1. Field of the Invention
The present disclosure relates generally to a voltage reference and, more particularly, to a programmable voltage reference.
2. Description of the Related Art
Today, systems, such as battery-powered systems, are usually designed to enter a low-power mode when the systems are not being utilized. When in the low-power mode it is desirable for the systems to consume a relatively small amount of power. In systems that utilize voltage references, it is desirable for the voltage references to be designed to consume a relatively small amount of power during normal operation, as well as when the systems are in a low-power mode. Voltage references are used in a variety of different applications. For example, analog-to-digital converters (ADCs), digital-to-analog converters (DACs), oscillators, flash memories, and voltage regulators usually require a voltage reference that is relatively insensitive to temperature, power supply, and load variations. The resolution of an ADC or a DAC, for example, is generally limited by the precision of an associated reference voltage over a power supply voltage range and operating temperature range.
Traditionally, bandgap voltage references have employed bipolar junction transistors (BJTs) to generate a relatively temperature independent reference voltage. In general, bandgap voltage references exhibit a relatively high power supply rejection ratio (PSRR) and a relatively low temperature coefficient. To reduce power consumption of integrated circuits (ICs), many IC designers have migrated from bipolar to complementary metal-oxide semiconductor (CMOS) processes. While bipolar CMOS (BiCMOS) processes may be used in the design of a bandgap voltage reference, BiCMOS devices are relatively expensive, as compared to CMOS devices. Moreover, bandgap voltage references have usually employed ratiometric related resistors. In a bandgap voltage reference, in order to provide for relatively low current, one resistor of the bandgap voltage reference is typically many times the size of another resistor. It should be appreciated that larger area resistors increase an area of an associated IC which, in turn, increases the cost of the associated IC.
U.S. Patent Application Publication No. 2006/0001412 (hereinafter “the '412 application”) discloses a voltage reference that is fabricated exclusively using CMOS processes. The voltage reference of the '412 application employs a current generator that provides a proportional-to-absolute-temperature (PTAT) current. A stack of serially coupled metal-oxide semiconductor field-effect transistors (MOSFETs) is coupled between the current generator and a common point, i.e., ground. The stack of MOSFETs have a transimpedance which has a temperature coefficient that is opposite in polarity to a temperature coefficient of an internal resistance of the current generator.
This invention is described in a preferred embodiment in the following description with reference to the drawings, in which like numbers represent the same or similar elements, as follows:
In the following detailed description of exemplary embodiments of the invention, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific exemplary embodiments in which the invention may be practiced.
In the following detailed description of exemplary embodiments of the invention, specific exemplary embodiments in which the invention may be practiced are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, architectural, programmatic, mechanical, electrical and other changes may be made without departing from the spirit or scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims. In particular, although the preferred embodiment is described below with respect to a battery-powered device, it will be appreciated that the present invention is not so limited and that it has application to other embodiments of electronic devices.
According to various aspects of the present disclosure, a voltage reference is disclosed that generates a reference voltage that is substantially constant over temperature, supply voltage, and process variations. Voltage references that provide a reference voltage that is substantially constant over temperature and process are highly desirable in a number of applications, e.g., battery-powered applications that employ microcontrollers. Moreover, such voltage references are highly desirable when employed with circuits that remain powered when a system power-down mode is entered.
According to various aspects of the present disclosure, a relatively low-cost area-effective complementary metal-oxide semiconductor (CMOS) compatible low-power programmable voltage reference (that is suitable for analog circuits) is described herein. The reference voltage, which may be programmed via digital trimming, may be configured to generate reference voltage levels less than one Volt with a behavior proportional-to-absolute-temperature (PTAT), zero-dependence-to-absolute-temperature (ZTAT), or complementary-to-absolute-temperature (CTAT). In one or more embodiments, a programmable voltage reference includes a reference voltage circuit and a temperature compensated current source that provides a reference current to the reference voltage circuit. In one or more embodiments, the reference voltage circuit includes a self-cascode metal-oxide semiconductor field-effect transistor (SCM) structure that includes an application appropriate number of n-channel metal-oxide semiconductor field-effect transistors (NMOS transistors). In one or more embodiments, each of the NMOS transistors have a same aspect ratio and are biased by a temperature compensated current source that provides a reference current (e.g., a PTAT current or a ZTAT current).
In various embodiments, the reference voltage provided by the reference voltage circuit corresponds to a gate voltage (Vg) of the SCM structure. To provide a relatively low-power reference voltage, a current provided by the current source may be limited to a few nanoamperes (e.g., 10-50 nA). In various embodiments, a voltage level provided by the reference voltage circuit may be varied by adding/removing NMOS transistors to/from the modified SCM structure. In general, the disclosed architecture supports transference from one fabrication facility to another while trimming facilitates low part-to-part variation.
In at least one embodiment, the temperature compensated current source is resistor-less and employs two modified SCM structures (i.e., a first SCM structure that operates in weak inversion and a second SCM structure that operates in moderate inversion) and a symmetrical low-voltage operational trans-resistance amplifier (OTRA) with a common source input pair. In at least one embodiment, the programmable voltage reference includes a third SCM structure (that includes NMOS transistors with a same aspect ratio) that is biased by a p-channel MOSFET (PMOS transistor) that functions as a current mirror in the current source and a digital decoder that facilitates switching NMOS transistors in to or out of the third SCM structure based on a digital input trimming code.
The reference voltage may be implemented in a number of different products, e.g., microcontroller units (MCUs), that are fabricated in various standard CMOS processes (e.g., 0.25 micron processes, 90 nanometer processes, 65 nanometer processes, etc.) and/or in various bipolar CMOS (BiCMOS) processes. The disclosed voltage reference may be used, for example, to provide a low-cost area-effective low-power programmable voltage reference for various analog integrated circuits (ICs), such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), comparators, oscillators, regulators, etc. While the discussion herein is directed to the use of n-channel and p-channel MOSFETs, it should be appreciated that in many applications other type of devices, e.g., bipolar junction transistors (BJTs), may be employed in various applications for at least some of the components. Moreover, in various applications, the channel type of the MOSFET employed may be changed. More generally, the MOSFET devices may be thought of as insulated gate FETs (IGFETS).
As used herein, ‘weak inversion’ can be thought of as an area of operation of a MOSFET where inversion charge Q1 (in a channel of the MOSFET) is an exponential function of gate voltage, ‘strong inversion’ can be thought of as an area where inversion charge Q1 (in the channel of the MOSFET) is a linear function of gate voltage, and moderate inversion can be thought of as a transition area between the weak and strong inversion areas. As one example, in terms of drain current density (Id), the following approximations may be used for a MOSFET: Id>10Is for strong inversion; 10Is>Id>0.1Is for moderate inversion; and Id<0.1Is for weak inversion, where Is is the moderate inversion characteristic current density as set forth in the Enz, Krummenacher, and Vittoz (EKV) model.
According to one embodiment of the present disclosure, a programmable voltage reference includes a temperature compensated current source and a voltage reference circuit. The temperature compensated current source includes an output configured to provide a reference current. The voltage reference circuit includes an input coupled to the output of the temperature compensated current source and a reference output. The voltage reference circuit includes a self-cascode metal-oxide semiconductor field-effect transistor structure that includes a first device that is diode-connected (e.g., a MOSFET with its gate connected to its drain) and operates in a weak inversion saturation region and a second device (e.g., a device that includes multiple serially coupled MOSFETs) that operates in a weak inversion triode region and is serially coupled to the first device. The length of the second device is selectable and the voltage reference circuit is configured to provide a reference voltage on the reference output based on the reference current.
With reference to
A length of the transistor M21, which is included within the SCM structure 104, is programmed to achieve a desired level for the reference voltage (VREF). Moreover, temperature slope programmability allows the SCM structure 104 to provide a wide range of temperature behaviors (e.g., PTAT, ZTAT, or CTAT) that are suitable for virtually any application that requires a reference voltage (e.g., regulators, oscillators, ADCs, DACs, temperature sensors, low voltage detectors (LVDs), etc.).
To create a universal programmable voltage reference (that is capable of providing a voltage that is PTAT, CTAT, or ZTAT), the threshold voltage of transistor M20 may be compensated over temperature. Temperature compensation may be achieved by generating a body effect voltage that affects the transistor M20. As is known, body effect appears when source and bulk terminals of a MOSFET are biased with different voltage levels. In the SCM structure 104, the body effect voltage (e.g., a PTAT voltage), which affects the transistor M20, is generated through the transistor M21. In general, granularity of trimming can be adjusted to offer a specific variation with temperature in any given application. Various embodiments of the reference voltage are fully compatible with standard CMOS technologies and provide relatively straight-forward implementations that exhibit a low risk design approach (with reduced area) and relatively low power consumption that makes the reference voltage attractive for low-cost low-power products.
With reference to
The transistor M11 (of the first SCM structure SCM1) operates in a moderate inversion saturation region and the transistors M12 and M13 (of the first SCM structure SCM1) operate in a moderate inversion saturation region. The transistor M14 (of the second SCM structure SCM2) operates in weak inversion saturation region and the transistors M15 and M16 (of the second SCM structure SCM2) operate in a weak inversion triode region. In at least one embodiment, the reference current (IREF) provided by the current source 200 is substantially ZTAT and has a relatively small variation with process and power supply voltage (VDD) variations. For example, IREF may be equal to about 45 nanoamperes at 25 degrees C. with a minimum VDD of about 1.1V. Depending on the application, filtering of VREF may be desirable. In general, the programmable voltage reference disclosed herein may be designed to operate from about −40 degrees C. to about 150 degrees C. while consuming an operating current of less than about 100 nanoamperes.
With reference to
It should be appreciated that multiple of the voltage references 100 may be employed within the device 300 to provide reference voltages at different voltage levels to different devices (voltage controlled oscillators (VCOs), current references, ADCs, DACs, etc.) of the device 300. As is shown, the control unit 302 is coupled to a display unit 304, e.g., a liquid crystal display (LCD), the memory subsystem 306, and an input device 312, e.g., a keypad and/or a mouse. The device 300 may include an antenna 310 and a transceiver (not shown) when the device 300 takes the form of a mobile wireless communication device.
Although the invention is described herein with reference to specific embodiments, various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. For example, the programmable voltage references disclosed herein are broadly applicable to a variety of devices. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included with the scope of the present invention. Any benefits, advantages, or solution to problems that are described herein with regard to specific embodiments are not intended to be construed as a critical, required, or essential feature or element of any or all the claims.
Unless stated otherwise, terms such as “first” and “second” are used to arbitrarily distinguish between the elements such terms describe. Thus, these terms are not necessarily intended to indicate temporal or other prioritization of such elements.