An embodiment of the present invention relates to responsive materials that quickly transform into programmed shapes in the presence of magnetic fields and methods of formation. More particularly, an embodiment of the present invention relates to an elastomeric-ferromagnetic responsive material comprising an elastomeric material having ferromagnetic particles dispersed therein with a predetermined magnetization pattern. Exposure of the elastomeric-ferromagnetic responsive material to a magnetic field changes the shape of the responsive material into a predetermined shape.
Shape-programmable soft materials capable of transforming in response to external stimuli have attracted great attention due to their potential applications in areas as diverse as electronic devices, soft robotics, drug or cell delivery, and tissue engineering. Although the exact mechanisms of actuation vary, stimuli to which such materials respond include light, heat, solvents, electric and magnetic fields. Due to the multitude of potential applications, it would be desirable to provide improved shape programmable materials and methods of formation.
According to one aspect, an embodiment of the present invention provides a method that includes forming an elastomeric-ferromagnetic composite material by dispersing one or more ferromagnetic particles within an elastomeric material, printing of the elastomeric-ferromagnetic composite material into an initial shape of a surface, applying a magnetic field to the elastomeric-ferromagnetic composite material during printing to provide the one or more ferromagnetic particles in a predetermined magnetization pattern within the initial shape, curing the printed elastomeric-ferromagnetic composite material in the initial shape, and applying a magnetic field to the cured printed elastomeric-ferromagnetic composite material to transform the initial shape to a predetermined shape of the surface, the predetermined shape being different than the initial shape, wherein the predetermined shape depends upon the predetermined magnetization pattern. An embodiment of the present invention, thus, produces ferromagnetic domains in complex 3D-printed structures, which, after curing, exhibit dynamic response of fast and reversible transformation between complex programmed shapes upon application of external magnetic fields.
Other systems, methods and features of the embodiments of the present invention will be or become apparent to one having ordinary skill in the art upon examining the following drawings and detailed description. It is intended that all such additional systems, methods, and features be included in this description, be within the scope of the embodiments of the present invention and protected by the accompanying claims.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the embodiments of the present invention. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
The following definitions are useful for interpreting terms applied to features of the embodiments disclosed herein, and are meant only to define elements within the disclosure.
As used herein, the terms:
An embodiment of the present invention generally provides an elastomeric-ferromagnetic composite material that transforms into programmed shapes in the presence of magnetic fields. The elastomeric-ferromagnetic composite is formed into a desired initial shape using direct ink writing of the composite, particularly by using ferromagnetic three-dimensional (3D) printing. The printing is carried out in the presence of magnetic fields to provide ferromagnetic particles disposed in a predetermined pattern, which gives rise to overall magnetic polarity in a printed material. Exposure of the thus formed printed material to a magnetic field transforms the initial shape into a programmed shape which is dictated by the pattern and distribution of ferromagnetic particles within the elastomer. Thus, an embodiment of the present invention provides for the formation of ferromagnetic domains in complex 3D-printed structures, which, after curing, exhibit dynamic response of fast transforming between the programmed shapes upon application of external magnetic fields.
According to an embodiment of the invention, the elastomeric-ferromagnetic composite material is a printable ink. The composite material is in the general form of an elastomeric matrix material with ferromagnetic material and any additional fillers, catalysts and crosslinkers preferred for the formation of the present responsive material dispersed within the elastomeric matrix material. For printability, it is beneficial for the ferromagnetic materials to be uniformly dispersed. If the particles agglomerate to form large clusters, the printer nozzle would be easily clogged. Since the ferromagnetic domains can be designed and printed in a way that some regions are magnetically active while some are inactive (this can be done by canceling out the net magnetic moment by alternating the printing direction), it would not be that beneficial to have concentrated particles in certain areas, although it is possible. The elastomeric portion of the composite material can be selected from any conventional elastomers, including, but not limited to silicone rubber.
Possible elastomer types include, but are not limited to, the following:
The basic requirements for such elastomeric materials include i) that the glass transition temperature is lower than the operating temperature (e.g., room temperature or body temperature) to ensure that the materials are in a rubbery state at the operating temperature and ii) that the materials are soft, exhibiting low Young's modulus, e.g. below 10 MPa.
Hydrogels, instead of elastomers, can also be used, such as alginate, pectin, polyvinyl alcohol (PVA), etc. Hydrogels are composed of polymer matrices filled with water. This wet environment requires that the oxidation of magnetic particles is avoided by using epoxy-coated or corrosion-resistant magnetic particles. Corrosion resistance may be accomplished by epoxy coating as well as by a choice of materials, one being cobalt, for example
Generally, elastomers include multiple components, with a polymeric material forming a main component. In addition to the polymeric material, one or more additional components may be included, such as reinforcing fillers to provide strength, plasticizers to provide any necessary temperature properties, antioxidants, crosslinkers, curing agents, accelerators, etc.
The ferromagnetic portion of the composite material may be selected from any conventional ferromagnetic material, including, but not limited to iron, cobalt, nickel, and alloys or compounds containing one or more of these elements. The ferromagnetic portion is preferably in the form of microparticles to provide the desired complex and intricate magnetization patterns, however, when the particle size becomes greater, fine nozzles cannot be used for printing because of clogging. Particles with an average size of 5 μm allowed printing using a nozzle with diameter greater than or equal to 5 μm. Magnetic nanoparticles (tens or hundreds of nanometer) may also be used, but such small particles in general have lower magnetic strengths in terms of both residual induction and coercivity (resistance against demagnetizing fields) when magnetized up to saturation. Generally speaking, ferromagnetic particles within the range from tens of nanometer to tens of micrometer would be possible to use. Exemplary ferromagnetic materials include magnetizable microparticles of neodymium-iron-boron (NdFeB) alloy and combinations thereof.
Possible magnetic materials may include:
According to embodiments of the invention, in addition to the above-described components, the elastomeric-ferromagnetic composite may further contain one or more fillers. Any conventional fillers may be used, with some exemplary fillers including colorants and fumed silica nanoparticles. Fillers such as fumed silica nanoparticles are included to modify rheological properties of the ink material. The use of such rheological modifiers introduces some preferred properties such as shear thinning and shear yield stress flow behavior, which are required for ink materials to be printable. For example, if the ink material does not have shear yield stress, the deposited ink cannot maintain its cylindrical shape after being extruded out of a nozzle. (Extruded toothpaste, for example, can maintain the cylindrical shape because it does have the shear yield stress. When shear stress is applied (e.g. squeezing), however, it becomes thin and can be extruded out of the tube.)
Types of such rheological modifiers include:
In an exemplary embodiment, an elastomeric-ferromagnetic composite ink consists of magnetizable microparticles of neodymium-iron-boron (NdFeB) alloy and fumed silica nanoparticles embedded in a silicone rubber matrix containing a silicone catalyst and suitable crosslinker (e.g. as depicted in
A transformable material may include an elastomeric material (elastomer matrix,
In the transformable material, the elastomeric-ferromagnetic composite material may be a printable ink.
In the transformable material, the elastomeric-ferromagnetic composite material may be an elastomeric matrix material including a ferromagnetic material and one or more of a filler, a catalyst, and a crosslinker.
In the transformable material, the elastomeric material may include Silicone (Polydimethylsiloxane) rubber, Polyurethane (PU) rubber, Styrene Ethylene Butylene Styrene (SEBS) rubber, Polyacrylate rubber, and Polycaprolactone (PCL).
In the transformable material, the elastomeric material may have a glass transition temperature lower than an operating temperature. In the transformable material, the elastomeric material may have a Young's modulus below 10 MPa.
In the transformable material, the elastomeric material may be a hydrogel. In the transformable material, the hydrogel may include one or more of alginate, pectin, and polyvinyl alcohol (PVA).
In the transformable material, the ferromagnetic particles may include an epoxy coating. In the transformable material, the ferromagnetic particles may be corrosion-resistant. The ferromagnetic particles may include iron, cobalt, nickel, an alloy of one or more of iron, cobalt, and nickel, Neodymium-Iron-Boron (NdFeB), Samarium-Cobalt (SmCo), Aluminum-Nickel-Cobalt (AlNiCo), Barium-Iron Oxide (BaFeO), and Iron Oxide (FeO).
In the transformable material, the elastomeric material may include a rheological modifier, the rheological modifier being one or more of fumed silica nanoparticles, graphene, nanoclay, and cellulose nanofibrils.
The fumed silica fillers within the silicone material serve as a rheological modifier to induce viscoelastic properties required for direct ink writing, such as shear-thinning behavior (e.g., see
An embodiment of the present invention further provides methods of forming the elastomeric-ferromagnetic composite material into a responsive material structure having an initial shape. According to embodiments of the invention, the components of the elastomeric-ferromagnetic composite ink are first mixed, and are subsequently magnetized during formation of the initial shape to provide the desired magnetization pattern which will dictate the transformed shape. This formation is carried out by direct ink printing, particularly ferromagnetic 3D printing. During the printing process, field-induced alignment of the ferromagnetic component within the elastomeric matrix is carried out, which leads to the overall magnetic moment of a printed structure.
During printing, the quality of alignment of ferromagnetic material is characterized by the volume magnetization (Y-axis) of the cured samples (e.g., samples containing 20 vol % of NdFeB particles) versus the applied magnetic field strength (see
When the printed structures are cured, application of an external magnetic field induces torques on the embedded ferromagnetic particles, which attempt to align themselves with the applied external field. These magnetic torques create internal stresses that collectively lead to a macroscale material response, causing the whole structure to transform into a configuration that minimizes the combined magnetic and elastic energy of the system.
According to an exemplary embodiment, the elastomeric-ferromagnetic composite ink is magnetized with an impulse field over ˜2.7 T for saturation of the ferromagnetic particles (e.g., NdFeB ferromagnetic particles). It is noted that each magnetic material will have a different required magnetic field strength to magnetize up to saturation. In this light, the particular number above applies only to the NdFeB microparticles used. For SmCo (Samarium Cobalt), for example, the required field strength is almost double (˜5 T).
The magnetic field used to align the particles while printing can be generated using any conventional application of a magnetic field. For example, according to exemplary embodiments, the particles are aligned by either a permanent magnet (PM) or an electromagnet (EM) placed around the ink dispensing nozzle. In the case of an EM-induced magnetic field, the magnetic polarities in the deposited inks can be suitably tuned by switching the direction of the EM-induced field while printing continuously. In the case of a PM-induced magnetic field, the magnetic polarities in the deposited inks can be suitably tuned by changing the printing direction while using unchanging fields induced by the PM. To avoid interference from the applied magnetic field with the aligned particles in the deposited inks, a magnetic shield (e.g., a ferromagnetic steel plate or the like) may further be positioned to attenuate the magnetic flux density after the nozzle tip (e.g. see
An embodiment of the present invention further provides for the programming of complex 3D morphologies from 2D geometries. In particular, using methods of an embodiment of the present invention, single-layered structures (“initial shape”) may be formed which, upon application of external magnetic fields, yield complex 3D geometries (“transformed shape”). According to an embodiment of the present invention, such shape transformation is accomplished within about 0.5 seconds. The transformed 3D geometries quickly revert to their original 2D shape upon removal of the external magnetic fields. Some non-limiting examples of such transformation are set forth in
The first two examples illustrate the effects of programmed domains on the macroscale response towards the same external fields. In particular, the two annular rings presented in
When applied to a more intricate pattern (e.g.,
An embodiment of the present invention further provides for the formation of complex pop-up structures, such as those depicted in
The embodiments of the present methods of programming shapes by designing specific ferromagnetic domains can be further extended to complex 3D structures by taking advantage of the described fabrication platform based on direct ink writing. Typically, when printing 3D structures with direct ink writing, difficulties may arise due to the increasing structural instability as deposited filaments are stacked up in a layer-wise manner. In order to overcome this, an embodiment of the present invention introduces a printable support ink into the printed structure. The printable support may be composed, for example, of a silicone resin containing silicone catalyst and fumed silica nanoparticles.
Support ink should satisfy the following requirements:
The general composition for support ink is i) elastomer resin without crosslinker+ii) curing regents such as catalysis+iii) rheology modifying fillers, when it comes to elastomer-based magnetic ink. In particular, according to an embodiment of the present invention, the support ink contains a much higher concentration of catalyst than the ferromagnetic composite ink to prevent diffusion of the catalyst molecules out of the deposited magnetic inks through the interface. When printed, the support ink serves as a fugitive support because it contains no crosslinker. As such, the supporting ink structure may be subsequently removed, such as by solvent rinsing, after the elastomer-ferromagnetic inks are fully cured (see
In
In
As an illustrative example, a thin-walled structure was fabricated consisting of two adjoining hexagonal prisms that were encoded differently with alternating ferromagnetic domains (
As another example, a pyramid-shaped thin-walled structure was formed (
An embodiment of the fabrication method of the present invention may further be used to create mechanical metamaterials (see
The shape-morphing structures, of an embodiment of the present invention, depicted in
The thus formed responsive materials find particular use in biomedical applications. In particular, most biological systems are magnetically transparent. As such, magnetic fields offer a safe and effective manipulation platform for biomedical applications which typically require untethered actuation in enclosed and confined spaces. Another advantage is that magnetic fields and their spatial gradients can be generated independently, which allows decoupling the resulting magnetic torques and forces into two different types of actuation. Furthermore, the use of magnetic fields as an actuation platform may be used in clinical applications such as targeted drug delivery or adaptive medical implants. In addition, by generating a continuous nonuniform magnetization profile in a polymeric sheet in accordance with an embodiment of the present invention, desired predetermined complex shapes may be achieved upon application of external magnetic fields. This is accomplished by encoding with complex programmed shapes in the present responsive materials. Harnessing the magnetic torques generated by the embedded particles in response to the external fields, these present responsive materials may undergo crawling and swimming motion based on simple bending or undulating deformation of the responsive material.
In the method 800, the printing may further include direct ink printing and ferromagnetic 3D printing. In the method 800, the printing may further include a field-induced aligning of the one or more ferromagnetic particles.
In the method 800, the applying of the magnetic field may further include applying at least one of the magnetic field of an electromagnet and the magnetic field of a permanent magnet. In the method 800, the applying of the magnetic field may further include generating a torque on the one or more ferromagnetic particles.
In the method 800, the printing may further include magnetic shielding a portion of a deposited ink.
The method 800 may further include programming a ferromagnetic domain in the elastomeric-ferromagnetic composite material by selecting one or more magnetization profiles.
In the method 800, the printing may further include applying a support ink to the surface. The applying the support ink may further include removing the support ink after curing the printed surface.
The ferromagnetic 3D printing method, of an embodiment of the present invention, may further be extended to multiple composite ink designs using different types of elastomeric matrices and magnetic particles depending on the required materials properties and the actuation field strength. The capability to print ferromagnetic domains in soft matter leads to complex shape-shifting structures that exhibit fast, reversible, and dynamic response to applied magnetic fields. The untethered actuation of such complex and fast shape-shifting structures based on magnetic fields provides new possibilities for applications in biomedical devices, tissue engineering, and soft robotics.
It should also be noted that other techniques could be used, which would provide desired magnetization pattern, such as, but not limited to, stereolithography.
In view of the foregoing, it is intended that the embodiments of the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
This application claims priority to U.S. provisional application No. 62/651,992, filed on Apr. 3, 2018, and entitled PROGRAMMABLE SOFT MATERIALS CONTAINING FERROMAGNETIC DOMAINS AND METHODS OF MAKING, the contents of which are incorporated herein by reference.
This invention was made with Government support under Grant No. N00014-17-1-2920 awarded by the Office of Naval Research, and Grant No. CMMI-1661627 awarded by the National Science Foundation. The Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62651992 | Apr 2018 | US |