Cardiac pacing electrically stimulates the heart when the heart's natural pacemaker and/or conduction system fails to provide synchronized atrial and ventricular contractions at appropriate rates and intervals for a patient's needs. Such bradycardia pacing provides relief from symptoms and even life support for hundreds of thousands of patients. Cardiac pacing may also give electrical overdrive stimulation intended to suppress or convert tachyarrhythmias, again supplying relief from symptoms and preventing or terminating arrhythmias that could lead to sudden cardiac death.
Cardiac pacing is usually performed by a pulse generator implanted subcutaneously or sub-muscularly in or near a patient's pectoral region. The generator usually connects to the proximal end of one or more implanted leads, the distal end of which contains one or more electrodes for positioning adjacent to the inside or outside wall of a cardiac chamber. The leads have an insulated electrical conductor or conductors for connecting the pulse generator to electrodes in the heart. Such electrode leads typically have lengths of 50 to 70 centimeters.
Known pulse generators can include various sensors for estimating metabolic demand, to enable an increase in pacing rate proportional and appropriate for the level of exercise. The function is usually known as rate-responsive pacing. For example, an accelerometer can measure body motion and indicate activity level. A pressure transducer in the heart can sense the timing between opening and closing of various cardiac valves, or can give a measure of intracardiac pressure directly, both of which change with changing stroke volume. Stroke volume increases with increased activity level. A temperature sensor can detect changes in a patient's blood temperature, which varies based on activity level. The pacemaker can increase rate proportional to a detected increase in activity.
Pulse generator parameters are usually interrogated and modified by a programming device outside the body, via a loosely-coupled transformer with one inductance within the body and another outside, or via electromagnetic radiation with one antenna within the body and another outside.
Although more than five hundred thousand pacemakers are implanted annually, various well-known difficulties are present.
The pulse generator, when located subcutaneously, presents a bulge in the skin that patients can find unsightly or unpleasant. Patients can manipulate or “twiddle” the device. Even without persistent twiddling, subcutaneous pulse generators can exhibit erosion, extrusion, infection, and disconnection, insulation damage, or conductor breakage at the wire leads. Although sub-muscular or abdominal placement can address some of concerns, such placement involves a more difficult surgical procedure for implantation and adjustment, which can prolong patient recovery.
A conventional pulse generator, whether pectoral or abdominal, has an interface for connection to and disconnection from the electrode leads that carry signals to and from the heart. Usually at least one male connector molding has at least one terminal pin at the proximal end of the electrode lead. The at least one male connector mates with at least one corresponding female connector molding and terminal block within the connector molding at the pulse generator. Usually a setscrew is threaded in at least one terminal block per electrode lead to secure the connection electrically and mechanically. One or more O-rings usually are also supplied to help maintain electrical isolation between the connector moldings. A setscrew cap or slotted cover is typically included to provide electrical insulation of the setscrew. The complex connection between connectors and leads provides multiple opportunities for malfunction.
For example, failure to introduce the lead pin completely into the terminal block can prevent proper connection between the generator and electrode.
Failure to insert a screwdriver correctly through the setscrew slot, causing damage to the slot and subsequent insulation failure.
Failure to engage the screwdriver correctly in the setscrew can cause damage to the setscrew and preventing proper connection.
Failure to tighten the setscrew adequately also can prevent proper connection between the generator and electrode, however over-tightening of the setscrew can cause damage to the setscrew, terminal block, or lead pin, and prevent disconnection if necessary for maintenance.
Fluid leakage between the lead and generator connector moldings, or at the setscrew cover, can prevent proper electrical isolation.
Insulation or conductor breakage at a mechanical stress concentration point where the lead leaves the generator can also cause failure.
Inadvertent mechanical damage to the attachment of the connector molding to the generator can result in leakage or even detachment of the molding.
Inadvertent mechanical damage to the attachment of the connector molding to the lead body, or of the terminal pin to the lead conductor, can result in leakage, an open-circuit condition, or even detachment of the terminal pin and/or molding.
The lead body can be cut inadvertently during surgery by a tool, or cut after surgery by repeated stress on a ligature used to hold the lead body in position. Repeated movement for hundreds of millions of cardiac cycles can cause lead conductor breakage or insulation damage anywhere along the lead body.
Although leads are available commercially in various lengths, in some conditions excess lead length in a patient exists and is to be managed. Usually the excess lead is coiled near the pulse generator. Repeated abrasion between the lead body and the generator due to lead coiling can result in insulation damage to the lead.
Friction of the lead against the clavicle and the first rib, known as subclavian crush, can result in damage to the lead.
In many applications, such as dual-chamber pacing, multiple leads can be implanted in the same patient and sometimes in the same vessel. Abrasion between the leads for hundreds of millions of cardiac cycles can cause insulation breakdown or even conductor failure.
Data stored in memory of implanted pulse generators is typically made available to a physician or other personnel for collection and/or analysis. For example, information is sought regarding system performance and trouble-shooting relating to the device, lead system, and/or patient in an acute, clinical setting. The information is generally supplied via a telemetry capability between the external programmer and the implanted device. In addition, an external programmer can be used to adjust parameters of multi-function implantable medical devices, such as pacing rate, pulse amplitude, sensed signal gain, and pulse timing and coordination.
Typically, an external programmer used during a telemetry procedure is positioned remotely from the patient. A programming head of the programmer such as a wand or other external device, containing an antenna or coil, is connected to the remainder of the programmer via a stretchable coil cable and is positioned over the patient's implanted device site for programming or telemetry interrogation of the implanted device.
Communication between the implanted medical device and the external programmer is facilitated by receiving and transmitting circuitry included within the implanted medical device and external programmer. Bandwidth is generally kept low to minimize power consumed by the implanted medical device. Power consumption is a consideration in designing implantable medical devices since the devices are typically powered by a depletable energy source, such as a primary battery. Replacement of an implanted medical device due to battery depletion can be costly and inconvenient.
Therefore, minimization of power consumption by the implanted medical device is a design and operational consideration. To facilitate power consumption management, transmitter and receiver circuitry can be powered down when not in use but are to be awakened when desired to enable communication. Awakening can occur periodically, in which the implantable device checks for a communication signal at regular intervals. The awakening process can otherwise be achieved by using electromagnetic energy coupled to the receiving antenna or coil to facilitate the wake up function. Awakening techniques result in a complicated telemetry protocol, which generally results in longer linkup times. In addition, the awakening techniques employ a relatively large antenna or coil, which is undesirable and inconsistent with a physically compact implanted medical device.
In addition to power reduction and small size, another design criterion for implanted medical devices is accurate communication of data. Communication often occurs in environments such as hospitals and doctors' offices, which can be noisy due to the presence of other electronic and electromagnetic sources. To achieve robustness of the link, bandwidth is generally kept low, with small packet sizes. To assure that data are transmitted accurately, the antenna or coil in the implantable device is typically positioned to maximize signal strength, both transmitted and received.
According to an embodiment of a biostimulator system, one or more implantable devices and an external programmer are configured for communicating with the implantable device or devices via bidirectional communication pathways comprising a receiving pathway that decodes information encoded on stimulation pulses generated by ones of the implantable device or devices and conducted through body tissue to the external programmer.
Embodiments of the invention relating to both structure and method of operation may best be understood by referring to the following description and accompanying drawings, in which similar reference characters denote similar elements throughout the several views:
An external programmer can be used with a system of one or more leadless cardiac pacemakers. Individual leadless cardiac pacemakers can be implanted adjacent to the inside or outside wall of a cardiac chamber. The programmer uses a minimum of two electrodes in electrical contact with the skin to communicate with each pacemaker through conduction. Information is passed from programmer to implant through a modulation technique designed to avoid stimulation of skeletal muscles. Communication from implant to programmer is performed by encoding information on the pacing pulses.
The programmer includes a user interface to display status and settings information for one or more individual implantable pacemakers, and enables the user to change programmable parameters on an individual implantable pacemaker. The programmer also can display the electrocardiogram sensed from the same two external electrodes on the skin. The programmer can perform tasks including electrocardiogram sensing, retrieving status information from implantable pacemakers, and changing configuration parameters of the implantable pacemakers simultaneously through the same set of electrodes.
Use of conducted communication of information improves over standard methods of communication in several aspects. For example, the illustrative conductive techniques enable communication without requiring a programmer head to be held undesirably close to the patient or to be held in a precise position relative to the implant site for an extended period of time. The illustrative conductive communication also enables power consumption to be reduced due to substantially lower current requirements and eliminating peak power demands currently imposed by existing inductive and radio frequency (RF) systems. Also, the conductive communication technique uses elements generally already existing in the implanted pulse generator, such as the therapeutic electrodes that function as an input-output device, enabling elimination of a coil or antenna that are conventionally used for communication and reducing complexity and component count significantly.
Referring to
According to the illustrative arrangement, the bidirectional communication pathways can be configured for communication with multiple leadless cardiac pacemakers 102 via two or more electrodes 106 and conduction through body tissue.
In accordance with various biostimulator system embodiments, an external device or module 104 is connected by a communication transmission channel and has transmitting and receiving functional elements for a bidirectional exchange of information with one or more implanted medical devices 102. The communication channel includes two or more electrodes 106 which can be affixed or secured to the surface of the skin. From the point of the skin, the communication transmission channel is wireless, includes the ion medium of the intra- and extra-cellular body liquids, and enables electrolytic-galvanic coupling between the surface electrodes and the implantable modules 104.
In the biostimulator systems 100A, 100B, the bidirectional communication pathways can further comprise a transmitting pathway that passes information from the external programmer 104 to one or more of the implantable devices 102 by direct conduction through the body tissue by modulation that avoids skeletal muscle stimulation using modulated signals at a frequency in a range from approximately 10 kHz to 100 kHz.
Information transmitted from the external programmer 104 to the implanted devices 102 is conveyed by modulated signals at the approximate range of 10 kHz to 100 kHz which is a medium-high frequency. The signals are passed through the communication transmission channel by direct conduction. A modulated signal in the frequency range has a sufficiently high frequency to avoid any depolarization within the living body which would lead to activation of the skeletal muscles and discomfort to the patient. The frequency is also low enough to avoid causing problems with radiation, crosstalk, and excessive attenuation by body tissue. Thus, information may be communicated at any time, without regard to the heart cycle or other bodily processes. No restriction is imposed regarding location of electrode placement on the body because low signal attenuation enables the signal to travel throughout the body and to be received by the implanted devices 102.
In some embodiments, the bidirectional communication pathways can further comprise a receiving pathway including a low-pass filter adapted to separate the electrocardiogram from the information signals. The same surface electrodes 106 that are used to transmit the information through the communication channel may also be used to detect a patient's electrocardiogram. Electrocardiogram frequencies are generally between 1 and 100 Hz, far lower than the 10 kHz to 100 kHz range of frequencies used to transmit information through the communication transmission channel. Therefore, the electrocardiogram can be separated from the information signal by a low-pass filter and can optionally be displayed by the programmer 104. In addition to low-pass filtering, blanking techniques that are typical in processing of cardiac signals can be used when the communication channel is active to prevent noise or erroneous signals from the communication channel affecting the electrocardiogram channel.
Because a plurality of implantable devices 102 can be present, communication of information from the programmer is detected by all devices, enabling information to be sent to each implanted device without sending the same information multiple times.
In various embodiments and applications, the bidirectional communication pathways can further comprise a transmitting pathway that passes information from the programmer 104 to the one or more implantable devices 102 in a common communication event whereby information is sent to one or more target devices of the implantable devices 102 using a selected technique. For example, information specific to a single implantable device or a subset of implantable devices having a unique address can be assigned to the single implantable device or the subset of implantable devices and encoded in the information. In another technique, information can designate a specific function that is executed by a particular implantable device or a particular subset of implantable devices. The information is passed to one or more implantable devices without sending individual address information for activating execution by the particular implantable device or the particular subset of implantable devices alone. In another technique, information can designate a specific function that is executed by a particular implantable device or a particular subset of implantable devices that have programming specific to the function adapted to recognize the received information is relevant to the function.
Specifically, information that is specific to a single implanted device or a subset of devices can be sent. A unique address can be assigned to each device or subset. The address can be encoded in the information sent to the plurality of devices, and any individual device can make use only of information that matches either the address or the address of the subset to which the particular device belongs.
In another technique, if each implanted device 102 or subset of devices 102 serves a specific function, which is different from other implanted devices, then information may be passed to the specific device or subset without the additional overhead of a group or individual address. For example, the device or subset can be responsible for only a specific function. When the programmer transmits information to the entire group, but the information is relevant to only the device or subset of that group, then any devices that cannot make use of the information may ignore the information. Each device has unique programming specific to a particular function and can recognize whether received information is relevant to the function. Devices operative in conjunction with the technique can be non-generic and perform specific functions, or can be generic devices with general functionality that can be made more specific by programming. Accordingly, functionality of a device can be defined at manufacture or may be defined at implantation or thereafter. The function of each device can be defined at the time of manufacture and the devices labeled or marked such that the associated function can be known upon inspection.
In some embodiments, the one or more implantable devices 102 can comprise one or more leadless cardiac pacemakers that generate cardiac pacing pulses and encode information onto the generated cardiac pacing pulses by selective alteration of pacing pulse morphology that is benign to therapeutic effect and energy cost of the pacing pulse. The cardiac pacing pulses conduct into body tissue via the electrodes for antenna-less and telemetry coil-less communication. For information transmitted from the implanted leadless cardiac pacemaker 102 to the external programmer 104, a communication scheme can be used in which the information is encoded on the pacing pulse. The pulse morphology is altered to contain the encoded information without altering the therapeutic benefits of the pacing pulse. The energy delivered by the pacing pulse remains essentially the same after the information is encoded. The external programmer 104 receives the pacing pulses through the associated surface electrodes 106. Encoded information is drawn from the pacing pulses and can contain state information of the implantable leadless cardiac pacemaker, such as battery voltage, lead impedance, sensed electrocardiogram amplitude, pacemaker current drain, programmed parameters, or other parameters.
The leadless cardiac pacemaker or pacemakers 102 can be configured to detect a natural cardiac depolarization, time a selected delay interval, and deliver an information-encoded pulse during a refractory period following the natural cardiac depolarization. By encoding information in a pacing pulse, power consumed for transmitting information is not significantly greater than the power used for pacing. Information can be transmitted through the communication channel with no separate antenna or telemetry coil. Communication bandwidth is low with only a small number of bits encoded on each pulse.
In some embodiments, information can be encoded using a technique of gating the pacing pulse for very short periods of time at specific points in the pacing pulse. During the gated sections of the pulse, no current flows through the electrodes of a leadless cardiac pacemaker. Timing of the gated sections can be used to encode information. The specific length of a gated segment depends on the programmer's ability to detect the gated section. A certain amount of smoothing or low-pass filtering of the signal can be expected from capacitance inherent in the electrode/skin interface of the programmer as well as the electrode/tissue interface of the leadless cardiac pacemaker. A gated segment is set sufficiently long in duration to enable accurate detection by the programmer 104, limiting the amount of information that can be transmitted during a single pacing pulse. Accordingly, a technique for communication can comprise generating stimulation pulses on stimulating electrodes of an implanted biostimulator and encoding information onto generated stimulation pulses. Encoding information onto the pulses can comprise gating the stimulation pulses for selected durations at selected timed sections in the stimulation pulses whereby gating removes current flow through the stimulating electrodes and timing of the gated sections encodes the information.
Another method of encoding information on pacing pulses involves varying the timing between consecutive pacing pulses in a pulse sequence. Pacing pulses, unless inhibited or triggered, occur at predetermined intervals. The interval between any two pulses can be varied slightly to impart information on the pulse series. The amount of information, in bits, is determined by the time resolution of the pulse shift. The steps of pulse shifting are generally on the order of microseconds. Shifting pulses by up to several milliseconds does not have an effect on the pacing therapy and cannot be sensed by the patient, yet significant information can be transmitted by varying pulse intervals within the microsecond range. The method of encoding information in variation of pulses is less effective if many of the pulses are inhibited or triggered. Accordingly, a technique for communication can comprise generating stimulation pulses on stimulating electrodes of an implanted biostimulator and encoding information onto generated stimulation pulses comprising selectively varying timing between consecutive stimulation pulses.
Alternatively or in addition to encoding information in gated sections and/or pulse interval, overall pacing pulse width can be used to encode information.
The three described methods of encoding information on pacing pulses can use the programmer 104 to distinguish pacing pulses from the patient's normal electrocardiogram, for example by recognition of the specific morphology of the pacing pulse compared to the R-wave generated during the cardiac cycle. For example, the external programmer 104 can be adapted to distinguish a generated cardiac pacing pulse from a natural cardiac depolarization in an electrocardiogram by performing comparative pattern recognition of a pacing pulse and an R-wave produced during a cardiac cycle.
The illustrative external programmer 104 and associated operating methods or techniques enable presentation to the user of information gathered from the implanted biostimulator or leadless cardiac pacemakers 102 using conductive communication. Some of the information to be presented may include battery voltage, lead impedance, electrocardiogram amplitude, or current drain of the device. The information can be presented in addition to other information such as parameters to be set and programmed into the leadless cardiac pacemaker. The information can be presented to a user on a display screen. Some embodiments or configurations of an external programmer 104 can include a secondary link, for example either wireless or through a cable, to another display device, such as a handheld computer or terminal. The secondary link can also include communication over a local area network or the internet for display at a remote terminal.
In
In various embodiments, the external programmer 104 can be configured to perform one or more operations such as electrocardiogram sensing, retrieving status information from implanted pacemakers, modifying configuration parameters of multiple implanted pacemakers simultaneously in information passed through a common electrode set, displaying electrocardiograms, displaying information received from the at least one implantable device, and others.
In various embodiments, a pacemaker 102 can manage power consumption to draw limited power from an internal battery, thereby reducing device volume. Each circuit in the pacemaker can be designed to avoid large peak currents. For example, cardiac pacing can be achieved by discharging a tank capacitor (not shown) across the pacing electrodes. Recharging of the tank capacitor is typically controlled by a charge pump circuit. In a particular embodiment, the charge pump circuit can be throttled to recharge the tank capacitor at constant power from the battery. The one or more leadless cardiac pacemakers can be configured to charge the tank capacitor in preparation for stimulation pulse generation, time one or more windows between pulse generation, disable charging of the tank capacitor during the one or more timed windows, and enable a receive amplifier in the implanted biostimulator while the tank capacitor is disabled.
In some embodiments, the external programmer 104 can detect a stimulation pulse from a leadless cardiac pacemaker 102 and transmit data after a selected delay to coincide with a window that the leadless cardiac pacemaker's receiving amplifier is enabled.
The implantable devices 102 can encode and/or decode information using various techniques such as encoding the information using pacing pulse width, binary-coded notches in a pacing pulse, modulation of off-time between pacing pulses, or other suitable encoding techniques. The external programmer 104 can encode and/or decode information using on-off keying encoding and modulation techniques depicted in
Referring to
The bidirectional communication pathways 210R and 210T are configured for communication with one or more leadless cardiac pacemakers via the electrodes 206 and conduction through body tissue.
The external programmer 204 can have bidirectional communication pathways 210R and 210T that further comprise a transmitting pathway 210T that passes information from the programmer 204 to one or more implanted biostimulators by conduction through the body tissue using modulation that avoids skeletal muscle stimulation.
In some arrangements, the bidirectional communication pathways 210R and 210T can be further specified to comprise a transmitting pathway that passes information from the programmer 204 to the one or more implanted biostimulators by direct conduction using modulated signals at a frequency in a range from approximately 10 kHz to 100 kHz. Also in some arrangements, the two or more electrodes 206 and the bidirectional communication pathways 210R and 210T can be configured for bidirectional information signal communication and for sensing an electrocardiogram.
Also in some embodiments, the bidirectional communication pathways 210R and 210T can further comprise a transmitting pathway 210T that passes information from the programmer 204 to multiple implanted devices in a common communication event. In some embodiments or selected operating conditions, the transmitting pathway 210T can be arranged to pass information from the programmer 204 to multiple implanted devices in a common communication event whereby information specific to a single implanted device or a subset of implanted devices have a unique address assigned to the single implanted device or the subset of implanted devices and encoded in the information. The transmitting pathway 210T can also be arranged to pass information from the programmer 204 to multiple implanted devices in a common communication event whereby information designates a specific function that is executed by a particular implanted device or a particular subset of implanted devices. The information is passed to the multiple implanted devices without individual address information for activating execution by the particular implanted device or the particular subset of implanted devices alone. The transmitting pathway 210T can also be arranged, either alone or in combination with other techniques, to pass information from the programmer 204 to multiple implanted devices in a common communication event whereby information designates a specific function that is executed by a particular implanted device or a particular subset of implanted devices that comprise programming specific to the function adapted to recognize the received information is relevant to the function.
In the illustrative embodiment, the bidirectional communication pathways 210R and 210T comprise the two or more electrodes 206 forming a conductive communication path between the programmer 204 and the skin surface, and a transmitting pathway 210T. The transmitting pathway 210T comprises a processor 212, a command/message encoder 230, a modulator 232, and an amplifier 236. The processor 212 is configured to communicate information to one or more implanted leadless cardiac pacemakers. The command/message encoder 230 is coupled to the processor 212 via a parallel interface and configured to encode and serialize data into a bit stream. Information encoding can be selected from encoding techniques such as on-off keying, frequency-shift keying, frequency modulation, and amplitude shift keying. The modulator 232 is coupled to the command/message encoder 230 and receives and modulates the serialized data using a frequency in a range from approximately 10 kHz to approximately 100 kHz. The amplifier 236 is coupled to the modulator 232 and increases signal amplitude to a level suitable for robust conducted communication.
The bidirectional communication pathways 210R and 210T further comprise a receiving pathway 210R including a low-pass filter 214 adapted to separate the electrocardiogram from the information signals.
In various embodiments and arrangements, the bidirectional communication pathways 210R and 210T further comprise a receiving pathway 210R that receives information at the programmer 204 from the one or more implanted biostimulators by conduction through the body tissue. The receiving pathway 210R can decode information, for example by decoding data that is encoded by the biostimulators using pacing pulse width, using binary-coded notches in a pacing pulse, using modulation of off-time between pacing pulses, or other suitable techniques for encoding data in the biostimulators.
In the illustrative embodiment, the bidirectional communication pathways 210R and 210T couple to the two or more electrodes 206 forming a conductive communication path between the programmer 204 and the skin surface, and a receiving pathway 210R. The receiving pathway 210R comprises an electrocardiogram (ECG) amplifier/filter 214, an analog-to-digital converter (ADC) which is not shown in
The programmer 204 may further comprise a processor 212 coupled to the bidirectional communication pathways and configured to manage communication with one or more biostimulators, for example leadless cardiac pacemakers. Leadless cardiac pacemakers can be implanted adjacent to an inside or an outside wall of a cardiac chamber as depicted in
As depicted in
In some embodiments, the electrodes 206 can be implemented with more than two electrodes to enable an electrocardiogram (ECG) to be sensed at multiple vectors and further to enable selection from among the multiple vectors for conducted communication with implanted leadless cardiac pacemakers so that system signal-to-noise ratio can be improved or maximized.
The CPU 212 receives and optionally displays ECG data using a display interface 216 and can also display other data acquired from the implanted leadless cardiac pacemaker acquired through the encoded pacing pulses, such as battery voltage, lead impedance, sensed cardiac signal amplitude, or other system status information. The CPU 212 also can accept input from a user via a keyboard and/or touch-screen interface 218. Some examples of user input are selected pacing rate or pacing pulse amplitude for implanted leadless cardiac pacemakers. The CPU 212 can also communicate over a network interface 220 to other data entry or display units, such as a handheld computer or laptop/desktop unit. The network interface 220 can be cabled or wireless and can also enable communication to a local area network or the internet for greater connectivity.
The processor 212 is coupled to the bidirectional communication pathways and configured to perform one or more of various operations such as electrocardiogram sensing, retrieving status information from implanted pacemakers, modifying configuration parameters of multiple implanted pacemakers within a single or multiple cardiac cycles in information passed through a common electrode set, and other operations. A display interface 216 coupled to the processor 212 can be configured to display an electrocardiogram sensed from the electrodes 206. In some arrangements or embodiments, a secondary link 220 can be coupled to the processor 212 and configured for unidirectional or bidirectional wireless or cable transmission to and/or from a remote display and/or data-entry device to display an electrocardiogram sensed from the at least two electrodes, and/or to control the programmer and/or at least one implanted biostimulator.
The CPU 212 can execute operations based on firmware stored in non-volatile memory (Flash) 222. The non-volatile memory 222 can also be used to store parameters or values that are to be maintained when power is removed. The CPU 212 uses volatile memory or random access memory (RAM) 224 as general storage for information such as ECG data, status information, swap memory, and other data. A battery and supply regulator 226 gives a constant voltage supply to the programmer 204 during normal operation. A clock module 228 generates a system clock signal used by the CPU 212 and by interface blocks for timing.
The CPU 212, during operation to communicate information to one or more implanted leadless cardiac pacemakers, sends the information over a parallel interface to a command/message encoder 230, which serializes the data into a bit stream. Serialized data is sent to a modulator 232. The serialized bit-stream is modulated, for example using a frequency between 10 kHz and 100 kHz. An optional separate modulator clock 234 supplies a timing signal at a selected carrier frequency that may be used by the modulator 232. An amplifier 236 sets signal amplitude to a level that enables robust conducted communication. A sample of a modulated bit-steam is shown in
Because multiple biostimulator devices can be implanted, communication of information from the programmer 204 can be detected by all devices, enabling information to be sent to each implanted device without sending the same information multiple times.
If information for communication is specific to a single implanted device or a subset of devices, a unique address can be assigned to each device or subset. The address is encoded in the information sent to the plurality of devices, and any individual device can have the option to make use of information that either matches the address or the address of the subset to which the particular device belongs.
If each implanted device or a subset of devices performs a specific function which is different from other implanted devices, then information can be passed to the specific device or subset without the additional overhead of a group or individual address. For example, when the device or subset is responsible for only a specific function. When the programmer 204 transmits information to the entire group, but the information is relevant to only the device or subset of that group, then any devices that cannot make use of the information may ignore the information as superfluous. The technique presumes that each device have unique programming specific to the associated function, and each device have capability to recognize whether or not received information is relevant to the function. Devices using the illustrative technique are not generic. The function of each device can be defined at the time of manufacture or at the time of implant or thereafter. The devices are labeled or marked such that the associated function can be known upon inspection.
To reduce the peak current for operation of the leadless cardiac pacemakers, a technique can be used in which a window or multiple windows occur between subsequent pacing pulses during which the leadless cardiac pacemaker does not charge pacing tank capacitor in preparation for the next pacing pulse. Instead the pacemaker enables an internal receiving amplifier. Because the programmer 204 can sense pacing pulses from the implanted devices, the programmer 204 can time data transmission to coincide with the pre-defined synchronous window or windows. A reduced peak current capability occurs because the charger and receiving amplifier, both power intensive elements, never have to be operated together. Because the data transmission is generally very short compared to the period between pacing pulses, the window technique should not significantly lower the ability of the leadless cardiac pacemaker to charge the pacing tank capacitor effectively between pacing pulses.
Referring again to
To encode data on the pacing pulse, specific portions of the pulse are gated. Timing of the gated segments defines the specific data carried by the pacing pulse.
As controlled by a processor in a leadless cardiac pacemaker 102, a pulse generator in the pacemaker selectively generates or does not generate a notch in each timing window 508, 509, 510, and 511 so that the device 102 encodes four bits of information in the pacing pulse. A similar scheme with more or fewer timing windows can send more or fewer bits per pacing pulse. The width of the notches is small, for example approximately 15 microseconds, so that the delivered charge and overall pulse width, specifically the sum of the widths of the shorter pulses, in the pacing pulse is substantially unchanged from that shown in
In a leadless cardiac pacemaker, a technique can be used to conserve power when detecting information carried on pacing pulses from other implanted devices. The leadless cardiac pacemaker can have a receiving amplifier that implements multiple gain settings and uses a low-gain setting for normal operation. The low-gain setting could be insufficiently sensitive to decode gated information on a pacing pulse accurately but could detect whether the pacing pulse is present. If an edge of a pacing pulse is detected during low-gain operation, the amplifier can be switched quickly to the high-gain setting, enabling the detailed encoded data to be detected and decoded accurately. Once the pacing pulse has ended, the receiving amplifier can be set back to the low-gain setting. For usage in the decoding operation, the receiving amplifier is configured to shift to the more accurate high-gain setting quickly when activated. Encoded data can be placed at the end of the pacing pulse to allow a maximum amount of time to invoke the high-gain setting.
As an alternative or in addition to using notches in the stimulation pulse, the pulses can be generated with varying off-times, specifically times between pulses during which no stimulation occurs. The variation of off-times can be small, for example less than 10 milliseconds total, and can impart information based on the difference between a specific pulse's off-time and a preprogrammed off-time based on desired heart rate. For example, the device can impart four bits of information with each pulse by defining 16 off-times centered on the preprogrammed off-time.
The illustrative example avoids usage of radiofrequency (RF) communication to send pacing instructions to remote electrodes on a beat-to-beat basis to cause the remote electrodes to emit a pacing pulse. RF communication involves use of an antenna and modulation/demodulation unit in the remote electrode, which increase implant size significantly. Also, communication of pacing instructions on a beat-to-beat basis increases power requirements for the main body and the remote electrode. In contrast, the illustrative system and stimulator do not require beat-to-beat communication with any controlling main body.
The illustrative leadless pacemaker 102 includes an internal power source that can supply all energy for operations and pulse generation. In contrast, some conventional implanted pulse generators have remote pacing electrodes that receive some or all energy from an energy source through an RF induction technique, an energy transfer scheme that employs a large loop antenna on the remote electrode which increases size significantly. In addition, energy transfer with the RF induction technique is inefficient and is associated with a significant increase in battery size of the energy source. In contrast, the illustrative leadless pacemaker 102 uses an internal battery and does not require energy to be drawn from outside sources. Also in the conventional system, the energy source receives sensing information by RF communication from the remote electrodes and sends pacing instructions to the electrodes on a beat-to-beat basis in a configuration that uses an addressing scheme in which the identity of specific remote pacing electrodes is stored in the energy source memory. The conventional method can also be inefficient due to overhead for transmitting an identification number from/to a generic pacing electrode at implant and/or during sensing. The illustrative leadless pacemaker 102 avoids such overhead through a structure in which pulse generation functionality is independent within a single implantable body.
Another conventional technology uses a system of addressable remote electrodes that stimulate body tissue without requiring a main body to send commands for individual stimulations. The remote electrodes are specified to be of a size and shape suitable for injection rather than for endocardial implantation. A controller sets operating parameters and sends the parameters to remote electrodes by addressable communication, enabling the remote electrodes function relatively autonomously while incurring some overhead to controller operations. However, the remote electrodes do not sense or monitor cardiac information and rely on the main body to provide sensing functionality. In contrast, the illustrative leadless pacemaker 102 combines pacing and sensing of intrinsic cardiac activity in a single implantable body.
To ensure the leadless cardiac pacemaker functions correctly, a specific minimum internal supply voltage is maintained. When pacing tank capacitor charging occurs, the supply voltage can drop from a pre-charging level which can become more significant when the battery nears an end-of-life condition and has reduced current sourcing capability. Therefore, a leadless cardiac pacemaker can be constructed with a capability to stop charging the pacing tank capacitor when the supply voltage drops below a specified level. When charging ceases, the supply voltage returns to the value prior to the beginning of tank capacitor charging.
In another technique, the charge current can be lowered to prevent the supply voltage from dropping below the specified level. However, lowering the charge current can create difficulty in ensuring pacing rate or pacing pulse amplitude are maintained, since the lower charge current can extend the time for the pacing tank capacitor to reach a target voltage level.
Schemes can be implemented for transmitting data from the implant to the programmer that do not significantly increase the current consumption of the pacemaker. For example, the pacemaker could transmit data continuously in a loop, with no consumption penalty.
The method of encoding data using modulation of off-time between pacing pulses is less effective if pulses are inhibited, since data can be transmitted using only pacing pulses generated by the pacemaker. When data are encoded in binary-coded notches in the pacing pulse or by varying pacing pulse width, if a therapeutic pacing pulse is inhibited, then the leadless cardiac pacemaker can still generate a non-therapeutic pulse during the refractory period of the heart after the sensed beat, although the pacing pulse has the sole purpose of transmitting data to the programmer or optionally to at least one other implanted biostimulator.
Referring to
Referring to
Referring to
Referring to
Referring to
Terms “substantially”, “essentially”, or “approximately”, that may be used herein, relate to an industry-accepted tolerance to the corresponding term. Such an industry-accepted tolerance ranges from less than one percent to twenty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. The term “coupled”, as may be used herein, includes direct coupling and indirect coupling via another component, element, circuit, or module where, for indirect coupling, the intervening component, element, circuit, or module does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. Inferred coupling, for example where one element is coupled to another element by inference, includes direct and indirect coupling between two elements in the same manner as “coupled”.
While the present disclosure describes various embodiments, these embodiments are to be understood as illustrative and do not limit the claim scope. Many variations, modifications, additions and improvements of the described embodiments are possible. For example, those having ordinary skill in the art will readily implement the steps necessary to provide the structures and methods disclosed herein, and will understand that the process parameters, materials, and dimensions are given by way of example only. The parameters, materials, and dimensions can be varied to achieve the desired structure as well as modifications, which are within the scope of the claims. Variations and modifications of the embodiments disclosed herein may also be made while remaining within the scope of the following claims. Phraseology and terminology employed herein are for the purpose of the description and should not be regarded as limiting. With respect to the description, optimum dimensional relationships for the component parts are to include variations in size, materials, shape, form, function and manner of operation, assembly and use that are deemed readily apparent and obvious to one of ordinary skill in the art and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present description. Therefore, the foregoing is considered as illustrative only of the principles of structure and operation. Numerous modifications and changes will readily occur to those of ordinary skill in the art whereby the scope is not limited to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be included.
This application claims the benefit of priority to and incorporates herein by reference in its entirety for all purposes, Provisional U.S. Patent Application Nos. 60/726,706 entitled “LEADLESS CARDIAC PACEMAKER WITH CONDUCTED COMMUNICATION,” filed Oct. 14, 2005; 60/761,531 entitled “LEADLESS CARDIAC PACEMAKER DELIVERY SYSTEM,” filed Jan. 24, 2006; 60/729,671 entitled “LEADLESS CARDIAC PACEMAKER TRIGGERED BY CONDUCTED COMMUNICATION,” filed Oct. 24, 2005; 60/737,296 entitled “SYSTEM OF LEADLESS CARDIAC PACEMAKERS WITH CONDUCTED COMMUNICATION,” filed Nov. 16, 2005; 60/739,901 entitled “LEADLESS CARDIAC PACEMAKERS WITH CONDUCTED COMMUNICATION FOR USE WITH AN IMPLANTABLE CARDIOVERTER-DEFIBRILLATOR,” filed Nov. 26, 2005; 60/749,017 entitled “LEADLESS CARDIAC PACEMAKER WITH CONDUCTED COMMUNICATION AND RATE RESPONSIVE PACING,” filed Dec. 10, 2005; and 60/761,740 entitled “PROGRAMMER FOR A SYSTEM OF LEADLESS CARDIAC PACEMAKERS WITH CONDUCTED COMMUNICATION,” filed Jan. 24, 2006; all by Peter M. Jacobson.
Number | Name | Date | Kind |
---|---|---|---|
3199508 | Roth | Aug 1965 | A |
3212496 | Preston | Oct 1965 | A |
3218638 | Honig | Nov 1965 | A |
3241556 | Zacouto | Mar 1966 | A |
3478746 | Greatbatch | Nov 1969 | A |
3603881 | Thornton | Sep 1971 | A |
3727616 | Lenzkes | Apr 1973 | A |
3757778 | Graham | Sep 1973 | A |
3823708 | Lawhorn | Jul 1974 | A |
3830228 | Foner | Aug 1974 | A |
3835864 | Rasor et al. | Sep 1974 | A |
3870051 | Brindley | Mar 1975 | A |
3872251 | Auerbach et al. | Mar 1975 | A |
3905364 | Cudahy et al. | Sep 1975 | A |
3940692 | Neilson et al. | Feb 1976 | A |
3943926 | Barragan | Mar 1976 | A |
3943936 | Rasor et al. | Mar 1976 | A |
3946744 | Auerbach | Mar 1976 | A |
3952750 | Mirowski et al. | Apr 1976 | A |
4027663 | Fischler et al. | Jun 1977 | A |
4072154 | Anderson et al. | Feb 1978 | A |
4083366 | Gombrich et al. | Apr 1978 | A |
4102344 | Conway et al. | Jul 1978 | A |
4146029 | Ellinwood, Jr. | Mar 1979 | A |
4151513 | Menken et al. | Apr 1979 | A |
4151540 | Sander et al. | Apr 1979 | A |
4152540 | Duncan et al. | May 1979 | A |
4173221 | McLaughlin et al. | Nov 1979 | A |
4187854 | Hepp et al. | Feb 1980 | A |
4210149 | Heilman et al. | Jul 1980 | A |
4223678 | Langer et al. | Sep 1980 | A |
4250888 | Grosskopf | Feb 1981 | A |
4256115 | Bilitch | Mar 1981 | A |
4296756 | Dunning et al. | Oct 1981 | A |
4310000 | Lindemans | Jan 1982 | A |
4318412 | Stanly et al. | Mar 1982 | A |
4336810 | Anderson et al. | Jun 1982 | A |
4350169 | Dutcher et al. | Sep 1982 | A |
4374382 | Markowitz | Feb 1983 | A |
4406288 | Horwinski et al. | Sep 1983 | A |
4411271 | Markowitz | Oct 1983 | A |
4418695 | Buffet | Dec 1983 | A |
4424551 | Stevenson et al. | Jan 1984 | A |
4428378 | Anderson et al. | Jan 1984 | A |
4440173 | Hudziak et al. | Apr 1984 | A |
4442840 | Wojciechowicz, Jr. | Apr 1984 | A |
4453162 | Money et al. | Jun 1984 | A |
4481950 | Duggan | Nov 1984 | A |
4513743 | van Arragon et al. | Apr 1985 | A |
4516579 | Irnich | May 1985 | A |
4522208 | Buffet | Jun 1985 | A |
4524774 | Hildebrandt | Jun 1985 | A |
4531527 | Reinhold, Jr. et al. | Jul 1985 | A |
4543955 | Schroeppel | Oct 1985 | A |
4550370 | Baker | Oct 1985 | A |
4552127 | Schiff | Nov 1985 | A |
4552154 | Hartlaub | Nov 1985 | A |
4562846 | Cox et al. | Jan 1986 | A |
4586508 | Batina et al. | May 1986 | A |
4606352 | Geddes et al. | Aug 1986 | A |
4607639 | Tanagho et al. | Aug 1986 | A |
4612934 | Borkan | Sep 1986 | A |
4625730 | Fountain et al. | Dec 1986 | A |
4679144 | Cox et al. | Jul 1987 | A |
4681111 | Silvian | Jul 1987 | A |
4681117 | Brodman et al. | Jul 1987 | A |
4702253 | Nappholz et al. | Oct 1987 | A |
4719920 | Alt et al. | Jan 1988 | A |
4722342 | Amundson | Feb 1988 | A |
4750495 | Moore et al. | Jun 1988 | A |
4763340 | Yoneda et al. | Aug 1988 | A |
4763655 | Wirtzfeld et al. | Aug 1988 | A |
4787389 | Tarjan | Nov 1988 | A |
4791931 | Slate | Dec 1988 | A |
4793353 | Borkan | Dec 1988 | A |
4794532 | Leckband et al. | Dec 1988 | A |
4802481 | Schroeppel | Feb 1989 | A |
4809697 | Causey et al. | Mar 1989 | A |
4827940 | Mayer et al. | May 1989 | A |
4830006 | Haluska et al. | May 1989 | A |
4844076 | Lesho et al. | Jul 1989 | A |
4846195 | Alt | Jul 1989 | A |
4860750 | Frey et al. | Aug 1989 | A |
4875483 | Vollmann et al. | Oct 1989 | A |
4880004 | Baker, Jr. et al. | Nov 1989 | A |
4883064 | Olson et al. | Nov 1989 | A |
4886064 | Strandberg | Dec 1989 | A |
4896068 | Nilsson | Jan 1990 | A |
4903701 | Moore et al. | Feb 1990 | A |
4905708 | Davies | Mar 1990 | A |
4926863 | Alt | May 1990 | A |
4987897 | Funke | Jan 1991 | A |
5010887 | Thornander | Apr 1991 | A |
5012806 | De Bellis | May 1991 | A |
5014700 | Alt | May 1991 | A |
5014701 | Pless et al. | May 1991 | A |
5031615 | Alt | Jul 1991 | A |
5040533 | Fearnot | Aug 1991 | A |
5040534 | Mann et al. | Aug 1991 | A |
5040536 | Riff | Aug 1991 | A |
5042497 | Shapland | Aug 1991 | A |
5052399 | Olive et al. | Oct 1991 | A |
5058581 | Silvian | Oct 1991 | A |
5065759 | Begemann | Nov 1991 | A |
5076270 | Stutz, Jr. | Dec 1991 | A |
5076272 | Ferek-Petric | Dec 1991 | A |
5085224 | Galen et al. | Feb 1992 | A |
5086772 | Larnard et al. | Feb 1992 | A |
5088488 | Markowitz et al. | Feb 1992 | A |
5095903 | DeBellis | Mar 1992 | A |
5109845 | Yuuchi et al. | May 1992 | A |
5111816 | Pless et al. | May 1992 | A |
5113859 | Funke | May 1992 | A |
5113869 | Nappholz et al. | May 1992 | A |
5133350 | Duffin | Jul 1992 | A |
5135004 | Adams et al. | Aug 1992 | A |
5170784 | Ramon et al. | Dec 1992 | A |
5170802 | Mehra | Dec 1992 | A |
5179947 | Meyerson et al. | Jan 1993 | A |
5184616 | Weiss | Feb 1993 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5193550 | Duffin | Mar 1993 | A |
5217010 | Tsitlik et al. | Jun 1993 | A |
5247945 | Heinze et al. | Sep 1993 | A |
5259394 | Bens | Nov 1993 | A |
5267150 | Wilkinson | Nov 1993 | A |
5282841 | Szyszkowski | Feb 1994 | A |
5284136 | Hauck et al. | Feb 1994 | A |
5291902 | Carman | Mar 1994 | A |
5300093 | Koestner et al. | Apr 1994 | A |
5304206 | Baker, Jr. et al. | Apr 1994 | A |
5304209 | Adams et al. | Apr 1994 | A |
5313953 | Yomtov et al. | May 1994 | A |
5318596 | Barreras et al. | Jun 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5333095 | Stevenson et al. | Jul 1994 | A |
5342401 | Spano et al. | Aug 1994 | A |
5354317 | Alt | Oct 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5373852 | Harrison et al. | Dec 1994 | A |
5383912 | Cox et al. | Jan 1995 | A |
5383915 | Adams | Jan 1995 | A |
5404877 | Nolan et al. | Apr 1995 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5406444 | Selfried et al. | Apr 1995 | A |
5411532 | Mortazavi | May 1995 | A |
5411535 | Fujii et al. | May 1995 | A |
5411537 | Munshi et al. | May 1995 | A |
5417222 | Dempsey et al. | May 1995 | A |
5419337 | Dempsey et al. | May 1995 | A |
5431171 | Harrison et al. | Jul 1995 | A |
5446447 | Carney et al. | Aug 1995 | A |
5456261 | Luczyk | Oct 1995 | A |
5466246 | Silvian | Nov 1995 | A |
5469857 | Laurent et al. | Nov 1995 | A |
5480415 | Cox et al. | Jan 1996 | A |
5481262 | Urbas et al. | Jan 1996 | A |
5522876 | Rusink | Jun 1996 | A |
5531779 | Dahl et al. | Jul 1996 | A |
5539775 | Tuttle et al. | Jul 1996 | A |
5549654 | Powell | Aug 1996 | A |
5549659 | Johansen et al. | Aug 1996 | A |
5551427 | Altman | Sep 1996 | A |
5556421 | Prutchi et al. | Sep 1996 | A |
5562717 | Tippey et al. | Oct 1996 | A |
5571143 | Hoegnelid et al. | Nov 1996 | A |
5571148 | Loeb et al. | Nov 1996 | A |
5579775 | Dempsey et al. | Dec 1996 | A |
5586556 | Spivey et al. | Dec 1996 | A |
5591217 | Barreras | Jan 1997 | A |
5598848 | Swanson et al. | Feb 1997 | A |
5649952 | Lam | Jul 1997 | A |
5650759 | Hittman et al. | Jul 1997 | A |
5654984 | Hershbarger et al. | Aug 1997 | A |
5662689 | Elsberry et al. | Sep 1997 | A |
5669391 | Williams | Sep 1997 | A |
5674259 | Gray | Oct 1997 | A |
5676153 | Smith et al. | Oct 1997 | A |
5693076 | Kaemmerer | Dec 1997 | A |
5694940 | Unger et al. | Dec 1997 | A |
5694952 | Lidman et al. | Dec 1997 | A |
5697958 | Paul et al. | Dec 1997 | A |
5702427 | Ecker et al. | Dec 1997 | A |
5725559 | Alt et al. | Mar 1998 | A |
5728154 | Crossett et al. | Mar 1998 | A |
5730143 | Schwarzberg | Mar 1998 | A |
5735880 | Prutchi et al. | Apr 1998 | A |
5738102 | Lemelson | Apr 1998 | A |
5740811 | Hedberg et al. | Apr 1998 | A |
5741314 | Daly et al. | Apr 1998 | A |
5766231 | Erickson et al. | Jun 1998 | A |
5792205 | Alt et al. | Aug 1998 | A |
5810735 | Halperin et al. | Sep 1998 | A |
5814076 | Brownlee | Sep 1998 | A |
5814087 | Renirie | Sep 1998 | A |
5814089 | Stokes et al. | Sep 1998 | A |
5824016 | Ekwall | Oct 1998 | A |
5871451 | Unger et al. | Feb 1999 | A |
5876353 | Riff | Mar 1999 | A |
5876425 | Gord et al. | Mar 1999 | A |
5891178 | Mann et al. | Apr 1999 | A |
5899928 | Sholder et al. | May 1999 | A |
5935079 | Swanson et al. | Aug 1999 | A |
5954761 | Machek et al. | Sep 1999 | A |
5957861 | Combs et al. | Sep 1999 | A |
5984861 | Crowley | Nov 1999 | A |
5987352 | Klein et al. | Nov 1999 | A |
5995876 | Kruse et al. | Nov 1999 | A |
5999857 | Weijand et al. | Dec 1999 | A |
6002969 | Machek et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6061596 | Richmond et al. | May 2000 | A |
6080187 | Alt et al. | Jun 2000 | A |
6093146 | Filangeri | Jul 2000 | A |
6096065 | Crowley | Aug 2000 | A |
6102874 | Stone et al. | Aug 2000 | A |
6112116 | Fischell et al. | Aug 2000 | A |
6115628 | Stadler et al. | Sep 2000 | A |
6115630 | Stadler et al. | Sep 2000 | A |
6115636 | Ryan | Sep 2000 | A |
6119031 | Crowley | Sep 2000 | A |
6125290 | Miesel | Sep 2000 | A |
6125291 | Miesel et al. | Sep 2000 | A |
6128526 | Stadler et al. | Oct 2000 | A |
6129751 | Lucchesi et al. | Oct 2000 | A |
6132390 | Cookston et al. | Oct 2000 | A |
6132456 | Sommer et al. | Oct 2000 | A |
6134459 | Roberts et al. | Oct 2000 | A |
6134470 | Hartlaub | Oct 2000 | A |
6141584 | Rockwell et al. | Oct 2000 | A |
6141588 | Cox et al. | Oct 2000 | A |
6141592 | Pauly | Oct 2000 | A |
6144866 | Miesel et al. | Nov 2000 | A |
6148230 | KenKnight | Nov 2000 | A |
6152882 | Prutchi | Nov 2000 | A |
6163723 | Roberts et al. | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6167310 | Grevious | Dec 2000 | A |
6178349 | Kieval | Jan 2001 | B1 |
6178356 | Chastain et al. | Jan 2001 | B1 |
6185443 | Crowley | Feb 2001 | B1 |
6185452 | Schulman et al. | Feb 2001 | B1 |
6185464 | Bonner et al. | Feb 2001 | B1 |
6190324 | Kieval et al. | Feb 2001 | B1 |
6198952 | Miesel | Mar 2001 | B1 |
6201993 | Kruse et al. | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6208900 | Ecker et al. | Mar 2001 | B1 |
6223081 | Kerver | Apr 2001 | B1 |
6230059 | Duffin | May 2001 | B1 |
6236882 | Lee et al. | May 2001 | B1 |
6240321 | Janke et al. | May 2001 | B1 |
6243608 | Pauly et al. | Jun 2001 | B1 |
6248080 | Miesel et al. | Jun 2001 | B1 |
6263245 | Snell | Jul 2001 | B1 |
6265100 | Saaski et al. | Jul 2001 | B1 |
6266554 | Hsu et al. | Jul 2001 | B1 |
6272379 | Fischell et al. | Aug 2001 | B1 |
6280409 | Stone et al. | Aug 2001 | B1 |
6289229 | Crowley | Sep 2001 | B1 |
6306088 | Krausman et al. | Oct 2001 | B1 |
6310960 | Saaski et al. | Oct 2001 | B1 |
6315721 | Schulman et al. | Nov 2001 | B2 |
6324418 | Crowley et al. | Nov 2001 | B1 |
6324421 | Stadler et al. | Nov 2001 | B1 |
RE37463 | Altman | Dec 2001 | E |
6343227 | Crowley | Jan 2002 | B1 |
6343233 | Werner et al. | Jan 2002 | B1 |
6347245 | Lee et al. | Feb 2002 | B1 |
6358202 | Arent | Mar 2002 | B1 |
6361522 | Scheiner et al. | Mar 2002 | B1 |
6363282 | Nichols et al. | Mar 2002 | B1 |
6364831 | Crowley | Apr 2002 | B1 |
6381492 | Rockwell et al. | Apr 2002 | B1 |
6381493 | Stadler et al. | Apr 2002 | B1 |
6381494 | Gilkerson et al. | Apr 2002 | B1 |
6383209 | Crowley | May 2002 | B1 |
6385593 | Linberg | May 2002 | B2 |
6386882 | Linberg | May 2002 | B1 |
6397100 | Stadler et al. | May 2002 | B2 |
6402689 | Scarantino et al. | Jun 2002 | B1 |
6405073 | Crowley et al. | Jun 2002 | B1 |
6405083 | Rockwell et al. | Jun 2002 | B1 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6409675 | Turcott | Jun 2002 | B1 |
6412490 | Lee | Jul 2002 | B1 |
6418346 | Nelson et al. | Jul 2002 | B1 |
6423056 | Ishikawa et al. | Jul 2002 | B1 |
6424866 | Mika et al. | Jul 2002 | B2 |
6428484 | Battmer et al. | Aug 2002 | B1 |
6434429 | Kraus et al. | Aug 2002 | B1 |
6438410 | Hsu et al. | Aug 2002 | B2 |
6438417 | Rockwell et al. | Aug 2002 | B1 |
6442433 | Linberg | Aug 2002 | B1 |
6444970 | Barbato | Sep 2002 | B1 |
6445953 | Bulkes et al. | Sep 2002 | B1 |
6458145 | Ravenscroft et al. | Oct 2002 | B1 |
6459928 | Mika et al. | Oct 2002 | B2 |
6459937 | Morgan et al. | Oct 2002 | B1 |
6466820 | Juran et al. | Oct 2002 | B1 |
6468263 | Fischell et al. | Oct 2002 | B1 |
6470215 | Kraus et al. | Oct 2002 | B1 |
6471645 | Warkentin et al. | Oct 2002 | B1 |
6472991 | Schulman et al. | Oct 2002 | B1 |
6477424 | Thompson et al. | Nov 2002 | B1 |
6480733 | Turcott | Nov 2002 | B1 |
6482154 | Haubrich et al. | Nov 2002 | B1 |
6484055 | Marcovecchio | Nov 2002 | B1 |
6484057 | Ideker et al. | Nov 2002 | B2 |
6490487 | Kraus et al. | Dec 2002 | B1 |
6496715 | Lee et al. | Dec 2002 | B1 |
6500168 | Jellie | Dec 2002 | B1 |
6501983 | Natarajan et al. | Dec 2002 | B1 |
6512949 | Combs et al. | Jan 2003 | B1 |
6512959 | Gomperz et al. | Jan 2003 | B1 |
6522926 | Kieval et al. | Feb 2003 | B1 |
6522928 | Whitehurst et al. | Feb 2003 | B2 |
6539257 | KenKnight | Mar 2003 | B1 |
6556860 | Groenewegen | Apr 2003 | B1 |
6558321 | Burd et al. | May 2003 | B1 |
6564807 | Schulman et al. | May 2003 | B1 |
6567680 | Swetlik et al. | May 2003 | B2 |
6571120 | Hutten | May 2003 | B2 |
6574509 | Kraus et al. | Jun 2003 | B1 |
6574511 | Lee | Jun 2003 | B2 |
6580946 | Struble | Jun 2003 | B2 |
6580948 | Haupert et al. | Jun 2003 | B2 |
6584351 | Ekwall | Jun 2003 | B1 |
6584352 | Combs et al. | Jun 2003 | B2 |
6589187 | Dirnberger et al. | Jul 2003 | B1 |
6592518 | Denker et al. | Jul 2003 | B2 |
6594523 | Levine | Jul 2003 | B1 |
6597948 | Rockwell et al. | Jul 2003 | B1 |
6597952 | Mika et al. | Jul 2003 | B1 |
6609023 | Fischell et al. | Aug 2003 | B1 |
6611710 | Gomperz et al. | Aug 2003 | B2 |
6615075 | Mlynash et al. | Sep 2003 | B2 |
6622043 | Kraus et al. | Sep 2003 | B1 |
6647292 | Bardy et al. | Nov 2003 | B1 |
6648823 | Thompson | Nov 2003 | B2 |
6649078 | Yu | Nov 2003 | B2 |
6654638 | Sweeney | Nov 2003 | B1 |
6658285 | Potse et al. | Dec 2003 | B2 |
6658297 | Loeb | Dec 2003 | B2 |
6658301 | Loeb et al. | Dec 2003 | B2 |
6659959 | Brockway et al. | Dec 2003 | B2 |
6669631 | Norris et al. | Dec 2003 | B2 |
6681135 | Davis et al. | Jan 2004 | B1 |
6684100 | Sweeney et al. | Jan 2004 | B1 |
6687540 | Marcovecchio | Feb 2004 | B2 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6689117 | Sweeney et al. | Feb 2004 | B2 |
6690959 | Thompson | Feb 2004 | B2 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6695885 | Schulman et al. | Feb 2004 | B2 |
6697672 | Andersson | Feb 2004 | B2 |
6699200 | Cao et al. | Mar 2004 | B2 |
6702857 | Brauker et al. | Mar 2004 | B2 |
6704602 | Berg et al. | Mar 2004 | B2 |
6711440 | Deal et al. | Mar 2004 | B2 |
6721597 | Bardy et al. | Apr 2004 | B1 |
6728572 | Hsu et al. | Apr 2004 | B2 |
6728574 | Ujhelyi et al. | Apr 2004 | B2 |
6731976 | Penn et al. | May 2004 | B2 |
6731979 | MacDonald | May 2004 | B2 |
6733485 | Whitehurst et al. | May 2004 | B1 |
6735474 | Loeb et al. | May 2004 | B1 |
6738670 | Almendinger et al. | May 2004 | B1 |
6741877 | Shults et al. | May 2004 | B1 |
6741886 | Yonce | May 2004 | B2 |
6746404 | Schwartz | Jun 2004 | B2 |
6754538 | Linberg | Jun 2004 | B2 |
6760620 | Sippens Groenewegen | Jul 2004 | B2 |
6764446 | Wolinsky et al. | Jul 2004 | B2 |
6768923 | Ding et al. | Jul 2004 | B2 |
6783499 | Schwartz | Aug 2004 | B2 |
6785576 | Verness | Aug 2004 | B2 |
6786860 | Maltan et al. | Sep 2004 | B2 |
6792314 | Byers et al. | Sep 2004 | B2 |
6799069 | Weiner et al. | Sep 2004 | B2 |
6804559 | Kraus et al. | Oct 2004 | B1 |
6804561 | Stover | Oct 2004 | B2 |
6809507 | Morgan et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6821154 | Canfield et al. | Nov 2004 | B1 |
6823217 | Rutten et al. | Nov 2004 | B2 |
6824512 | Warkentin et al. | Nov 2004 | B2 |
6829508 | Schulman et al. | Dec 2004 | B2 |
6839596 | Nelson et al. | Jan 2005 | B2 |
6848052 | Hamid et al. | Jan 2005 | B2 |
6850801 | Kieval et al. | Feb 2005 | B2 |
6862465 | Shults et al. | Mar 2005 | B2 |
6862480 | Cohen et al. | Mar 2005 | B2 |
6865420 | Kroll | Mar 2005 | B1 |
6869404 | Schulhauser et al. | Mar 2005 | B2 |
6871099 | Whitehurst et al. | Mar 2005 | B1 |
6878112 | Linberg et al. | Apr 2005 | B2 |
6879695 | Maltan et al. | Apr 2005 | B2 |
6879855 | Schulman et al. | Apr 2005 | B2 |
6882875 | Crowley | Apr 2005 | B1 |
6889081 | Hsu | May 2005 | B2 |
6893395 | Kraus et al. | May 2005 | B1 |
6895279 | Loeb et al. | May 2005 | B2 |
6895281 | Amundson et al. | May 2005 | B1 |
6896651 | Gross et al. | May 2005 | B2 |
6897788 | Khair et al. | May 2005 | B2 |
6901294 | Whitehurst et al. | May 2005 | B1 |
6901296 | Whitehurst et al. | May 2005 | B1 |
6907285 | Denker et al. | Jun 2005 | B2 |
6907293 | Grill et al. | Jun 2005 | B2 |
6912420 | Scheiner et al. | Jun 2005 | B2 |
6917833 | Denker et al. | Jul 2005 | B2 |
6925328 | Foster et al. | Aug 2005 | B2 |
6931327 | Goode, Jr. et al. | Aug 2005 | B2 |
6999821 | Jenney et al. | Feb 2006 | B2 |
7001372 | Richter | Feb 2006 | B2 |
7023359 | Goetz et al. | Apr 2006 | B2 |
7146222 | Boling | Dec 2006 | B2 |
7146225 | Guenst et al. | Dec 2006 | B2 |
7164950 | Kroll et al. | Jan 2007 | B2 |
7181505 | Haller et al. | Feb 2007 | B2 |
7187971 | Sommer et al. | Mar 2007 | B2 |
7200437 | Nabutovsky et al. | Apr 2007 | B1 |
7289853 | Campbell et al. | Oct 2007 | B1 |
7363090 | Halperin et al. | Apr 2008 | B2 |
7558631 | Cowan et al. | Jul 2009 | B2 |
7565195 | Kroll et al. | Jul 2009 | B1 |
7630767 | Poore et al. | Dec 2009 | B1 |
7634313 | Kroll et al. | Dec 2009 | B1 |
20020116028 | Greatbatch et al. | Aug 2002 | A1 |
20020147488 | Doan et al. | Oct 2002 | A1 |
20030163184 | Schiener | Aug 2003 | A1 |
20040011366 | Schulman et al. | Jan 2004 | A1 |
20040143262 | Visram et al. | Jul 2004 | A1 |
20040147973 | Hauser | Jul 2004 | A1 |
20040167587 | Thompson | Aug 2004 | A1 |
20040172116 | Seifert et al. | Sep 2004 | A1 |
20040193223 | Kramer et al. | Sep 2004 | A1 |
20040249417 | Ransbury et al. | Dec 2004 | A1 |
20040260349 | Stroebel | Dec 2004 | A1 |
20050038474 | Wool | Feb 2005 | A1 |
20050096702 | Denker et al. | May 2005 | A1 |
20050131478 | Kim et al. | Jun 2005 | A1 |
20050149138 | Min et al. | Jul 2005 | A1 |
20050165465 | Pianca et al. | Jul 2005 | A1 |
20050267555 | Marnfeldt et al. | Dec 2005 | A1 |
20050288722 | Eigler et al. | Dec 2005 | A1 |
20060085039 | Hastings et al. | Apr 2006 | A1 |
20060085041 | Hastings et al. | Apr 2006 | A1 |
20060085042 | Hastings et al. | Apr 2006 | A1 |
20060121475 | Davids et al. | Jun 2006 | A1 |
20060135999 | Bodner et al. | Jun 2006 | A1 |
20060136004 | Cowan et al. | Jun 2006 | A1 |
20060161222 | Haubrich et al. | Jul 2006 | A1 |
20060241705 | Neumann et al. | Oct 2006 | A1 |
20060247750 | Seifert et al. | Nov 2006 | A1 |
20070088394 | Jacobson | Apr 2007 | A1 |
20070088396 | Jacobson | Apr 2007 | A1 |
20070088397 | Jacobson | Apr 2007 | A1 |
20070088398 | Jacobson | Apr 2007 | A1 |
20070088400 | Jacobson | Apr 2007 | A1 |
20070088418 | Jacobson | Apr 2007 | A1 |
20070276004 | Hirsch et al. | Nov 2007 | A1 |
20070293904 | Gelbart et al. | Dec 2007 | A1 |
20080004535 | Smits | Jan 2008 | A1 |
20080119911 | Rosero | May 2008 | A1 |
20080269591 | Halperin et al. | Oct 2008 | A1 |
20090082828 | Ostroff | Mar 2009 | A1 |
20090171408 | Solem | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
1741465 | Jan 2007 | EP |
WO 9837926 | Sep 1998 | WO |
WO 2006065394 | Jun 2006 | WO |
WO 2007047681 | Apr 2007 | WO |
WO 2007059386 | May 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20070088405 A1 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
60726706 | Oct 2005 | US | |
60729671 | Oct 2005 | US | |
60737296 | Nov 2005 | US | |
60739901 | Nov 2005 | US | |
60749017 | Dec 2005 | US | |
60761531 | Jan 2006 | US | |
60761740 | Jan 2006 | US |