Programmable resistive RAM and manufacturing method

Information

  • Patent Grant
  • 8158963
  • Patent Number
    8,158,963
  • Date Filed
    Wednesday, June 3, 2009
    14 years ago
  • Date Issued
    Tuesday, April 17, 2012
    12 years ago
Abstract
Programmable resistive RAM cells have a resistance that depends on the size of the contacts. Manufacturing methods and integrated circuits for lowered contact resistance are disclosed that have contacts of reduced size.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates to integrated circuit nonvolatile memory. In particular, the invention relates to programmable resistive nonvolatile memory, such as phase change memory.


2. Description of Related Art


Nonvolatile memory stores data without requiring a continuous supply of power. Programmable resistive memory such as phase change memory is an example of nonvolatile memory. A high current reset electrical pulse melts and quenches the programmable resistive element into an amorphous state, raising the resistance of the programmable resistive element. A low current set electrical pulse crystallizes and lowers the resistance of the programmable resistive element.


Because the electrical pulse type determines the data that are stored in the programmable resistive RAM, and the characteristics of the electrical pulse depend in part on the resistance of the programmable resistive RAM cells, it is critical to manufacture the programmable resistive RAM cells with the correct resistance.


The resistance of the programmable resistive RAM cells is reduced by shrinking the size of the electrical contacts that connect the programmable resistive RAM cells to the remainder of the integrated circuit. A traditional solution to forming small electrical contacts is to rely on a photolithographic mask that defines the small electrical contacts. However, such a mask is associated with accompanying problems, such as proper alignment of the mask with the already fabricated layers of the planar integrated circuit.


Therefore, it would be desirable to manufacture small electrical contacts for programmable resistive RAM without relying on an aggressive photolithography mask to define the small electrical contacts.


SUMMARY OF THE INVENTION

Embodiments of the technology include a memory device including an integrated circuit. The integrated circuit includes a first dielectric layer, a second dielectric layer over the first dielectric layer, an interlayer contact through the first dielectric layer and the second dielectric layer, and a programmable element.


The interlayer contact has a first part and a second part. A cross-section of the first part is smaller than a cross-section of the second part. The interlayer contact includes a top surface, which has a vertical position above the first dielectric layer and the second dielectric layer. The programmable element is electrically coupled between the first part of the interlayer contact and an electrode.


Embodiments of the technology include a memory device including an integrated circuit. The integrated circuit includes a contact and a memory element. The contact has a first part with a first cross-section, a second part with a second cross-section, and an interface between the first part and the second part. The first cross-section is smaller than the second cross-section at the interface, such that a width change between the first cross-section and the second cross-section has a step profile. The memory element is electrically coupled between the first part of the contact and an electrode.


In various embodiments, the second dielectric layer and the first dielectric layer are adjacent to and surround the interlayer contact. In various embodiments, the second dielectric layer and the first dielectric layer have an etching selectivity difference.


In various embodiments, the programmable element is nonvolatile, such as a programmable resistive element.


In various embodiments, the interlayer contact includes at least one of W and polycrystalline Si.


In various embodiments, the second dielectric layer includes a nitride such as SiN.


In various embodiments, the first dielectric layer includes an oxide, and/or at least one of SiOx and a low-k oxide.


In various embodiments, the first part of the interlayer contact has a critical dimension less than or equal to about 60 nm.


In various embodiments, the contact is electrically connected to a conductive terminal of a transistor. In various embodiments, the electrode is electrically connected to a bit line.


Embodiments of the technology include a self-aligned method of forming an integrated circuit with nonvolatile memory cells. The following steps are included:

    • The step of forming conductive rows accessing the nonvolatile memory cells by row.
    • The step of forming dielectric layers above the conductive rows. In one embodiment, these dielectric layers include multiple layers, at least two of which have an etching selectivity difference between the layers.
    • The step of forming interlayer contacts through the dielectric layers to conductively connect with the conductive rows.
    • The step of reducing a cross-section of a part of the interlayer contacts in a self-aligned process. This reduction process is performed in some embodiments by forming dielectric structures at least partly covering the interlayer contacts, and reducing a cross-section of a part of the interlayer contacts by removing material from a part of the interlayer contacts uncovered by the dielectric structures. One example of reducing the cross-section is performed as follows. A dielectric layer is exposed by the interlayer contacts, by removing another dielectric layer at least by the interlayer contacts. A new dielectric layer is formed at least partly covering the interlayer contacts. Only part of the new dielectric layer covering the interlayer contacts is removed, to leave dielectric structures at least partly covering the interlayer contacts. One example of removing the new material is by wet etching part of the new dielectric layer for a duration, which controls a critical dimension of the interlayer contacts achieved by reducing the cross-section. In one embodiment, the dielectric structures have a substantially triangle-shaped cross-section. Finally, a cross-section of a part of the interlayer contacts is reduced by removing material from a part of the interlayer contacts uncovered by the dielectric structures. In one embodiment, the cross-section of the interlayer contacts is reduced by dry etching the part of the interlayer contacts uncovered by the dielectric structures. In one embodiment, the critical dimension of the interlayer contacts is controlled to be less than or equal to about 60 nm.
    • The step of forming programmable resistive elements of the nonvolatile memory cells to conductively connect with the interlayer contacts. Example materials for forming the programmable resistive elements are: a chalcogenide, PrxCayMnO3, PrSrMnO3, ZrOx, a two-element memory compound, TCNQ, and PCBM.
    • The step of forming conductive columns accessing the nonvolatile memory cells by column to conductively connect with the programmable resistive elements.


Some embodiments include the step of: surrounding the interlayer contacts with additional dielectric structures to fill gaps between the interlayer contacts and the dielectric layers. The gaps result from the step of reducing the cross-section. The additional dielectric structures have a thermal conductivity sufficiently low to reduce a reset current.


Further embodiments of the technology include an integrated circuit with nonvolatile memory cells. The integrated circuit includes conductive rows accessing the nonvolatile memory cells by row, dielectric layers above said conductive rows, programmable resistive elements of the nonvolatile memory cells above the dielectric layers, interlayer contacts through the dielectric layers to conductively connect with the conductive rows, and conductive columns accessing the nonvolatile memory cells by column to conductively connect with the programmable resistive elements.


Each of the interlayer contacts has a first part and second part. The first part is adjacent to and conductively connects to at least one of the programmable resistive elements. In some embodiments, the cross-section of the first part has a critical dimension less than or equal to about 60 nm. The second part is adjacent to and conductively connects to the first part. The second part is also conductively connected to the conductive rows. The second part has a cross-section larger than the cross-section of the first part. The cross-section of the second part is substantially uniform between the first part and the conductive rows.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view showing transistor structure to select particular programmable resistive RAM cells by row.



FIG. 2 is a cross-sectional view showing the removal of a top layer of dielectric, stopping on the next layer of dielectric.



FIG. 3 is a cross-sectional view showing the formation of a new layer of dielectric, including dielectric structures on the contacts having a substantially triangle-shaped cross-section.



FIG. 4 is a cross-sectional view showing the removal of part of the new layer of dielectric, including part of the dielectric structures on the contacts having a substantially triangle-shaped cross-section.



FIG. 5 is a cross-sectional view showing the removal of part of the contacts uncovered by the remainder of the substantially triangle-shaped dielectric structures.



FIG. 6 is a cross-sectional view showing the formation of dielectric in the gaps around the contacts resulting from the prior removal of part of the contacts, and removal of material to flatten the surface.



FIG. 7 is a cross-sectional view showing the formation of resistive memory elements and top electrodes.



FIG. 8 is a cross-sectional view showing the formation of bit lines and an additional layer of dielectric.



FIG. 9 is a block diagram of the integrated circuit including an array of nonvolatile programmable resistive memory cells, and other circuitry.





DETAILED DESCRIPTION

Various embodiments are directed at a manufacturing method for memory, such as nonvolatile embedded memory implementing programmable resistance RAM. Examples of resistance device RAM are resistance memory (RRAM), polymer memory, and phase change memory (PCRAM). The cross-section is reduced of an upper portion of the interlayer contacts of programmable resistance RAM.



FIG. 1 is a cross-sectional view showing transistor structure to select particular programmable resistive RAM cells by row. The substrate 8 (which may also be an n-well or p-well) has source and drain regions 14, 16, and 18. The gates 10 and 12 are conductive rows which selectively access the programmable resistive RAM cells, and induce a channel under the respective regions of the substrate 8 under the gates 10 and 12, between regions 14 and 16 and regions 16 and 18. Dielectric layers 20, 22, and 24 cover the substrate 8 and the gates 10 and 12. Interlayer contacts 28 and 30 physically and electrically connect to regions 14 and 18 through dielectric layers 20, 22, and 24. Example materials of dielectric layer 20 and 24 are oxides such as SiOx and low-k material, and other dielectric materials associated with transistor fabrication. An example thickness of dielectric layer 20 is 600 nm, and an example thickness range of dielectric layer 24 is 100-200 nm. An example material of dielectric layer 22 is SiN, and an example thickness of dielectric layer 22 is 30 nm. Example materials of interlayer contacts 28 and 30 are W, polycrystalline Si without doping or with p or n doping (such as n+ doped polycrystalline Si).



FIG. 2 is a cross-sectional view showing the removal of a top layer of dielectric, stopping on the next layer of dielectric. Dielectric layer 24 is removed, exposing dielectric layer 22 and an upper portion of the interlayer contacts 28 and 30. Wet etching, dry etching, or some combination of wet etching and dry etching, are alternative methods to remove dielectric layer 24. One example is wet etching with dilute HF (DHF) or buffer HF (BHF) to wet etch silicon oxide. The etching selective difference between dielectric layer 22 and dielectric layer 24 is sufficiently high, such that the removal of material stops at dielectric layer 22.



FIG. 3 is a cross-sectional view showing the formation of a new layer of dielectric, including dielectric structures on the contacts having a substantially triangle-shaped cross-section. High-density plasma (HDP) oxide layer 32 and structures 34 and 36 having a substantially triangular-cross section are deposited. An example thickness range of oxide layer 32 is 150-300 nm. Structures 34 and 36 cover the interlayer contacts 28 and 30. Alternatively, part of contacts 28 and 30 remain exposed.



FIG. 4 is a cross-sectional view showing the removal of part of the new layer of dielectric, including part of the dielectric structures on the contacts having a substantially triangle-shaped cross-section. Wet etching, dry etching, or some combination of wet etching and dry etching, are alternative methods. In one example, dilute HF (DHF) or buffer HF (BHF) are used to wet etch a silicon oxide layer 32 and structures 34 and 36. Removal of material from structures 34 and 36 shrinks their triangular cross-section, resulting in structures 38 and 40. Contacts 28 and 30, which were formerly completely covered by structures 34 and 36 are now partly exposed by structures 38 and 40. Alternatively, an already exposed part of contacts 28 and 30 is increased in area. The etching selectivity difference between contacts 28 and 30, and layer 32 and structures 34 and 36 is sufficiently high to prevent significant etching of contacts 28 and 30. However, layer 32 is etched during the etching of structures 34 and 36.



FIG. 5 is a cross-sectional view showing the removal of part of the contacts uncovered by the remainder of the substantially triangle-shaped dielectric structures. Wet etching, dry etching, or some combination of wet etching and dry etching, are alternative methods. In one example, reactive-ion-etch with SF6 based chemistry is used for dry etching the contacts 28 and 30. In effect, the substantially triangular-shaped structures 38 and 40 are used a as a hard mask to prevent etching of the parts of contacts 28 and 30 under structures 38 and 40. The etching selectivity difference between contacts 28 and 30, and structures 38 and 40, is sufficiently high to prevent significant etching of structures 38 and 40. The etching time is controlled to etch the contacts 28 and 30 to a suitable depth of for example 200 nm. Contacts 28 and 30 now have respective portions 42 and 44 with smaller cross-sections.



FIG. 6 is a cross-sectional view showing the formation of dielectric in the gaps around the contacts resulting from the prior removal of part of the contacts, and removal of material to flatten the surface. Dielectric structures 46 and 48 are deposited into the volume left open by the removal of part of the contacts 28 and 30. Thus, dielectric structures 46 and 48 surround contact portions 42 and 44. Examples of materials for dielectric structures 46 and 48 are low-k material, HDP oxide, and Accuflow with a suitable post-annealing temperature of for example 400° C.


Chemical mechanical polishing (CMP) planarizes the surface and opens the contact portions 42 and 44 covered by the formation of dielectric structures 46 and 48. An example critical dimension of the contact portions 42 and 44 is 60 nm.



FIG. 7 is a cross-sectional view showing the formation of resistive memory elements and top electrodes.


The programmable resistive elements 50 and 52 physically and electrically connect with contact portions 42 and 44.


Embodiments of the memory cell include phase change based memory materials, including chalcogenide based materials and other materials, for the resistive element. Chalcogens include any of the four elements oxygen (O), sulfur (S), selenium (Se), and tellurium (Te), forming part of group VI of the periodic table. Chalcogenides comprise compounds of a chalcogen with a more electropositive element or radical. Chalcogenide alloys comprise combinations of chalcogenides with other materials such as transition metals. A chalcogenide alloy usually contains one or more elements from column six of the periodic table of elements, such as germanium (Ge) and tin (Sn). Often, chalcogenide alloys include combinations including one or more of antimony (Sb), gallium (Ga), indium (In), and silver (Ag). Many phase change based memory materials have been described in technical literature, including alloys of: Ga/Sb, In/Sb, In/Se, Sb/Te, Ge/Te, Ge/Sb/Te, In/Sb/Te, Ga/Se/Te, Sn/Sb/Te, In/Sb/Ge, Ag/In/Sb/Te, Ge/Sn/Sb/Te, Ge/Sb/Se/Te and Te/Ge/Sb/S. In the family of Ge/Sb/Te alloys, a wide range of alloy compositions may be workable. The compositions can be characterized as TeaGebSb 100−(a+b). One researcher has described the most useful alloys as having an average concentration of Te in the deposited materials well below 70%, typically below about 60% and ranged in general from as low as about 23% up to about 58% Te and most preferably about 48% to 58% Te. Concentrations of Ge were above about 5% and ranged from a low of about 8% to about 30% average in the material, remaining generally below 50%. Most preferably, concentrations of Ge ranged from about 8% to about 40%. The remainder of the principal constituent elements in this composition was Sb. These percentages are atomic percentages that total 100% of the atoms of the constituent elements. (Ovshinsky U.S. Pat. No. 5,687,112, cols 10-11.) Particular alloys evaluated by another researcher include Ge2Sb2Te5, GeSb2Te4 and GeSb4Te7 (Noboru Yamada, “Potential of Ge—Sb—Te Phase-Change Optical Disks for High-Data-Rate Recording”, SPIE v.3109, pp. 28-37 (1997).) More generally, a transition metal such as chromium (Cr), iron (Fe), nickel (Ni), niobium (Nb), palladium (Pd), platinum (Pt) and mixtures or alloys thereof may be combined with Ge/Sb/Te to form a phase change alloy that has programmable resistive properties. Specific examples of memory materials that may be useful are given in Ovshinsky '112 at columns 11-13, which examples are hereby incorporated by reference.


Phase change alloys are capable of being switched between a first structural state in which the material is in a generally amorphous solid phase, and a second structural state in which the material is in a generally crystalline solid phase in its local order in the active channel region of the cell. These alloys are at least bistable. The term amorphous is used to refer to a relatively less ordered structure, more disordered than a single crystal, which has the detectable characteristics such as higher electrical resistivity than the crystalline phase. The term crystalline is used to refer to a relatively more ordered structure, more ordered than in an amorphous structure, which has detectable characteristics such as lower electrical resistivity than the amorphous phase. Typically, phase change materials may be electrically switched between different detectable states of local order across the spectrum between completely amorphous and completely crystalline states. Other material characteristics affected by the change between amorphous and crystalline phases include atomic order, free electron density and activation energy. The material may be switched either into different solid phases or into mixtures of two or more solid phases, providing a gray scale between completely amorphous and completely crystalline states. The electrical properties in the material may vary accordingly.


Phase change alloys can be changed from one phase state to another by application of electrical pulses. It has been observed that a shorter, higher amplitude pulse tends to change the phase change material to a generally amorphous state. A longer, lower amplitude pulse tends to change the phase change material to a generally crystalline state. The energy in a shorter, higher amplitude pulse is high enough to allow for bonds of the crystalline structure to be broken and short enough to prevent the atoms from realigning into a crystalline state. Appropriate profiles for pulses can be determined, without undue experimentation, specifically adapted to a particular phase change alloy. In following sections of the disclosure, the phase change material is referred to be as GST, and it will be understood that other types of phase change materials can be used. A material useful for implementation of a PCRAM described herein is Ge2Sb2Te5.


Other programmable resistive memory materials may be used in other embodiments of the invention, including N2 doped GST, GexSby, or other material that uses different crystal phase changes to determine resistance; PrxCayMnO3, PrSrMnO3, ZrOx, or other material that uses an electrical pulse to change the resistance state; 7,7,8,8-tetracyanoquinodimethane (TCNQ), methanofullerene 6,6-phenyl C61-butyric acid methyl ester (PCBM), TCNQ-PCBM, Cu-TCNQ, Ag-TCNQ, C60-TCNQ, TCNQ doped with other metal, or any other polymer material that has bistable or multi-stable resistance state controlled by an electrical pulse.


The following are short summaries describing four types of resistive memory materials. The first type is chalcogenide material, such as GexSbyTe, where x:y:z=2:2:5, or other compositions with x: 0˜5; y: 0˜5; z: 0˜10. GeSbTe with doping, such as N—, Si—, Ti—, or other element doping is alternatively used.


An exemplary method for forming chalcogenide material uses PVD-sputtering or magnetron-sputtering method with source gas(es) of Ar, N2, and/or He, etc. at the pressure of 1 mTorr˜100 mTorr. The deposition is usually done at room temperature. A collimater with an aspect ratio of 1˜5 can be used to improve the fill-in performance. To improve the fill-in performance, a DC bias of several tens of volts to several hundreds of volts is also used. On the other hand, the combination of DC bias and the collimater can be used simultaneously.


A post-deposition annealing treatment in vacuum or in an N2 ambient is optionally performed to improve the crystallize state of chalcogenide material. The annealing temperature typically ranges from 100° C. to 400° C. with an anneal time of less than 30 minutes.


The thickness of chalcogenide material depends on the design of cell structure. In general, a chalcogenide material with thickness of higher than 8 nm can have a phase change characterization so that the material exhibits at least two stable resistance states.


A second type of memory material suitable for use in embodiments is colossal magnetoresistance (“CMR”) material, such as PrxCayMnO3 where x=0.5:0.5, or other compositions with x: 0˜1; y: 0˜1. CMR material that includes Mn oxide is alternatively used.


An exemplary method for forming CMR material uses PVD sputtering or magnetron-sputtering method with source gases of Ar, N2, O2, and/or He, etc. at the pressure of 1 mTorr˜100 mTorr. The deposition temperature can range from room temperature to ˜600° C., depending on the post deposition treatment condition. A collimater with an aspect ratio of 1˜5 can be used to improve the fill-in performance. To improve the fill-in performance, the DC bias of several tens of volts to several hundreds of volts is also used. On the other hand, the combination of DC bias and the collimater can be used simultaneously. A magnetic field of several tens of Gauss to as much as a Tesla (10,000 Gauss) may be applied to improve the magnetic crystallized phase.


A post-deposition annealing treatment in vacuum or in an N2 ambient or O2/N2 mixed ambient is optionally used to improve the crystallized state of CMR material. The annealing temperature typically ranges from 400° C. to 600° C. with an anneal time of less than 2 hours.


The thickness of CMR material depends on the design of the cell structure. The CMR thickness of 10 nm to 200 nm can be used for the core material. A buffer layer of YBCO (YBaCuO3, which is a type of high temperature superconductor material) is often used to improve the crystallized state of CMR material. The YBCO is deposited before the deposition of CMR material. The thickness of YBCO ranges from 30 nm to 200 nm.


A third type of memory material is two-element compounds, such as NixOy; TixOy; AlxOy; WxOy; ZnxOy; ZrxOy; CuxOy; etc, where x:y=0.5:0.5, or other compositions with x: 0˜1; y: 0˜1. An exemplary formation method uses a PVD sputtering or magnetron-sputtering method with reactive gases of Ar, N2, O2, and/or He, etc. at the pressure of 1 mTorr˜100 mTorr, using a target of metal oxide, such as NixOy; TixOy; AlxOy; WxOy; ZnxOy; ZrxOy; CuxOy; etc. The deposition is usually done at room temperature. A collimater with an aspect ratio of 1˜5 can be used to improve the fill-in performance. To improve the fill-in performance, the DC bias of several tens of volts to several hundreds of volts is also used. If desired, the combination of DC bias and the collimater can be used simultaneously.


A post-deposition annealing treatment in vacuum or in an N2 ambient or O2/N2 mixed ambient is optionally performed to improve the oxygen distribution of metal oxide. The annealing temperature ranges from 400° C. to 600° C. with an anneal time of less than 2 hours.


An alternative formation method uses a PVD sputtering or magnetron-sputtering method with reactive gases of Ar/O2, Ar/N2/O2, pure O2, He/O2, He/N2/O2 etc. at the pressure of 1 mTorr 100 mTorr, using a target of metal oxide, such as Ni, Ti, Al, W, Zn, Zr, or Cu etc. The deposition is usually done at room temperature. A collimater with an aspect ratio of 1˜5 can be used to improve the fill-in performance. To improve the fill-in performance, a DC bias of several tens of volts to several hundreds of volts is also used. If desired, the combination of DC bias and the collimater can be used simultaneously.


A post-deposition annealing treatment in vacuum or in an N2 ambient or O2/N2 mixed ambient is optionally performed to improve the oxygen distribution of metal oxide. The annealing temperature ranges from 400° C. to 600° C. with an anneal time of less than 2 hours.


Yet another formation method uses oxidation by a high temperature oxidation system, such as a furnace or a rapid thermal pulse (“RTP”) system. The temperature ranges from 200° C. to 700° C. with pure O2 or N2/O2 mixed gas at a pressure of several mTorr to 1 atm. The time can range several minute to hours. Another oxidation method is plasma oxidation. An RF or a DC source plasma with pure O2 or Ar/O2 mixed gas or Ar/N2/O2 mixed gas at a pressure of 1 mTorr to 100 mTorr is used to oxidize the surface of metal, such as Ni, Ti, Al, W, Zn, Zr, or Cu etc. The oxidation time ranges several seconds to several minutes. The oxidation temperature ranges from room temperature to 300° C., depending on the degree of plasma oxidation.


A fourth type of memory material is a polymer material, such as TCNQ with doping of Cu, C60, Ag etc. or PCBM-TCNQ mixed polymer. One formation method uses evaporation by thermal evaporation, e-beam evaporation, or molecular beam epitaxy (“MBE”) system. A solid-state TCNQ and dopant pellets are co-evaporated in a single chamber. The solid-state TCNQ and dopant pellets are put in a W-boat or a Ta-boat or a ceramic boat. A high electrical current or an electron-beam is applied to melt the source so that the materials are mixed and deposited on wafers. There are no reactive chemistries or gases. The deposition is done at a pressure of 10−4 Torr to 10−10 Torr. The wafer temperature ranges from room temperature to 200° C.


A post-deposition annealing treatment in vacuum or in an N2 ambient is optionally performed to improve the composition distribution of polymer material. The annealing temperature ranges from room temperature to 300° C. with an anneal time of less than 1 hour.


Another technique for forming a layer of polymer-based memory material is to use a spin-coater with doped-TCNQ solution at a rotation of less than 1000 rpm. After spin-coating, the wafer held (typically at room temperature or temperature less than 200° C.) for a time sufficient for solid-state formation. The hold time ranges from several minutes to days, depending on the temperature and on the formation conditions.


The conductive top electrodes 54 and 56 physically and electrically connect with programmable resistive elements 50 and 52. Example materials of top electrodes 54 and 56 are single layer and multilayered. Single layered top electrodes 54 and 56 have low thermal conductivity, and are, for example, TiN, TaN, LaNiO3, etc. Multilayered top electrodes 54 and 56 are, for example, TiN/AlCu, TaN/Cu, etc.


Finally, the stacks of programmable resistive elements 50 and 52 and conductive top electrodes 54 and 56 are etched. The stack etch of programmable resistive elements 50 and 52 and conductive top electrodes 54 and 56 can be defined by a non-aggressive mask, because the stack feature sizes are larger than the critical dimension of the contact portions 42 and 44. Wet etching, dry etching, or some combination of wet etching and dry etching, are alternative methods. For example, dry etching uses chemistries such as CL2, BCl3, etc. The etching selectivity difference is sufficiently high that the oxide layer 32 is not significantly etched.



FIG. 8 is a cross-sectional view showing the formation of bit lines and an additional layer of dielectric. Intermetal dielectric 58 is deposited, which can be silicon oxide, HDP oxide, plasma enhanced (PE) oxide, etc. Vias 60 and 62 are formed to physically and electrically connect with the top electrodes 54 and 56. Vias 60 and 62 are filled, and metal bit lines 64 that access the programmable resistive RAM cells by column. Example materials for the vias 60 and 62 are W and for the metal bit lines 64 are AlCu. An all Cu processes is another alternative.



FIG. 9 is a block diagram of the integrated circuit including an array of nonvolatile programmable resistive memory cells, and other circuitry.


The integrated circuit 950 includes a memory array 900 implemented using memory cells with resistive elements on a semiconductor substrate. The memory array 900 has contacts with a narrowed cross-section as described herein. Addresses are supplied on bus 905 to column decoder 903 and row decoder 901. Sense amplifiers and data-in structures in block 906 are coupled to the column decoder 903 via data bus 907. Data is supplied via the data-in line 911 from input/output ports on the integrated circuit 950, or from other data sources internal or external to the integrated circuit 950, to the data-in structures in block 906. Data is supplied via the data-out line 915 from the block 906 to input/output ports on the integrated circuit 950, or to other data destinations internal or external to the integrated circuit 950. The integrated circuit 950 may also include circuitry directed a mission function other than the nonvolatile storage with resistive elements (not shown).


While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than in a limiting sense. It is contemplated that modifications and combinations will readily occur to those skilled in the art, which modifications and combinations will be within the spirit of the invention and the scope of the following claims.

Claims
  • 1. A memory device, comprising: an integrated circuit comprising: a first dielectric layer;a second dielectric layer over the first dielectric layer;an interlayer contact through the first dielectric layer and the second dielectric layer, the interlayer contact having a first part and a second part, wherein a cross-section of the first part is smaller than a cross-section of the second part, the interlayer contact including a top surface, the top surface having a vertical position above the first dielectric layer and the second dielectric layer, wherein the first part and the second part share a same material makeup;a programmable element electrically coupled between the first part of the interlayer contact and an electrode.
  • 2. The device of claim 1, wherein the second dielectric layer and the first dielectric layer are adjacent to and surround the interlayer contact.
  • 3. The device of claim 1, wherein the second dielectric layer and the first dielectric layer have an etching selectivity difference.
  • 4. The device of claim 1, wherein the programmable element is nonvolatile.
  • 5. The device of claim 1, wherein the programmable element is a programmable resistive element.
  • 6. The device of claim 1, wherein the interlayer contact includes at least one of W and polycrystalline Si.
  • 7. The device of claim 1, wherein the second dielectric layer includes a nitride.
  • 8. The device of claim 1, wherein the second dielectric layer includes SiN.
  • 9. The device of claim 1, wherein the first dielectric layer includes an oxide.
  • 10. The device of claim 1, wherein the first dielectric layer includes at least one of SiOx and a low-k oxide.
  • 11. The device of claim 1, wherein the first part of the interlayer contact has a critical dimension less than or equal to about 60 nm.
  • 12. The device of claim 1, wherein the contact is electrically connected to a conductive terminal of a transistor.
  • 13. The device of claim 1, wherein the electrode is electrically connected to a bit line.
  • 14. A memory device, comprising: an integrated circuit comprising: a contact having: a first part with a first cross-section;a second part with a second cross-section, wherein the first part and the second part share a same material makeup; andan interface between the first part and the second part, wherein the first cross-section is smaller than the second cross-section at the interface, such that a width change between the first cross-section and the second cross-section has a step profile; anda continuous volume of memory material electrically coupled between the first part of the contact and an electrode, the memory material having a surface, wherein the surface has only one contact region, and all of the only one contact region is connected with the first part of the contact.
  • 15. The device of claim 14, wherein the memory element is nonvolatile.
  • 16. The device of claim 14, wherein the memory element is a programmable resistive element.
  • 17. The device of claim 14, wherein the contact includes at least one of W and polycrystalline Si.
  • 18. The device of claim 14, wherein the first part of the contact has a critical dimension less than or equal to about 60 nm.
  • 19. The device of claim 14, wherein the contact is electrically connected to a conductive terminal of a transistor.
  • 20. The device of claim 14, wherein the electrode is electrically connected to a bit line.
REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 11/426,213, filed 23 Jun. 2006, which claims the benefit of U.S. Provisional Application No. 60/757,368, filed 9 Jan. 2006. These applications are incorporated herein by reference.

US Referenced Citations (307)
Number Name Date Kind
3271591 Ovshinsky Sep 1966 A
3530441 Ovshinsky Sep 1970 A
4452592 Tsai Jun 1984 A
4599705 Holmberg et al. Jul 1986 A
4719594 Young et al. Jan 1988 A
4769339 Ishii et al. Sep 1988 A
4876220 Mohsen et al. Oct 1989 A
4959812 Momodomi et al. Sep 1990 A
5106775 Kaga et al. Apr 1992 A
5166096 Cote et al. Nov 1992 A
5166758 Ovshinsky et al. Nov 1992 A
5177567 Klersy et al. Jan 1993 A
5332923 Takeuchi et al. Jul 1994 A
5391901 Tanabe et al. Feb 1995 A
RE35232 Stephens May 1996 E
5534712 Ovshinsky et al. Jul 1996 A
5550396 Tsutsumi et al. Aug 1996 A
5687112 Ovshinsky Nov 1997 A
5688713 Linliu et al. Nov 1997 A
5716883 Tseng et al. Feb 1998 A
5754472 Sim et al. May 1998 A
5789277 Zahorik et al. Aug 1998 A
5789758 Reinberg Aug 1998 A
5814527 Wolstenholme et al. Sep 1998 A
5831276 Gonzalez et al. Nov 1998 A
5837564 Sandhu et al. Nov 1998 A
5869843 Harshfield Feb 1999 A
5879955 Gonzalez et al. Mar 1999 A
5902704 Schoenborn et al. May 1999 A
5920788 Reinberg Jul 1999 A
5933365 Klersy et al. Aug 1999 A
5952671 Reinberg et al. Sep 1999 A
5958358 Tenne et al. Sep 1999 A
5970336 Wolstenholme et al. Oct 1999 A
5985698 Gonzalez et al. Nov 1999 A
5998244 Wolstenholme et al. Dec 1999 A
6011725 Eitan et al. Jan 2000 A
6025220 Sandhu Feb 2000 A
6031287 Harshfield Feb 2000 A
6034882 Johnson et al. Mar 2000 A
6117720 Harshfield Sep 2000 A
6147395 Gilgen Nov 2000 A
6150253 Doan et al. Nov 2000 A
6153890 Wolstenholme et al. Nov 2000 A
6177317 Huang et al. Jan 2001 B1
6185122 Johnson et al. Feb 2001 B1
6189582 Reinberg et al. Feb 2001 B1
6236059 Wolstenholme et al. May 2001 B1
RE37259 Ovshinsky Jul 2001 E
6271090 Huang et al. Aug 2001 B1
6280684 Yamada et al. Aug 2001 B1
6287887 Gilgen Sep 2001 B1
6291137 Lyons et al. Sep 2001 B1
6314014 Lowrey et al. Nov 2001 B1
6316348 Fu et al. Nov 2001 B1
6320786 Chang et al. Nov 2001 B1
6326307 Lindley et al. Dec 2001 B1
6339544 Chiang et al. Jan 2002 B1
6351406 Johnson et al. Feb 2002 B1
6372651 Yang et al. Apr 2002 B1
6380068 Jeng et al. Apr 2002 B2
6420215 Knall et al. Jul 2002 B1
6420216 Clevenger et al. Jul 2002 B1
6420725 Harshfield Jul 2002 B1
6423621 Doan et al. Jul 2002 B2
6429064 Wicker Aug 2002 B1
6440837 Harshfield Aug 2002 B1
6462353 Gilgen Oct 2002 B1
6483736 Johnson et al. Nov 2002 B2
6487114 Jong et al. Nov 2002 B2
6501111 Lowrey Dec 2002 B1
6511867 Lowrey et al. Jan 2003 B2
6512241 Lai Jan 2003 B1
6514788 Quinn Feb 2003 B2
6514820 Ahn et al. Feb 2003 B2
6534781 Dennison Mar 2003 B2
6545903 Wu Apr 2003 B1
6551866 Maeda et al. Apr 2003 B1
6555860 Lowrey et al. Apr 2003 B2
6563156 Harshfield May 2003 B2
6566700 Xu May 2003 B2
6567293 Lowrey et al. May 2003 B1
6569705 Chiang et al. May 2003 B2
6576546 Gilbert et al. Jun 2003 B2
6579760 Lung et al. Jun 2003 B1
6586761 Lowrey Jul 2003 B2
6589714 Maimon et al. Jul 2003 B2
6593176 Dennison Jul 2003 B2
6596589 Tseng et al. Jul 2003 B2
6597009 Wicker Jul 2003 B2
6605527 Dennison et al. Aug 2003 B2
6605821 Lee et al. Aug 2003 B1
6607974 Harshfield Aug 2003 B2
6613604 Maimon et al. Sep 2003 B2
6617192 Lowrey et al. Sep 2003 B1
6620715 Blosse et al. Sep 2003 B1
6621095 Chiang et al. Sep 2003 B2
6627530 Li et al. Sep 2003 B2
6639849 Takahashi et al. Oct 2003 B2
6673700 Dennison et al. Jan 2004 B2
6674115 Hudgens et al. Jan 2004 B2
6677678 Biolsi et al. Jan 2004 B2
6709887 Moore et al. Mar 2004 B2
6744088 Dennison Jun 2004 B1
6746892 Lee et al. Jun 2004 B2
6750079 Lowrey et al. Jun 2004 B2
6750101 Lung et al. Jun 2004 B2
6768665 Parkinson et al. Jul 2004 B2
6791102 Johnson et al. Sep 2004 B2
6791859 Hush et al. Sep 2004 B2
6797979 Chiang et al. Sep 2004 B2
6800504 Li et al. Oct 2004 B2
6800563 Xu Oct 2004 B2
6805563 Ohashi Oct 2004 B2
6808991 Tung et al. Oct 2004 B1
6815704 Chen Nov 2004 B1
6830952 Lung Dec 2004 B2
6838692 Lung et al. Jan 2005 B1
6850432 Lu et al. Feb 2005 B2
6859389 Idehara Feb 2005 B2
6861267 Xu et al. Mar 2005 B2
6864500 Gilton Mar 2005 B2
6864503 Lung et al. Mar 2005 B2
6867638 Saiki et al. Mar 2005 B2
6881603 Lai Apr 2005 B2
6888750 Walker et al. May 2005 B2
6894304 Moore May 2005 B2
6894305 Yi et al. May 2005 B2
6900517 Tanaka et al. May 2005 B2
6903362 Wyeth et al. Jun 2005 B2
6909107 Rodgers et al. Jun 2005 B2
6910907 Layadi et al. Jun 2005 B2
6927410 Chen Aug 2005 B2
6928022 Cho et al. Aug 2005 B2
6933516 Xu Aug 2005 B2
6936544 Huang et al. Aug 2005 B2
6936840 Sun et al. Aug 2005 B2
6937507 Chen Aug 2005 B2
6943365 Lowrey et al. Sep 2005 B2
6969866 Lowrey et al. Nov 2005 B1
6972428 Maimon Dec 2005 B2
6972430 Casagrande et al. Dec 2005 B2
6977181 Raberg et al. Dec 2005 B1
6992932 Cohen et al. Jan 2006 B2
7023009 Kostylev et al. Apr 2006 B2
7033856 Lung et al. Apr 2006 B2
7038230 Chen et al. May 2006 B2
7038938 Kang et al. May 2006 B2
7042001 Kim et al. May 2006 B2
7054183 Rinerson et al. May 2006 B2
7067837 Hwang et al. Jun 2006 B2
7067864 Nishida et al. Jun 2006 B2
7067865 Lung et al. Jun 2006 B2
7078273 Matsuoka et al. Jul 2006 B2
7099180 Dodge et al. Aug 2006 B1
7115927 Hideki et al. Oct 2006 B2
7122281 Pierrat Oct 2006 B2
7122824 Khouri et al. Oct 2006 B2
7126149 Iwasaki et al. Oct 2006 B2
7132675 Gilton Nov 2006 B2
7154774 Bedeschi et al. Dec 2006 B2
7164147 Lee et al. Jan 2007 B2
7166533 Happ Jan 2007 B2
7169635 Kozicki Jan 2007 B2
7202493 Lung et al. Apr 2007 B2
7208751 Ooishi et al. Apr 2007 B2
7214958 Happ May 2007 B2
7220983 Lung May 2007 B2
7229883 Wang et al. Jun 2007 B2
7238959 Chen Jul 2007 B2
7238994 Chen et al. Jul 2007 B2
7248494 Oh et al. Jul 2007 B2
7251157 Osada et al. Jul 2007 B2
7253429 Klersy et al. Aug 2007 B2
7269052 Segal et al. Sep 2007 B2
7277317 Le Phan et al. Oct 2007 B2
7291556 Choi et al. Nov 2007 B2
7309630 Fan et al. Dec 2007 B2
7321130 Lung et al. Jan 2008 B2
7323708 Lee et al. Jan 2008 B2
7332370 Chang et al. Feb 2008 B2
7336526 Osada et al. Feb 2008 B2
7351648 Furukawa et al. Apr 2008 B2
7359231 Venkataraman et al. Apr 2008 B2
7364935 Lung et al. Apr 2008 B2
7365385 Abbott Apr 2008 B2
7379328 Osada et al. May 2008 B2
7385235 Lung et al. Jun 2008 B2
7394088 Lung Jul 2008 B2
7397060 Lung Jul 2008 B2
7423300 Lung et al. Sep 2008 B2
7426134 Happ et al. Sep 2008 B2
7449710 Lung Nov 2008 B2
7560337 Ho et al. Jul 2009 B2
20020036931 Lowrey et al. Mar 2002 A1
20020070457 Sun et al. Jun 2002 A1
20020113273 Hwang et al. Aug 2002 A1
20030072195 Mikolajick Apr 2003 A1
20030095426 Hush et al. May 2003 A1
20030186481 Lung Oct 2003 A1
20040026686 Lung Feb 2004 A1
20040051094 Ooishi Mar 2004 A1
20040113137 Lowrey Jun 2004 A1
20040165422 Hideki et al. Aug 2004 A1
20040248339 Lung Dec 2004 A1
20040256610 Lung Dec 2004 A1
20050018526 Lee Jan 2005 A1
20050029502 Hudgens Feb 2005 A1
20050062087 Chen et al. Mar 2005 A1
20050093022 Lung May 2005 A1
20050127349 Horak et al. Jun 2005 A1
20050145984 Chen et al. Jul 2005 A1
20050185444 Yang et al. Aug 2005 A1
20050191804 Lai et al. Sep 2005 A1
20050201182 Osada et al. Sep 2005 A1
20050212024 Happ Sep 2005 A1
20050212026 Chung et al. Sep 2005 A1
20050215009 Cho Sep 2005 A1
20050263829 Song et al. Dec 2005 A1
20060006472 Jiang Jan 2006 A1
20060038221 Lee et al. Feb 2006 A1
20060066156 Dong et al. Mar 2006 A1
20060073642 Yeh et al. Apr 2006 A1
20060091476 Pinnow et al. May 2006 A1
20060094154 Lung May 2006 A1
20060108667 Lung May 2006 A1
20060110878 Lung et al. May 2006 A1
20060110888 Cho et al. May 2006 A1
20060113521 Lung Jun 2006 A1
20060118913 Yi et al. Jun 2006 A1
20060124916 Lung Jun 2006 A1
20060126395 Chen et al. Jun 2006 A1
20060131555 Liu et al. Jun 2006 A1
20060138467 Lung Jun 2006 A1
20060154185 Ho et al. Jul 2006 A1
20060157681 Chen et al. Jul 2006 A1
20060163554 Lankhorst et al. Jul 2006 A1
20060198183 Kawahara et al. Sep 2006 A1
20060205108 Maimon et al. Sep 2006 A1
20060211165 Hwang et al. Sep 2006 A1
20060226409 Burr et al. Oct 2006 A1
20060234138 Fehlhaber et al. Oct 2006 A1
20060237756 Park et al. Oct 2006 A1
20060284157 Chen et al. Dec 2006 A1
20060284158 Lung et al. Dec 2006 A1
20060284214 Chen Dec 2006 A1
20060284279 Lung et al. Dec 2006 A1
20060286709 Lung et al. Dec 2006 A1
20060286743 Lung et al. Dec 2006 A1
20060289848 Dennison Dec 2006 A1
20070008786 Scheuerlein Jan 2007 A1
20070012956 Gutsche et al. Jan 2007 A1
20070030721 Segal et al. Feb 2007 A1
20070037101 Morioka Feb 2007 A1
20070096162 Happ et al. May 2007 A1
20070096248 Philipp et al. May 2007 A1
20070108077 Lung et al. May 2007 A1
20070108429 Lung May 2007 A1
20070108430 Lung May 2007 A1
20070108431 Chen et al. May 2007 A1
20070109836 Lung May 2007 A1
20070109843 Lung et al. May 2007 A1
20070111429 Lung May 2007 A1
20070115794 Lung May 2007 A1
20070117315 Lai et al. May 2007 A1
20070121363 Lung May 2007 A1
20070121374 Lung et al. May 2007 A1
20070126040 Lung Jun 2007 A1
20070131922 Lung Jun 2007 A1
20070131980 Lung Jun 2007 A1
20070138458 Lung Jun 2007 A1
20070147105 Lung et al. Jun 2007 A1
20070153563 Nirschl Jul 2007 A1
20070154847 Chen et al. Jul 2007 A1
20070155172 Lai et al. Jul 2007 A1
20070158632 Ho Jul 2007 A1
20070158633 Lai et al. Jul 2007 A1
20070158645 Lung Jul 2007 A1
20070158690 Ho et al. Jul 2007 A1
20070158862 Lung Jul 2007 A1
20070161186 Ho Jul 2007 A1
20070173019 Ho et al. Jul 2007 A1
20070173063 Lung Jul 2007 A1
20070176261 Lung Aug 2007 A1
20070187664 Happ Aug 2007 A1
20070201267 Happ et al. Aug 2007 A1
20070215852 Lung Sep 2007 A1
20070224726 Chen et al. Sep 2007 A1
20070235811 Furukawa et al. Oct 2007 A1
20070236989 Lung Oct 2007 A1
20070246699 Lung Oct 2007 A1
20070249090 Philipp et al. Oct 2007 A1
20070257300 Ho et al. Nov 2007 A1
20070262388 Ho et al. Nov 2007 A1
20070274121 Lung et al. Nov 2007 A1
20070285960 Lung et al. Dec 2007 A1
20070298535 Lung Dec 2007 A1
20080006811 Philipp et al. Jan 2008 A1
20080012000 Harshfield Jan 2008 A1
20080014676 Lung et al. Jan 2008 A1
20080025089 Scheuerlein et al. Jan 2008 A1
20080043520 Chen Feb 2008 A1
20080094871 Parkinson Apr 2008 A1
20080101110 Happ et al. May 2008 A1
20080137400 Chen et al. Jun 2008 A1
20080164453 Breitwisch et al. Jul 2008 A1
20080165569 Chen et al. Jul 2008 A1
Related Publications (1)
Number Date Country
20090236743 A1 Sep 2009 US
Provisional Applications (1)
Number Date Country
60757368 Jan 2006 US
Continuations (1)
Number Date Country
Parent 11426213 Jun 2006 US
Child 12477811 US