting Prototype Magnets for a Compact Synchrotron Radiation Source in Operation,” IEEE Transactions on Magnetics, vol. 24, No. 2 (Mar. 1988), pp. 1230-1232. |
Jones, and Dershem. “Synchrotron Radiation from Proton in a 20 TEV, 10 TESLA 367 Superconducting Super Collider,” Proceedings of the 12th International Conference on High-Energy Accelerators, pp. 138-140 (Aug. 11-16, 1983). |
Jones, D.T.L. “Present Status and Future Trends of Heavy Particle Radiotherapy,” Cyclotrons and their Applications 1998, Proceedings of the Fifteenth International Conference on Cyclotrons and their Applications, pp. 13-20 (Jun. 14-19, 1998). |
Jones, D.T.L. And Mills, S.J. “The South African National Accelerator Centre: Particle Therapy and Isotope Production Programmes,” Radiation Physics and Chemistry, vol. 51, Nos. 4-6, pp. 571-578 (Apr.-Jun. 1998). |
Jones, D.T.L., et. al. “Status Report of the NAC Particle Therapy Programme,” Stralentherapie und Onkologie, vol. 175, Suppl. II, pp. 30-32 (Jun. 1999). |
Jones, D.T.L. “Progress with the 200 MeV Cyclotron Facility at the National Accelerator Centre,” Commission of the European Communities Radiation Protection Proceedings, Fifth Symposium on Neutron Dosimetry, vol. II, pp. 989-998 (Sep. 17-21, 1984). |
Jongen, Y. et al., “The Proton Therapy System for the NPTC: Equipment Description and Progress Report,” Nuclear Instruments and methods in Physics Research, Section B, vol. 113, No. 1, pp. 522-525 (1996). |
Jongen, Y., et al., “The Proton Therapy System for MGH's NPTC: Equipment Description and Progress Report,” Bulletin du Cancer Radiotherapie, Proceedings of the meeting of the European Heavy Particle Therapy Group, vol. 83, Suppl. 1, pp. 219-222 (1996). |
Jongen, Y., et al., “Development of a Low-Cost Compact Cyclotron System for Proton Therapy,” National Institute of Radiol. Sci No. 81, pp. 189-200 (1991). |
Jongen, Y., et. al. “Progress report on the IBA-SHI Small Cyclotron for Cancer Therapy,” Nuclear Instruments and Methods in Physics Research, Section B, vol. 79, issue 1-4, pp. 885-889 (1993). |
Kanai, et al., “Three-dimensional Beam Scanning for Proton Therapy,” Nuclear Instruments and Methods in Physic Research, Sep. 1, 1983, The Netherlands, vol. 214, No. 23, pp. 491-496. |
Karlin, D.L., et al., “Medical Protonic Tract of Synchropshylotron of the Leningrad Institute of Nuclear Physics,” Medical Radiology (Moscow) 28,13 (1983). (English Abstract). |
Karlin, D.L., et al., “The State and Prospects in the Development of the Medical Proton Tract on the Synchrocyclotron in Gatchina,” Med. Radiology, Moscow, vol. 28(3), pp. 28-32 (Mar. 1983)(German with English Abstract on end of p. 32). |
Kats, M. M. And Onosovskii, K. K. “A Planar Magnetooptical System for the Irradiation of a Lying Patient with a Proton Beam from Various Directions,” Instruments and Experimental Techniques, vol. 39, No. 1, pp. 127-131 (1996). |
Kats, M. M. And Onosovskii, K. K. “A Simple, Compact, Flat System for the Irradiation of a Lying Patient with a Proton Beam from Different Directions,” Instruments and Experimental Techniques, vol. 39, No. 1, p. 132-134 (1996). |
Kats, M.M. And Druzhinin, B.L. “Comparison of Methods for Irradiating Prone Patients” Atomic Energy, vol. 94, No. 2, pp. 120-123 (2003). |
Khoroshkov, V. S., et al., “Moscow Hospital-Based Proton Therapy Facility Design” Am. Journal Clinical Oncology: CCT, vol. 17, No. 2, pp. 109-114 (1994). |
Kim, J. and Blosser, H., “Optimized Magnet for a 250 MeV Proton Radiotherapy Cyclotron,” Cyclotrons and Their Applications 2001, Sixteenth International Conference, pp. 345-347 (May 2001). |
Kim, J. And Yun, C. “A Light-Ion Superconducting Cyclotron System for Multi-Disciplinary Users,” Journal of the Korean Physical Society, vol. 43, No. 3, pp. 325-331 (Sep. 2003). |
Kim, J., et al., “Design Study of a Superconducting Cyclotron for Heavy Ion Therapy,” Cyclotrons and Their Applications 2001, Sixteenth International Conference, pp. 324-326 (May 13-17, 2001). |
Kim, J., et al., “Construction of 8 T Magnet Test Stand for Cyclotron Studies,” IEEE Transactions on Applied Superconductivity, vol. 3, No. 1, pp. 266-268 (Mar. 1993). |
Kim, J.W. “An Eight Tesla Superconducting Magnet for Cyclotron Studies,” Ph.D. Dissertation, Michigan State University, Department of Physics and Astronomy (1994). |
Kim, J.W., et al., “Trim Coil System for the Riken Superconducting Ring Cyclotron,” Proceedings at the 1997 Particle Accelerator Conference, IEEE, vol. 3, pp. 214-235 (Dec. 1981). or 3422-3424, 1998). |
Kishida, N. And Yano, Y. “Beam Transport System for the RIKEN SSC (H), ” Scientific Papers of the Institute of Physical and Chemical Research, vol. 75, No. 4, pp. 214-235 (Dec. 1981). |
Koehler, A.M., et al., “Range Modulators for Protons and Heavy Ions,” Nuclear Instruments and Methods, vol. 131, pp. 437-440 (1975). |
Koto, M. And Tsujii, H. “Future of Particle Therapy,” Japanese Journal of Cancer Clinics, vol. 47, No. 1, pp. 95-98 (2001) [Lang.: Japanese], English abstract (http://sciencelinks.jp/jeast/article/200206/00002002060 IA0511453 .mill). |
Kraft, G. et al., “Hadrontherapy in Oncology,” Elsevier Science, 1994. |
Larsson, B. “Biomedical Program for the Converted 200-MeV Synchrocyclotron at the Gustaf Werner Institute,” Radiation Research, 104, pp. S310-S318 (1985). |
Larsson, B., et al., “The High-Energy Proton Beam As a Neurosurgical Tool,” Nature vol. 182, pp. 1222-1223 (1958). |
Lawrence, J.H., “Proton Irradiation of the Pituitary,” Cancer, vol. 10, pp. 795-798 (1957). |
Lawrence, J.H., et al., “Heavy Particles in Acromegaly and Cushing's Disease,” Endocrine and Norendocrine Hormone Producing Tumors, pp. 29-61 (1973). |
Lawrence, J.H., et al., “Successful Treatment of Acromegaly: Metabolic and Clinical Studies in 145 Patients,” The Journal of Clinical Endrocrinology and Metabolism, 31 (2): (1970). |
Linfoot, J.A., et al., “Acromegaly,” Hormonal Proteins and Peptides, pp. 191-246 (1975). |
Livingston, M.S., et al. “A Capillary Ion Source for the Cyclotron,” Review Science Instruments, vol. 10, p. 9. 63-67, (1939). |
LLNL, UC Davis Team Up to Fight Cancer, Lawrence Livermore National Laboratory, Apr. 28, 2006, SF-Jun. 4, 2002, Livermore, California, pp. 1-4. |
Mandrillon, P. “High Energy Medical Accelerators,” EPAC 90, 2nd European Particle Accelerator Conference, vol. 2, (Jun. 12-16, 1990), pp. 54-58. |
Marti, F., et al., “High Intensity Operation of a Superconducting Cyclotron,” Proceedings of the 14th International Conference, Cyclotrons and Their Applications, pp. 45-48 (Oct. 1995). |
Martin, P. “Operational Experience with Superconducting Synchrotron Magnets,” Proceedings of the 1987 IEEE Particle Accelerator Conference, vol. 3 of 3, pp. 1379-1382 (Mar. 16-19, 1987). |
Meot, F., et al. , “ETOILE Hadrontherapy Project, Review of Design Studies,” Proceedings of EPAC 2002, pp. 2745-2747 (2002). |
Miyamoto, S., et al., “Development of the Proton Therapy System,” The Hitachi Hyoron, vol. 79, 10, pp. 775-779 (1997) [Lang: Japanese], English abstract (http://www.hitachi.com/rev/1998/revfeb98/rev4706.htm). |
Montelius, A, et al., “The Narrow Proton Beam Therapy Unit at the Svedberg Laboratory in Uppsala,” ACTA Oncologica, vol. 30, pp. 739-745 (1991). |
Moser, H.O., et al., “Nonlinear Beam Optics with Real Fields in Compact Storage Rings, ” Nuclear Instruments & Methods in Physics Research/Section B30, Feb. 1988, No. 1, pp. 105-109. |
National Cancer Institute Funding (Senate-Sep. 21, 1992) (www.thomas.loc.gov/cgi-bin/query/z?r102:S21SE2-712 (2 pages). |
Nicholson, J. “Applications of Proton Beam Therapy,” Journal of the American Society of Radiologic Technologists, vol. 67, No. 5, pp. 439-441 (May/Jun. 1996). |
Nolen, J.A., et al., “The Integrated Cryogenic—Superconducting Beam Transport System Planned for MSU,” Proceedings of the 12th International Conference on High-Energy Accelerators, pp. 549-551 (Aug. 1983). |
Norimine, T., et al., “A Design of a Rotating Gantry with Easy Steering for Proton Therapy,” Proceedings of EPAC 2002, pp. 2751-2753 (2002). |
Okumura, T., et al., “Overview and Future Prospect of Proton Radiotherapy,” Japanese Journal of Cancer Clinics, vol. 43, No. 2, pp. 209-214 (1997) [Lang.: Japanese]. |
Okumura, T., et al., “Proton Radiotherapy,” Japanese Journal of Cancer and Chemotherapy, (20), No. 14, pp. 2149-2155 (1993) [Lang.: Japanese] Outstanding from Search Reports, “Accelerator of Polarized Portons at Fermilab,” 20 pages, 2005. |
Palmer, R. and Tollestrup, A V. “Superconducting Magnet Technology for Accelerators,” Annual Review of Nuclear and Particle Science, vol. 34, pp. 247-284 (1984). |
Patent Assignee and Keyword Searches for Synchrocyclotron, Jan. 25, 2005 (77 pages). |
Patterson, “An Accelerated Collaboration Meets with Beaming Success,” Lawrence Livermore National Laboratory, Apr. 12, 2006, S&TR Livermore, CA. pp. 1-3, http://www.llnl.gov/str/April06/Caporaso.html. |
Pavlovic, M. “Beam-Optics Study of the Gantry Beam Delivery System for Light-Ion Cancer Therapy,” Nuclear Instruments and Methods in Physics Research, Section A, vol. 399, No. 2, pp. 439-454 (1997). |
Pedroni, E. “Accelerators for Charged Particle Therapy: Performance Criteria from the User Point of View,” Cyclotrons and their Applications, Proceedings of the 13th International Conference, pp. 226-233 (1992). |
Pedroni, E. “Latest Developments in Proton Therapy,” Proceedings of EPAC 2000, pp. 240-244 (2000). |
Pedroni, E. and Enge, H. “Beam Optics Design of Compact Gantry for Proton Therapy,” Medical & Biological Engineering & Computing, vol. 33, No. 3, pp. 271-277 (May 1995). |
Pedroni, E. and Jermann, M. “SGSMP: Bulletin Mar. 2002 Proscan Project, Progress Report on the PROSCAN Project of PSI,” [online] retrieved from www.sgsmp.ch/protA23.htm, (5 pages) Mar. 2002. |
Pedroni, E., et al., “A Novel Gantry for Proton Therapy at the Paul Scherrer Institute,” Cycloctrons 430 and Their Applications 2001: Sixteenth International Conference. AIP Conference Proceedings, vol. 600, pp. 13-17 (2001). |
Pedroni, E., et al., “The 200-MeV proton therapy project at the Paul Scherrer Institute: Conceptual Design and Practical Realization,” Medical Physics, vol. 22, No. 1, pp. 37-53 (Jan. 1995). |
Potts, R., et al., “MPWP6-Therapy III: Treatment Aids and Techniques,” Medical Physics, vol. 15, No. 5, p. 798 (Sep./Oct. 1988). |
Pourrahimi, S. et al., “Powder Metallurgy Processed Nb.3Sn(Ta) Wire for High Field NMR Magnets,” IEEE Transactions on Applied Superconductivity, vol. 5, No. 2, (Jun. 1995), pp. 1603-1606. |
Prieels, D., et al., “The IBA State-of-the-Art Proton Therapy System, Performances and Recent Results,” Application of Accelerators in Research and Industry—Sixteenth International. Conference, American Institute of Physics, vol. 576, pp. 857-860 (2000). |
Rabin, M. S. Z., et al., “Compact Designs for Comprehensive Proton Beam Clinical Facilities,” Nuclear Instruments and Methods in Physics Research 40(41):1335-1339(1989). |
Research & Development Magazine, “Proton Therapy Center Nearing Completion,” vol. 41, No. 9, Aug. 1999 (2 pages)(www.rdmga.com). |
Resmini, F., “Design Characteristics of the K=800 Superconducting Cyclotron at M.S.U.,” Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, IEEE Transaction on Nuclear Science, vol. NS-26, No. 2, Apr. 1979 (8 pages). |
RetroSearch “Berkeley 88-Inch Cyclotron ‘RF’ or 'Frequency Control,” Jan. 21, 2005 (36 pages). |
RetroSearch “Berkeley 88-Inch Cyclotron,” Jan. 24, 2005 (170 pages). |
RetroSearch “Bernard Gottschalk, Cyclotron, Beams, Compensated Upstream Modulator, Compensated Scatter,” Jan. 21, 2005 (20 pages). |
RetroSearch “Cyclotron with ‘RF’ or 'Frequency Control,” Jan. 21, 2005 (49 pages). |
RetroSearch “Gottschalk, Bernard, Harvard Cyclotron Wheel”, Jan. 21, 2005 (20 pages). |
RetroSearch “Lorna Linda University Beam Compensation,” Jan. 21, 2005 (60 pages). |
RetroSearch “Lorna Linda University, Beam Compensation Foil Wedge,” Jan. 21, 2005 (15 pages). |
Rifuggiato, D., et al., “Status Report of the LNS Superconducting Cyclotron,” Nukleonika, vol. 48, pp. S131-S134 (Supplement 2, 2003). |
Rode, C.H. “Tevatron Cryogenic System,” Proceedings of the 12th International Conference on High-Energy Accelerators , Fermi/ab, pp. 529-535 (Aug. 11-16, 1983). |
Salzburger, H., et al., “Superconducting Synchrotron Magnets Supraleitende Synchrotronmagnete,” Siemens AG., Erlangen (West Germany). Abteilung Technische Physik, Report No. BMFT-FB-T- 75-25, Oct. 1975, p. 147, Journal Announcement: GRAI7619; STAR1415, Subm-Sponsored by Bundesmin. Fuer Forsch. U. Technol. In German; English Summary. |
Schillo, M., et al., “Compact Superconducting 250 MeV Proton Cyclotron for the PSI Proscan Proton Therapy Project,” Cyclotrons and Their Applications 2001, Sixteenth International Conference, pp. 37-39 (2001). |
Schneider et al., “Superconducting Cyclotrons,” IEEE Transactions on Magnetics, vol. MAG-11, No. 2, Mar. 1975, pp. 443-446. |
Schneider, R., et al., “Nevis Synchrocyclotron Conversion Program—RF System,” IEEE Transactions on Nuclear Science USA NS 16(3) pp. 430-433 (Jun. 1969). |
Schreuder, AN., et al., “The Non-orthogonal Fixed Beam Arrangement for the Second Proton Therapy Facility at the National Accelerator Centre,” Application of Accelerators in Research and Industry, American Institute of Physics, Proceedings of the Fifteenth International Conference, Part Two, pp. 963-966 (Nov. 1998). |
Schreuder, H.W. “Recent Developments in Superconducting Cyclotrons,” Proceedings of the 1995 Particle Accelerator Conference, vol. 1, pp. 317-321 (May 1-5, 1995). |
Schubert, J.R. And Blosser, H. “Conceptual Design of a High Field Ultra-Compact Cyclotron for Nuclear Physics Research,” Proceedings of the 1997 Particle Accelerator Conference, vol. 1, pp. 1060-1062 (May 12-16, 1997). |
Schubert, J. R. “Extending the Feasibility Boundary of the Isochronous Cyclotron” Dissertation submitted to Michigan State University, 1997, Abstract http://adsabs.harvard.edulabs/1998PhDT....... 147S. |
Shelaev, I. A., et al., “Design Features of a Model Superconducting Synchrotron of JINR” Proceedings of the 12th International Conference on High-energy Accelerators, pp. 416-418 (Aug. 11-16, 1983). |
Shintomi, T., et al., “Technology and Materials for the Superconducting Super Collider (SSC) Project,” [Lang.: Japanese], The Iron and Steel Institute of Japan 00211575, vol. 78, No. 8 (19920801), pp. 1305-1313, http://ci.nii.ac.jp/naid/110001493249/eni , 1992. |
Sisterson, J.M. “World Wide Proton Therapy Experience in 1997,” The American Institute of Physics, Applications of Accelerators in Research and Industry, Proceedings of the Fifteenth International Conference, Part Two, pp. 959-962 (Nov. 1998). |
Sisterson, J.M. “Clinical Use of Proton and Ion Beams From a World-Wide Perspective,” Nuclear Instruments and Methods in Physics Research, Section B, Vols. 40-41, pp. 1350-1353 (1989). |
Slater, J.M., et al., “Developing a Clinical Proton Accelerator Facility: Consortium-Assisted Technology Transfer,” Conference Record of the 1991 IEEE Particle Accelerator Conference: Accelerator Science and Technology, vol. 1 , pp. 532-536 (May 6-9 1991). |
Slater, J.M., et al., “Development of a Hospital-Based Proton Beam Treatment Center,” International Journal of Radiation Oncology Biology Physics, vol. 14, No. 4, pp. 761-775 (Apr. 1988). |
Smith, A, et al., “The Northeast Proton Therapy Center at Massachusetts General Hospital,” Journal of Brachytherapy International, pp. 137-139 (Jan. 1997). |
Snyder, S.L. And Marti, F. “Central Region Design Studies for a Proposed 250 MeV Proton Cyclotron,” Nuclear Instruments and Methods in Physics Research, Section A, vol. 355, pp. 618-623 (1995). |
Soga, F. “Progress of Particle Therapy in Japan,” Application of Accelerators in Research and Industry, American Institute of Physics, Sixteenth International Conference, pp. 869-872 (Nov. 2000). |
Spiller, P., et al., “The GSI Synchrotron Facility Proposal for Acceleration of High Intensity Ion and Proton Beams,” Proceedings of the 2003 Particle Accelerator Conference, vol. 1, pp. 589 -591 (May 12-16, 2003). |
Stanford, A.L., et al., “Method of Temperature Control in Microwave Ferroelectric Measurements,” Sperry Microwave Electronics Company, Clearwater, Florida, Sep. 19, 1960 (1 page). |
Superconducting Cyclotron Contract awarded by Paul Scherrer Institute (PSI), Villigen, Switzerland, http://www.accel.de/News/superconducting_cyclotron_contract.html (Feb. 3, 2005). |
Tadashi, T., et al., “Large Superconducting Super Collider (SSC) In The Planning and Materials Technology,” vol. 78, No. 8 (Aug. 1, 1992), pp. 1305-1313, The Iron and Steel Institute of Japan 00211575. |
Takada, Y. “Conceptual Design of a Proton Rotating Gantry for Cancer Therapy,” Japanese Journal of Medical Physics, vol. 15, No. 4, pp. 270-284 (1995). |
Takada, Y. “A Review of Rotating Gantries for Heavy Charged Particle Therapy,” Symposium of Research Center for Charged Particle Therapy on Fundamental Development of the Charged Particle Therapy, Chiba (Japan), Nov. 13-14, 2001. |
Teng, L. C. “The Fermilab Tevatron,” Coral Gables 1981, Proceedings, Gauge Theories, Massive Neutrinos, and Proton Decay, pp. 43-62 (1981). |
UC Davis “Crocker Nuclear Laboratory Houses a Medium-Energy Particle Accelerator,” Crocker Nuclear Laboratory, University of California (2009). |
“The Cutting Edge of Cancer Therapy Using Proton Beams,” The Journal of Practical Pharmacy, vol. 46, No. 1, pp. 97-103 (1995). [Japanese] (English Abstract). |
“The K250 Proton therapy Cyclotron,” National Superconducting Cyclotron Laboratory at Michigan State University (NSCL), retrieved from: http://www.nscl.msu.edu/tech/accelerators/k250.html (Feb. 2005). |
“The K250 Proton-therapy Cyclotron Photo Illustration,” National Superconducting Cyclotron Laboratory at Michigan State University (NSCL), retrieved from: http://www.nscl.msu.edu/tech/accelerators/k250photo.html (Feb. 2005). |
“The K100 Neutron-therapy Cyclotron,” National Superconducting Cyclotron Laboratory at Michigan State University (NSCL), retrieved from: http://www.nscl.msu.edu/tech/accelerators/k100.html (Feb. 2005). |
Tobias, C.A., et al., “Pituitary Irradiation with High-Energy Proton Beams A Preliminary Report,” Cancer Research, vol. 18, No. 2, pp. 121-134 (1958). |
Tom, J.L. “The Use of Compact Cyclotrons for Producing Fast Neutrons for Therapy in a Rotatable Isocentric Gantry,” IEEE Transaction on Nuclear Science, vol. 26, No. 2, pp. 2294-2298 (Apr. 1979). |
Trinks, U., et al., “The Tritron: A Superconducting Separated-Orbit Cyclotron,” Nuclear Instruments and Methods in Physics Research, Section A, vol. 244, pp. 273-282 (1986). |
Tsuji, H. “The Future and Progress of Proton Beam Radiotherapy,” Journal of Japanese Society for Therapeutic Radiology and Oncology, vol. 6, No. 2, pp. 63-76 (1994). |
Tsuji, H., “Cancer Therapy Using Proton Beams: the Newest State of Affairs and Future Prospects,” Isotope News, No. 9, pp. 2-7 (1992). (English Abstract). |
UC Davis School of Medicine, “Unlikely Partners Turn Military Defense into Cancer Offense,” Current Issue Summer 2008, Sacramento, California, pp. 1-2. |
Umezawa, M., et al., “Beam Commissioning of the New Proton Therapy System for University of Tsukuba,” Proceedings of the 2001 Particle Accelerator Conference, vol. 1, pp. 648-650 (Jun. 18-22, 2001). |
van Steenbergen, A. “The CMS, a Cold Magnet Synchrotron to Upgrade the Proton Energy Range of the BNL Facility,” IEEE Transactions on Nuclear Science, vol. 18, Issue 3, pp. 694-698 (Jun. 1971). |
Vandeplassche, D., et al., “235 MeV Cyclotron for MHG's Northeast Proton Therapy Center (NPTC): Present Status,” EPAC 96, Fifth European Partical Accelerator Conference, vol. 3, pp. 2650-2652 (Jun. 10-14, 1996). |
Vorobiev, L.G., et al., “Concepts of a compact achromatic proton gantry with a wide scanning field,” Nuclear Instruments and Methods in Physics Research, Section A, vol. 406, No. 2, pp. 307-310 (1998). |
Vrenken, H., et al., “A Design of a Compact Gantry for Proton Therapy With 2D-Scanning,” Nuclear Instruments and Methods in Physics Research, Section A, vol. 426, No. 2, pp. 618-624 (1999). |
Wikipedia, “Cyclotron,” http://en.wikipedia.org/wiki/Cyclotron (originally visited Oct. 6, 2005, revisited Jan. 28, 2009)(7 pages). |
Wikipedia, “Synchrotron,” http://en.wikiipedia.org/wiki/Synchrotron (originally visited Oct. 6, 2005, revisited Jan. 28, 2009)(7pages). |
Wu, X., “Conceptual Design and Orbit Dynamics in a 250 MeV Superconducting Synchrocyclotron,” Ph.D. Dissertation, Michigan State University, Department of Physics and Astronomy (1990). |
York, R.C., et al., “Present Status and Future Possibilities at NSCL-MSU,” EPAC 94, Fourth European Particle Accelerator Conference, pp. 554-556 (Jun. 1994). |
York, R.C., et al., “The NSCL Coupled Cyclotron Project—Overview and Status,” Proceedings of the Fifteenth International Conference on Cyclotrons and their Applications, pp. 687-691 (Jun. 1998). |
Canadian Office action from Canadian application No. 2,629,333 issued May 11, 2011 (2 pages). |
Canadian Office action from Canadian application No. 2,629,333 issued Aug. 30, 2010 (5 pages). |
Chinese Office action from Chinese application No. 200680051421.0 issued Aug. 22, 2011 (4 pages). |
Chinese Office action from Chinese application No. 200680051421.0 issued Mar. 21, 2011 (6 pages). |
Chinese Office action from Chinese application No. 200680051421.0 issued Dec. 25, 2009 (8 pages). |
Chinese Office Action from Chinese Application No. 200780102281.X issued Dec. 7, 2011 with English translation (23 pages). |
Chinese Office action from Chinese application No. 200880125832.9, mailed Sep. 22, 2011 (11 pages). |
Chinese Office action from Chinese application No. 200880125918.1, mailed Sep. 15, 2011 (111 pages). |
European Patent Office communication for application No. 06838033.6, patent No. 1949404, mailed Aug. 5, 2009 (1 page). |
European Patent Office communication from European application No. 07868958.5, mailed Jul. 16, 2010 (2 pages). |
European Search Report from application No. EP 06838033.6 (PCT/US2006/044853) mailed May 11, 2009 (69 pages). |
International Preliminary Report on Patentability for PCT application No. PCT/US2007/001506 mailed Jul. 5, 2007 (15 pages). |
International Preliminary Report on Patentability for PCT/US2007/00 1628, mailed Apr. 22,2008 (15 pages). |
International Preliminary Report on Patentability from PCT application No. PCT/US2008/084695, mailed Jun. 10, 2010 (10 pages). |
International Preliminary Report on Patentability from PCT application No. PCT/US2008/084699, mailed Jun. 10, 2010 (8 pages). |
International Preliminary Report on Patentability from PCT application No. PCT/US2007/086109, mailed Jun. 10, 2010 (7 pages). |
International Search Report and Written Opinion for PCT application No. PCT/US2008/084695 mailed Jan. 26, 2009 (15 pages). |
International Search Report and Written Opinion for PCT application No. PCT/US2007/001506 mailed Jul. 5, 2007, Publication No. WO 2007/084701, Published Jul. 26, 2007 (14 pages). |
International Search Report and Written Opinion mailed Oct. 1, 2009 in PCT application No. PCT/US2008/077513 (73 pages). |
International Search Report dated Aug. 26, 2008 in PCT application No. PCT/US2007/086109 (6 pages). |
International Search Report for PCT/US2007/001628 mailed Feb. 18, 2008 (4 pages). |
Invitation to Pay Additional Fees and, where applicable, Protest Fees with partial search report for application No. PCT/US2008/077513 mailed Jul. 3, 2009 (62 pages). |
PCT application No. PCT/US2005/25942 filed on Jul. 21, 2005, with Publication No. WO 2006/012452, including copy of application as filed, transaction history from PAIR (PTO website). |
PCT application No. PCT/US2006/44853, filed on Nov. 17, 2006, with Publication No. WO 2007/1061937, including copy of application as filed, transaction history from PAIR (PTO website). |
PCT application No. PCT/US2007/01506 filed on Jan. 19, 2007, with Publication No. WO 2007/084701, including copy of application as filed, transaction history from PAIR (PTO website). |
PCT application No. PCT/US2007/01628 filed on Jan. 19, 2007, with Publication No. WO 2007/1130164, including copy of application as filed, transaction history from PAIR (PTO website). |
PCT application No. PCT/US2007/086109 filed on Nov. 30, 2007, including copy of application as filed, transaction history from PAIR (PTO website). |
PCT application No. PCT/US2007177693 filed on Sep. 6, 2007 with Publication No. WO 2007/177693, including copy of application as filed, transaction history from PAIR (PTO website). |
PCT application No. PCT/US2008/077513, filed on Sep. 24, 2008, including copy of application as filed, transaction history from PAIR (PTO website). |
PCT application No. PCT/US2008/084695 filed on Nov. 25, 2008, including copy of application as filed, transaction history from PAIR (PTO website). |
PCT International Preliminary Report on Patentability of corresponding PCT application No. PCT/US2006/044853, mailed May 29, 2008 (34 pages). |
PCT International Search report and Written Opinion of PCT application No. PCT/US2006/044853, mailed Oct. 5, 2007 (10 pages). |
Written Opinion dated Aug. 26, 2008 in PCT application No. PCT/US2007/086109 (6 pages). |
Written Opinion for PCT/US2007/001628, mailed Feb. 18, 2008 (11 pages). |
Dialog Search, Jan. 31, 2005 (18 pages). |
European Communication from corresponding European application No. 11/65422.4 mailed Sep. 2, 2011 (5 pages). |
European Communication from corresponding European application No. 11/65423.2 mailed Sep. 2, 2011 (5 pages). |
European Communication from European application No. 06838033.6 mailed Apr. 20, 2010 (7 pages). |
European Communication from European application No. 07868958.5, mailed Nov. 26, 2010 (50 pages). |
European Patent Office communication from European application No. 08855024.9, mailed Jul. 30, 2010 (2 pages). |
European Patent Office communication from European application No. 08856764.9, mailed Jul. 30, 2010 (2 pages). |
European Search Report from corresponding European application No. 11165422.4 mailed Aug. 8, 2011 (118 pages). |
European Search Report from corresponding European application No. 11165423.2 mailed Aug. 8, 2011 (118 pages). |
Literature Author and Keyword Search, Feb. 14, 2005 (44 pages). |
Literature Author and Keyword Searches (Synchrotron), Jan. 25, 2005 (78 pages). |
Literature Keyword Search, Jan. 24, 2005 (96 pages). |
Literature Search and Keyword Search for Synchrocyclotron, Jan. 25, 2005 (68 pages). |
Literature Search by Company Name/Component Source, Jan. 24, 2005 (111 pages). |
Literature Search, Jan. 26, 2005 (36 pages). |
“Patent Assignee Search 'Paul Scherrer Institute,” Library Services at Fish & Richardson P.C., Mar. 20, 2007 (40 pages). |
“Patent Prior Art Search for ‘Proton Therapy System’,” Library Services at Fish & Richardson P.C., Mar. 20, 2007 (46 pages). |
Response to Chinese Office action of Jan. 25, 2010 in Chinese application No. 200680051421.0, filed Jun. 24, 2010 (34 pages). |
Response to European Communication of Apr. 20, 2010, from European application No. 06838033.6, filed Nov. 2, 2010 (13 pages). |
Response to European Communication of Jul. 16, 2010 in European application No. 07868958.5 filed Aug. 26, 2010 (9 pages). |
Response to European Communication of Nov. 26, 2010 in European application No. 07868958.5, filed Mar. 28, 2011 (9 pages). |
Revised Patent Keyword Search, Jan. 25, 2005 (88 pages). |
Voluntary amendment filed Apr. 18, 2011 in corresponding Chinese application No. CN200780102281.X, including English translation of claim amendments (10 pages). |
Worldwide Patent Assignee Search, Jan. 24, 2005 (224 pages). |
Worldwide Patent Keyword Search, Jan. 24, 2005 (94 pages). |
Office Action and response history of U.S. Appl. No. 11/601,056 to Aug. 24, 2009. |
Office Action and response history of U.S. Appl. No. 11/601,056 to Mar. 24, 2009. |
Office Action and response history of U.S. Appl. No. 11/601,056 up to Jan. 14, 2010. |
U.S. Appl. No. 10/949,734, filed on Sep. 24, 2004, Patent No. 7,208,748, issued on Apr. 24, 2007, including copy of application as filed, transaction history from PAIR (PTO website), and allowed claims. |
U.S. Appl. No. 11/187,633, filed on Jul. 21, 2005, including copy of application as filed, transaction history from PAIR (PTO website), and pending claims. |
U.S. Appl. No. 11/371,622, filed on Mar. 9, 2006, including copy of application as filed, transaction history from PAIR (PTO website), and pending claims. |
U.S. Appl. No. 11/463,403, filed on Aug. 9, 2006, including copy of application as filed (including pending claims), transaction history from PAIR (PTO website). |
U.S. Appl. No. 11/724,055, filed on Mar. 14, 2007, including copy of application as filed (including pending claims), transaction history from PAIR (PTO website). |
U.S. Appl. No. 11/948,662, filed on Nov. 30, 2007, including copy of application as filed, transaction history from PAIR (PTO website), and pending claims. |
U.S. Provisional Appl. No. 60/590,088, filed on Jul. 21, 2004, including copy of application as filed, transaction history from PAIR (PTO website). |
U.S. Provisional Appl. No. 60/850,565, filed on Oct. 10, 2006, including copy of application as filed, transaction history from PAIR (PTO website). |
U.S. Provisional Appl. No. 60/991,454, filed on Nov. 30, 2007, including copy of application as filed, transaction history from PAIR (PTO website). |
U.S. Provisional Appl. No. 60/738,404, filed on Nov. 18, 2005, including copy of application as filed, transaction history from PAIR (PTO website). |
U.S. Appl. No. 11/517,490, filed on Sep. 7, 2006, including copy of application as filed (including pending claims), transaction history from PAIR (PTO website). |
U.S. Appl. No. 11/601,056, filed on Nov. 17, 2006, including copy of application as filed (including pending claims), transaction history from PAIR (PTO website). |
U.S. Appl. No. 11/624,769, filed on Jan. 19, 2007, including copy of application as filed (including pending claims), transaction history from PAIR (PTO website). |
U.S. Appl. No. 11/870,961, filed on Oct. 11, 2007, including copy of application as filed (including pending claims), transaction history from PAIR (PTO website). |
U.S. Appl. No. 12/275,103, filed on Nov. 20, 2008, including copy of application as filed (including pending claims), transaction history from PAIR (PTO website). |
Non Final Office Action from U.S. Appl. No. 12/275,103 mailed Feb. 1, 2011 (6 pages). |
Non Final Office Action from U.S. Appl. No. 12/618,297 mailed May 13, 2011 (44 pages). |
Office action from U.S. Appl. No. 11/948,662, mailed Oct. 14, 2011 (5 pages). |
Response to Non Final Office Action issued Feb. 1, 2011 in U.S. Appl. No. 12/275,103 filed May 2, 2011 (13 pages). |
Response to Office action mailed Oct. 14, 2011 from U.S. Appl. No. 11/648,662, filed Dec. 14, 2011 (12 pages). |
Chinese Office action from Chinese application No. 200880125832.9, mailed Jun. 5, 2012. English Translation will follow upon receipt (5 pages). |
International Search Report and Written Opinion of the International Searching Authority from International application No. PCT/US2008/084699, mailed Feb. 4, 2009 (11 pages). |
U.S. Examiner EPHREM ALEMU, USPTO Non Final Office Action in U.S. Appl. No. 11/948,359, dated Aug. 20, 2010 (12 pages). |
Fish & Richardson P.C., Response to Non Final Office action mailed Aug. 20, 2010 in U.S. Appl. No. 11/948,359, filed on Feb. 22, 2011 (17 pages). |
Office action from corresponding Canadian Application No. 2,574,122 mailed Nov. 14, 2012 (6 pages). |
Response in English of Office Action from Chinese application No. 200880125832.9 mailed Jun. 5, 2012, filed Oct. 12, 2012 (6 pages). |
English translation of Chinese Office action from Chinese application No. 200880125832.9, mailed Jun. 5, 2012 (5 pages). |
Response with English translation to Chinese Office Action from Chinese application No. 200880125832.9 issued Sep. 22, 2011, filed on Apr. 9, 2012 (23 pages). |
Chinese Office action with English translation from Chinese Application No. 200880125832.9, issued Mar. 4, 2013 (8 pages). |
Blosser, H. et al, “Progress Toward an Experiment to Study the Effect of RF Grounding in an Internal Ion Source on Axial Oscillations of the Beam in a Cyclotron”, Cyclotrons and Their Applications 2001, 16th International Conference, 2001 American Institute of Physics, Belgium and Michigan, USA, pp. 274-276 (2001). |
Flanz, et al., “Operation of a Cyclotron Based Proton Therapy Facility”, Massachusetts General Hospital, Boston, MA 02114, pp. 1-4, retrieved from Internet in 2009. |
Krevet, et al, “Design of a Strongly Curved Superconducting Bending Magnet for a Compact Synchrotron Light Source”, Advances in Cryogenic Engineering, vol. 33, pp. 25-32 (Dec. 3, 1988). |
Lawrence, J.H., et al., “Treatment of Pituitary Tumors With Heavy Particles”, Diagnosis and Treatment of Pituitary Tumors, pp. 253-262 (1970). |
Toyoda, E., “Proton Therapy System”, Sumitomo Heavy Industries, Ltd. (2004). |
Source Search Cites of U.S. and Foreign Patents/Published applications in the name of Mitsubishi Denki Kabushiki Kaisha and Containing the Keywords (Proton and Synchrocyclotron), 8 pages (2009). |
Flanz, et al., “Scanning Beam Technologies”, PTCOG 2008, 28 pages. |
Gordon et al., “Design Study for a Compact 200 MeV Cyclotron” AIP Conference Proceedings Sixth International Cyclotron Conference, 1972, No. 9:78-86. |
Gordon, “Extraction Studies fo a 250 MeV Superconducting Synchrocyclotron,” Proceedings of the 1987 IEEE Particle Accelerator Conference: Accelerator Engineering an Technology, 1987, pp. 1255-1257. |
Renner et al., “Preliminary Results of a Raster Scanning Beam Delivery System”, IEEE, 1989, 3 pages. |
Single Room Proton Therapy Facility, ACCEL, Oct. 2006, 1 page. |
Timmer, “The ACCEL Single Room Proton Therapy Facility” ACCEL Instruments GmbH, PTCOG 45, Oct. 2006, Houston, Texas, 18 pages. |
Non-Final Office Action with English translation from Japanese Patent Office 2010-536131, Jun. 4, 2013, 10 pages JP action first cited and filed with USPTO on Jun. 13, 2012. |
Office action issued in Taiwan IPO Pat. Application No. 097138794, recieved Feb. 8, 2012, 7 pages. |
Response to Chinese Office Action from Corresponding Chinese application No. 200880125832.9, issued Sep. 22, 2011, filed on Apr. 9, 2012, 23 pages (with English translation). |
Response to Chinese Patent application No. 200880125832.9 office action filed May 20, 2013, 6 pages. |
Response to Office action from Canadian Application No. 2,574,122 mailed Nov. 14, 2012, filed May 13, 2013, 32 pages. |
“Beam Delivery and Properties,” Journal of the ICRU , 2007, 7(2):20 pages. |
“510(k) Summary: Ion Beam Applications S.A.”, FDA, Jul. 12, 2001, 5 pages. |
“510(k) Summary: Optivus Proton Beam Therapy System”, Jul. 21, 2000, 5 page. |
“An Accelerated Collaboration Meets with Beaming Success,” Lawrence Livermore National Laboratory, Apr. 12, 2006, S&TR, Livermore, California, pp. 1-3, http://www.llnl.gov/April06/Caporaso.html. |
“Indiana's mega-million proton therapy cancer center welcomes first patients”[online] Press release, Health & Medicine Week, 2004, retrieved from NewsRx.com, Mar. 1, 2004, pp. 119-120. |
“LLNL, UC Davis Team UP to Fight Cancer,” Lawrence Livermore National Laboratory, Apr. 28, 2006, SF-06-04-02, Livermore, California, pp. 1-4. |
“Patent Assignee Search 'Pau; Scherrer Institute,” Library Services at Fish & Richardson P.C., Mar. 20, 2007, 40 pages. |
“Superconducting Cyclotron Contract” awarded by Paul Scherrer Institute (PSI), Villigen, Switzerland, http://www.accel.de/News/superconducting_cyclotron_contract.htm, Jan. 2009, 1 page. |
“The Davis 76-Inch Isochronous Cyclotron”, Beam On: Crocker Nuclear Laboratory, University of California, 2009, 1 page. |
“The K100 Neutron-therapy Cyclotron,” National Superconducting Cyclotron Laboratory at Michigan State University (NSCL), retrieved from: http://www.nscl.msu.edu/tech/accelerators/k100, Feb. 2005, 1 page. |
“The K250 Proton therapy Cyclotron,” National Superconducting Cyclotron Laboratory at Michigan State University (NSCL), retrieved from: http://www.nscl.msu.edu/tech/accelerators/k250.html, Feb. 2005, 2 pages. |
“The K250 Proton-therapy Cyclotron Photo Illustration,” National Superconducting Cyclotron Laboratory at Michigan State University (NSCL), retrieved from: http://www.nscl.msu.edu/media/image/experimental-equipment-technology/250.html, Feb. 2005, 2 pages. |
Abrosimov et al., “1000MeV Proton Beam Therapy Facility at Petersburg Nuclear Physics Institute Synchrocyclotron,” Medical Radiology (Moscow) 32, 10 (1987) revised in Journal of Physics, Conference Series 41, 2006, pp. 424-432, Institute of Physics Publishing Limited. |
Adachi et al., “A 150MeV FFAG Synchrotron with Return-Yoke Free Magent,” Proceedings of the 2001 Particle Accelerator Conference, Chicago, 2001, 3 pages. |
Ageyev et al., “The IHEP Accelerating and Storage Complex (UNK) Status Report,” 11th International Conference on High-nergy Accelerators, 1980, pp. 60-70. |
Agosteo et al., “Maze Design of a gantry room for proton therapy,” Nuclear Instruments & Methods In Physics Research, 1996, Section A, 382, pp. 573-582. |
Alexeev et al., “R4 Design of Superconducting Magents for Proton Synchrotrons,” Proceedings of the Fifth International Cryogenic Engineering Conference, 1974, pp. 531-533. |
Allardyce et al., “Performance and Prospects o the Reconstructed CERN 600 MeV Synchrocyclotron,” IEEE Transactions on Nuclear Science USA, Jun. 1977, ns-24:(3)1631-1633. |
Alonso, “Magnetically Scanned Ion Beams for Radiation Therapy,” Accelerator & Fusion Research Division, Lawrence Berkeley Laboratory, Berkeley, CA, Oct. 1988, 13 pages. |
Amaldi et al., “The Italian project for a hadrontherapy centre” Nuclear Instruments and Methods in Physics Research A, 1995, 360, pp. 297-301. |
Amaldi, “Overview of the world landscape of Hadrontherapy and the projects of the TERA foundation,” Physica Medica, An International journal Devoted to the Applications of Physics to Medicine and Biology, Jul. 1998, vol. XIV, Supplement 1, 6th Workshop on Heavy Charged Particles in Biology and Medicine, Instituto Scientific Europeo (ISE), Sep. 29-Oct. 1, 1977, Baveno, pp. 76-85. |
Anferov et al., “Status of the Midwest Proton Radiotherapy Institute,” Proceedings of the 2003 particle Accelerator Conference, 2003, pp. 699-701. |
Anferov et al., “The Indiana University Midwest Proton Radiation Institute,” Proceedings of the 2001 Particle Accelerator Conference, 2001, Chicago, pp. 645-647. |
Appun, “Various problems of magnet fabrication for high-energy accelerators,” Journal for All Engineers Interested in the Nuclear Field, 1967, pp. 10-16 (1967) [Lang.: German], English bibliographic information (http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=4442292). |
Arduini et al. “Physical specification of clinical proton beams from a synchrotron,” Med. Phys, Jun. 1996, 23 (6): 939-951. |
Badano et al., “Proton-Ion Medical Machine Study (PIMMS) Part I,” PIMMS, Jan. 1999, 238 pages. |
Beeckman et al., “Preliminary design of a reduced cost proton therapy facility using a compact, high field isochronous cyclotron,” Nuclear Instruments and Methods in Physics Reasearch B56/57, 1991, pp. 1201-1204. |
Bellomo et al., “The Superconducting Cyclotron Program at Michigan State University,” Bulletin of the American Physical Society,Sep. 1980, 25(7):767. |
Benedikt an Carli, “Matching to Gantries for Medical Synchrotrons” IEEE Proceedings of the 1997 Particle Accelerator Conference, 1997, pp. 1379-1381. |
Bieth et al., “A Very Compact Protontherapy Facility Based on an Extensive Use of High Temperature Superconductors (HTS)” Cyclotrons and their Applications 1998, Proceedings o the Fifteenth International Conference on Cyclotrons an their Applications, Caen, Jun. 14-19, 1998, pp. 669-672. |
Bigham, “Magnetic Trim Rods for Superconducting Cyclotrons,” Nuclear Instruments and Methods (North-Holland Publishing Co.), 1975, 141:223-228. |
Bimbot, “First Studies of the External Beam from the Orsay S.C. 200 MeV,” Institut de Physique Nucleaire, BP 1, Orsay France, IEEE, 1979, pp. 1923-1926. |
Blackmore et al., “Operation of the Triumf Proton Therapy Facility,” IEEE Proceedings of the 1997 Particle Accelerator Conferenc, May 12-16, 19973:3831-3833. |
Bloch,“The Midwest Proton Therapy Center,” Application of Accelerators in Research and Industry, Proceedings of the Fourteenth Int'l. Conf., Part Two, Nov. 1996, pp. 1253-1255. |
Blosser et al., “Problems and Accomplishments of Superconducting Cyclotrons,” Proceeding of the 14th International Conference, Cyclotrons and Their Applications, Oct. 1995, pp. 674-684. |
Blosser et al., “Superconducting Cyclotrons”, Seventh International Conference on Cylotrons and their Applications, Aug. 19-22, 1975, pp. 584-594. |
Blosser et al., “Progress toward an experiment to study the effect of RF grounding in an internal ion source on axial oscillations o the beam in a cyclotron,” National Superconducting Cyclotron Laboratory, Michigan State University, Report MSUCL-760, CP600, Cyclotrons and their Applications 2011, Sixteenth International Conference, 2001, pp. 274-276. |
Blosser et al., “A Compact Superconducting Cyclotron for the Production of High Intensity Protons,” Proceedings of the 1997 Particle Accelerator Conference, May 12-16, 1997, 1:1054-1056. |
Blosser et al., “Advances in Superconducting Cyclotrons at Michigan State University,” Proceedings of the 11th International Conference on Cyclotrons and their Applications, Oct. 1986, pp. 157-167, Tokyo. |
Blosser et al., “Characteristics of a 400 (Q2/A) MeV Super-Conducting Heavy-Ion Cyclotron,” Bulletin of the American Physical Society, Oct. 1974, p. 1026. |
Blosser et al., “Medical Accelerator Projects at Michigan State Univ.” IEEE Proceedings of the 1989 Particle Accelerator Conference, Mar. 20-23, 1989, 2:742-746. |
Blosser et al., “Superconducting Cyclotron for Medical Application”, IEEE Transactions on Magnetics, Mar. 1989, 25(2): 1746-1754. |
Blosser, “Application of Superconductivity in Cyclotron Construction,” Ninth International Conference on Cyclotrons and their Applications, Sep. 1981, pp.147-157. |
Blosser, “Applications of Superconducting Cyclotrons,” Twelfth International Conference on Cyclotrons and Their Applications, May 8-12, 1989, pp. 137-144. |
Blosser, “Future Cyclotron,” AIP, The Sixth International Cyclotron Conference, 1972, pp. 16-32. |
Blosser, “Medical Cyclotrons,” Physics Today, Special Issue Physical Review Centenary, Oct. 1993, pp. 70-73. |
Blosser, “Preliminary Design Study Exploring Building Features Required for a Proton therapy Facility for the Ontario Cancer Institute”, Mar. 1991, MSUCL-760a, 53 pages. |
Blosser, “Progress on the Coupled Superconducting Cyclotron Project,” Bulletin of the American Physical Society, Apr. 1981, 26(4):558. |
Blosser, “Synchrocyclotron Improvement Programs,” IEEE Transactions on Nuclear Science USA, Jun. 1969, 16(3):Part I, pp. 405-414. |
Blosser, “The Michigan State University Superconducting Cyclotron Program,” Nuclear Science, Apr. 1979, NS-26(2):2040-2047. |
Blosser, H., Present and Future Superconducting Cyclotrons, Bulletin of the American Physical Society, Feb. 1987, 32(2):171 Partical Accelerator Conference, Washington, D.C. |
Blosser, H.G., “Superconducting Cyclotrons at Michigan State Univesity”, Nuclear Instruments & Methods in Physics Research, 1987, vol. B 24/25, part II, pp. 752-756. |
Botha et al., “A New Multidisciplinary Separated-Sector Cyclotron Facility,” IEEE Transactions on Nuclear Science, 1977, NS-24(3):1118-1120. |
Canadian Office action issued in Canadian application No. 2,629,333 issued Aug. 30, 2010, 5 pages. |
Chichili et al., “Fabrication of Nb3Sn Shell-Type Coils with Pre-Preg Ceramic Insulation,” American Institute of Physics Conference Proceedings, AIP USA, No. 711, (XP-002436709, ISSN:0094-243X), 2004, pp. 450-457. |
Chinese Office action from Corresponding Chinese application No. 200880125832.9, mailed Jun. 5, 2012, 6 pages. |
Chinese Office Action issued in Chinese Application No. 200780102281.X, dated Dec. 7, 2011, 23 pages (with English translation). |
Chinese Office action issued in Chinese application No. 200880125832.9, dated Sep. 22, 2011, 111 pages. |
Chinese Office action issued in Chinese application No. 200880125918.1, dated Sep. 15, 2011, 111 pages. |
Chong et al., Radiology Clinic North American 7, 3319, 1969, 27 pages. |
Chu et al., “Performance Specifications for Proton Medical Facility,” Lawrence Berkeley Laboratory, University of California, Mar. 1993, 128 pages. |
Chu et al., “Instrumentation for Treatment of Cancer Using Proton and Light-ion Beams,” Review of Scientific Instruments, Aug. 1993, 64 (8):2055-2122. |
Chu, “Instrumentation in Medical Systems,” Accelerator an Fusion Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, CA, May 1995, 9 pages. |
Cole et al., “Design and Application of a Proton Therapy Accelerator,” Fermi National Accelerator Laboratory, IEEE, 1985, 5 pages. |
Collins, et al., “The Indiana University Proton Therapy Systems,” Proceedings of EPAC 2006, Edinburgh, Scotland, 2006, 3 pages. |
Conradi et al., “Proposed New Facilities fo Proton Therapy at iThemba Labs,” Proceedings of EPAC, 2002, pp. 560-562. |
Source Search “Cites of U.S. and Foreign Patents/Published applications in the name of Mitsubishi Denki Kabushiki Kaisha and Containing the Keywords (Proton and Synchrocyclotron),” Jan. 2005, 8 pages. |
Cosgrove et al., “Microdosimetric Studies on the Orsay Proton Synchrocyclotron at73 and 200 MeV,” Radiation Protection Dosimetry, 1997, 70(1-4):493-496. |
Coupland, “High-field (5 T) pulsed superconducting dipole magnet,” Proceedings of the Institution of Electrical Engineers, Jul. 1974, 121(7):771-778. |
Coutrakon et al., “Proton Synchrotrons for Cancer Therapy,” Application of Accelerators in Research and Industry—Sixteenth International Conf., American Institute of Physics, Nov. 1-5, 2000, vol. 576, pages 861-864. |
Coutrakon et al., “A Prototype beam delivery system for the proton medical accelerator at Loma Linda,” Medical Physics, Nov./Dec. 1991, 18(6):1093-1099. |
Cuttone, “Applications of a Particle Accelerators in Medical Physics,” Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud, V.S. Sofia, 44 Cantania, Italy, Jan. 2010, 17 pages. |
Dahl P, “Superconducting Magnet System,” Amerian Institute of Physics, AIP Conference Proceedings, 1987-1988, 2: 1329-1376. |
Dialog Search, Jan. 31, 2005, 17 pages. |
Dugan et al., “Tevatron Status” IEEE, Particle Accelerator Conference, Accelerator Science & Technology, 1989, pp. 426-430. |
Eickhoff et al., “The Proposed Accelerator Facility for Light Ion Cancer Therapy in Heidelberg,” Proceedings of the 1999 Particle Accelerator Conference, New York, 1999, pp. 2513-2515. |
Enchevich et al., “Minimizing Phase Losses in the 680 MeV Synchrocyclotron by Correcting the Accelerating Voltage Amplitude,” Atomnaya Energiya, 1969, 26:(3):315-316. |
Endo et al., “Compact Proton an Carbon Ion Synchrotrons for Radiation Therapy,” Proceedings of EPAC 2002, Paris France, 2002, pp. 2733-2735. |
European Communication issued in corresponding European application No. 11165422.4, dated Sep. 2, 2011, 5 pages. |
European Communication issued in European application No. 07868958.5, dated Nov. 26, 2010, 50 pages. |
European Patent Office communication issued in European application No. 08856764.9, dated Jul. 30, 2010, 2 pages. |
European Patent Office communication issued in European application No. 07868958.5, dated Jul. 16, 2010, 2 pages. |
European Search Report issued in European Application No. 11165423.2, dated Aug. 8, 2011, 118 pages. |
Flanz et al., “Treating Patients with the NPTC Accelerator Based Proton Treatment Facility,” Proceedings of the 2003 Particle Accelerator Conference, 2003, pp. 690-693. |
Flanz et al., “Large Medical Gantries,” Particle Accelerator Conference, Massachusetts General Hospital, 1995, pp. 1-5. |
Flanz et al., “The Northeast Proton Therapy Center at Massachusetts General Hospital,” fifth Workshop on Heavy Charge Particle in Biology and Medicine, GSI, Darmstadt, Aug. 1995, 11 pages. |
Flood and Frazier,. “The Wide-Band Driven RF System for the Berkeley 88-Inch Cyclotron,” American Institute of Physics, Conference Proceedings., No. 9, 1972, 459-466. |
Foster and Kashikhin, “Superconducting Superferric Dipole Magent with Cold Iron Core for the VLHC,” IEEE Transactions on Applied Superconductivity, Mar. 2002, 12(1):111-115. |
Friesel et al., “Design and Construction Progress on the IUCF Midwest Proton Radiation Institute,” Proceedings of EPAC 2002, 2002, pp. 2736-2738. |
Fukumoto et al., “A Proton Therapy Facility Plan” Cyclotron and their Applications, Proceedings of the 13th Intenational Conference, Vancouver, Canada, Jul. 6-10, 1992, pp. 258-261. |
Goto et al., “Progress on the Sector Magnets for the Riken SRC,” American Institute of Physics, CP600, Cyclotrons and Their Applications 2001, Sixteenth International Conference, 2001, pp. 319-323. |
Graffman et al., “Design Studies for a 200 MeV Proton Clinic Radiotherapy,” AIP Conference Proceedings: Cyclotrons—1972, 1972, No. 9, pp. 603-615. |
Graffman et al., Acta Radiol. Therapy Phys. Biol. 1970, 9, 1 (1970). |
Graffman, et al. “Proton radiotherapy with the Uppsala cyclotron. Experience and plans” Strahlentherapie, 1985, 161(12):764-770. |
Hede, “Research Groups Promoting Proton Therapy Lite,” Journal of the National Cancer Institute, Dec. 6, 2006, 98(23):1682-1684. |
Heinz, “superconducting Pulsed Magnetic Systems for High-Energy Synchrotrons,” Proceedings o th Fourth International Cryogenic Engineering Conference, May 24-26, 1972, pp. 55-63. |
Hentschel et al., “Plans for the German National Neutron Therapy Centre with a Hospital-Based 70 MeV Proton Cyclotron at University Hospital Essen/Germany,” Cyclotrons and their Applications, Caen, Franco, Jun. 14-19, 1998, pp. 21-23. |
Hepburn et al., “Superconducting Cyclotron Neutron Source for Therapy,” International Journal o Radiation Oncology Biology Physics, vol. 3 complete, 1977, pp. 387-391. |
Hirabayashi, “Development of Superconducting Magnets for Beam Lines and Accelerator at KEK,” IEEE Transactionon Magnetics, Jan. 1981, Mag-17(1):728-731. |
International Preliminary Report on Patentability issued in PCT Application No. PCT/US2008/084695, dated Jun. 10, 2010, 10 pages. |
International Preliminary Report on Patentability issued in PCT Application No. PCT/US2008/084699, dated Jun. 10, 2010, 8 pages. |
International Preliminary Report on Patentability issued in PCT Application No. PCT/US2007/086109, dated Jun. 10, 2010, 7 pages. |
International Preliminary Report on Patentability in Internation Application No. PCT/US2006/44853, dated May 29, 2008, 8 pages. |
International Preliminary Report on Patentability in Internation Application No. PCT/US2007/001506, dated Jul. 5, 2007, 15 pages. |
International Preliminary Report on Patentability in Internation Application No. PCT/US2007/001628, dated Apr. 22, 2008, 15 pages. |
International Search Report and Written Opinion in International Application No. PCT/US2006/44853, dated Oct. 5, 2007, 3 pages. |
International Search Report and Written Opinion in International Application No. PCT/US2007/001506, dated Jul. 5, 2007, Publication No. WO2007/084701, Published Jul. 26, 2007, 14 pages. |
International Preliminary Report on Patentability on International Application No. PCT/US2008/077513, dated Apr. 22, 2010. |
International Search Report and Written Opinion in International Application No. PCT/US2008/077513, dated Oct. 1, 2009, 73 pages. |
International Search Report and Written Opinion in International Application No. PCT/US2008/084695, dated Jan. 26, 2009, 15 pages. |
International Search Report in International Application No. PCT/US2007/001628, dated Feb. 18, 2008, 4 pages. |
International Search Report and Written Opinion in International Application No. PCT/US2007/086109, dated Aug. 26, 2008, 6 pages. |
International Search Report and Written Opinion in International Application No. PCT/US2008/084699, dated Feb. 4, 2009, 11 pages. |
Ishibashi an McInturff, “Winding Design Study of Superconducting 10 T Dipoles for a Synchrotron,” IEEE Transactions on Magnetics, MAG-19(3):1364-1367. |
Ishibashi and McInturff, “Stress Analysis of Superconducting 10T Magnets fo Synchrotron,” Proceedings of the Ninth International Cryogenic Engineering Conference, May 11-14, 1982, pp. 513-516. |
Jahnke et al., “First Superconducting Prototype Magnets for a Compact Synchrotron Radiation Source in Operation,” IEEE Transactions on Magnetics, Mar. 1988, 24(2):1230-1232. |
Jones and Dershem, “Synchrotron Radiation from Proton in a 20 TEV, 10 TESLA Superconducting Super Collide,” Procedings of the 12th International Conference on High-Energy Accelerator, Aug. 11-16, 1983, pp. 138-140. |
Jones and Mills, “The South African National Accelerator Centre: Particle Therapy an Isotope Production Programmes,” Radiation Physics and Chemistry, Apr.-Jun. 1998, 51(4-6):571-578. |
Jones et al., “Status Report of the NAC Particle Therapy Programme,” Stralentherapie und Onkologie, vol. 175, Suppl. II, Jun. 1999, pp. 30-32. |
Jones, “Progress with the 200 MeV Cyclotron Facility at the National Accelerator Centre,” Commission of the European Communities Radiation Protection Procedings, fifth Symposium on Neuton Dosimetry, Sep. 17-21, 1984, vol. II, pp. 989-998. |
Jones “Present Status and Future Trends of Heavy Particle Radiotherapy,” Cyclotrons and their Applications 1998, Proceedings of the Fifteenth International Conference on Cyclotrons and their Applications, Jun. 14-19, 1998, pp. 13-20. |
Jongen et al., “Development of a Low-cost Compact Cyclotron System for Proton Therapy,” National Institute of Radiol. Sci, 1991, No. 81, pp. 189-200. |
Jongen et al., “Progress report on the IBA-SHI small cyclotron for cancer therapy” Nuclear Instruments and Methods in Physics Research, Section B, vol. 79, issue 1-4, 1993, pp. 885-889. |
Jongent et al., “The Proton therapy system for the NPTC: Equipment Description and Progress report,” Nuclear Instruments and methods in physics research, 1996, Section B, 113(1): 522-525. |
Jongen et al., “The proton therapy system for MGH's NPTC: equipment description and progress report,” Bulletin du Cancer/Radiotherapie, Proceedings of the meeting of the European Heavy Particle Therapy Group, 1996, 83 (Suppl. 1):219-222. |
Kanai et al., “Three-dimensional Beam Scanning for Proton Therapy,” Nuclear Instruments and Methods on Physic Research, Sep. 1, 1983, The Netherlands, 214(23):491-496. |
Karlin et al., “Medical Radiology” (Moscow), 1983, 28, 13. |
Karlin et al., “The State and Prospects in the Development of the Medical Proton Tract on the Synchrocyclotron in Gatchina,” Med. Radiol., Moscow, 28(3):28-32 (Mar. 1983) (German with English Abstract on end of page 32). |
Kats and Druzhinin, “Camparison of Methods for Irradiation Prone Patients,” Atomic Energy, Feb. 2003, 94(2):120-123. |
Kats and Onosovskii, “A Simple, Compact, Flat System for the Irradiation of a Lying Patient with a Proton Beam from Different Direction,” Instruments an Experimental Techniques, 1996, 39(1):132-134. |
Kats and Onosovskii, “A Planar Magnetooptical Systems for the Irradiation of a Lying Patient with a Proton Beam from Various Directions,” Instruments and Experimental Techniques, 1996, 39(1):127-131. |
Khoroshkov et al., “Moscow Hospital-Based Proton Therapy Facility Design,” Am. Journal Clinical Oncology: CCT, Apr. 1994, 17(2):109-114. |
Kim and Blosser, “Optimized Magnet for a 250 MeV Proton Radiotherapy Cyclotron,” Cyclotrons an Their Applications 2001, May 2001, Sixteenth International Conference, pp. 345-347. |
Kim and Yun, “A Light-Ion Superconducting Cyclotron System for Multi-Disciplinary Users,” Journal of the Korean Physical Society, Sep. 2003, 43(3):325-331. |
Kim et al., “Construction of 8T Magnet Test Stand for Cyclotron Studies,” IEEE Transactions on Applied Superconductivity, Mar. 1993, 3(1):266-268. |
Kim et al., “Design Study of a Superconducting Cyclotron for Heavy Ion Therapy,” Cyclotrons and Their Applications 2001, Sixteenth International Conference, May 13-17, 2001, pp. 324-326. |
Kim et al., “Trim Coil System for the Riken Cyclotron Ring Cyclotron,” Proceedings of the 1997 Particle Accelerator Conference, IEEE, Dec. 1981, vol. 3, pp. 214-235 OR 3422-3424, 1998. |
Kim, “An Eight Tesla Superconducting Magnet for Cyclotron Studies,” Ph.D. Dissertation, Michigan State University, Department of Physics and Astronomy, 1994, 138 pages. |
Kimstrand, “Beam Modelling for Treatment Planning of Scanned Proton Beams,” Digital Comprehensive Summaries of Uppsala dissertations for the Faculty of Medicine 330, Uppsala Universitet, 2008, 58 pages. |
Kishida and Yano, “Beam Transport System for the RIKEN SSC (II),” Scientific Papers of the Institute of Physical and Chemical Research, Dec. 1981, 75(4):214-235. |
Koehler et al., “Range Modulators for Protons and Heavy Ions,” Nuclear Instruments and Methods, 1975, vol. 131, pp. 437-440. |
Koto and Tsujii, “Future of Partical Therapy,” Japanese Journal of Cancer Clinics, 2001, 47(1):95-98 [Lang.:Japanese], English Abstract (http://sciencelinks.jp/j-east/article/200206/000020020601A0511453.php). |
Kraft et al., “Hadrontherapy in Oncology,” U. Amaldi and Larrsson, editors Elsevier Science, 1994, 390 pages. |
Krevet et al., “Design of a Strongly Curved Superconducting Bending Magnet for a Compact Synchrotron Light Source,” Advances in Cryogenic Engineering, 1988, vol. 33, pp. 25-32. |
Laisne et al., “The Orsay 200 MeV Synchrocyclotron,” IEEE Transactions on Nuclear Science, Apr. 1979, NS-26(2):1919-1922. |
Larsson et al., Nature 1958 , 182:1222. |
Larsson, “Biomedical Program for the Converted 200-MeV Synchrocyclotron at the Gustaf Werner Institute,” Radiation Research, 1985, 104:S310-S318. |
Lawrence et al., “Heavy particles in acromegaly and Cushing's Disease,” in Endocrine and Norendocrine Hormone Producing Tumors (Year Book Medical Chicago, 1973, pp. 29-61. |
Lawrence et al., “Successful Treatment of Acromegaly: Metabolic and Clinical Studies in 145 Patients,” The Journal of Clinical Endocrinology and Metabolism, Aug. 1970, 31(2), 21 pages. |
Lawrence et al., “Treatment of Pituitary Tumors,” (Excerpta medica, Amsterdam/American Elsevier, New York, 1973, pp. 253-262. |
Lawrence, Cancer, 1957, 10:795. |
Lecroy et al., “Viewing Probe for High Voltage Pulses,” Review of Scientific Instruments USA, Dec. 1960, 31(12):1354. |
Lin et al., “Principles and 10 Year Experience of the Beam Monitor System at the PSI Scanned Proton Therapy Facility”, Center for Proton Radiation Therapy, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland, 2007, 21 pages. |
Linfoot et al., “Acromegaly,” in Hormonal Proteins and Peptides, edited by C.H. Li, 1975, pp. 191-246. |
Literature Keyword Search, Jan. 24, 2005, 98 pages. |
Livingston et al., “A Capillary ion source for the cyclotron,” Review Science Instruments, Feb. 1939, 10:63. |
Mandrillon, “High Energy Medical Accelerators,” EPAC 90, 2nd European Particle Accelerator Conference, Jun. 12-16, 1990, 2:54-58. |
Marchand et al., “IBA Proton Pencil Beam Scanning: an Innovative Solution for Cancer Treatment,” Proceedings of EPAC 2000, Vienna, Austria, 3 pages. |
Marti et al., “High Intensity Opeation of a Superconducting Cyclotron,” Proceedings of the 14the International Conference, Cyclotrons and Their Applications, Oct. 1995, pp. 45-48 (Oct. 1995). |
Martin, “Operational Experience with Superconducting Synchrotron Magnets” Proceedings of the 1987 IEEE Particle Accelerator Conference, Mar. 16-19, 1987, vol. 3 of 3:1379-1382. |
Meote et al., “ETOILE Hadrontherapy Project, Review of Design Studies” Proceedings of EPAC 2002, 2002, pp. 2745-2747. |
Miyamoto et al., “Development of the Proton Therapy System,” The Hitachi Hyoron, 79(10):775-779 (1997) [Lang: Japanese], English abstract (http://www.hitachi.com/rev/1998/revfeb98/rev4706.htm). |
Montelius et al., “The Narrow Proton Beam Therapy Unit at the Svedberg Laboratory in Uppsala,” ACTA Oncologica, 1991, 30:739-745. |
Moser et al., “Nonlinear Beam Optics with Real Fields in Compact Storage Rings,” Nuclear Instruments & Methods in Physics Research/Section B, B30, Feb. 1988, No. 1, pp. 105-109. |
Moyers et al., “A Continuously Variable Thickness Scatterer for Proton Beams Using Self-compensating Dual Linear Wedges” Lorna Linda University Medical Center, Dept. of Radiation Medicine, Lorna Linda, CA, Nov. 2, 1992, 21 pages. |
National Cancer Institute Funding (Senate-Sep. 12, 1992) (www.thomas.loc.gov/cgi-bin/query/z?r102:S21SE2-712 (2 pages). |
Nicholson, “Applications of Proton Beam Therapy,” Journal of the American Society of Radiologic Technologists, May/Jun. 1996, 67(5): 439-441. |
Nolen et al., “The Integrated Cryogenic—Superconducting Beam Transport System Planned for MSU,” Proceedings of the 12th International Conference on High-Energy Accelerators, Aug. 1983, pp. 549-551. |
Norimine et al., “A Design of a Rotating Gantry with Easy Steering for Proton Therapy,” Proceedings of EPAC 2002, 2002, pp. 2751-2753. |
Ogino, Takashi, “Heavy Charged Particle Radiotherapy-Proton Beam”, Division of Radiation Oncology, National Cancer Hospital East, Kashiwa, Japan, Dec. 2003, 7 pages. |
Okumura et al., “Overview and Future Prospect of Proton Radiotherapy,” Japanese Journal of Cancer Clinics, 1997, 43(2):209-214 [Lang.: Japanese]. |
Okumura et al., “Proton Radiotherapy” Japanese Journal of Cancer and Chemotherapy, 1993, 10. 20(14):2149-2155 [Lang.: Japanese]. |
Outstanding from Search Reports, “Accelerator of Polarized Portons at Fermilab,” 2005, 20 pages. |
Paganetti et al., “Proton Beam Radiotherapy—The State of the Art,” Springer Verlag, Hidelberg, ISBN 3-540-00321-5, Oct. 2005, 36 pages. |
Palmer and Tollestrup, “Superconducting Magnet Technology for Accelerators,” Annual Review of Nuclear and Particle Science, 1984, vol. 34, pp. 247-284. |
Patent Assignee and Keyword Searches for Synchrocyclotron, Jan. 25, 2005, 78 pages. |
Pavlovic, “Beam-optics study of the gantry beam delivery system for light-ion cancer therapy,” Nuclear Instruments and Methods in Physics Research, Section A, Nov. 1997, 399(2):439-454(16). |
Pedroni and Enge, “Beam optics design of compact gantry for proton therapy” Medical & Biological Engineering & Computing, May 1995, 33(3):271-277. |
Pedroni and Jermann, . “SGSMP: Bulletin 3/2002 Proscan Project, Progress Report on the PROSCAN Project of PSI” [online] retrieved from www.sgsmp.ch/protA23.htm, Mar. 2002, 5 pages. |
Pedroni et al., “A Novel Gantry for Proton Therapy at the Paul Scherrer Institute,” Cycloctrons and Their Applications 2001: Sixteenth International Conference. AIP Conference Proceedings, 2001, 600:13-17. |
Pedroni et al., “The 200 MeV proton therapy project at the Paul Scherrer Institute: Conceptual design and Practical Realization,” Medical Physics, Jan. 1995, 22(1):37-53. |
Pedroni, “Accelerators for Charged Particle Therapy: Performance Criteria from the User Point of View,” Cyclotrons and their Applications, Proceedings of the 13th International Conference, Jul. 6-10, 1992, pp. 226-233. |
Pedroni, “Latest Developments in Proton Therapy” Proceedings of EPAC 2000, 2000, pp. 240-244. |
Pedroni, “Status of Proton Therapy: results and future trends,” Paul Scherrer Institute, Division of Radiation Medicine, 1994, 5 pages. |
Peggs et al., “A Survey of Hadron Therapy Accelerator Technologies,” Particle Accelerator Conference, Jun. 25-29, 2007, 7 pages. |
Potts et al., “MPWP6-Therapy III: Treatment Aids and Techniques” Medical Physics, Sep./Oct. 1988, 15(5):798. |
Pourrahimi et al., “Powder Metallurgy Processed Nb3Sn(Ta) Wire for High Field NMR magnets,” IEEE Transaction on Applied Superconductivity, Jun. 1995, 5(2):1603-1606. |
Prieels et al., “The IBA State-of-the-Art Proton Therapy System, Performances and Recent Results,” Application of Accelerators in Research and industry—Sixteenth Int'l. Conf., American Institute of Physics, Nov. 1-5, 2000, 576:857-860. |
Rabin et al., “Compact Designs for Comprehensive Proton Beam Clinical Facilities,” Nuclear Instruments & Methods in Physics Research, Apr. 1989, Section B, vol. 40-41, Part II, pp. 1335-1339. |
Research & Development Magazine, “Proton Therapy Center Nearing Completion,” Aug. 1999, 41(9):2 pages, (www.rdmag.com). |
Resmini, , “Design Characteristics of the K=800 Superconducting Cyclotron at M.S.U.,” Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, IEEE Transaction on Nuclear Science, vol. NS-26, No. 2, Apr. 1979, 8 pages. |
RetroSearch “Loma Linda University Beam Compensation,” Jan. 21, 2005, 60 pages. |
RetroSearch “Loma Linda University, Bam Compensation Foil Wedge,” Jan. 21, 2005, 15 pages. |
Rifuggiato et, al., “Status Report of the LNS Superconducting Cyclotron” Nukleonika, 2003, 48:S131-S134, Supplement 2. |
Rode, “Tevatron Cryogenic System,” Proceedings of the 12th International Conference on High-energy Accelerators, Fermilab, Aug. 11-16, 1983, pp. 529-535. |
Salzburger et al., “Superconducting Synchrotron Magnets Supraleitende Synchrotronmagnete,” Siemens A.G., Erlangen (West Germany). Abteilung Technische Physik, Report No.: BMFT-FB-T-75-25, Oct. 1975, p. 147, Journal Announcement: GRAI7619; STAR1415, Subm-Sponsored by Bundesmin. Fuer Forsch. U. Technol. In German; English Summary. |
Schillo et al., “Compact Superconducting 250 MeV Proton Cyclotron for the PSI Proscan Proton Therapy Project,” Cyclotrons and Their Applications 2001, Sixteenth International Conference, 2001, pp. 37-39. |
Schneider et al., “Nevis Synchrocyclotron Conversion Program—RF System,” IEEE Transactions on Nuclear Science USA, Jun. 1969, ns 16(3):430-433. |
Schneider et al., “Superconducting Cyclotrons,” IEEE Transactions on Magnetics, vol. MAG-11, No. 2, Mar. 1975, New York, pp. 443-446. |
Schreuder et al., “The Non-orthogonal Fixed Beam Arrangement for the Second Proton Therapy Facility at th National Accelerator Centre,” Application of Accelerators in Research and Industry, American Institute o Physics, Proceedings of the Fifteenth International Conference, Nov. 1998, Part Two, pp. 963-966. |
Schreuder, “Recent Developments in Superconducting Cyclotrons,” Proceedings of the 1995 Particle Accelerator Conference, May 1-5, 1995, vol. 1, pp. 318-321. |
Schubert and Blosser, “Conceptual Design of a High Field Ultra-Compact Cyclotron for Nuclear Physics Research,” Proceedings of the 1997 Particle Accelerator Conference, May 12-16, 1997, vol. 1, pp. 1060-1062. |
Schubert, “Extending the Feasibility Boundary of the Isochronous Cyclotron,” Dissertation submitted to Michigan State University, 1997, Abstract http://adsabs.harvard.edu/abs/1998PhDt. . . .147S. |
Shelaev et al., “Design Features of a Model Superconducting Synchrotron of JINR,” Proceedings of the 12th International Conference on High-energy Accelerators, Aug. 11-16, 1983, pp. 416-418. |
Shintomi et. al, “Technology and Materials for the Superconducting Super Collider (SSC) Project,” [Lang.:Japanese], The Iron and Steel Institute of Japan 00211575, 78(8): 1305-1313, 1992, http://ci.nii.ac.jp/naid/110001493249/en/. |
Sisterson, “World Wide Proton Therapy Experience in 1997,” The American Institute of Physics, Applications of Accelerators in Research and Industry, Proceedings of the fifteenth International Conference, Part Two, Nov. 1998, pp. 959-962. |
Sisterson, “Clinical use of Proton and ion beams from a world-wide perspective,” Nuclear Instruments and Methods in Physics Research, Section B, 1989, 40-41:1350-1353. |
Slater et al., “Developing a Clinical Proton Accelerator Facility: Consortium-Assisted Technology Transfer,” Conference Record of the 1991 IEEE Particle Accelerator Conference: Accelerator Science and Technology, vol. 1, May 6-9, 1991, pp. 532-536. |
Slater et al., “Development of a Hospital-Based Proton Beam Treatment Center,” International Journal of Radiation Oncology Biology Physics, Apr. 1988, 14(4):761-775. |
Smith et al., “The Northeast Proton Therapy Center at Massachusetts General Hospital” Journal of Brachytherapy International, Jan. 1997, pp. 137-139. |
Snyder and Marti, “Central region design studies for a proposed 250 MeV proton cyclotron,” Nuclear Instruments and Methods in Physics Research, Section A, 1995, vol. 355, pp. 618-623. |
Soga, “Progress of Particle Therapy in Japan,” Application of Accelerators in Research and Industry, American Institute of Physics, Sixteenth International Conference, Nov. 2000, pp. 869-872. |
Spiller et al., “The GSI Synchrotron Facility Proposal or Acceleration of High Intensity Ion and Proton Beams” Proceedings of the 2003 Particle Accelerator Conference, May 12-16, 2003, vol. 1, pp. 589-591. |
Stanford et al., “Method of Temperature Control in Microwave Ferroelectric Meansurements,” Sperry Microwave Electronics Company, Clearwater, Florida, Sep. 19, 1960, 1 page. |
Tadashi et al., “Large superconducting super colloder (SSC) in the planning and materials technology,” 1992, 78(8):1305-1313, The Iron and Steel Institute of Japan 00211575. |
Takada, “Conceptual Design of a Proton Rotating Gantry for Cancer Therapy,” Japanese Journal of Medical Physics, 1995, 15(4):270-284. |
Teng, “The Fermilab Tevatron,” Coral Gables 1981, Proceedings, Gauge Theories, Massive Neutrinos, and Proton Decay, 1981, pp. 43-62. |
The Journal of Practical Pharmacy, 1995, 46(1):97-103 [Japanese]. |
Tilly et al., “Development and verification of the pulsed scanned proton beam at The Svedberg Laboratory in Uppsala,” Phys. Med. Biol., 2007, 52:2741-2754. |
Tobias et al., Cancer Research, 1958, 18, 121 (1958). |
Tom, “The Use of Compact Cyclotrons for Producing Fast Neutrons for Therapy in a Rotatable Isocentric Gantry,” IEEE Transaction on Nuclear Science, Apr. 1979, 26(2):2294-2298. |
Toyoda, “Proton Therapy System”, Sumitomo Heavy Industries, Ltd., 2000, 5 pages. |
Trinks et al., “The Tritron: A Superconducting Separated-Orbit Cyclotron,” Nuclear Instruments and Methods in Physics Research, Section A, 1986, vol. 244, pp. 273-282. |
Tsuji, “The Future Methods and Progress of Proton Beam Radiotherapy,” Journal of Japanese Society for Therapeutic Radiology and Oncology, 1994, 6(2):63-76. |
Umegaki et al., “Development of an Advance Proton Beam Therapy System for Cancer Treatment” Hitachi Hyoron, 2003, 85(9):605-608 [Lang.: Japanese], English Abstract, http://www.hitachi.com/ICSFiles/afieldfile/2004/06/01/r2003_04_104.pdf or http://www.hitachi.com/rev/archive/2003/2005649_12626.html (full text) [Hitachi, 52(4), Dec. 2003]. |
Umezawa et al., “Beam Commissioning of the new Proton Therapy System for University of Tsukuba,” Proceedings of the 2001 Particle Accelerator Conference, vol. 1, Jun. 18-22, 2001, pp. 648-650. |
van Steenbergen, “Superconducting Synchrotron Development at BNL,” Proceedings of the 8th International Conference on High Energy Accelerators CERN 1971, 1971, pp. 196-198. |
van Steenbergen, “The CMS, a Cold Magnet Synchrotron to Upgrade the Proton Energy Range of the BNL Facility,” IEEE Transactions on Nuclear Science, Jun. 1971, 18(3):694-698. |
Vandeplassche et al., “235 MeV Cyclotron for MGH's Northeast Proton Therapy Center (NPTC): Present Status,” EPAC 96, Fifth European Partical Accelerator Conference, vol. 3, Jun. 10-14, 1996, pp. 2650-2652. |
Vorobiev et al., “Concepts of a Compact Achromatic Proton Gantry with a Wide Scanning Field”, Nuclear Instruments and Methods in Physics Research, Section A., 1998, 406(2):307-310. |
Vrenken et al., “A Design of a Compact Gantry for Proton Therapy with 2D-Scanning,” Nuclear Instruments and Methods in Physics Research, Section A, 1999, 426(2):618-624. |
Wikipedia, “Synchrotron” http://en.wikipedia.org/wiki/Synchrotron (originally visited Oct. 6, 2005, revisited Jan. 28, 2009), 7 pages. |
Written Opinion in PCT Application No. PCT/US2007/001628, dated Feb. 18, 2008, 11 pages. |
Wu, “Conceptual Design and Orbit Dynamics in a 250 MeV Superconducting Synchrocycloton,” Ph. D. Dissertation, Michigan State University, Department of Physics and Astronomy, 1990, 172 pages. |
York et al., “Present Status and Future Possibilities at NSCL-MSU,” EPAC 94, Fourth European Particle Accelerator Conference, pp. 554-556, Jun. 1994. |
York et al., “The NSCL Coupled Cyclotron Project—Overview and status,” Proceedings of the Fifteenth International Conference on Cyclotrons and their Applications, Jun. 1998, pp. 687-691. |
Yudelev et al., “Hospital Based Superconducting Cyclotron For Neutron Therapy: Medical Physics Perspective,” Cyclotrons and their applications 2001, 16th International Conference. American Institute of Physics Conference Proceedings, vol. 600, May 13-17, 2001, pp. 40-43. |
Zherbin et al., “Proton Beam Therapy at the Leningrad Synchrocyclotron (Clinicomethodological Aspects and Therapeutic Results)”, Aug. 1987, 32(8):17-22, (German with English Abstract on pp. 21-22). |
Ofice action with English translation from Taiwanese application No. 097144546 issued Oct. 25, 2013 (27 pages). |
Tilly, et al., “Development and verification of the Pulsed scanned proton beam at the Svedberg Laboratory in Uppsala”, Physics in Medicine and Biology, Phys. Med. Biol. 52, pp. 2741-2454, 2007. |
Voluntary amendment filed in Canadian Application No. 2707075 on Oct. 13, 2013 (8 pages). |
Response with English translation to office action dated Oct. 25, 2013 in Taiwanese Application No. 097144546, filed on Mar. 28, 2014 (34 pages). |
European Search Report issued in European Application No. 08856764.9 on Jun. 4, 2014 (3 pages). |
Response with English translation to Japanese Office action filed Mar. 1, 2012 in Japanese Application No. 2007-522777 (14 pages). |
Office Action with English translation from Japanese Application No. 2007-522777 mailed Oct. 4, 2011 (15 pages). |
European Search Report from European Application No. 10175751.6 mailed Nov. 18, 2010 (8 pages). |
Response to examination search report filed in European Application No. 05776532.3 on Dec. 20, 2011 (14 pages). |
European Communication issued in European Application No. 05776532.3 mailed Jun. 10, 2011 (10 pages). |
Office action with English Translation issued in Chinese Application No. 201010581384.2 on Nov. 10, 2011 (19 pages). |
Voluntary amendment filed in Canadian Application No. 2,574,122 on Jul. 26, 2010 (16 pages). |
Voluntary amendment filed in Canadian Application No. 2,574,122 on Nov. 5, 2010 (15 pages). |
Response with English translation to Chinese Office action filed in Chinese Application No. 200880125832.9 on Dec. 16, 2013 (12 pages). |
Voluntary Amendment filed in Canadian Application No. 2707075 on Oct. 18, 2013 (8 pages). |
Canadian office action from corresponding Canadian application No. 2574122 dated Aug. 14, 2014 (6 pages). |
Number | Date | Country | |
---|---|---|---|
60590089 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12011466 | Jan 2008 | US |
Child | 12603934 | US | |
Parent | 11371622 | Mar 2006 | US |
Child | 12011466 | US | |
Parent | 11187633 | Jul 2005 | US |
Child | 11371622 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12603934 | Oct 2009 | US |
Child | 15429078 | US |