The present disclosure relates to direct current (DC)-DC converters and circuits that use DC-DC converters.
DC-DC converters often include switching power supplies, which may be based on switching at least one end of an energy storage element, such as an inductor, between a source of DC voltage and a ground. As a result, an output voltage from a DC-DC converter may have a ripple voltage resulting from the switching associated with the energy storage element. Typically, the ripple voltage is undesirable and is minimized as much as sizes and costs permit. Thus, there is a need to minimize ripple voltage using techniques that minimize sizes and costs.
A parallel amplifier, a switching supply, and a radio frequency (RF) notch filter are disclosed. The parallel amplifier has a parallel amplifier output, such that the switching supply is coupled to the parallel amplifier output. Further, the RF notch filter is coupled between the parallel amplifier output and a ground. The RF notch filter has a selectable notch frequency, which is based on an RF duplex frequency.
In one embodiment of the present disclosure, the parallel amplifier and the switching supply combine to provide a first envelope power supply signal to an RF power amplifier (PA), such that the first envelope power supply signal at least partially envelope tracks an RF transmit signal, which is provided by the RF PA. In one embodiment of the RF notch filter, the RF notch filter reduces noise introduced by the first envelope power supply signal into RF receive circuitry. As such, the selectable notch frequency is selected to target specific receive frequencies.
Those skilled in the art will appreciate the scope of the disclosure and realize additional aspects thereof after reading the following detailed description in association with the accompanying drawings.
The accompanying drawings incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the disclosure and illustrate the best mode of practicing the disclosure. Upon reading the following description in light of the accompanying drawings, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
In one embodiment of the DC-DC converter 10, the parallel amplifier 14 partially provides a first power supply output signal PS1 via the parallel amplifier output PAO based on a voltage setpoint. The switching supply 12 partially provides the first power supply output signal PS1 via the first inductive element L1. The switching supply 12 may provide power more efficiently than the parallel amplifier 14. However, the parallel amplifier 14 may provide a voltage of the first power supply output signal PS1 more accurately than the switching supply 12. As such, in one embodiment of the DC-DC converter 10, the parallel amplifier 14 regulates the voltage, called a first voltage V1, of the first power supply output signal PS1 based on the voltage setpoint of the first power supply output signal PS1. Further, the switching supply 12 regulates the first power supply output signal PS1 to minimize an output current, called a parallel amplifier output current IP, from the parallel amplifier 14 to maximize efficiency. In this regard, the parallel amplifier 14 behaves like a voltage source and the switching supply 12 behaves like a current source. Additionally, the switching circuitry 16 provides a switching output voltage VS and an inductor current IL to the first inductive element L1 via the switching circuitry output SCO.
In one embodiment of the DC-DC converter 10, the DC-DC converter 10 receives a DC source signal VDC, such that the parallel amplifier 14 partially provides the first power supply output signal PS1 using the DC source signal VDC and the switching supply 12 partially provides the first power supply output signal PS1 using the DC source signal VDC.
In a first embodiment of the frequency response 22, the RF notch frequency RNF is equal to about 10 megahertz. In a second embodiment of the frequency response 22, the RF notch frequency RNF is equal to about 20 megahertz. In a third embodiment of the frequency response 22, the RF notch frequency RNF is equal to about 30 megahertz. In a fourth embodiment of the frequency response 22, the RF notch frequency RNF is equal to about 40 megahertz. In a fifth embodiment of the frequency response 22, the RF notch frequency RNF is equal to about 50 megahertz.
The parallel amplifier 14 partially provides the first power supply output signal PS1 via the parallel amplifier output PAO and the offset capacitive element CO based on the voltage setpoint. The offset capacitive element CO allows the first voltage V1 to be higher than a voltage at the parallel amplifier output PAO. As a result, the parallel amplifier 14 may properly regulate the first voltage V1 even if the first voltage V1 is greater than a maximum output voltage from the parallel amplifier 14 at the parallel amplifier output PAO. In the embodiment of the DC-DC converter 10 illustrated in
In one embodiment of the RF communications system 26, the RF front-end circuitry 32 receives via the RF antenna 34, processes, and forwards an RF receive signal RFR to the RF system control circuitry 30. In one embodiment of the RF communications system 26, the RF receive signal RFR has an RF receive frequency. Further, the RF notch frequency RNF (
The transmitter control circuitry 38 is coupled to the DC-DC converter 10 and to the PA bias circuitry 42. The DC-DC converter 10 provides the first power supply output signal PS1 to the RF PA 40 based on the power supply control signal VRMP. In this regard, the DC-DC converter 10 is an envelope tracking power supply and the first power supply output signal PS1 is a first envelope power supply signal EPS. The DC source signal VDC provides power to the DC-DC converter 10. As such, the first power supply output signal PS1, which is the first envelope power supply signal EPS, is based on the DC source signal VDC. The power supply control signal VRMP is representative of a voltage setpoint of the first envelope power supply signal EPS. The RF PA 40 receives and amplifies the RF input signal RFI to provide an RF transmit signal RFT using the first envelope power supply signal EPS. The first envelope power supply signal EPS provides power for amplification to the RF PA 40.
In one embodiment of the DC-DC converter 10, the first envelope power supply signal EPS is amplitude modulated to at least partially provide envelope tracking. In one embodiment of the RF PA 40, the RF PA 40 operates with approximately constant gain, called isogain, and with gain compression. In a first embodiment of the gain compression, the gain compression is greater than about one decibel. In a second embodiment of the gain compression, the gain compression is greater than about two decibels. In a third embodiment of the gain compression, the gain compression is equal to about two decibels. In a fourth embodiment of the gain compression, the gain compression is equal to about three decibels. In a fifth embodiment of the gain compression, the gain compression is equal to about four decibels. By operating with higher levels of gain compression, efficiency of the RF PA 40 may be increased, which may help compensate for reduced efficiency in the DC-DC converter 10.
In a first embodiment of the first envelope power supply signal EPS, a bandwidth of the first envelope power supply signal EPS is greater than or equal to about 10 megahertz. In a second embodiment of the first envelope power supply signal EPS, a bandwidth of the first envelope power supply signal EPS is less than or equal to about 10 megahertz. In a third embodiment of the first envelope power supply signal EPS, a bandwidth of the first envelope power supply signal EPS is greater than or equal to about 20 megahertz. In a fourth embodiment of the first envelope power supply signal EPS, a bandwidth of the first envelope power supply signal EPS is less than or equal to about 20 megahertz.
The RF front-end circuitry 32 receives, processes, and transmits the RF transmit signal RFT via the RF antenna 34. In one embodiment of the RF transmitter circuitry 28, the transmitter control circuitry 38 configures the RF transmitter circuitry 28 based on the transmitter configuration signal PACS. In one embodiment of the RF communications system 26, the RF communications system 26 operates in a full duplex environment, such that the RF transmit signal RFT and the RF receive signal RFR may be active simultaneously. The RF transmit signal RFT has an RF transmit frequency and the RF receive signal RFR has the RF receive frequency. A difference between the RF transmit frequency and the RF receive frequency is about equal to an RF duplex frequency. In one embodiment of the RF communications system 26, the RF notch frequency RNF (
In one embodiment of the RF notch filter 18 (
In a first embodiment of the RF duplex frequency, the RF duplex frequency is greater than or equal to about 10 megahertz. In a second embodiment of the RF duplex frequency, the RF duplex frequency is greater than or equal to about 20 megahertz. In a third embodiment of the RF duplex frequency, the RF duplex frequency is greater than or equal to about 30 megahertz. In a fourth embodiment of the RF duplex frequency, the RF duplex frequency is greater than or equal to about 40 megahertz. In a fifth embodiment of the RF duplex frequency, the RF duplex frequency is greater than or equal to about 50 megahertz.
The PA bias circuitry 42 provides a PA bias signal PAB to the RF PA 40. In this regard, the PA bias circuitry 42 biases the RF PA 40 via the PA bias signal PAB. In one embodiment of the PA bias circuitry 42, the PA bias circuitry 42 biases the RF PA 40 based on the transmitter configuration signal PACS. In one embodiment of the RF front-end circuitry 32, the RF front-end circuitry 32 includes at least one RF switch, at least one RF amplifier, at least one RF filter, at least one RF duplexer, at least one RF diplexer, the like, or any combination thereof. In one embodiment of the RF system control circuitry 30, the RF system control circuitry 30 is RF transceiver circuitry, which may include an RF transceiver IC, baseband controller circuitry, the like, or any combination thereof. In one embodiment of the RF transmitter circuitry 28, the DC-DC converter 10 provides the first envelope power supply signal EPS, which has switching ripple. In one embodiment of the RF transmitter circuitry 28, the first envelope power supply signal EPS provides power for amplification and at least partially envelope tracks the RF transmit signal RFT.
In one embodiment of the switching supply 12, a connection node 52 is provided where the first inductive element L1 and the second inductive element L2 are connected to one another. The connection node 52 provides a second voltage V2 to the parallel amplifier 14 via the feedback input FBI. Further, in one embodiment of the parallel amplifier 14, the parallel amplifier 14 has a limited open loop gain at high frequencies that are above a frequency threshold. At such frequencies, a group delay in the parallel amplifier 14 may normally limit the ability of the parallel amplifier 14 to accurately regulate the first voltage V1 of the first power supply output signal PS1. However, by feeding back the second voltage V2 to the feedback input FBI instead of the first voltage V1, a phase-shift that is developed across the second inductive element L2 at least partially compensates for the limited open loop gain of the parallel amplifier 14 at frequencies that are above the frequency threshold, thereby improving the ability of the parallel amplifier 14 to accurately regulate the first voltage V1. In this regard, in one embodiment of the DC-DC converter 10, the parallel amplifier 14 partially provides the first power supply output signal PS1 via the parallel amplifier output PAO based on the voltage setpoint and feeding back a voltage to the feedback input FBI from the connection node 52 between the first inductive element L1 and the second inductive element L2.
The first inductive element L1, the second inductive element L2, and the filter capacitive element CF form a first low-pass filter 54 having a first cutoff frequency. The second inductive element L2 and the filter capacitive element CF form a second low-pass filter 56 having a second cutoff frequency. The second cutoff frequency may be significantly higher than the first cutoff frequency. As such, the first low-pass filter 54 may be used primarily to filter the switching output voltage VS, which is typically a square wave. However, the second low-pass filter 56 may be used to target specific high frequencies, such as certain harmonics of the switching output voltage VS.
In a first embodiment of the first low-pass filter 54 and the second low-pass filter 56, the second cutoff frequency is at least 10 times greater than the first cutoff frequency. In a second embodiment of the first low-pass filter 54 and the second low-pass filter 56, the second cutoff frequency is at least 100 times greater than the first cutoff frequency. In a third embodiment of the first low-pass filter 54 and the second low-pass filter 56, the second cutoff frequency is at least 500 times greater than the first cutoff frequency. In a fourth embodiment of the first low-pass filter 54 and the second low-pass filter 56, the second cutoff frequency is at least 1000 times greater than the first cutoff frequency. In a fifth embodiment of the first low-pass filter 54 and the second low-pass filter 56, the second cutoff frequency is less than 1000 times greater than the first cutoff frequency. In a sixth embodiment of the first low-pass filter 54 and the second low-pass filter 56, the second cutoff frequency is less than 5000 times greater than the first cutoff frequency.
The first inductive element L1 has a first inductance and the second inductive element L2 has a second inductance. In a first embodiment of the first inductive element L1 and the second inductive element L2, a magnitude of the first inductance is at least 10 times greater than a magnitude of the second inductance. In a second embodiment of the first inductive element L1 and the second inductive element L2, a magnitude of the first inductance is at least 100 times greater than a magnitude of the second inductance. In a third embodiment of the first inductive element L1 and the second inductive element L2, a magnitude of the first inductance is at least 500 times greater than a magnitude of the second inductance. In a fourth embodiment of the first inductive element L1 and the second inductive element L2, a magnitude of the first inductance is at least 1000 times greater than a magnitude of the second inductance. In a fifth embodiment of the first inductive element L1 and the second inductive element L2, a magnitude of the first inductance is less than 1000 times greater than a magnitude of the second inductance. In a sixth embodiment of the first inductive element L1 and the second inductive element L2, a magnitude of the first inductance is less than 5000 times greater than a magnitude of the second inductance.
An analysis of improved ripple cancellation performance of the DC-DC converter 10 illustrated in
VS=VD+VA. EQ. 1
Further, the inductor current IL has a DC current ID and an AC current IA given by EQ. 2, as shown below.
IL=ID+IA. EQ. 2
The DC-DC converter 10 regulates the DC voltage VD to be about equal to the voltage setpoint. The first inductive element L1 and the second inductive element L2 appear approximately as short circuits to the DC component. Further, the filter capacitive element CF appears approximately as an open circuit to the DC component. Therefore, the DC voltage VD is approximately applied to the load resistance RL, as intended. As a result, the DC current ID is based on the DC voltage VD and the load resistance RL, as shown in EQ. 3 below.
ID=VD/RL. EQ. 3
Most of the ripple components of the switching output voltage VS is filtered out from the first voltage V1 by the first low-pass filter 54 and the second low-pass filter 56. As a result, most of the AC voltage VA is across the series combination of the first inductive element L1 and the second inductive element L2. The first inductive element L1 has a first inductance I1 and the second inductive element L2 has a second inductance I2. Therefore, the AC current IA is based on the AC voltage VA, the first inductance I1 and the second inductance I2, where s=j2πf, j=√−1, and f=frequency, as shown in EQ. 4 below.
IA=VA/[s(I1+I2)]. EQ. 4
Much of what remains of the ripple component is cancelled out from the first voltage V1 by the parallel amplifier 14. However, to the extent that the parallel amplifier 14 cannot completely cancel out the remains of the ripple component, the first voltage V1 has a first residual ripple voltage VR1 and the second voltage V2 has a second residual ripple voltage VR2. Two approaches to ripple cancellation will be compared against one another. In the first approach, the DC-DC converter 10 is the DC-DC converter 10 illustrated in
In the following analysis, the parallel amplifier 14 has a DC open loop gain GO and an open loop bandwidth factor T. As a result, the parallel amplifier 14 has a gain G, as shown in EQ. 5 below.
G=GO/(1+sT). EQ. 5
As a result, at frequencies significantly below an open loop bandwidth of the parallel amplifier 14, the open loop bandwidth factor T is small compared to one, such that the gain G approaches the DC open loop gain GO. Conversely, at frequencies significantly above the open loop bandwidth of the parallel amplifier 14, the open loop bandwidth factor T is large compared to one, such that the gain G approaches GO/sT.
In the first approach, described above wherein the second residual ripple voltage VR2 drives the parallel amplifier 14 and at frequencies significantly above the open loop bandwidth of the parallel amplifier 14, the parallel amplifier output current IP is based on the second residual ripple voltage VR2, as shown in EQ. 6 below.
IP=G*VR2≈(GO*VR2)/sT. EQ. 6
In the second approach described above, when the first residual ripple voltage VR1 drives the parallel amplifier 14 and at frequencies significantly above the open loop bandwidth of the parallel amplifier 14, the parallel amplifier output current IP is based on the first residual ripple voltage VR1, as shown in EQ. 7 below.
IP=G*VR1≈(GO*VR1)/sT. EQ. 7
However, a difference between the first residual ripple voltage VR1 and the second residual ripple voltage VR2 is based on the AC current IA and the second inductance I2, as shown in EQ. 8 and EQ. 9 below.
(VR2−VR1)=(s)(IA)(I2), EQ. 8
or
VR2=(s)(IA)(I2)+VR1. EQ. 9
Substituting EQ. 9 into EQ. 6 provides EQ. 10 and EQ. 11, as shown below.
IP≈(GO)(VR1)/sT+(GO)(s)(IA)(I2)/sT, EQ. 10
or
IP≈(GO)(VR1)/sT+(GO)(IA)(I2)/T. EQ. 11
EQ. 11 is representative of the first approach and EQ. 7 is representative of the second approach. As a reminder, in the first approach, the second residual ripple voltage VR2 drives the parallel amplifier 14 and in the second approach, the first residual ripple voltage VR1 drives the parallel amplifier 14. In both equations, a smaller first residual ripple voltage VR1 represents better ripple cancellation performance. For comparison purposes, both approaches are assumed to provide the same magnitude of parallel amplifier output current IP. However, in the second approach, the parallel amplifier output current IP is phase-shifted from the first residual ripple voltage VR1 by about 90 degrees. As such, the parallel amplifier output current IP is phase-shifted from the ripple current it is trying to cancel by about 90 degrees, thereby degrading ripple cancellation performance. However, in the first approach, according to EQ. 11, the parallel amplifier output current IP has two terms, namely the (GO)(VR1)/sT term and the (GO)(IA)(I2)/T term. The (GO)(VR1)/sT term has the same phase-alignment shortcoming as in the second approach. But the (GO)(IA)(I2)/T term phase-aligns the parallel amplifier output current IP with the ripple current it is trying to cancel. Overall, the phase-alignment in the first approach is improved over the second approach. Additionally, to the extent that the (GO)(VR1)/sT term is smaller than the (GO)(IA)(I2)/T term, the first residual ripple voltage VR1 is reduced, thereby improving ripple cancellation. In this regard, if the (GO)(IA)(I2)/T term is equal to the (GO)(VR1)/sT term in EQ. 7, then in the (GO)(VR1)/sT term in EQ. 11, the first residual ripple voltage VR1 is equal to about zero, such that the first approach is greatly improved over the second approach.
A control input to the first switching element 58 receives the filter control signal FCS. As such, the first switching element 58 is in one of an ON state and an OFF state based on the filter control signal FCS. Therefore, the selectable notch frequency is one of a first frequency and a second frequency. When the first switching element 58 is in the ON state, the selectable notch frequency is based on a combination of the notch filter inductive element LT in series with a parallel combination of the first notch filter capacitive element CT1 and the second notch filter capacitive element CT2. As such, when the first switching element 58 is in the ON state, the selectable notch frequency is the first frequency. When the first switching element 58 is in the OFF state, the selectable notch frequency is based on a series combination of the notch filter inductive element LT and the second notch filter capacitive element CT2. As such, when the first switching element 58 is in the OFF state, the selectable notch frequency is the second frequency.
In one embodiment of the RF notch filter 18, the first frequency is equal to about 30 megahertz and the second frequency is equal to about 45 megahertz. The filter control signal FCS illustrated in
A control input to the first switching element 58 receives one bit of the filter control signal FCS. A control input to the second switching element 60 receives another bit of the filter control signal FCS. As such, the first switching element 58 is in one of the ON state and the OFF state based on the filter control signal FCS, and the second switching element 60 is in one of an ON state and an OFF state based on the filter control signal FCS. Therefore, the selectable notch frequency is one of a first frequency, a second frequency, and a third frequency. When the first switching element 58 is in the ON state and the second switching element 60 is in the ON state, the selectable notch frequency is based on a combination of the notch filter inductive element LT in series with a parallel combination of the first notch filter capacitive element CT1 and the second notch filter capacitive element CT2. As such, when the first switching element 58 is in the ON state and the second switching element 60 is in the ON state, the selectable notch frequency is the first frequency.
When the first switching element 58 is in the OFF state and the second switching element 60 is in the ON state, the selectable notch frequency is based on a series combination of the notch filter inductive element LT and the second notch filter capacitive element CT2. As such, when the first switching element 58 is in the OFF state and the second switching element 60 is in the ON state, the selectable notch frequency is the second frequency. When the first switching element 58 is in the ON state and the second switching element 60 is in the OFF state, the selectable notch frequency is based on a series combination of the notch filter inductive element LT and the first notch filter capacitive element CT1. As such, when the first switching element 58 is in the ON state and the second switching element 60 is in the OFF state, the selectable notch frequency is the third frequency.
In one embodiment of the RF notch filter 18, the first frequency is equal to about 30 megahertz, the second frequency is equal to about 39 megahertz, and the third frequency is equal to about 47 megahertz. When the first switching element 58 is in the OFF state and the second switching element 60 is in the OFF state, the RF notch filter 18 is disabled.
The maximum transmit band 64 has a maximum transmit bandwidth MTXB and the selected transmit band 66 has a selected transmit bandwidth STXB. The selected transmit bandwidth STXB is less than the maximum transmit bandwidth MTXB. As such, the selected transmit band 66 may be used when the maximum transmit bandwidth MTXB is not required. The maximum transmit band 64 has a nominal RF transmit frequency FTXN, which is in the middle of the maximum transmit band 64. The selected transmit band 66 has a selected RF transmit frequency FTXS, which is in the middle of the selected transmit band 66. A selected transmit start offset STXO identifies the bottom edge of the selected transmit band 66 relative to the bottom edge of the maximum transmit band 64.
An RF duplex frequency FDP is about equal to a difference between the RF receive frequency FRX and the nominal RF transmit frequency FTXN. In one embodiment of the RF notch frequency RNF (
A duplex frequency correction FDC is about equal to a difference between the nominal RF transmit frequency FTXN and the selected RF transmit frequency FTXS. As such, the duplex frequency correction FDC is about equal to a difference between the preferred notch frequency FPN and the RF duplex frequency FDP. In one embodiment of the selected RF transmit frequency FTXS, the selected RF transmit frequency FTXS is greater than the nominal RF transmit frequency FTXN, as shown in
Some of the circuitry previously described may use discrete circuitry, integrated circuitry, programmable circuitry, non-volatile circuitry, volatile circuitry, software executing instructions on computing hardware, firmware executing instructions on computing hardware, the like, or any combination thereof. The computing hardware may include mainframes, micro-processors, micro-controllers, DSPs, the like, or any combination thereof.
None of the embodiments of the present disclosure are intended to limit the scope of any other embodiment of the present disclosure. Any or all of any embodiment of the present disclosure may be combined with any or all of any other embodiment of the present disclosure to create new embodiments of the present disclosure.
Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application claims the benefit of U.S. provisional patent application No. 61/675,898, filed Jul. 26, 2012, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3969682 | Rossum | Jul 1976 | A |
3980964 | Grodinsky | Sep 1976 | A |
4587552 | Chin | May 1986 | A |
4692889 | McNeely | Sep 1987 | A |
4831258 | Paulk et al. | May 1989 | A |
4996500 | Larson et al. | Feb 1991 | A |
5099203 | Weaver et al. | Mar 1992 | A |
5146504 | Pinckley | Sep 1992 | A |
5187396 | Armstrong, II et al. | Feb 1993 | A |
5311309 | Ersoz et al. | May 1994 | A |
5317217 | Rieger et al. | May 1994 | A |
5351087 | Christopher et al. | Sep 1994 | A |
5414614 | Fette et al. | May 1995 | A |
5420643 | Romesburg et al. | May 1995 | A |
5457620 | Dromgoole | Oct 1995 | A |
5486871 | Filliman et al. | Jan 1996 | A |
5532916 | Tamagawa | Jul 1996 | A |
5541547 | Lam | Jul 1996 | A |
5581454 | Collins | Dec 1996 | A |
5646621 | Cabler et al. | Jul 1997 | A |
5715526 | Weaver, Jr. et al. | Feb 1998 | A |
5767744 | Irwin et al. | Jun 1998 | A |
5822318 | Tiedemann, Jr. et al. | Oct 1998 | A |
5898342 | Bell | Apr 1999 | A |
5905407 | Midya | May 1999 | A |
5936464 | Grondahl | Aug 1999 | A |
6043610 | Buell | Mar 2000 | A |
6043707 | Budnik | Mar 2000 | A |
6055168 | Kotowski et al. | Apr 2000 | A |
6070181 | Yeh | May 2000 | A |
6118343 | Winslow | Sep 2000 | A |
6133777 | Savelli | Oct 2000 | A |
6141541 | Midya et al. | Oct 2000 | A |
6147478 | Skelton et al. | Nov 2000 | A |
6198645 | Kotowski et al. | Mar 2001 | B1 |
6204731 | Jiang et al. | Mar 2001 | B1 |
6256482 | Raab | Jul 2001 | B1 |
6300826 | Mathe et al. | Oct 2001 | B1 |
6313681 | Yoshikawa | Nov 2001 | B1 |
6348780 | Grant | Feb 2002 | B1 |
6400775 | Gourgue et al. | Jun 2002 | B1 |
6483281 | Hwang | Nov 2002 | B2 |
6559689 | Clark | May 2003 | B1 |
6566935 | Renous | May 2003 | B1 |
6583610 | Groom et al. | Jun 2003 | B2 |
6617930 | Nitta | Sep 2003 | B2 |
6621808 | Sadri | Sep 2003 | B1 |
6624712 | Cygan et al. | Sep 2003 | B1 |
6658445 | Gau et al. | Dec 2003 | B1 |
6681101 | Eidson et al. | Jan 2004 | B1 |
6690652 | Sadri | Feb 2004 | B1 |
6701141 | Lam | Mar 2004 | B2 |
6703080 | Reyzelman et al. | Mar 2004 | B2 |
6728163 | Gomm et al. | Apr 2004 | B2 |
6744151 | Jackson et al. | Jun 2004 | B2 |
6819938 | Sahota | Nov 2004 | B2 |
6885176 | Librizzi | Apr 2005 | B2 |
6958596 | Sferrazza et al. | Oct 2005 | B1 |
6995995 | Zeng et al. | Feb 2006 | B2 |
7038536 | Cioffi et al. | May 2006 | B2 |
7043213 | Robinson et al. | May 2006 | B2 |
7053718 | Dupuis et al. | May 2006 | B2 |
7058373 | Grigore | Jun 2006 | B2 |
7099635 | McCune | Aug 2006 | B2 |
7164893 | Leizerovich et al. | Jan 2007 | B2 |
7170341 | Conrad et al. | Jan 2007 | B2 |
7200365 | Watanabe et al. | Apr 2007 | B2 |
7233130 | Kay | Jun 2007 | B1 |
7253589 | Potanin et al. | Aug 2007 | B1 |
7254157 | Crotty et al. | Aug 2007 | B1 |
7279875 | Gan et al. | Oct 2007 | B2 |
7348847 | Whittaker | Mar 2008 | B2 |
7394233 | Trayling et al. | Jul 2008 | B1 |
7405618 | Lee et al. | Jul 2008 | B2 |
7411316 | Pai | Aug 2008 | B2 |
7414330 | Chen | Aug 2008 | B2 |
7515885 | Sander et al. | Apr 2009 | B2 |
7528807 | Kim et al. | May 2009 | B2 |
7529523 | Young et al. | May 2009 | B1 |
7539466 | Tan et al. | May 2009 | B2 |
7595569 | Amerom et al. | Sep 2009 | B2 |
7609114 | Hsieh et al. | Oct 2009 | B2 |
7615979 | Caldwell | Nov 2009 | B2 |
7627622 | Conrad et al. | Dec 2009 | B2 |
7646108 | Paillet et al. | Jan 2010 | B2 |
7653366 | Grigore | Jan 2010 | B2 |
7679433 | Li | Mar 2010 | B1 |
7684216 | Choi et al. | Mar 2010 | B2 |
7696735 | Oraw et al. | Apr 2010 | B2 |
7715811 | Kenington | May 2010 | B2 |
7724837 | Filimonov et al. | May 2010 | B2 |
7773691 | Khlat et al. | Aug 2010 | B2 |
7777459 | Williams | Aug 2010 | B2 |
7782036 | Wong et al. | Aug 2010 | B1 |
7783269 | Vinayak et al. | Aug 2010 | B2 |
7800427 | Chae et al. | Sep 2010 | B2 |
7805115 | McMorrow et al. | Sep 2010 | B1 |
7856048 | Smaini et al. | Dec 2010 | B1 |
7859336 | Markowski et al. | Dec 2010 | B2 |
7880547 | Lee et al. | Feb 2011 | B2 |
7894216 | Melanson | Feb 2011 | B2 |
7898268 | Bernardon et al. | Mar 2011 | B2 |
7898327 | Nentwig | Mar 2011 | B2 |
7907010 | Wendt et al. | Mar 2011 | B2 |
7915961 | Li | Mar 2011 | B1 |
7923974 | Martin et al. | Apr 2011 | B2 |
7965140 | Takahashi | Jun 2011 | B2 |
7994864 | Chen et al. | Aug 2011 | B2 |
8000117 | Petricek | Aug 2011 | B2 |
8008970 | Homol et al. | Aug 2011 | B1 |
8022761 | Drogi et al. | Sep 2011 | B2 |
8026765 | Giovannotto | Sep 2011 | B2 |
8044639 | Tamegai et al. | Oct 2011 | B2 |
8068622 | Melanson et al. | Nov 2011 | B2 |
8081199 | Takata et al. | Dec 2011 | B2 |
8093951 | Zhang et al. | Jan 2012 | B1 |
8159297 | Kumagai | Apr 2012 | B2 |
8164388 | Iwamatsu | Apr 2012 | B2 |
8174313 | Vice | May 2012 | B2 |
8183917 | Drogi et al. | May 2012 | B2 |
8183929 | Grondahl | May 2012 | B2 |
8198941 | Lesso | Jun 2012 | B2 |
8204456 | Xu et al. | Jun 2012 | B2 |
8242813 | Wile et al. | Aug 2012 | B1 |
8274332 | Cho et al. | Sep 2012 | B2 |
8289084 | Morimoto et al. | Oct 2012 | B2 |
8362837 | Koren et al. | Jan 2013 | B2 |
8541993 | Notman et al. | Sep 2013 | B2 |
8542061 | Levesque et al. | Sep 2013 | B2 |
8548398 | Baxter et al. | Oct 2013 | B2 |
8558616 | Shizawa et al. | Oct 2013 | B2 |
8588713 | Khlat | Nov 2013 | B2 |
8611402 | Chiron | Dec 2013 | B2 |
8618868 | Khlat et al. | Dec 2013 | B2 |
8624576 | Khlat et al. | Jan 2014 | B2 |
8624760 | Ngo et al. | Jan 2014 | B2 |
8626091 | Khlat et al. | Jan 2014 | B2 |
8638165 | Shah et al. | Jan 2014 | B2 |
8648657 | Rozenblit | Feb 2014 | B1 |
8659355 | Henshaw et al. | Feb 2014 | B2 |
8718582 | See et al. | May 2014 | B2 |
20020071497 | Bengtsson et al. | Jun 2002 | A1 |
20030031271 | Bozeki et al. | Feb 2003 | A1 |
20030062950 | Hamada et al. | Apr 2003 | A1 |
20030137286 | Kimball et al. | Jul 2003 | A1 |
20030146791 | Shvarts et al. | Aug 2003 | A1 |
20030153289 | Hughes et al. | Aug 2003 | A1 |
20030198063 | Smyth | Oct 2003 | A1 |
20030206603 | Husted | Nov 2003 | A1 |
20030220953 | Allred | Nov 2003 | A1 |
20030232622 | Seo et al. | Dec 2003 | A1 |
20040047329 | Zheng | Mar 2004 | A1 |
20040051384 | Jackson et al. | Mar 2004 | A1 |
20040124913 | Midya et al. | Jul 2004 | A1 |
20040132424 | Aytur et al. | Jul 2004 | A1 |
20040184569 | Challa et al. | Sep 2004 | A1 |
20040196095 | Nonaka | Oct 2004 | A1 |
20040219891 | Hadjichristos | Nov 2004 | A1 |
20040239301 | Kobayashi | Dec 2004 | A1 |
20040266366 | Robinson et al. | Dec 2004 | A1 |
20040267842 | Allred | Dec 2004 | A1 |
20050008093 | Matsuura et al. | Jan 2005 | A1 |
20050032499 | Cho | Feb 2005 | A1 |
20050047180 | Kim | Mar 2005 | A1 |
20050064830 | Grigore | Mar 2005 | A1 |
20050079835 | Takabayashi et al. | Apr 2005 | A1 |
20050093630 | Whittaker et al. | May 2005 | A1 |
20050110562 | Robinson et al. | May 2005 | A1 |
20050122171 | Miki et al. | Jun 2005 | A1 |
20050156582 | Redl et al. | Jul 2005 | A1 |
20050156662 | Raghupathy et al. | Jul 2005 | A1 |
20050157778 | Trachewsky et al. | Jul 2005 | A1 |
20050200407 | Arai et al. | Sep 2005 | A1 |
20050286616 | Kodavati | Dec 2005 | A1 |
20060006946 | Burns et al. | Jan 2006 | A1 |
20060062324 | Naito et al. | Mar 2006 | A1 |
20060097711 | Brandt | May 2006 | A1 |
20060128324 | Tan et al. | Jun 2006 | A1 |
20060154637 | Eyries et al. | Jul 2006 | A1 |
20060178119 | Jarvinen | Aug 2006 | A1 |
20060181340 | Dhuyvetter | Aug 2006 | A1 |
20060220627 | Koh | Oct 2006 | A1 |
20060244513 | Yen et al. | Nov 2006 | A1 |
20070008804 | Lu et al. | Jan 2007 | A1 |
20070014382 | Shakeshaft et al. | Jan 2007 | A1 |
20070024360 | Markowski | Feb 2007 | A1 |
20070063681 | Liu | Mar 2007 | A1 |
20070082622 | Leinonen et al. | Apr 2007 | A1 |
20070146076 | Baba | Jun 2007 | A1 |
20070182392 | Nishida | Aug 2007 | A1 |
20070183532 | Matero | Aug 2007 | A1 |
20070259628 | Carmel et al. | Nov 2007 | A1 |
20070290749 | Woo et al. | Dec 2007 | A1 |
20080003950 | Haapoja et al. | Jan 2008 | A1 |
20080044041 | Tucker et al. | Feb 2008 | A1 |
20080081572 | Rofougaran | Apr 2008 | A1 |
20080104432 | Vinayak et al. | May 2008 | A1 |
20080150619 | Lesso et al. | Jun 2008 | A1 |
20080205095 | Pinon et al. | Aug 2008 | A1 |
20080242246 | Minnis et al. | Oct 2008 | A1 |
20080252278 | Lindeberg et al. | Oct 2008 | A1 |
20080258831 | Kunihiro et al. | Oct 2008 | A1 |
20080280577 | Beukema et al. | Nov 2008 | A1 |
20090004981 | Eliezer et al. | Jan 2009 | A1 |
20090097591 | Kim | Apr 2009 | A1 |
20090160548 | Ishikawa et al. | Jun 2009 | A1 |
20090167260 | Pauritsch et al. | Jul 2009 | A1 |
20090174466 | Hsieh et al. | Jul 2009 | A1 |
20090184764 | Markowski et al. | Jul 2009 | A1 |
20090190699 | Kazakevich et al. | Jul 2009 | A1 |
20090191826 | Takinami et al. | Jul 2009 | A1 |
20090218995 | Ahn | Sep 2009 | A1 |
20090230934 | Hooijschuur et al. | Sep 2009 | A1 |
20090261908 | Markowski | Oct 2009 | A1 |
20090284235 | Weng et al. | Nov 2009 | A1 |
20090289720 | Takinami et al. | Nov 2009 | A1 |
20090319065 | Risbo | Dec 2009 | A1 |
20100001793 | Van Zeijl et al. | Jan 2010 | A1 |
20100002473 | Williams | Jan 2010 | A1 |
20100019749 | Katsuya et al. | Jan 2010 | A1 |
20100019840 | Takahashi | Jan 2010 | A1 |
20100026250 | Petty | Feb 2010 | A1 |
20100045247 | Blanken et al. | Feb 2010 | A1 |
20100171553 | Okubo et al. | Jul 2010 | A1 |
20100253309 | Xi et al. | Oct 2010 | A1 |
20100266066 | Takahashi | Oct 2010 | A1 |
20100301947 | Fujioka et al. | Dec 2010 | A1 |
20100308654 | Chen | Dec 2010 | A1 |
20100311365 | Vinayak et al. | Dec 2010 | A1 |
20100321127 | Watanabe et al. | Dec 2010 | A1 |
20100327825 | Mehas et al. | Dec 2010 | A1 |
20110018626 | Kojima | Jan 2011 | A1 |
20110058601 | Kim et al. | Mar 2011 | A1 |
20110084760 | Guo et al. | Apr 2011 | A1 |
20110148375 | Tsuji | Jun 2011 | A1 |
20110234182 | Wilson | Sep 2011 | A1 |
20110235827 | Lesso et al. | Sep 2011 | A1 |
20110279180 | Yamanouchi et al. | Nov 2011 | A1 |
20110298539 | Drogi et al. | Dec 2011 | A1 |
20120025907 | Koo et al. | Feb 2012 | A1 |
20120025919 | Huynh | Feb 2012 | A1 |
20120034893 | Baxter et al. | Feb 2012 | A1 |
20120049953 | Khlat | Mar 2012 | A1 |
20120068767 | Henshaw et al. | Mar 2012 | A1 |
20120074916 | Trochut | Mar 2012 | A1 |
20120133299 | Capodivacca et al. | May 2012 | A1 |
20120139516 | Tsai et al. | Jun 2012 | A1 |
20120154035 | Hongo et al. | Jun 2012 | A1 |
20120154054 | Kaczman et al. | Jun 2012 | A1 |
20120170334 | Menegoli et al. | Jul 2012 | A1 |
20120176196 | Khlat | Jul 2012 | A1 |
20120194274 | Fowers et al. | Aug 2012 | A1 |
20120200354 | Ripley et al. | Aug 2012 | A1 |
20120236444 | Srivastava et al. | Sep 2012 | A1 |
20120244916 | Brown et al. | Sep 2012 | A1 |
20120299647 | Honjo et al. | Nov 2012 | A1 |
20130034139 | Khlat et al. | Feb 2013 | A1 |
20130094553 | Paek et al. | Apr 2013 | A1 |
20130169245 | Kay et al. | Jul 2013 | A1 |
20130214858 | Tournatory et al. | Aug 2013 | A1 |
20130229235 | Ohnishi | Sep 2013 | A1 |
20130307617 | Khlat et al. | Nov 2013 | A1 |
20130328613 | Kay et al. | Dec 2013 | A1 |
20140009200 | Kay et al. | Jan 2014 | A1 |
20140009227 | Kay et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
1211355 | Mar 1999 | CN |
1898860 | Jan 2007 | CN |
101201891 | Jun 2008 | CN |
101416385 | Apr 2009 | CN |
101867284 | Oct 2010 | CN |
0755121 | Jan 1997 | EP |
1317105 | Jun 2003 | EP |
1492227 | Dec 2004 | EP |
1557955 | Jul 2005 | EP |
1569330 | Aug 2005 | EP |
2214304 | Aug 2010 | EP |
2244366 | Oct 2010 | EP |
2372904 | Oct 2011 | EP |
2579456 | Apr 2013 | EP |
2398648 | Aug 2004 | GB |
2462204 | Feb 2010 | GB |
2465552 | May 2010 | GB |
2484475 | Apr 2012 | GB |
461168 | Oct 2001 | TW |
0048306 | Aug 2000 | WO |
2004002006 | Dec 2003 | WO |
2004082135 | Sep 2004 | WO |
2005013084 | Feb 2005 | WO |
2006021774 | Mar 2006 | WO |
2006070319 | Jul 2006 | WO |
2006073208 | Jul 2006 | WO |
2007107919 | Sep 2007 | WO |
2007149346 | Dec 2007 | WO |
2012151594 | Nov 2012 | WO |
2012172544 | Dec 2012 | WO |
Entry |
---|
Notice of Allowance for U.S. Appl. No. 13/188,024, mailed Jun. 18, 2013, 7 pages. |
International Preliminary Report on Patentability for PCT/US2011/054106 mailed Apr. 11, 2013, 8 pages. |
International Preliminary Report on Patentability for PCT/US2011/061007 mailed May 30, 2013, 11 pages. |
International Preliminary Report on Patentability for PCT/US2011/061009 mailed May 30, 2013, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 13/423,649, mailed May 22, 2013, 7 pages. |
Advisory Action for U.S. Appl. No. 13/222,484, mailed Jun. 14, 2013, 3 pages. |
International Preliminary Report on Patentability for PCT/US2011/064255, mailed Jun. 20, 2013, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/343,840, mailed Jul. 1, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/363,888, mailed Jul. 18, 2013, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/222,453, mailed Aug. 22, 2013, 8 pages. |
International Preliminary Report on Patentability for PCT/US2012/024124, mailed Aug. 22, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/550,060, mailed Aug. 16, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/222,484, mailed Aug. 26, 2013, 8 pages. |
International Preliminary Report on Patentability for PCT/US2012/023495, mailed Aug. 15, 2013, 10 pages. |
Lie, Donald Y.C. et al., “Design of Highly-Efficient Wideband RF Polar Transmitters Using Envelope-Tracking (ET) for Mobile WiMAX/Wibro Applications,” IEEE 8th International Conference on ASIC (ASCION), Oct. 20-23, 2009, pp. 347-350. |
Lie, Donald Y.C. et al., “Highly Efficient and Linear Class E SiGe Power Amplifier Design,” 8th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Oct. 23-26, 2006, pp. 1526-1529. |
Non-Final Office Action for U.S. Appl. No. 13/367,973, mailed Sep. 24, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/423,649, mailed Aug. 30, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/316,229, mailed Aug. 29, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 131602,856, mailed Sep. 24, 2013, 9 pages. |
Quayle Action for U.S. Appl. No. 13/531,719, mailed Oct. 10, 2013, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 12/836,307, mailed Nov. 5, 2013, 6 pages. |
Final Office Action for U.S. Appl. No. 13/297,470, mailed Oct. 25, 2013, 17 pages. |
Notice of Allowance for U.S. Appl. No. 14/022,858, mailed Oct. 25, 2013, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/550,049, mailed Nov. 25, 2013, 6 pages. |
Examination Report for European Patent Application No. 11720630, mailed Aug. 16, 2013, 5 pages. |
Wu, Patrick Y. et al., “A Two-Phase Switching Hybrid Supply Modulator for RF Power Amplifiers with 9% Efficiency Improvement,” IEEE Journal of Solid-State Circuits, vol. 45, No. 12, Dec. 2010, pp. 2543-2556. |
Yousefzadeh, Vahid et al., “Band Separation and Efficiency Optimization in Linear-Assisted Switching Power Amplifiers,” 37th IEEE Power Electronics Specialists Conference, Jun. 18-22, 2006, pp. 1-7. |
International Preliminary Report on Patentability for PCT/US2012/040317, mailed Dec. 12, 2013, 5 pages. |
Notice of Allowance for U.S. Appl. No. 13/531,719, mailed Dec. 30, 2013, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 14/022,940, mailed Dec. 20, 2013, 5 pages. |
International Search Report and Written Opinion for PCT/US2013/052277, mailed Jan. 7, 2014, 14 pages. |
Choi, J. et al., “A New Power Management IC Architecture for Envelope Tracking Power Amplifier,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, No. 7, Jul. 2011, pp. 1796-1802. |
Cidronali, a. et al., “A 240W Dual-Band 870 and 2140 MHz Envelope Tracking GaN PA Designed by a Probability Distribution Conscious Approach,” IEEE MTT-S International Microwave Symposium Digest, Jun. 5-10, 2011, 4 pages. |
Dixon, N., “Standardisation Boosts Momentum for Envelope Tracking,” Microwave Engineering, Europe, Apr. 20, 2011, 2 pages, http://www.mwee.com/en/standardisation-boosts-momentum-for-envelope-tracking.html? cmp—ids=71&news—ids=222901746. |
Hekkala, A. et al., “Adaptive Time Misalignment Compensation in Envelope Tracking Amplifiers,” 2008 IEEE International Symposium on Spread Spectrum Techniques and Applications, Aug. 2008, pp. 761-765. |
Kim et al., “High Efficiency and Wideband Envelope Tracking Power Amplifiers with Sweet Spot Tracking,” 2010 IEEE Radio Frequency Integrated Circuits Symposium, May 23-25, 2010, pp. 255-258. |
Kim, N. et al, “Ripple Feedback Filter Suitable for Analog/Digital Mixed-Mode Audio Amplifier for Improved Efficiency and Stability,” 2002 IEEE Power Electronics Specialists Conference, vol. 1, Jun. 23, 2002, pp. 45-49. |
Knutson, P, et al., “An Optimal Approach to Digital Raster Mapper Design,” 1991 IEEE International Conference on Consumer Electronics held Jun. 5-7, 1991, vol. 37, Issue 4, published Nov. 1991, pp. 746-752. |
Le, Hanh-Phuc et al., “A 32nm Fully Integrated Reconfigurable Switched-Capacitor DC-DC Convertor Delivering 0.55W/mm’at 81% Efficiency,” 2010 IEEE International Solid State Circuits Conference, Feb. 7-11, 2010, pp. 210-212. |
Li, Y. et al., “A Highly Efficient SiGe Differential Power Amplifier Using an Envelope-Tracking Technique for 3GPP LTE Applications,” 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct. 4-6, 2010, pp. 121-124. |
Sahu, B. et al., “Adaptive Power Management of Linear RF Power Amplifiers in Mobile Handsets—An Integrated System Design Approach,” submission for IEEE Asia Pacific Microwave Conference, Mar. 2004, 4 pages. |
Unknown, “Nujira Files 100th Envelope Tracking Patent,” CS: Compound Semiconductor, Apr. 11, 2011, 1 page, http://www.compoundsemiconductor.net/csc/news-details.php?cat=news&id=19733338&key=n. ujira%20 Files% 20100th°/020Envelope%20Tracking°/020Patent&type=n. |
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Feb. 1, 2008, 17 pages. |
Final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Jul. 30, 2008, 19 pages. |
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Nov. 26, 2008, 22 pages. |
Final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed May 4, 2009, 20 pages. |
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Feb. 3, 2010, 21 pages. |
Notice of Allowance for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Jun. 9, 2010, 7 pages. |
International Search Report for PCT/US06/12619 mailed May 8, 2007, 2 pages. |
Extended European Search Report for application 06740532.4 mailed Dec. 7, 2010, 7 pages. |
Non-final Office Action for U.S. Appl. No. 12/112,006 mailed Apr. 5, 2010, 6 pages. |
Notice of Allowance for U.S. Appl. No. 12/112,006 mailed Jul. 19, 2010, 6 pages. |
Non-final Office Action for U.S. Appl. No. 13/089,917 mailed Nov. 23, 2012, 6 pages. |
International Search Report for PCT/US11/033037, mailed Aug. 9, 2011, 10 pages. |
International Preliminary Report on Patentability for PCT/US2011/033037 mailed Nov. 1, 2012, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/188,024, mailed Feb. 5, 2013, 8 pages. |
International Search Report for PCT/US2011/044857, mailed Oct. 24, 2011, 10 pages. |
International Preliminary Report on Patentability for PCT/US2011/044857 mailed Mar. 7, 2013, 6 pages. |
Non-final Office Action for U.S. Appl. No. 13/218,400 mailed Nov. 8, 2012, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/218,400 mailed Apr. 11, 2013, 7 pages. |
International Search Report for PCT/US11/49243, mailed Dec. 22, 2011, 9 pages. |
International Preliminary Report on Patentability for PCT/US11/49243 mailed Nov. 13, 2012, 33 pages. |
International Search Report for PCT/US2011/054106 mailed Feb. 9, 2012, 11 pages. |
International Search Report for PCT/US2011/061007 mailed Aug. 16, 2012, 16 pages. |
Non-Final Office Action for U.S. Appl. No. 13/297,470 mailed May 8, 2013, 15 pages. |
International Search Report for PCT/US2011/061009 mailed Feb. 8, 2012, 14 pages. |
International Search Report for PCT/US2012/023495 mailed May 7, 2012, 13 pages. |
Non-final Office Action for U.S. Appl. No. 13/222,453 mailed Dec. 6, 2012, 13 pages. |
Notice of Allowance for U.S. Appl. No. 13/222,453 mailed Feb. 21, 2013, 7 pages. |
Invitation to Pay Additional Fees and Where Applicable Protest Fee for PCT/US2012/024124 mailed Jun. 1, 2012, 7 pages. |
International Search Report for PCT/US2012/024124 mailed Aug. 24, 2012, 14 pages. |
Notice of Allowance for U.S. Appl. No. 13/316,229 mailed Nov. 14, 2012, 9 pages. |
International Search Report for PCT/US2011/064255 mailed Apr. 3, 2012, 12 pages. |
International Search Report for PCT/US2012/40317 mailed Sep. 7, 2012, 7 pages. |
International Search Report for PCT/US2012/046887 mailed Dec. 21, 2012, 12 pages. |
Non-final Office Action for U.S. Appl. No. 13/222,484 mailed Nov. 8, 2012, 9 pages. |
Final Office Action for U.S. Appl. No. 13/222,484 mailed Apr. 10, 2013, 10 pages. |
International Search Report and Written Opinion for PCT/US2012/053654 mailed Feb. 15, 2013, 11 pages. |
International Search Report and Written Opinion for PCT/US2012/062070, mailed Jan. 21, 2013, 12 pages. |
International Search Report and Written Opinion for PCT/US2012/067230 mailed Feb. 21, 2013, 10 pages. |
Invitation to Pay Additional Fees for PCT/US2011/061007, mailed Feb. 13, 2012, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/297,490, mailed Feb. 27, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/297,470, mailed Feb. 20, 2014, 16 pages. |
Notice of Allowance for U.S. Appl. No. 13/550,049, mailed Mar. 6, 2014, 5 pages. |
International Preliminary Report on Patentability for PCT/US2012/046887, mailed Jan. 30, 2014, 8 pages. |
International Preliminary Report on Patentability for PCT/US2012/053654, mailed Mar. 13, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/661,552, mailed Feb. 21, 2014, 5 pages. |
International Search Report and Written Opinion for PCT/US2013/065403, mailed Feb. 5, 2014, 11 pages. |
Notice of Allowance for U.S. Appl. No. 14/072,140, mailed Aug. 27, 2014, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 14/072,225, mailed Aug. 15, 2014, 4 pages. |
Non-Final Office Action for U.S. Appl. No. 13/486,012, mailed Jul. 28, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/548,283, mailed Sep. 3, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/689,883, mailed Aug. 27, 2014, 12 pages. |
Notice of Allowance for U.S. Appl. No. 13/661,552, mailed Jun. 13, 2014, 5 pages. |
Notice of Allowance for U.S. Appl. No. 13/692,084, mailed Jul. 23, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/690,187, mailed Sep. 3, 2014, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/684,826, mailed Jul. 18, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/782,142, mailed Sep. 4, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 12/836,307, mailed Sep. 25, 2014, 5 pages. |
Advisory Action for U.S. Appl. No. 13/297,470, mailed Sep. 19, 2014, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 13/297,470, mailed Oct. 20, 2014, 22 pages. |
Notice of Allowance for U.S. Appl. No. 13/367,973, mailed Sep. 15, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/647,815, mailed Sep. 19, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 13/661,227, mailed Sep. 29, 2014, 24 pages. |
Notice of Allowance for U.S. Appl. No. 13/684,826, mailed Sep. 8, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 13/714,600, mailed Oct. 15, 2014, 13 pages. |
Notice of Allowance for U.S. Appl. No. 13/914,888, mailed Oct. 17, 2014, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 13/747,725, mailed Oct. 7, 2014, 6 pages. |
Extended European Search Report for European Patent Application No. 12794149.0, issued Oct. 29, 2014, 6 pages. |
International Search Report and Written Opinion for PCT/US2014/012927, mailed Sep. 30, 2014, 11 pages. |
International Search Report and Written Opinion for PCT/US2014/028178, mailed Sep. 30, 2014, 17 pages. |
Hassan, Muhammad, et al., “A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal RF Power Amplifier Applications,” IEEE Journal of Solid-State Circuits, vol. 47, No. 5, May 1, 2012, pp. 1185-1198. |
Hoversten, John, et al, “Codesign of PA, Supply, and Signal Processing for Linear Supply-Modulated RF Transmitters,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, No. 6, Jun. 2012, pp. 2010-2020. |
European Search Report for Patent Application No. 14162682.0, issued Aug. 27, 2014, 7 pages. |
International Preliminary Report on Patentability and Written Opinion for PCT/US2012/067230, mailed Jun. 12, 2014, 7 pages. |
International Search Report and Written Opinion for PCT/US2014/028089, mailed Jul. 17, 2014, 10 pages. |
Invitation to Pay Additional Fees and Partial International Search Report for PCT/US2014/028178, mailed Jul. 24, 2014, 7 pp. |
Examination Report for European Patent Application No. 11720630.0 issued Mar. 18, 2014, 4 pages. |
International Preliminary Report on Patentability for PCT/US2012/062070 mailed May 8, 2014, 8 pages. |
International Search Report and Written Opinion for PCT/US2012/062110 issued Apr. 8, 2014, 12 pages. |
International Preliminary Report on Patentability for PCT/US2012/062110 mailed May 8, 2014, 9 pages. |
Notice of Allowance for U.S. Appl. No. 12/836,307 mailed May 5, 2014, 6 pages. |
Notice of Allowance for U.S. Appl. No. 14/022,858 mailed May 27, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 13/367,973 mailed Apr. 25, 2014, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 13/647,815 mailed May 2, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 13/689,883 mailed Mar. 27, 2014, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 13/692,084 mailed Apr. 10, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 13/684,826 mailed Apr. 3, 2014, 5 pages. |
Notice of Allowance for U.S. Appl. No. 14/022,940, mailed Jun. 10, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/714,600 mailed May 9, 2014, 14 pages. |
Notice of Allowance for U.S. Appl. No. 14/072,140, mailed Dec. 2, 2014, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/486,012, mailed Nov. 21, 2014, 8 pages. |
Final Office Action for U.S. Appl. No. 13/689,883, mailed Jan. 2, 2015, 13 pages. |
Notice of Allowance for U.S. Appl. No. 13/690,187, mailed Dec. 19, 2014, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/747,694, mailed Dec. 22, 2014, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/747,749, mailed Nov. 12, 2014, 32 pages. |
Notice of Allowance for U.S. Appl. No. 12/836,307, mailed Mar. 2, 2015, 6 pages. |
Notice of Allowance for U.S. Appl. No. 13/297,470, mailed Feb. 25, 2015, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 14/122,852, mailed Feb. 27, 2015, 5 pages. |
Final Office Action for U.S. Appl. No. 13/714,600, mailed Mar. 10, 2015, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 14/056,292, mailed Mar. 6, 2015, 8 pages. |
Final Office Action for U.S. Appl. No. 13/747,749, mailed Mar. 20, 2015, 35 pages. |
Notice of Allowance for U.S. Appl. No. 13/948,291, mailed Feb. 11, 2015, 7 pages. |
Notice of Allowance for U.S. Appl. No. 14/022,858, mailed Feb. 17, 2015, 7 pages. |
Notice of Allowance for U.S. Appl. No. 14/072,225, mailed Jan. 22, 2015, 7 pages. |
Final Office Action for U.S. Appl. No. 13/661,227, mailed Feb. 6, 2015, 24 pages. |
Non-Final Office Action for U.S. Appl. No. 14/048,109, mailed Feb. 18, 2015, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/747,725, mailed Feb. 2, 2015, 10 pages. |
First Office Action for Chinese Patent Application No. 201180030273.5, issued Dec. 3, 2014, 15 pages (with English translation). |
International Preliminary Report on Patentability for PCT/US2013/052277, mailed Feb. 5, 2015, 9 pages. |
First Office Action for Chinese Patent Application No. 201280026559.0, issued Nov. 3, 2014, 14 pages (with English translation). |
European Search Report for European Patent Application No. 14190851.7, issued Mar. 5, 2015, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20140028368 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61675898 | Jul 2012 | US |