The present invention relates generally to programming for electrical stimulation of the spinal cord.
Spinal cord stimulation can be used to treat chronic pain by providing electrical stimulation pulses from an electrode array implanted in close proximity to a patient's spinal cord. It is desirable to tailor the electrical stimulation parameters (such as electrode contact selection, polarity selection, pulse amplitude, pulse width, and pulse rate) for treatment of a particular patient. However, the process of selecting stimulation parameters can be time consuming and may require a great deal of trial-and-error before a suitable therapeutic program is found. Often, these parameters are selected based on intuition or some other idiosyncratic methodology. Because the programming of spinal cord stimulation can be such a cumbersome process, there is a need for assistance in the planning or performing of electrical stimulation of a patient's spinal cord.
The present invention provides a tool for assisting in the planning or performing of electrical neuromodulation of a patient's spinal cord. The tool may be embodied as computer software or a computer system. In certain embodiments, the present invention provides a method for assisting the planning or performing of spinal cord neuromodulation in a patient, comprising: (a) having a functional image of the patient's spinal anatomy, wherein the functional image of the spinal anatomy includes an electrode and information defining functional regions of the spinal anatomy according to one or more neurologic functions; (b) determining the position of the electrode relative to the functional regions; (c) selecting a target functional region of the spinal anatomy; (d) having an electric field model of an electrode positioned adjacent the patient's spinal cord; and (e) determining one or more electrode neuromodulation settings that produces a volume of activation that at least partially encompasses the targeted functional region of the spinal anatomy.
In certain embodiments, the present invention provides a method for assisting the planning or performing of spinal cord neuromodulation in a patient, comprising: (a) receiving a first radiologic image of an electrode inside a patient, wherein the electrode is in a first position; (b) receiving a second radiologic image of the electrode after a change in the position of the electrode, wherein the electrode is in a second position; (c) determining the position of the electrode in the second position relative to the electrode in the first position; (d) calculating a first volume of activation generated by the electrode in the first position; and (e) determining an electrode neuromodulation setting for the electrode in the second position that produces a second volume of activation that at least partially encompasses the first volume of activation.
In certain embodiments, the present invention provides a method for assisting the planning or performing of spinal cord neuromodulation in a patient, comprising: (a) receiving a radiologic image of the patient showing one or more electrodes inside the patient; (b) locating the one or more electrodes in the radiologic image, wherein the one or more electrodes collectively have multiple electrode contacts; and (c) determining a functional midline for the one or more electrodes.
In certain embodiments, the present invention provides a method for assisting the planning or performing of spinal cord neuromodulation in a patient, comprising: (a) having an electric field model of an electrode positioned adjacent a spinal cord, wherein the model includes a representation of the depth of the cerebrospinal fluid between the electrode and the spinal cord; and (b) using the electric field model to calculate a volume of activation created by the electrode under a set of electrode neuromodulation conditions.
In certain embodiments, the present invention provides a method for assisting the planning or performing of spinal cord neuromodulation in a patient, comprising: (a) receiving a first radiologic image showing an electrode and a spinal anatomy of the patient; (b) receiving a second radiologic image showing the electrode and the spinal anatomy of the patient, wherein the second radiologic image provides a different view than the first radiologic image; and (c) using the first radiologic image and the second radiologic image to determine the three-dimensional position of the electrode in relation to the spinal anatomy.
The present invention provides a tool for assisting in the planning or performing of electrical neuromodulation of a patient's spinal cord (sometimes referred to in the art as spinal cord stimulation). In certain embodiments, the tool provides a simulation of how much volume of neural tissue is affected by the electrical neuromodulation. As used herein, the term “volume of activation” means a volume of neural tissue in which the neurons are activated by the electric field being applied to the neural tissue during electrical neuromodulation. Neural activation may have a stimulatory effect or an inhibitory effect on the neural tissue, or a combination of both. Although the volume refers to a three-dimensional space, the calculation, analysis, and/or displaying of the volume as described herein does not necessarily have to be performed in three dimensions. Such actions may be performed in two dimensions instead. For example, the volume of activation may be calculated in a two-dimensional plane and shown as a two-dimensional image.
The present invention may use any suitable method for calculating a volume of activation for neural tissue. For example, methods for calculating a volume of activation suitable for use in the present invention include those described in U.S. Pat. No. 7,346,382 (McIntyre et al.), U.S. Patent Application Publication No. 2007/0288064 (Butson et al.), and U.S. Patent Application Publication No. 2009/0287271 (Blum et al.), which are incorporated in their entirety by reference herein. In certain embodiments, to calculate a volume of activation, the tool uses a mathematical model of the electric field generated by one or more electrodes positioned adjacent the spinal cord of a patient. The mathematical model may be any suitable type of model that can be used to model an electric field created by an electrode, such as finite element models of the electrode(s) and the tissue medium.
The electric field generated by an electrode is dependent upon various conditions of the electrode itself, including the electrode position, electrode orientation, electrode configuration, electrode contact polarity, electrode contact selection, electrode contact capacitance, electrode contact impedance, and waveform parameters (e.g., shape, pulse width, frequency, voltage, etc.). As used herein, “electrode neuromodulation conditions” refers to one or more of these factors. A set of electrode neuromodulation conditions may include one or more of these factors. For a given set of electrode neuromodulation conditions, the tool can calculate a volume of activation produced by the electrode. As used herein, the term “electrode neuromodulation settings” refers to a subset of electrode neuromodulation conditions that relate more specifically to the electrode contacts and can be adjusted during the operation of the electrode to vary the electric field. Examples of electrode neuromodulation settings include electrode contact selection and waveform parameters (e.g., shape, pulse width, frequency, voltage, etc.).
As used herein, the term “electrode” refers to the lead body along with the electrode contacts on the lead body. When referring to position, it is convenient to refer to the electrode as a whole, rather than referring to the position of the electrode contacts or lead body individually because the electrodes contacts are fixed on the lead body. Therefore, if the position of the electrode contacts relative to the lead body is known, then the position of the electrode contacts can be determined from the position of the lead body, and vice versa. Because of this fixed relationship, any reference to the position of the electrode is intended to include the position of the lead body and the electrode contacts as well. Also, when referring to the “position” of the electrode, this is intended to include the orientation of the electrode as well.
The electric field model can be solved for the spatial and temporal voltage distribution that represents the electric field that is created in the tissue medium by the electrode according to a particular set of electrode neuromodulation conditions. In certain embodiments, the electric field model is coupled to a neuron model to determine whether the electric potential at a given point in space is sufficient to activate neurons in the tissue medium. The boundaries of neuronal activation predicted by the neuron model determines the volume of activation. Examples of such methods that can be used in the present invention include those described in U.S. Pat. No. 7,346,382 (McIntyre et al.), U.S. Patent Application Publication No. 2007/0288064 (Butson et al.), and U.S. Patent Application Publication No. 2009/0287271 (Blum et al.), which are incorporated by reference herein. Where radiologic imaging of the spinal anatomy is available, the model axons of the neuron model can be aligned to the orientation of the spinal cord or spinal column.
Another way in which the volume of activation can be determined is by calculating the second order spatial derivative of the electric potential that is distributed around the electrode. The second spatial derivative is then compared against an activation threshold. The activation threshold is the threshold value at which a neuron is activated at that particular point in space for the tissue medium. If the second spatial derivative of the electric potential exceeds the activation threshold, then the neuron at that point in space is considered to be activated. The second order spatial derivative can be calculated by numerical or approximation techniques. For example, the second difference of the electrical potential can be used to approximate the second order derivative, as described in U.S. Pat. No. 7,346,382 (McIntyre et al.), U.S. Patent Application Publication No. 2007/0288064 (Butson et al.), and U.S. Patent Application Publication No. 2009/0287271 (Blum et al.), which are incorporated by reference herein.
These activation thresholds are determined from the application of the calculated electric field to the neuron model, as described above. However, the manner in which the activation thresholds are provided can vary according to different embodiments of the present invention. In some embodiments, these activation thresholds can be calculated during the operation of the tool. However, it is also possible to have these activation thresholds calculated prior to the operation of the tool. In this case, the activation thresholds are predefined for use during the operation of the tool. For example, based on the pre-calculations, equations may be formulated that give the activation thresholds as a function of distance from the electrode and one or more electrode neuromodulation conditions (such as pulse width and voltage). Thus, during operation of the tool, the tool may use one or more of these equations to calculate the activation thresholds by inputting the relevant values into the equation and solving the equations to obtain a spatial map of the activation thresholds. Thus, based on a given set of neuromodulation conditions, the spatial contour of the activation thresholds can be established and used to determine the volume of activation as the isosurface where the second spatial derivative is suprathreshold. In addition to these methods, other methods for determining a volume of activation by an electrode can be used in the present invention, such as those methods described in U.S. Patent Application Publication No. 2007/0288064 (Butson et al.) and U.S. Patent Application Publication No. 2009/0287271 (Blum et al.), which are incorporated by reference herein.
Electrode Registration
In certain embodiments, the tool may use a radiologic image in performing the functions that are described herein. The radiologic image may show the electrodes and/or various portions of the patient's spinal anatomy. As used herein, “spinal anatomy” means the anatomy relating to the spinal column, which includes the spinal cord, the vertebral bodies, nerves, and/or other soft or bony tissue of the spinal column. The radiologic image may be any type of body imaging used in medicine, such as x-rays (including conventional film and fluoroscopic x-rays), magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), etc. For example, the radiologic image may be an anterior-posterior view or a lateral view x-ray of the patient's spine. The radiologic image may not necessarily show all portions of the spinal anatomy. The portion of the patient's spinal anatomy that is visible on the radiologic image will depend upon the type of imaging modality used. For example, in x-ray images, only the bony structures may be visible in the image (but not the spinal cord itself). In MR images, the spinal cord itself may be visible, in addition to the bony and other soft tissue elements.
In the tool, the radiologic images are embodied as data structures (e.g., digital images). In some cases, the radiologic image may be used to register the location of the electrode. For example, the tool may register the electrode relative to a landmark of the spinal anatomy that is visible on the radiologic image. For example, in the case of x-ray images, the location of the electrode can be registered relative to the vertebral bodies that are visible on the image. As will be explained below, the location of the electrode relative to the spinal cord itself can be estimated based on the association between the vertebral level and the spinal cord level.
As explained above, when referring to position, it is convenient to refer to the electrode as a whole, rather than referring to the position of the electrode contacts or lead body individually because the electrode contacts are fixed on the lead body. As a result, if the position of the lead body is registered by the tool, then the electrode contacts on the lead body can also be considered to be registered as well, and vice versa. Whether the tool will locate the lead body or the electrode contacts directly will depend on a variety of factors, such as its visibility in the radiologic image. Since the lead body is larger, in some cases, it may be more practical to locate the lead body and then locate the position of the electrode contacts based on the lead body position. In other cases, since the electrode contacts may be more radiopaque and more readily identifiable on CT or x-ray, it may be more practical to locate the electrode contacts in the image.
The electrode can be located automatically or manually in the radiologic image. Example methods of locating and registering an electrode that can be used in the present invention are described in U.S. Patent Application Publication No. 2009/0287271 (Blum et al.), which is incorporated by reference herein.
Where there are multiple electrodes (two or more) present in the radiologic image, the tool may determine the position of the electrodes in relation to each other and/or the spinal anatomy. In some cases, three-dimensional positional information can be reconstructed from multiple (two or more) different two-dimensional views of the electrode and the angle between the different views. This three-dimensional reconstruction can be performed using any suitable technique known in the art.
For example,
Thus, in certain embodiments, the tool may receive a first radiologic image (e.g., an anterior-posterior view x-ray) showing an electrode and the spinal anatomy of the patient, and receive a second radiologic image (e.g., a lateral view x-ray) showing the electrode and the spinal anatomy of the patient. The second radiologic image provides a different view than the first radiologic image so that they can be used to determine the three-dimensional position of the electrode in relation to the spinal anatomy. In some cases, the first and second radiologic images are used to determine the three-dimensional position of the multiple electrodes in relation to each other. Once the position of the electrodes is determined, a three-dimensional image of the electrodes and the spinal anatomy may be displayed to the user. The three-dimensional image may be rotated, panned, and zoomed to allow the user to precisely explore the actual device positioning in space.
Functional Images
In certain embodiments, in addition to anatomical structures, the radiologic image of the spinal anatomy may include information associating parts of the image to one or more neurologic functions (i.e., a functional image). The functional image may also include other symbolic information, such as structure names, object features, target volumes generated from previous patient data, anatomic landmarks, or boundaries. The neurologic functions in the functional image may be either motor or sensory functions. In some cases, the functional image may define different levels of the spinal cord in the image. For example, the functional image may include information that associates different parts of the image with the dermatomes that are innervated by the different spinal cord levels, as will be further explained below.
Functional information can be incorporated into the image data using any suitable technique known in the art. In some cases, the functional information is incorporated by registering a patient-specific radiologic image to a standard atlas of the same anatomy. A standard atlas is an atlas of the spinal anatomy that is intended to represent the typical or normal anatomy that is present in human beings. As such, the standard atlas can be derived from a composite of the anatomy of multiple individuals to be representative of “normal” or “typical” human anatomy. The tool may have multiple standard atlases (e.g., variants of normal anatomy) and allow the user to select one that is a closest match to the patient being treated.
Registration of the patient-specific image to the standard atlas may be performed using any suitable technique known in the art, including the methods described in U.S. Patent Application Publication No. 2009/0287271 (Blum et al.). For example, the image registration process may involve a transformation of the patient-specific image to match or fit the standard atlas, a transformation of the standard atlas to match or fit the patient-specific image, or some combination of both. In some cases, the image registration process may use anatomic landmarks that have been established in the image. These anatomic landmarks can be identified manually by a user or automatically by the tool. For example, in an x-ray of the spine, the vertebral bodies may be identified and registered into the image. Once the anatomic landmarks are identified, the patient-specific radiologic image can be scaled or morphed to fit the standard atlas using the transformation process described above.
For example,
A dermatome is an area of the skin that is predominantly innervated by nerves originating from a single spinal level.
As seen in
As an alternative to having the user identify each vertebra, the positions of the vertebrae may be identified based on a user identification of a single vertebra in an image. For example, the user may input a vertebral outline, or part of a vertebral outline, along with an identification of the vertebra to which the outline corresponds (e.g., T1). The image is then analyzed to extrapolate the positions of the remaining vertebrae based on their relative positions to the outlined vertebra.
Targeting of Neuromodulation
In certain embodiments, the tool can be used to select a region of the spinal cord as a target for electrical neuromodulation. The selection of the target region can be provided in any suitable manner. For example, the targeted region can be input by the user as a specific anatomic structure (such as a vertebral level), a segment of the spinal cord, a dermatome level, or an area of the body where the patient is experiencing pain or discomfort. In the example where the user indicates one or more dermatome levels as a targeted region, the tool may determine the spinal cord level(s) and/or vertebral level(s) that correspond to those dermatomes. In the example where the user indicates where the patient is experiencing pain or discomfort, the tool may determine the one or more dermatomes associated with that part of the body, and then select one or more spinal cord levels and/or vertebral levels that correspond to that dermatome.
Having selected the targeted region, the tool can then find a set of electrode neuromodulation conditions that would direct the electrical neuromodulation to that targeted region by comparing the predicted volumes of activation against the targeted region. For example, the tool may use a scoring technique that measures the effectiveness of the neuromodulation based on how much of the predicted volume of activation encompasses the targeted region, how much of the targeted region is within the predicted volume of activation, how much of the predicted volume of activation is outside the targeted region, how much of the targeted region is outside the predicted volume of activation, how much of the predicted volume of activation encompasses neural tissue that would cause side effects, or a combination thereof. The tool may calculate multiple predicted volumes of activation under different neuromodulation conditions in order to find a suitable set of electrode neuromodulation conditions. When a combination of scoring factors is used, the different factors may be weighted differently according to their relative importance in determining the therapeutic effectiveness of the neuromodulation. In some cases, an improved or optimal set of neuromodulation conditions can be determined by using an optimization algorithm to find a set of electrode neuromodulation conditions that produces a volume of activation having the best score (e.g., highest or lowest score).
For example,
Dermatome targeting using patient feedback about where the electrically-induced parasthesia is located in their body may not always be reliable because the patient's sensory perception may not be accurate or the patient may not sense sufficient parasthesia from the electrical neuromodulation. In certain embodiments, the dermatome location of the electrical neuromodulation can be localized more precisely using electromyography (EMG). For EMG localization of electrical neuromodulation, a number of EMG electrodes are placed on the patient's body. Electrical neuromodulation of the sensory fibers in the spinal cord can elicit a reflexive motor response and these motor responses can be detected as EMG signals in the specific dermatomes. Thus, by analyzing the EMG signals during electrical neuromodulation, the dermatome location of the electrical neuromodulation can be identified more precisely, thus allowing more accurate targeting of electrical neuromodulation.
In certain embodiments, the electrode used in the neuromodulation may also have recording electrodes which can sense neural signals passing through sensory nerve fibers. This can be useful for improved accuracy in identifying where the patient is experiencing pain or discomfort. The sensory signals passing through these sensory fibers may be produced by applying a sensory stimulation to the area where the patient is feeling the pain or discomfort. A variety of different kinds of sensory stimulations can be used, such as applying a dull touch, a sharp prick, or a slight electrical pulse to the skin. The recording electrode could sense this signal being transmitted along nearby sensory fibers as an increase in local field potential. Based on which recording contact records the strongest signal, or based on the distribution of the signal across multiple contacts, the fiber(s) carrying the sensory stimulation signal from the afflicted dermatome is identified. Moreover, the strength of the signal can be used to determine the magnitude of the patient's pain or discomfort in that area.
Cerebrospinal Fluid
One of the factors influencing the electric field generated by an electrode is the electrical conductivity of the surrounding tissue medium (e.g., the electrical conductivity of the spinal cord neural tissue or other body tissue in the vicinity of the electrode, such as cerebrospinal fluid, tissue membranes, encapsulation tissue around the electrode, etc.). Thus, the electric field model used by the tool may include a characterization of the tissue electrical conductivity. In some cases, different anatomical structures may be represented as having different electrical conductivities in the electric field model. One of the tissue mediums that may be relevant in spinal cord neuromodulation is the cerebrospinal fluid (CSF) that surrounds the spinal cord. The CSF is considered to be relatively more electrically conductive compared to the other surrounding tissue.
In certain embodiments, the electric field model may account for the amount of CSF that is present between the electrode and the spinal cord. For example, the electric field model may account for the thickness (in dimensional terms, not viscosity) of the CSF between the electrode and the spinal cord. The dimensional thickness of the CSF can be determined using various approaches. In some cases, the thickness of the CSF can be determined by using a radiologic image, such as an axial view MR image. In some cases, the thickness of the CSF can be approximated based on the electrode position relative to the spinal anatomy. For example, the thickness of the CSF can be approximated based on the vertebral level where the electrode is positioned or the size of the vertebrae where the electrode is positioned (in general, the size of the vertebral bodies progressively increase moving from the cervical to the lumbar spine). Accounting for the electrical conductivity of CSF may allow the tool to calculate a more accurate the volume of activation.
Total Potential Volume of Activation
In certain embodiments, the tool can show the total potential volume of activation capable of being produced by an electrode at a given position. The total potential volume of activation can be displayed as the overlap of the volume of activations produced by the highest tolerable amplitude anode/cathode pulse for each electrode. Knowing the total potential volume of activation may be useful during initial surgical implantation of the electrode to help position the electrode at a location that will meet both current and possible future coverage needs (e.g., accounting for the possibility of electrode migration, worsening pain, or wider extent of pain). The feature can also be useful for quickly seeing how much area has been tested by overlaying a history of stimulated regions and the total potential volume of activation. This feature can also allow the user to view spaces that are outside the potential volume of activation for a given electrode placement. For example, if two electrodes are staggered or canted, they may leave regions of the spinal cord unable to be reached by electrical neuromodulation. Displaying the total potential volume of activation would allow this to be realized during intraoperative or postoperative programming.
This display of the total potential volume of activation can be turned on and off, and may appear in a variety of colors, gradients, and patterns to best suit visualization. In addition, it may be layered with current neuromodulation settings or previously trialed settings to compare the total potential volume of activation with volumes already tested. As with other display features, the total potential volume of activation can be displayed as a two-dimensional area on a spinal cord or as a three-dimensional volume. The total potential volume of activation may also be used to predict dermatome regions capable of neuromodulation, which would then be displayed on a two-dimensional or three-dimensional representation of the spinal cord. The total potential volume of activation could also be shown as all the dermatome regions capable of being affected by the neuromodulation, which could be displayed on an image of a human figure.
Functional Midline
When multiple electrodes (two or more) are implanted into a patient, the electrodes are often not parallel to each other or not in level alignment with each other (e.g., one is higher than the other), and moreover, the position of the electrodes relative to the spinal cord is often not known since the spinal cord may not be visible on x-ray images. Where multiple electrodes are being modeled by the tool, the tool may determine a functional midline in the neuromodulation space around the electrodes. The functional midline is an imaginary line running in the neuromodulation space of the electrodes, which corresponds to the sensory midline of the patient's body, and which could be aligned to the physiologic midline of the patient's spinal cord. The functional midline is established by finding a set of neuromodulation settings that induces parasthesia in the center of the patient's body. The functional midline can then be derived from the relative pulse intensities between the multiple electrodes. The tool may also determine the functional midline for a paddle-type electrode having an array of electrode contacts on a single electrode lead or a single electrode that is implanted in a lateral orientation.
An example of how this may be performed is illustrated in
When the patient indicates that the parasthesia is being sensed in the center of their body, the relative pulse intensities of the left and right top-most electrode contacts 52 gives the proportionate distance of the functional midpoint from the respective left and right electrode contacts 52. As shown in
Once the functional midline is determined, this information can be used in various ways to assist in electrical neuromodulation of a patient's spinal cord. One use for the functional midline is for aligning the electrodes with respect to the physiologic midline of the spinal cord. For example,
Thus, in certain embodiments, the tool receives a radiologic image of the patient showing one or more electrodes inside the patient and locates the one or more electrodes in the radiologic image. The one or more electrodes collectively have multiple electrode contacts. The tool determines the functional midline for the one or more electrodes and may display on a display screen, an image of a spinal cord and the one or more electrodes such that the functional midline of the one or more electrodes is aligned to the physiologic midline of the spinal cord.
In some cases, the tool may receive information about the relative electrical neuromodulation intensity between a first electrode contact among the multiple electrode contacts and a first counterpart electrode contact among the multiple electrode contacts. Based on the relative electrical neuromodulation intensities, the tool can determine a first midpoint between the first electrode contact and the first counterpart electrode contact. The tool may further receive information about the relative electrical neuromodulation intensity between a second electrode contact among the multiple electrode contacts and a second counterpart electrode contact among the multiple electrode contacts. Based on the relative electrical neuromodulation intensities, the tool can determine a second midpoint between the second electrode contact and the second counterpart electrode contact. The functional midline can be established as the line between the first midpoint and the second midpoint. This method may be applied to a single electrode (e.g., a paddle-type electrode having multiple electrode contacts arranged in an array) or multiple separate electrodes.
In cases where there are multiple separate electrodes (which collectively have multiple electrode contacts), a functional midline may be found using a first electrode contact which is on a first one of the multiple electrodes and a first counterpart electrode contact on a second one of the multiple electrodes. Based on the relative electrical neuromodulation intensities, the tool can determine a first midpoint between the first electrode contact and the first counterpart electrode contact. Furthermore, the tool may receive information about the relative electrical neuromodulation intensity between a second electrode contact on the first one of the multiple electrodes and a second counterpart electrode contact on the second one of the multiple electrodes. Based on the relative electrical neuromodulation intensities, the tool can determine a second midpoint between the second electrode contact and the second counterpart electrode contact; and establish the functional midline as a line between the first midpoint and the second midpoint.
Adaptive Searching
The functional midline can also be used to assist in targeting of the spinal cord neuromodulation to the appropriate side of the body (right vs. left side). Based on whether the patient's symptoms are on the left or right side of their body, the electrical neuromodulation to the spinal cord can be directed to the same side (left or right) of the functional midline. This targeting may be implemented through a binary searching algorithm.
For example,
Electrode Migration
One of the problems associated with spinal cord neuromodulation is changes in the position of the electrode after its implantation. For example, the electrode may migrate to a different location (e.g., move downwards or move to the side in a “windshield-wiper” fashion) or change its orientation (e.g., the long axis of the electrode may tilt to a different direction, or in the case of a directional electrode contact, rotate towards a different direction). This change in the position of the electrode can result in a loss of therapeutic efficacy. In certain embodiments, the tool of the present invention can adjust the neuromodulation settings to accommodate for the change in electrode position. A change in the position of the electrode can be detected on a radiologic image, such as x-ray images, in the manner described above.
In some cases, the tool may compare the position of the electrode in a radiologic image taken prior to migration of the electrode (e.g., a post-operative x-ray) to the position of the electrode after migration. Based on the relative positioning of the electrode before and after migration, the tool can adjust one or more of the electrode neuromodulation settings to redirect the neuromodulation to the original target. In the example shown in
Thus, in certain embodiments, the tool receives a first radiologic image of an electrode inside a patient, wherein the electrode is in a first position. The tool further receives a second radiologic image of the electrode after a change in the electrode's position, wherein the electrode is in a second position. The tool determines the position of the electrode in the second position relative to the electrode in the first position and calculates a first volume of activation generated by the electrode in the first position. The tool can then determine an electrode neuromodulation setting for the electrode in the second position that produces a second volume of activation that at least partially encompasses the first volume of activation. The tool may display the second volume of activation on a display screen.
In some cases, the tool calculates multiple test volumes of activation using different electrode neuromodulation settings and compares the multiple test volumes of activation to the first volume of activation. Based on the comparison of the multiple test volumes of activation, the tool selects an electrode neuromodulation setting for the electrode in the second position that produces the second volume of activation.
Automated Serial Review of Electrode Contacts
In certain embodiments, the tool may also have a programming mode that automates the standard monopolar review process. In this mode, the user is asked to identify the pain location and severity. Then, each consecutive electrode contact is activated at a tolerable amplitude. The patient is asked to identify the location of the parasthesia and what level of pain they are currently feeling. This is repeated for each available electrode contact. Once each contact has been tested, the user may be given the option of having the tool interpolate the mapped data to predict the best neuromodulation settings. SFMs may be computed and displayed for each successive activation and displayed in real-time to the user, together with real-time display of the parasthesia locations on a three-dimensional model. Real-time display of SFMs and parasthesia locations may also be performed in other programming modes (e.g., the manual programming mode described below in connection with the interface features).
Software and Machine Embodiments
The tool of the present invention may also be embodied as a computer-readable storage medium having executable instructions for performing the various processes as described herein. The storage medium may be any type of computer-readable medium (i.e., one capable of being read by a computer), including non-transitory storage mediums such as magnetic or optical tape or disks (e.g., hard disk or CD-ROM), solid state volatile or non-volatile memory, including random access memory (RAM), read-only memory (ROM), electronically programmable memory (EPROM or EEPROM), or flash memory. The term “non-transitory computer-readable storage medium” encompasses all computer-readable storage media, with the sole exception being a transitory, propagating signal.
The tool of the present invention may also be embodied as a computer system that is programmed to perform the various processes described herein. The computer system may include various components for performing these processes, including processors, memory, input devices, and/or displays. The computer system may be any suitable computing device, including general purpose computers, embedded computer systems, network devices, or mobile devices, such as handheld computers, laptop computers, notebook computers, tablet computers, and the like. The computer system may be a standalone computer or may operate in a networked environment.
Interface Features
The tool may use any of a variety of interface features for interacting with a user. These interactions may include receiving inputs, producing outputs, displaying information, storing program settings, making selections (e.g., target sites, neuromodulation settings, etc.), and the like. The interface features may be adapted for any of the various potential users of the tool, including clinicians, care providers, technicians, salespeople, or the patients themselves. The interface may be provided through any suitable hardware devices, including touch screens, touch pads, mouse, trackball, buttons, wheels, dials, etc. For example, the tool may display a three-dimensional human figure the user may be able point to and select a part of the human figure by a touch screen or a mouse. Various types of interface features which may be used by the tool include those described in U.S. Patent Application Publication No. 2009/0287271 (Blum et al.), which is incorporated by reference herein. The tool may display on a display screen any of the elements described above, including the volumes of activation, spinal anatomy (e.g., of the vertebrae, spinal cord, or both), radiologic images, electrodes, human figures, and such, either individually or in combination.
The tool may also have a manual programming mode in which previously trialed neuromodulation settings are displayed. Another feature may allow the user to customize a neuromodulation region, and then drag the region to the area of the spinal cord for trial simulations of neuromodulation; or allow the user to attempt neuromodulation settings believed to be advantageous by offering a specific visual history of previously attempted settings. The recorded results of the previously attempted settings may be displayed in two or three-dimensional space. For example, the patient's pain zone can be displayed on a three-dimensional model together with the parasthesia zones that resulted from a set of attempted settings. The three-dimensional model may be displayed in conjunction with the display of SFMs calculated for the set of attempted settings (e.g., in a separate display area that shows a three-dimensional model of the spinal cord). The patient's pain zone can be mapped on the human figure and distinguished in some way (by color, for example). The previous parasthesia zones from trial simulations can appear on the human figure. These zones may directly show a result, such as efficacy or indication of pain, by a different color or shade, or they may have text that appears inside them or in a pop-up when the user hovers or clicks the computer's pointing mechanism over the region. Example text may include Visual Analogue Scale (VAS) scores and stimulation settings. The corresponding volume of activation shown on the spinal cord could also be highlighted or identified when the user selects the affected dermatome. This feature would allow the user to easily see which dermatomes are impacted by the neuromodulation zones, and vice versa.
After viewing the results the user may wish to trial a volume of activation that has not been previously trialed. The manual programming mode in the tool can feature a simple method to trial an area of the spinal cord by entering a mode that displays a desired volume of activation that can be manipulated by the user. Alternatively, the user could start with a previously trialed volume of activation. The desired volume of activation may be resized and dragged to the desired location on the spinal cord image. An algorithm would then calculate the closest actual neuromodulation settings that would best fit the zone desired for neuromodulation (i.e., adjusting the settings associated with the previously trialed volume of activation to levels that are appropriate for the resized/re-located volume) and show the user the new settings, who would confirm and trial the neuromodulation. The calculation of the new settings may be performed in a similar fashion to the method previously described for adjusting settings in response to unintended electrode migration, i.e., creating a volume of activation that overlaps with the new volume. The algorithm may take into consideration factors pertaining to the new location, such as CSF thickness, when calculating the new settings. Since it may be advantageous to view the depth of tissue affected by the neuromodulation, a slidable bar can be featured along the side of the posterior spinal cord view. The bar may be positioned to the precise location that a cross-sectional view is desired. In the cross-sectional view, the slidable bar could be used to sequentially browse through different cross-sectional views. Once positioned, the bar is selected or clicked to bring a cross-sectional view that displays the desired volumes of activation as well as offers the same feature of using a desired volume of activation that can be manipulated by the user.
Once results of the manual programming mode are optimized, the final settings may be saved to memory, named, and the user is returned to the main programming page. Saved settings may be selected and displayed via an interface menu. Settings may be merged to combine a plurality of saved settings into a single set of saved settings. For example, settings targeting different pain zones may be combined in order to provide a custom course of treatment for a patient experiencing pain in more than one zone. Similarly, settings that by themselves fail to provide adequate pain zone coverage may be combined to provide sufficient coverage.
The foregoing description and examples have been set forth merely to illustrate the invention and are not intended as being limiting. Each of the disclosed aspects and embodiments of the present invention may be considered individually or in combination with other aspects, embodiments, and variations of the invention. Further, while certain features of embodiments of the present invention may be shown in only certain figures, such features can be incorporated into other embodiments shown in other figures while remaining within the scope of the present invention. In addition, unless otherwise specified, none of the steps of the methods of the present invention are confined to any particular order of performance. Modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art and such modifications are within the scope of the present invention. Furthermore, all references cited herein are incorporated by reference in their entirety.
The present application is a divisional application of U.S. Patent Application Ser. No. 13/160,104, filed Jun. 14, 2011, which claims the benefit of priority to U.S. Provisional Application Ser. Nos. 61/354,576, filed Jun. 14 2010 and 61/37,6439, filed Aug. 24, 2010, the entirety of each of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3999555 | Person | Dec 1976 | A |
4144889 | Tyers et al. | Mar 1979 | A |
4177818 | De Pedro | Dec 1979 | A |
4341221 | Testerman | Jul 1982 | A |
4378797 | Osterholm | Apr 1983 | A |
4445500 | Osterholm | May 1984 | A |
4735208 | Wyler et al. | Apr 1988 | A |
4765341 | Mower et al. | Aug 1988 | A |
4841973 | Stecker | Jun 1989 | A |
5067495 | Brehm | Nov 1991 | A |
5099846 | Hardy | Mar 1992 | A |
5222494 | Baker, Jr. | Jun 1993 | A |
5255693 | Dutcher | Oct 1993 | A |
5259387 | dePinto | Nov 1993 | A |
5304206 | Baker, Jr. et al. | Apr 1994 | A |
5344438 | Testerman et al. | Sep 1994 | A |
5361763 | Kao et al. | Nov 1994 | A |
5452407 | Crook | Sep 1995 | A |
5560360 | Filler et al. | Oct 1996 | A |
5565949 | Kasha, Jr. | Oct 1996 | A |
5593427 | Gliner et al. | Jan 1997 | A |
5601612 | Gliner et al. | Feb 1997 | A |
5607454 | Cameron et al. | Mar 1997 | A |
5620470 | Gliner et al. | Apr 1997 | A |
5651767 | Schulmann | Jul 1997 | A |
5711316 | Elsberry et al. | Jan 1998 | A |
5713922 | King | Feb 1998 | A |
5716377 | Rise et al. | Feb 1998 | A |
5724985 | Snell et al. | Mar 1998 | A |
5749904 | Gliner et al. | May 1998 | A |
5749905 | Gliner et al. | May 1998 | A |
5776170 | MacDonald et al. | Jul 1998 | A |
5782762 | Vining | Jul 1998 | A |
5843148 | Gijsbers et al. | Dec 1998 | A |
5859922 | Hoffmann | Jan 1999 | A |
5868740 | LeVeen et al. | Feb 1999 | A |
5897583 | Meyer et al. | Apr 1999 | A |
5910804 | Fortenbery et al. | Jun 1999 | A |
5925070 | King et al. | Jul 1999 | A |
5938688 | Schiff | Aug 1999 | A |
5938690 | Law et al. | Aug 1999 | A |
5978713 | Prutchi et al. | Nov 1999 | A |
6016449 | Fischell et al. | Jan 2000 | A |
6029090 | Herbst | Feb 2000 | A |
6029091 | de la Rama et al. | Feb 2000 | A |
6050992 | Nichols | Apr 2000 | A |
6058331 | King | May 2000 | A |
6066163 | John | May 2000 | A |
6083162 | Vining | Jul 2000 | A |
6094598 | Elsberry et al. | Jul 2000 | A |
6096756 | Crain et al. | Aug 2000 | A |
6106460 | Panescu et al. | Aug 2000 | A |
6109269 | Rise et al. | Aug 2000 | A |
6128538 | Fischell et al. | Oct 2000 | A |
6129685 | Howard, III | Oct 2000 | A |
6146390 | Heilbrun et al. | Nov 2000 | A |
6161044 | Silverstone | Dec 2000 | A |
6167311 | Rezai | Dec 2000 | A |
6181969 | Gord | Jan 2001 | B1 |
6192266 | Dupree et al. | Feb 2001 | B1 |
6205361 | Kuzma | Mar 2001 | B1 |
6208881 | Champeau | Mar 2001 | B1 |
6240308 | Hardy et al. | May 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6253109 | Gielen | Jun 2001 | B1 |
6289239 | Panescu et al. | Sep 2001 | B1 |
6301492 | Zonenshayn | Oct 2001 | B1 |
6310619 | Rice | Oct 2001 | B1 |
6319241 | King et al. | Nov 2001 | B1 |
6336899 | Yamazaki | Jan 2002 | B1 |
6343226 | Sunde et al. | Jan 2002 | B1 |
6351675 | Tholen et al. | Feb 2002 | B1 |
6353762 | Baudino et al. | Mar 2002 | B1 |
6366813 | Dilorenzo | Apr 2002 | B1 |
6368331 | Front et al. | Apr 2002 | B1 |
6389311 | Whayne et al. | May 2002 | B1 |
6393325 | Mann et al. | May 2002 | B1 |
6421566 | Holsheimer | Jul 2002 | B1 |
6435878 | Reynolds et al. | Aug 2002 | B1 |
6442432 | Lee | Aug 2002 | B2 |
6463328 | John | Oct 2002 | B1 |
6491699 | Henderson et al. | Dec 2002 | B1 |
6494831 | Koritzinsky | Dec 2002 | B1 |
6507759 | Prutchi et al. | Jan 2003 | B1 |
6510347 | Borkan | Jan 2003 | B2 |
6516227 | Meadows et al. | Feb 2003 | B1 |
6517480 | Krass | Feb 2003 | B1 |
6539263 | Schiff et al. | Mar 2003 | B1 |
6560490 | Grill et al. | May 2003 | B2 |
6579280 | Kovach et al. | Jun 2003 | B1 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6606523 | Jenkins | Aug 2003 | B1 |
6609029 | Mann et al. | Aug 2003 | B1 |
6609031 | Law et al. | Aug 2003 | B1 |
6609032 | Woods et al. | Aug 2003 | B1 |
6622048 | Mann et al. | Sep 2003 | B1 |
6631297 | Mo | Oct 2003 | B1 |
6654642 | North et al. | Nov 2003 | B2 |
6662053 | Borkan | Dec 2003 | B2 |
6675046 | Holsheimer | Jan 2004 | B2 |
6684106 | Herbst | Jan 2004 | B2 |
6687392 | Touzawa et al. | Feb 2004 | B1 |
6690972 | Conley et al. | Feb 2004 | B2 |
6690974 | Archer et al. | Feb 2004 | B2 |
6692315 | Soumillion et al. | Feb 2004 | B1 |
6694162 | Hartlep | Feb 2004 | B2 |
6694163 | Vining | Feb 2004 | B1 |
6708096 | Frei et al. | Mar 2004 | B1 |
6741892 | Meadows et al. | May 2004 | B1 |
6748098 | Rosenfeld | Jun 2004 | B1 |
6748276 | Daignault, Jr. et al. | Jun 2004 | B1 |
6778846 | Martinez et al. | Aug 2004 | B1 |
6788969 | Dupree et al. | Sep 2004 | B2 |
6795737 | Gielen et al. | Sep 2004 | B2 |
6827681 | Tanner et al. | Dec 2004 | B2 |
6830544 | Tanner | Dec 2004 | B2 |
6845267 | Harrison et al. | Jan 2005 | B2 |
6850802 | Holsheimer | Feb 2005 | B2 |
6895280 | Meadows et al. | May 2005 | B2 |
6909913 | Vining | Jun 2005 | B2 |
6937891 | Leinders et al. | Aug 2005 | B2 |
6937903 | Schuler et al. | Aug 2005 | B2 |
6944497 | Stypulkowski | Sep 2005 | B2 |
6944501 | Pless | Sep 2005 | B1 |
6950707 | Whitehurst | Sep 2005 | B2 |
6969388 | Goldman et al. | Nov 2005 | B2 |
7003349 | Andersson et al. | Feb 2006 | B1 |
7003352 | Whitehurst | Feb 2006 | B1 |
7008370 | Tanner et al. | Mar 2006 | B2 |
7008413 | Kovach et al. | Mar 2006 | B2 |
7035690 | Goetz | Apr 2006 | B2 |
7043293 | Baura | May 2006 | B1 |
7047082 | Schrom et al. | May 2006 | B1 |
7047084 | Erickson et al. | May 2006 | B2 |
7050857 | Samuelsson et al. | May 2006 | B2 |
7054692 | Whitehurst et al. | May 2006 | B1 |
7058446 | Schuler et al. | Jun 2006 | B2 |
7082333 | Bauhahn et al. | Jul 2006 | B1 |
7107102 | Daignault, Jr. et al. | Sep 2006 | B2 |
7126000 | Ogawa et al. | Oct 2006 | B2 |
7127297 | Law et al. | Oct 2006 | B2 |
7136518 | Griffin et al. | Nov 2006 | B2 |
7136695 | Pless et al. | Nov 2006 | B2 |
7142923 | North et al. | Nov 2006 | B2 |
7146219 | Sieracki et al. | Dec 2006 | B2 |
7146223 | King | Dec 2006 | B1 |
7151961 | Whitehurst et al. | Dec 2006 | B1 |
7155279 | Whitehurst et al. | Dec 2006 | B2 |
7167760 | Dawant et al. | Jan 2007 | B2 |
7177674 | Echauz et al. | Feb 2007 | B2 |
7181286 | Sieracki et al. | Feb 2007 | B2 |
7184837 | Goetz | Feb 2007 | B2 |
7191014 | Kobayashi et al. | Mar 2007 | B2 |
7209787 | DiLorenzo | Apr 2007 | B2 |
7211050 | Caplygin | May 2007 | B1 |
7216000 | Sieracki et al. | May 2007 | B2 |
7217276 | Henderson et al. | May 2007 | B2 |
7218968 | Condie et al. | May 2007 | B2 |
7228179 | Campen et al. | Jun 2007 | B2 |
7231254 | DiLorenzo | Jun 2007 | B2 |
7236830 | Gliner | Jun 2007 | B2 |
7239910 | Tanner | Jul 2007 | B2 |
7239916 | Thompson et al. | Jul 2007 | B2 |
7239926 | Goetz | Jul 2007 | B2 |
7242984 | DiLorenzo | Jul 2007 | B2 |
7244150 | Brase et al. | Jul 2007 | B1 |
7252090 | Goetz | Aug 2007 | B2 |
7254445 | Law et al. | Aug 2007 | B2 |
7254446 | Erickson et al. | Aug 2007 | B1 |
7257447 | Cates et al. | Aug 2007 | B2 |
7266412 | Stypulkowski | Sep 2007 | B2 |
7294107 | Simon et al. | Nov 2007 | B2 |
7295876 | Erickson | Nov 2007 | B1 |
7299096 | Balzer et al. | Nov 2007 | B2 |
7308302 | Schuler et al. | Dec 2007 | B1 |
7313430 | Urquhart et al. | Dec 2007 | B2 |
7324851 | DiLorenzo | Jan 2008 | B1 |
7346382 | McIntyre et al. | Mar 2008 | B2 |
7388974 | Yanagita | Jun 2008 | B2 |
7437193 | Parramon et al. | Oct 2008 | B2 |
7463928 | Lee et al. | Dec 2008 | B2 |
7499048 | Sieracki et al. | Mar 2009 | B2 |
7505815 | Lee et al. | Mar 2009 | B2 |
7526071 | Drapeau | Apr 2009 | B2 |
7548786 | Lee et al. | Jun 2009 | B2 |
7565199 | Sheffield et al. | Jul 2009 | B2 |
7603177 | Sieracki et al. | Oct 2009 | B2 |
7617002 | Goetz | Nov 2009 | B2 |
7623918 | Goetz | Nov 2009 | B2 |
7650184 | Walter | Jan 2010 | B2 |
7657319 | Goetz et al. | Feb 2010 | B2 |
7672734 | Anderson et al. | Mar 2010 | B2 |
7676273 | Goetz et al. | Mar 2010 | B2 |
7680526 | McIntyre et al. | Mar 2010 | B2 |
7734340 | De Ridder | Jun 2010 | B2 |
7761165 | He et al. | Jul 2010 | B1 |
7826902 | Stone et al. | Nov 2010 | B2 |
7848802 | Goetz et al. | Dec 2010 | B2 |
7860548 | McIntyre et al. | Dec 2010 | B2 |
7904134 | McIntyre et al. | Mar 2011 | B2 |
7945105 | Jaenisch | May 2011 | B1 |
7949395 | Kuzma | May 2011 | B2 |
7974706 | Moffitt et al. | Jul 2011 | B2 |
8019439 | Kuzma et al. | Sep 2011 | B2 |
8175710 | He | May 2012 | B2 |
8180601 | Butson et al. | May 2012 | B2 |
8195300 | Gliner et al. | Jun 2012 | B2 |
8224450 | Brase | Jul 2012 | B2 |
8255060 | Goetz | Aug 2012 | B2 |
8257684 | Covalin et al. | Sep 2012 | B2 |
8262714 | Hulvershorn et al. | Sep 2012 | B2 |
8364278 | Pianca et al. | Jan 2013 | B2 |
8429174 | Ramani et al. | Apr 2013 | B2 |
8452415 | Goetz et al. | May 2013 | B2 |
8543189 | Paitel et al. | Sep 2013 | B2 |
8606360 | Butson et al. | Dec 2013 | B2 |
8620452 | King et al. | Dec 2013 | B2 |
8918184 | Torgerson et al. | Dec 2014 | B1 |
8995731 | Joglekar | Mar 2015 | B2 |
20010031071 | Nichols et al. | Oct 2001 | A1 |
20020032375 | Bauch et al. | Mar 2002 | A1 |
20020062143 | Baudino et al. | May 2002 | A1 |
20020087201 | Firlik et al. | Jul 2002 | A1 |
20020099295 | Gil et al. | Jul 2002 | A1 |
20020115603 | Whitehouse | Aug 2002 | A1 |
20020116030 | Rezei | Aug 2002 | A1 |
20020123780 | Grill et al. | Sep 2002 | A1 |
20020128694 | Holsheimer | Sep 2002 | A1 |
20020151939 | Rezai | Oct 2002 | A1 |
20020183607 | Bauch et al. | Dec 2002 | A1 |
20020183740 | Edwards et al. | Dec 2002 | A1 |
20020183817 | Van Venrooij et al. | Dec 2002 | A1 |
20030097159 | Schiff et al. | May 2003 | A1 |
20030149450 | Mayberg | Aug 2003 | A1 |
20030171791 | KenKnight et al. | Sep 2003 | A1 |
20030212439 | Schuler et al. | Nov 2003 | A1 |
20040034394 | Woods et al. | Feb 2004 | A1 |
20040044279 | Lewin et al. | Mar 2004 | A1 |
20040044378 | Holsheimer | Mar 2004 | A1 |
20040044379 | Holsheimer | Mar 2004 | A1 |
20040054297 | Wingeier et al. | Mar 2004 | A1 |
20040059395 | North et al. | Mar 2004 | A1 |
20040106916 | Quaid et al. | Jun 2004 | A1 |
20040133248 | Frei et al. | Jul 2004 | A1 |
20040152957 | Stivoric et al. | Aug 2004 | A1 |
20040181262 | Bauhahn | Sep 2004 | A1 |
20040186532 | Tadlock | Sep 2004 | A1 |
20040199216 | Lee et al. | Oct 2004 | A1 |
20040267330 | Lee et al. | Dec 2004 | A1 |
20050021090 | Schuler et al. | Jan 2005 | A1 |
20050033380 | Tanner et al. | Feb 2005 | A1 |
20050049649 | Luders et al. | Mar 2005 | A1 |
20050060001 | Singhal et al. | Mar 2005 | A1 |
20050060009 | Goetz | Mar 2005 | A1 |
20050070781 | Dawant et al. | Mar 2005 | A1 |
20050075689 | Toy et al. | Apr 2005 | A1 |
20050085714 | Foley et al. | Apr 2005 | A1 |
20050165294 | Weiss | Jul 2005 | A1 |
20050171587 | Daglow et al. | Aug 2005 | A1 |
20050228250 | Bitter et al. | Oct 2005 | A1 |
20050251061 | Schuler et al. | Nov 2005 | A1 |
20050261061 | Nguyen et al. | Nov 2005 | A1 |
20050261601 | Schuler et al. | Nov 2005 | A1 |
20050261747 | Schuler et al. | Nov 2005 | A1 |
20050267347 | Oster | Dec 2005 | A1 |
20050288732 | Schuler et al. | Dec 2005 | A1 |
20060004422 | De Ridder | Jan 2006 | A1 |
20060017749 | McIntyre et al. | Jan 2006 | A1 |
20060020292 | Goetz et al. | Jan 2006 | A1 |
20060069415 | Cameron et al. | Mar 2006 | A1 |
20060094951 | Dean et al. | May 2006 | A1 |
20060095088 | De Ridder | May 2006 | A1 |
20060155340 | Schuler et al. | Jul 2006 | A1 |
20060206169 | Schuler | Sep 2006 | A1 |
20060218007 | Bjorner et al. | Sep 2006 | A1 |
20060224189 | Schuler et al. | Oct 2006 | A1 |
20060235472 | Goetz et al. | Oct 2006 | A1 |
20060259079 | King | Nov 2006 | A1 |
20060259099 | Goetz et al. | Nov 2006 | A1 |
20070000372 | Rezai et al. | Jan 2007 | A1 |
20070027514 | Gerber | Feb 2007 | A1 |
20070043268 | Russell | Feb 2007 | A1 |
20070049817 | Preiss et al. | Mar 2007 | A1 |
20070067003 | Sanchez et al. | Mar 2007 | A1 |
20070078498 | Rezai et al. | Apr 2007 | A1 |
20070083104 | Butson et al. | Apr 2007 | A1 |
20070123953 | Lee et al. | May 2007 | A1 |
20070129769 | Bourget et al. | Jun 2007 | A1 |
20070135855 | Foshee et al. | Jun 2007 | A1 |
20070150036 | Anderson | Jun 2007 | A1 |
20070156186 | Lee et al. | Jul 2007 | A1 |
20070162086 | DiLorenzo | Jul 2007 | A1 |
20070162235 | Zhan et al. | Jul 2007 | A1 |
20070168004 | Walter | Jul 2007 | A1 |
20070168007 | Kuzma et al. | Jul 2007 | A1 |
20070185544 | Dawant et al. | Aug 2007 | A1 |
20070191887 | Schuler et al. | Aug 2007 | A1 |
20070191912 | Fischer et al. | Aug 2007 | A1 |
20070197891 | Shachar et al. | Aug 2007 | A1 |
20070203450 | Berry | Aug 2007 | A1 |
20070203532 | Tass et al. | Aug 2007 | A1 |
20070203537 | Goetz et al. | Aug 2007 | A1 |
20070203538 | Stone et al. | Aug 2007 | A1 |
20070203539 | Stone et al. | Aug 2007 | A1 |
20070203540 | Goetz et al. | Aug 2007 | A1 |
20070203541 | Goetz et al. | Aug 2007 | A1 |
20070203543 | Stone et al. | Aug 2007 | A1 |
20070203544 | Goetz et al. | Aug 2007 | A1 |
20070203545 | Stone et al. | Aug 2007 | A1 |
20070203546 | Stone et al. | Aug 2007 | A1 |
20070213789 | Nolan et al. | Sep 2007 | A1 |
20070213790 | Nolan et al. | Sep 2007 | A1 |
20070244519 | Keacher et al. | Oct 2007 | A1 |
20070245318 | Goetz et al. | Oct 2007 | A1 |
20070255321 | Gerber et al. | Nov 2007 | A1 |
20070255322 | Gerber et al. | Nov 2007 | A1 |
20070265664 | Gerber et al. | Nov 2007 | A1 |
20070276441 | Goetz | Nov 2007 | A1 |
20070282189 | Dan et al. | Dec 2007 | A1 |
20070288064 | Butson et al. | Dec 2007 | A1 |
20080027514 | DeMulling et al. | Jan 2008 | A1 |
20080039895 | Fowler et al. | Feb 2008 | A1 |
20080071150 | Miesel et al. | Mar 2008 | A1 |
20080081982 | Simon et al. | Apr 2008 | A1 |
20080086451 | Torres et al. | Apr 2008 | A1 |
20080103533 | Patel et al. | May 2008 | A1 |
20080114233 | McIntyre et al. | May 2008 | A1 |
20080114579 | McIntyre et al. | May 2008 | A1 |
20080123922 | Gielen et al. | May 2008 | A1 |
20080123923 | Gielen et al. | May 2008 | A1 |
20080133141 | Frost | Jun 2008 | A1 |
20080141217 | Goetz et al. | Jun 2008 | A1 |
20080154340 | Goetz et al. | Jun 2008 | A1 |
20080154341 | McIntyre et al. | Jun 2008 | A1 |
20080163097 | Goetz et al. | Jul 2008 | A1 |
20080183256 | Keacher | Jul 2008 | A1 |
20080188734 | Suryanarayanan et al. | Aug 2008 | A1 |
20080215118 | Goetz et al. | Sep 2008 | A1 |
20080227139 | Deisseroth et al. | Sep 2008 | A1 |
20080242950 | Jung et al. | Oct 2008 | A1 |
20080261165 | Steingart et al. | Oct 2008 | A1 |
20080269588 | Csavoy et al. | Oct 2008 | A1 |
20080269599 | Csavoy | Oct 2008 | A1 |
20080300654 | Lambert et al. | Dec 2008 | A1 |
20080300797 | Tabibiazar et al. | Dec 2008 | A1 |
20090016491 | Li | Jan 2009 | A1 |
20090054950 | Stephens | Feb 2009 | A1 |
20090082640 | Kovach et al. | Mar 2009 | A1 |
20090082829 | Panken et al. | Mar 2009 | A1 |
20090112289 | Lee et al. | Apr 2009 | A1 |
20090118635 | Lujan et al. | May 2009 | A1 |
20090118786 | Meadows et al. | May 2009 | A1 |
20090149917 | Whitehurst et al. | Jun 2009 | A1 |
20090196471 | Goetz et al. | Aug 2009 | A1 |
20090196472 | Goetz et al. | Aug 2009 | A1 |
20090198306 | Goetz et al. | Aug 2009 | A1 |
20090198354 | Wilson | Aug 2009 | A1 |
20090204192 | Carlton et al. | Aug 2009 | A1 |
20090208073 | McIntyre et al. | Aug 2009 | A1 |
20090210208 | McIntyre et al. | Aug 2009 | A1 |
20090242399 | Kamath et al. | Oct 2009 | A1 |
20090276008 | Lee et al. | Nov 2009 | A1 |
20090281595 | King et al. | Nov 2009 | A1 |
20090281596 | King et al. | Nov 2009 | A1 |
20090287271 | Blum et al. | Nov 2009 | A1 |
20090287272 | Kokones et al. | Nov 2009 | A1 |
20090287273 | Carlton et al. | Nov 2009 | A1 |
20090287467 | Sparks et al. | Nov 2009 | A1 |
20090299164 | Singhal et al. | Dec 2009 | A1 |
20090299165 | Singhal et al. | Dec 2009 | A1 |
20090299380 | Singhal et al. | Dec 2009 | A1 |
20100010566 | Thacker et al. | Jan 2010 | A1 |
20100010646 | Drew et al. | Jan 2010 | A1 |
20100023103 | Elborno | Jan 2010 | A1 |
20100023130 | Henry et al. | Jan 2010 | A1 |
20100030312 | Shen | Feb 2010 | A1 |
20100049276 | Blum et al. | Feb 2010 | A1 |
20100049280 | Goetz | Feb 2010 | A1 |
20100064249 | Groetken | Mar 2010 | A1 |
20100113959 | Pascual-Leone et al. | May 2010 | A1 |
20100121409 | Kothandaraman et al. | May 2010 | A1 |
20100135553 | Joglekar | Jun 2010 | A1 |
20100137944 | Zhu | Jun 2010 | A1 |
20100152604 | Kuala et al. | Jun 2010 | A1 |
20100179562 | Linker et al. | Jul 2010 | A1 |
20100324410 | Paek et al. | Dec 2010 | A1 |
20100331883 | Schmitz et al. | Dec 2010 | A1 |
20110040351 | Butson et al. | Feb 2011 | A1 |
20110066407 | Butson et al. | Mar 2011 | A1 |
20110172737 | Davis et al. | Jul 2011 | A1 |
20110184487 | Alberts et al. | Jul 2011 | A1 |
20110191275 | Lujan et al. | Aug 2011 | A1 |
20110196253 | McIntyre et al. | Aug 2011 | A1 |
20110213440 | Fowler et al. | Sep 2011 | A1 |
20110306845 | Osorio | Dec 2011 | A1 |
20110306846 | Osorio | Dec 2011 | A1 |
20110307032 | Goetz et al. | Dec 2011 | A1 |
20120046715 | Moffitt et al. | Feb 2012 | A1 |
20120078106 | Dentinger et al. | Mar 2012 | A1 |
20120089205 | Boyden et al. | Apr 2012 | A1 |
20120116476 | Kothandaraman | May 2012 | A1 |
20120165898 | Moffitt | Jun 2012 | A1 |
20120165901 | Zhu et al. | Jun 2012 | A1 |
20120207378 | Gupta et al. | Aug 2012 | A1 |
20120226138 | DeSalles et al. | Sep 2012 | A1 |
20120229468 | Lee et al. | Sep 2012 | A1 |
20120265262 | Osorio | Oct 2012 | A1 |
20120265268 | Blum et al. | Oct 2012 | A1 |
20120302912 | Moffitt et al. | Nov 2012 | A1 |
20120303087 | Moffitt et al. | Nov 2012 | A1 |
20120314924 | Carlton et al. | Dec 2012 | A1 |
20120316619 | Goetz et al. | Dec 2012 | A1 |
20130039550 | Blum et al. | Feb 2013 | A1 |
20130060305 | Bokil | Mar 2013 | A1 |
20130116748 | Bokil et al. | May 2013 | A1 |
20130116749 | Carlton et al. | May 2013 | A1 |
20130116929 | Carlton et al. | May 2013 | A1 |
20140067018 | Carcieri et al. | Mar 2014 | A1 |
20140277284 | Chen et al. | Sep 2014 | A1 |
20150134031 | Moffitt et al. | May 2015 | A1 |
Number | Date | Country |
---|---|---|
1048320 | Nov 2000 | EP |
1166819 | Jan 2002 | EP |
1372780 | Jan 2004 | EP |
1559369 | Aug 2005 | EP |
9739797 | Oct 1997 | WO |
9848880 | Nov 1998 | WO |
2001090876 | Nov 2001 | WO |
0226314 | Apr 2002 | WO |
0228473 | Apr 2002 | WO |
02065896 | Aug 2002 | WO |
02072192 | Sep 2002 | WO |
03086185 | Oct 2003 | WO |
2004019799 | Mar 2004 | WO |
2004041080 | May 2005 | WO |
2006017053 | Feb 2006 | WO |
2006113305 | Oct 2006 | WO |
2007097859 | Aug 2007 | WO |
2007097861 | Aug 2007 | WO |
2007100427 | Sep 2007 | WO |
2007100428 | Sep 2007 | WO |
2007112061 | Oct 2007 | WO |
2009097224 | Aug 2009 | WO |
2010120823 | Oct 2010 | WO |
2011025865 | Mar 2011 | WO |
2011139779 | Nov 2011 | WO |
2011159688 | Dec 2011 | WO |
2012088482 | Jun 2012 | WO |
Entry |
---|
Nowinski, W. L., et al., “Statistical analysis of 168 bilateral subthalamic nucleus implantations by means of the probabilistic functional atlas.”, Neurosurgery 57(4 Suppl) (Oct. 2005), 319-30. |
Obeso, J. A., et al., “Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease.”, N Engl J Med., 345{13I. The Deep-Brain Stimulation for Parkinson's Disease Study Group, (Sep. 27, 2001 ),956-63. |
Fisekovic et al., “New Controller for Functional Electrical Stimulation Systems”, Med. Eng. Phys. 2001; 23:391-399. |
Patrick, S. K., et al., “Quantification of the UPDRS rigidity scale”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, [see also IEEE Trans. on Rehabilitation Engineering 9(1). (2001), 31-41. |
Phillips, M. D., et al., “Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus—initial experience”, Radiology 239(1). (Apr. 2006),209-16. |
Merrill, D. R., et al., “Electrical stimulation of excitable tissue: design of efficacious and safe protocols”, J Neurosci Methods. 141(2), (Feb. 15, 2005), 171-98. |
Montgomery, E. B., et al., “Mechanisms of deep brain stimulation and future technical developments.”, Neurol Res. 22(3), (Apr. 2000),259-66. |
Moss, J. , et al., “Electron microscopy of tissue adherent to explanted electrodes in dystonia and Parkinson's disease”, Brain, 127{Pt 12). (Dec. 2004),2755-63. |
Hunka, K. et al., Nursing Time to Program and Assess Deep Brain Stimulators in Movement Disorder Pateints, J. Neursci Nurs. 37: 204-10 (Aug. 2005). |
Miocinovic S., et al., “Sensitivity of temporal excitation properties to the neuronal element activated by extracellular stimulation”, J Neurosci Methods. 132(1). (Jan. 15, 2004), 91-9. |
McIntyre, C. C. et al., “How does deep brain stimulation work? Present understanding and future questions.”, J Clin Neurophysiol. 21(1). (Jan.-Feb. 2004 ), 40-50. |
Grill, W. M., “Stimulus waveforms for selective neural stimulation”, IEEE Engineering in Medicine and Biology Magazine, 14(4}, (Jul.-Aug. 1995), 375-385. |
Plaha, P. , et al., “Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism.”, Brain 129{Pt 7) (Jul. 2006), 1732-4 7. |
Rattay, F, “Analysis of models for external stimulation of axons”, IEEE Trans. Biomed. Eng. vol. 33 (1986),974-977. |
Rattay, F., “Analysis of the electrical excitation of CNS neurons”, IEEE Transactions on Biomedical Engineering 45 (6). (Jun. 1998),766-772. |
Rose, T. L., et al., “Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses [neuronal application]”, IEEE Transactions on Biomedical Engineering, 37(11 }, (Nov. 1990), 1118-1120. |
Rubinstein, J. T., et al., “Signal coding in cochlear implants: exploiting stochastic effects of electrical stimulation”, Ann Otol Rhinol Laryngol Suppl., 191, (Sep. 2003), 14-9. |
Schwan. H.P., et al., “The conductivity of living tissues.”, Ann NY Acad Sci., 65(6). (Aug. 1957), 1007-13. |
Taylor, R. S., et al., “Spinal cord stimuation for chronic back and leg pain and failed back surgery syndrome: a systematic review and analysis of prognostic factors”, Spine 30(1). (Jan. 1, 2005), 152-60. |
Micheli-Tzanakou, E., et al., “Computational Intelligence for target assesment in Parkinson's disease”, Proceedings of SPIE vol. 4479. Applications and Science of Neural Networks. Fuzzy Systems, and Evolutionary Computation IV,(2001),54-69. |
Hodaie, M., et al., “Chronic anterior thalamus stimuation for intractable epilepsy.” Epilepsia, 43(6) (Jun. 2002), pp. 603-608. |
Geddes. L. A., et al., “The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist.”, Med Biol Ena. 5(3), (May 1967),271-93. |
Gimsa, J., et al., “Choosing electrodes for deep brain stimulation experiments—electrochemical considerations.”, J Neurosci Methods, 142(2), (Mar. 30, 2005),251-65. |
Vidailhet, M. , et al., “Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia”, N Engl J Med. 352(5) (Feb. 3, 2005),459-67. |
Viola, P., et al., “Alignment by maximization of mutual information”, International Journal of Com outer Vision 24(2). ( 1997), 137-154. |
Volkmann, J. , et al., “Basic algorithms for the programming of deep brain stimulation in Parkinson's disease”, Mov Disord., 21 Suppl 14. (Jun. 2006),S284-9. |
Walter, B. L., et al. “Surgical treatment for Parkinson's disease”. Lancet Neural. 3(12). (Dec. 2004),719-28. |
Wei, X. F., et al., “Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes”, J Neural Eng . . . 2(4). (Dec. 2005), 139-47. |
Zonenshayn, M. , et al., “Location of the active contact within the subthalamic nucleus (STN) in the treatment of idiopathic Parkinson's disease.”, Surg Neurol., 62(3) (Sep. 2004),216-25. |
Da Silva et al (A primer on diffusion tensor imaging of anatomical substructures. Neurosurg Focus 15(1): p. 1-4, Article 4, 2003.). |
Mcintyre, Cameron C., et al., “Uncovering the mechanisms of deep brain stimulation for Parkinson's disease through functional imaging, neural recording, and neural modeling,” Crit Rev Biomed Eng., 30(4-6) (2002), pp. 249-281. |
Mcintyre, Cameron C., et al., “Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both,” Clin Neurophysiol, 115(6) (Jun. 2004), pp. 1239-1248. |
Mcintyre, C. C., et al., “Sensitivity analysis of a model of mammalian neural membrane,” Biol Cybern., 79(1) (Jul. 1998), pp. 29-37. |
Mcintyre, Cameron C., et al., “Selective microstimulation of central nervous system neurons,” Annals of biomedical engineering, 28(3) (Mar. 2000), pp. 219-233. |
Mcintyre, Cameron C., et al., “Modeling the excitability of mammalian nerve fibers: influence of aflerpotentials on the recovery cycle,” J Neurophysiol, 87(2) (Feb. 2002), pp. 995-1006. |
Mcintyre, C. C., et al., Model-based design of stimulus waveforms for selective microstimulation in the central nervous system,, Proceedings of the First Joint [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual FallMeeting of the Biomedical Engineering Soc.] BM ES/EMBS Conference, vol. 1 (1999), p. 384. |
Mcintyre, C. C., et al., “Model-based design of stimulus trains for selective microstimulation of targeted neuronal populations,” Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1 (2001), pp. 806-809. |
Mcintyre, Cameron C., et al., “Model-based Analysis of deep brain stimulation of the thalamus,” Proceedings of the Second joint EMBS/BM ES Conference, vol. 3, Annual Fall Meeting of the Biomedical Engineering Society (Cal. No. 02CH37392) IEEEPiscataway, NJ (2002), pp. 2047-2048. |
Mcintyre, C. C., et al., “Microstimulation of spinal motoneurons: a model study,” Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology society, vol. 5, (1997), pp. 2032-2034. |
Mcintyre, C. C., et al., “Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output,” J. Neurophysiol., 88(4), (Oct. 2002), pp. 1592-1604. |
Liu, Haiying, et al., “Intra-operative MR-guided DBS implantation for treating PD and ET,” Proceedings of SPIE vol. 4319, Department of Radiology & Neurosurgery, University of Minnesota, Minneapolis, MN 55455 (2001), pp. 272-276. |
Levy, Al., et al., “An Internet-connected, patient-specific, deformable brain atlas integrated into a surgical navigation system,” J Digit Imaging, 10(3 Suppl 1) (Aug. 1997), pp. 231-237. |
Lee, D. C., et al., “Extracellular electrical stimulation of central neurons: quantitative studies,” In: Handbook of neuroprosthetic methods, WE Finn and PG Lopresti (eds) CRC Press (2003), pp. 95-125. |
Le Bihan, D., et al., “Diffusion tensor imaging: concepts and applications,” J Magn Reson Imaging, 13(4) (Apr. 2001), pp. 534-546. |
Krack, P., et al., “Postoperative management of subthalamic nucleus stimulation for Parkinson's disease,” Mov. Disord., vol. 17(suppl 3) (2002), pp. 188-197. |
Jones, DK., et al., “Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging,” Magn. Reson. Med., 42(3) (Sep. 1999), pp. 515-525. |
Jezernik, S., et al., “Neural network classification of nerve activity recorded in a mixed nerve,” Neurol Res., 23(5) (Jul. 2001), pp. 429-434. |
Holsheimer, J., et al., “Identification of the target neuronal elements in electrical deep brain stimulation,” Eur J Neurosci., 12(12) (Dec. 2000), pp. 4573-4577. |
Hoekema, R., et al., “Multigrid solution of the potential field in modeling electrical nerve stimulation,” Comput Biomed Res., 31(5) (Oct. 1998), pp. 348-362. |
Saxena, et al., “Cerebral glucose metabolism in obsessive-compulsive hoarding,” Am J Psychiatry. 161 (6) (2004), pp. 1038-1048. |
Zhang, Y., et al., “Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy,” Neuroimage 52(4) (2010), pp. 1289-1301. |
““BioPSE” The Biomedical Problem Solving Environment”, htt12://www.sci.utah.edu/cibc/software/index.html, MCRR Center for Integrative Biomedical Computing,(2004). |
Andrews, R. J., “Neuroprotection trek—the next generation: neuromodulation I. Techniques—deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation.”, Ann NY Acad Sci. 993. (May 2003),1-13. |
Machado. et al., “Functional topography of the ventral striatum and anterior limb of the internal capsule determined by electrical stimulation of awake patients,” Clin Neurophysiol 120 (11) (2009), pp. 1941-1948. |
Lujan, J.L. et al., “Automated 3-Dimensional Brain Atlas Fitting to Microelectrode Recordings from Deep Brain Stimulation Surgeries,” Stereotact. Fune!. Neurosurg. 87(2009), pp. 229-240. |
Lujan, et al., “Tracking the mechanisms of deep brain stimulation for neuropsychiatric disorders.” Front Biosci 13 (2008), pp. 5892-5904. |
Lozano, et al., “Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression.” Biol Psychiatry 64 (6) (2008), pp. 461-467. |
Kopell, et al., “Deep brain stimulation for psychiatric disorders,” J Clin Neurophysiol 21 (1) (2004), pp. 51-67. |
Johansen-Berg, et al., “Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression,” Cereb Cortex 18 (6) (2008), pp. 1374-1383. |
Hua, et al., “Tract probability maps in stereotaxic spaces analyses of white matter anatomy and tract-specific quantification,” Neuroimage 39 (1) (2008), pp. 336-347. |
McIntyre,C. C., et al., “Network perspectives on the mechanisms of deep brain stimulation,” Neurobiol Dis 38 (3) (2010), pp. 329-337. |
Andrews, R. J., “Neuroprotection trek—the next generation: neuromodulation II. Applications—epilepsy, nerve regeneration, neurotrophins.”, Ann NY Acad Sci. 993 (May 2003), 14-24. |
Astrom, M. , et al., “The effect of cystic cavities on deep brain stimulation in the basal ganglia: a simulation-based study”, J Neural Eng., 3(2), (Jun. 2006).132-8. |
Mouine et al. “Multi-Strategy and Multi-Algorithm Cochlear Prostheses”, Biomed. Sci. Instrument, 2000; 36:233-238. |
Back, C. , et al., “Postoperative Monitoring of the Electrical Properties of Tissue and Electrodes in Deep Brain Stimulation”, Neuromodulation, 6(4), (Oct. 2003 ),248-253. |
Baker, K. B., et al., “Evaluation of specific absorption rate as a dosimeter of MRI-related implant heating”, J Magn Reson Imaging., 20(2), (Aug. 2004),315-20. |
Brown, J. “Motor Cortex Stimulation,” Neurosurgical Focus ( Sep. 15, 2001) 11(3):E5. |
Budai et al., “Endogenous Opioid Peptides Acting at m-Opioid Receptors in the Dorsal Horn Contribute to Midbrain Modulation of Spinal Nociceptive Neurons,” Journal of Neurophysiology (1998) 79(2): 677-687. |
Cesselin, F. “Opioid and anti-opioid peptides,” Fundamental and Clinical Pharmacology (1995) 9(5): 409-33 (Abstact only). |
Rezai et al., “Deep Brain Stimuation for Chronic Pain” Surgical Management of Pain, Chapter 44 pp. 565-576 (2002). |
Xu, MD., Shi-Ang, article entitled “Comparison of Half-Band and Full-Band Electrodes for Intracochlear Electrical Stimulation”, Annals of Otology, Rhinology & Laryngology (Annals of Head & Neck Medicine & Surgery), vol. 102 (5) pp. 363-367 May 1993. |
Bedard, C. , et al., “Modeling extracellular field potentials and the frequency-filtering properties of extracellular space”, Biophys J . . . 86(3). (Mar. 2004) 1829-42. |
Benabid, A. L., et al., “Future prospects of brain stimulation”, Neurol Res.;22(3), (Apr. 2000),237-46. |
Brummer, S. B., et al., “Electrical Stimulation with Pt Electrodes: II—Estimation of Maximum Surface Redox (Theoretical Non-Gassing) Limits”, IEEE Transactions on Biomedical Engineering, vol. BME-24, Issue 5, (Sep. 1977),440-443. |
Butson, Christopher R., et al., “Deep Brain Stimulation of the Subthalamic Nucleus: Model-Based Analysis of the Effects of Electrode Capacitance on the Volume of Activation”, Proceedings of the 2nd International IEEE EMBS, (Mar. 16-19, 2005),196-197. |
Mcintyre, Cameron C., et al., “Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition,” J Neurophysiol, 91(4) (Apr. 2004), pp. 1457-1469. |
Chaturvedi, A., et al., “Subthalamic Nucleus Deep Brain Stimulation: Accurate Axonal Threshold Prediction with Diffusion Tensor Based Electric Field Models”, Engineering in Medicine and Biology Society, 2006. EMBS' 06 28th Annual International Conference of the IEEE, IEEE, Piscataway, NJ USA, Aug. 30, 2006. |
Butson, Christopher et al., “Predicting the Effects of Deep Brain Stimulation with Diffusion Tensor Based Electric Field Models” Jan. 1, 2001, Medical Image Computing and Computer-Assisted Intervention-Mic CAI 2006 Lecture Notes in Computer Science, LNCS, Springer, Berlin, DE. |
Butson, C. R., et al., “Deep brainstimulation interactive visualization system”, Society for Neuroscience vol. 898.7 (2005). |
Grill, WM., et al., “Electrical properties of implant encapsulation tissue”, Ann Biomed Eng. vol. 22. (1994),23-33. |
McNaughtan et al., “Electrochemical Issues in Impedance Tomography”, 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, Apr. 14-17, 1999. |
Hardman, C. D., et al., “Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei”, J Comp Neurol., 445(3). (Apr. 8, 2002):238-55. |
Hashimoto, T. , et al., “Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons”, J Neurosci. 23(5). (Mar. 1, 2003), 1916-23. |
Haslinger, B., et al., “Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson's disease.”, Neuroimage 28(3). (Nov. 15, 2005),598-606. |
Haueisen, J, et al., “The influence of brain tissue anisotropy on human EEG and MEG”, Neuroimage 15(1) (Jan. 2002),159-166. |
Hemm, S., et al., “Deep brain stimulation in movement disorders: stereotactic coregistration of two-dimensional electrical field modeling and magnetic resonance imaging.”, J Neurosurg. 103(6): (Dec. 2005),949-55. |
Hemm, S. , et al., “Evolution of Brain Impedance in Dystonic Patients Treated by GPi Electrical Stimulation”, Neuromodulation 7(2) (Apr. 2004),67-75. |
Hershey, T., et al., “Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD.”. Neurology 61(6). (Sep. 23, 2003),816-21. |
Herzog, J., et al., “Most effective stimulation site in subthalamic deep brain stimulation for Parkinson's disease”, Mov Disord. 19(9). (Sep. 2004),1050-4. |
Hines, M. L., et al., “The NEURON simulation environment”. Neural Comput. 9(6). (Aug. 15. 1997), 1179-209. |
Holsheimer, J. , et al., “Chronaxie calculated from current-duration and voltage-duration data”, J Neurosci Methods. 97(1). (Apr. 1, 2000),45-50. |
Johnson, M. D., et al., “Repeated voltage biasing improves unit recordings by reducing resistive tissue impedances”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, [see also IEEE Trans. on Rehabilitation Engineering (2005), 160-165. |
Kitagawa, M., et al., “Two-year follow-up of chronic stimulation of the posterior subthalamic white matter for tremor-dominant Parkinson's disease.”, Neurosurgery. 56(2). (Feb. 2005),281-9. |
Limousin, P., et al., “Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease”, N Engl J Med . . . 339(16), (Oct. 15, 1998). 1105-11. |
Foster, K. R., et al., “Dielectric properties of tissues and biological materials: a critical review.”, Grit Rev Biomed Ena. 17(1 ). {1989),25-104. |
McIntyre; Cameron , et al.; “Finite element analysis of the current-density and electric field generated by metal microelectrodes”, Ann Biomed Eng . 29(3), (2001 ),227-235. |
Mayr et al., “Basic Design and Construction of the Vienna FES Implants: Existing Solutions and Prospects for New Generations of Implants”; Medical Engineering & Physics; 2001; 23:53-60. |
Wakana, S., et al., “Reproducibility of quantitative tractography methods applied to cerebral white matter,” Neuroimage 36 (3) (2007), pp. 630-644. |
Viola, et al.; “Importance-driven focus of attention,” IEEE Trans Vis Comput Graph 12 (5) (2006), pp. 933-940. |
Malone, et al., “Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression.” Biol Psychiatry 65 (4) (2009), pp. 267-275. |
Mcintyre, Cameron C., et al., “Electric Field and Stimulating Influence generated by Deep Brain Stimulation of the Subthalamaic Nucleus,” Clinical Neurophysiology, 115(3) (Mar. 2004), pp. 589-595. |
Mcintyre, Cameron C., et al., “Electric field generated by deep brain stimulation of the subthalamic nucleus,” Biomedical Engineering Society Annual Meeting, Nashville TN (Oct. 2003), 16 pages. |
Mcintyre, Cameron C., et al., “Excitation of central nervous system neurons by nonuniform electric fields,” Biophys. J., 76(2) (1999), pp. 878-888. |
McNeal, DR., et al. “Analysis of a model for excitation of myelinated nerve,” IEEE Trans Biomed Eng., vol. 23 (1976), pp. 329-337. |
Micheli-Tzanakou, E. , et al., “Computational Intelligence for target assesment in Parkinson's disease,” Proceedings of SPIE vol. 4479, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation IV (2001 ), pp. 54-69. |
Miocinovic, S., et al., “Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation,” J Neurophysiol., 96(3) (Sep. 2006), pp. 1569-1580. |
Miranda, P. C., et al., “The distribution of currents inducedin the brain by Magnetic Stimulation: a finite element analysis incorporating OT-MRI-derived conductivity data,” Proc. Intl. Soc. Mag. Reson. Med. 9 (2001 ), p. 1540. |
Miranda, P. C., et al., “The Electric Field Induced in the Brain by Magnetic Stimulation: A 3-D Finite-Element Analysis of the Effect of Tissue Heterogeneity and Anisotropy,” IEEE Transactions on Biomedical Enginering, 50(9) (Sep. 2003), pp. 1074-1085. |
Moffitt, MA., et al., “Prediction of myelinated nerve fiber stimulation thresholds: limitations of linear models,” IEEE Transactions on Biomedical Engineering, 51 (2) (2003), pp. 229-236. |
Moro, E. et al., “The impact on Parkinson's disease of electrical parameter settings in STN stimulation,” Neurology 59 (5) (Sep. 10, 2002), pp. 706-713. |
Nowak, LG., et al., “Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements,” Exp. Brain Res., 118(4) (Feb. 1998), pp. 477-488. |
Nowak, LG., et al., “Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments,” Exp. Brain Res., 118(4) (Feb. 1998), pp. 489-500. |
O'Suilleabhain, PE., et al., “Tremor response to polarity, voltage, pulsewidth and frequency of thalamic stimulation,” Neurology, 60(5) (Mar. 11, 2003), pp. 786-790. |
Pierpaoli, C., et al., “Toward a quantitative assessment of diffusion anisotropy,” Magn Reson Med., 36(6) (Dec. 1996), pp. 893-906. |
Plonsey, R., et al., “Considerations of quasi-stationarity in electrophysiological systems,” Bull Math Biophys., 29(4) (Dec. 1967), pp. 657-664. |
Ranck, J B., “Specific impedance of rabbit cerebral cortex,” Exp. Neurol., vol. 7 (Feb. 1963), pp. 144-152. |
Ranck, J B., et al., “The Specific impedance of the dorsal columns of the cat: an anisotropic medium,” Exp. Neurol., 11 (Apr. 1965), pp. 451-463. |
Ranck, J B., “Which elements are excited in electrical stimulation of mammalian central nervous system: a review,” Brain Res., 98(3) (Nov. 21, 1975), pp. 417-440. |
Rattay, F., et al., “A model of the electrically excited human cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes,” Hear Res., 153(1-2) (Mar. 2001), pp. 43-63. |
Rattay, F., “A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability,” Hear Res., 153(1-2) (Mar. 2001), pp. 64-79. |
Rattay, F., “Arrival at Functional Electrostimulation by modelling of fiber excitation,” Proceedings of the Ninth annual Conference of the IEEE Engineering in Medicine and Biology Society (1987), pp. 1459-1460. |
Rattay, F., “The inftuence of intrinsic noise can preserve the temporal fine structure of speech signals in models of electrically stimulated human cochlear neurones,” Journal of Physiology, Scientific Meeting of the Physiological Society. London, England, UK Apr. 19-21, 1999 (Jul. 1999), p. 170P. |
Rizzone, M., et al., “Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: effects of variation in stimulation parameters,” J. Neurol. Neurosurg. Psychiatry., 71(2) (Aug. 2001), pp. 215-219. |
Saint-Cyr, J. A., et al., “Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging,” J. Neurosurg., 87(5) (Nov. 2002), pp. 1152-1166. |
Sances, A., et al., “In Electroanesthesia: Biomedical and Biophysical Studies,” A Sances and SJ Larson, Eds., Academic Press, NY (1975), pp. 114-124. |
SI. Jean, P., et al., “Automated atlas integration and interactive three-dimensional visualization tools for planning and guidance in functional neurosurgery,” IEEE Transactions on Medical Imaging, 17(5) (1998), pp. 672-680. |
Starr, P.A., et al., “Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations,” J. Neurosurg., 97(2) (Aug. 2002), pp. 370-387. |
Sterio, D., et al., “Neurophysiological refinement of subthalamic nucleus targeting,” Neurosurgery, 50(1) (Jan. 2002), pp. 58-69. |
Struijk, J. J., et al., “Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study,” IEEE Transactions on Biomedical Engineering, 40(7) (Jul. 1993), pp. 632-639. |
Struijk, J J., et al., “Recruitment of dorsal column fibers in spinal cord stimulation influence of collateral branching,” IEEE Transactions on Biomedical Engineering, 39(9) (Sep. 1992), pp. 903-912. |
Tamma, F., et al., “Anatomo-clinical correlation of intraoperative stimulation-induced side-effects during HF-DBS of the subthalamic nucleus,” Neurol Sci., vol. 23 (Suppl 2) (2002), pp. 109-110. |
Tarler, M., et al., “Comparison between monopolar and tripolar configurations in chronically implanted nerve cuff electrodes,” IEEE 17th Annual Conference Engineering in Medicine and Biology Society, vol. 2 (1995), pp. 1093-109. |
Testerman, Roy L., “Coritical response to callosal stimulation: A model for determining safe and efficient stimulus parameters,” Annals of Biomedical Engineering, 6(4) (1978), pp. 438-452. |
Tuch, D.S., et al., “Conductivity mapping of biological tissue using diffusion MRI,” Ann NY Acad Sci., 888 (Oct. 30, 1999), pp. 314-316. |
Tuch, D.S., et al., “Conductivity tensor mapping of the human brain using diffusion tensor MRI,” Proc Nall Acad Sci USA, 98(20) (Sep. 25, 2001), pp. 11697-11701. |
Veraart, C., et al., “Selective control of muscle activation with a multipolar nerve cuff electrode,” IEEE Transactions on Biomedical Engineering, 40(7) (Jul. 1993), pp. 640-653. |
Vercueil, L., et al., “Deep brain stimulation in the treatment of severe dystonia,” J. Neurol., 248(8) (Aug. 2001 ), pp. 695-700. |
Vilalte, “Circuit Design of the Power-on-Reset,” Apr. 2000, pp. 1-25. |
Vitek, J. L., “Mechanisms of deep brain stimulation: excitation or inhibition,” Mov. Disord., vol. 17 (Suppl. 3) (2002), pp. 69-72. |
Voges, J., et al., “Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position,” J. Neurosurg., 96(2) (Feb. 2002), pp. 269-279. |
Wakana, S., et al., “Fiber tract-based atlas of human white matter anatomy,” Radiology. 230(1) (Jan. 2004). pp. 77-87. |
Alexander, DC., et al., “Spatial transformations of diffusion tensor magnetic resonance images,” IEEE Transactions on Medical Imaging, 20 (11), (2001), pp. 1131-1139. |
Wu, Y. R., et al., “Does Stimulation of the GPi control dyskinesia by activating inhibitory axons?,” Mov. Disord., vol. 16 (2001), pp. 208-216. |
Yelnik, J., et al., “Localization of stimulating electrodes in patients with Parkinson disease by using a three-dimensional atlas-magnetic resonance imaging coregistration method,” J Neurosurg., 99(1) (Jul. 2003), pp. 89-99. |
Yianni, John, et al., “Globus pallidus internus deep brain stimulation for dystonic conditions: a prospective audit,” Mov. Disord., vol. 18 (2003), pp. 436-442. |
Zonenshayn, M., et al., “Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting,” Neurosurgery, 47(2) (Aug. 2000), pp. 282-294. |
Voghell et al., “Programmable Current Source Dedicated to Implantable Microstimulators” ICM '98 Proceedings of the Tenth International Conference, pp. 67-70. |
Grill, W. M., et al., “Deep brain stimulation creates an informational lesion of the stimulated nucleus”, Neuroreport. 15I7t (May 19, 2004 ), 1137-40. |
Adler, DE., et al., “The tentorial notch: anatomical variation, morphometric analysis, and classification in 100 human autopsy cases,” J. Neurosurg., 96(6), (Jun. 2002), pp. 1103-1112. |
Jones et al., “An Advanced Demultiplexing System for Physiological Stimulation”, IEEE Transactions on Biomedical Engineering, vol. 44 No. 12 Dec. 1997, pp. 1210-1220. |
Alo, K. M., et al., “New trends in neuromodulation for the management of neuropathic pain,” Neurosurgery, 50(4), (Apr. 2002), pp. 690-703, discussion pp. 703-704. |
Ashby, P., et al., “Neurophysiological effects of stimulation through electrodes in the human subthalamic nucleus,” Brain, 122 (PI 10), (Oct. 1999), pp. 1919-1931. |
Baker, K. B., et al., “Subthalamic nucleus deep brain stimulus evoked potentials: Physiological and therapeutic implications,” Movement Disorders, 17(5), (Sep./Oct. 2002), pp. 969-983. |
Bammer, R, et al., “Diffusion tensor imaging using single-shot SENSE-EPI”, Magn Reson Med., 48(1 ), (Jul. 2002), pp. 128-136. |
Basser, P. J., et al., “MR diffusion tensor spectroscopy and imaging,” Biophys J., 66(1 ), (Jan. 1994), pp. 259-267. |
Basser, P. J., et al., “New currents in electrical stimulation of excitable tissues,” Annu Rev Biomed Eng., 2, (2000), pp. 377-397. |
Benabid, AL., et al., “Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders,” J. Neurosurg., 84(2), (Feb. 1996), pp. 203-214. |
Benabid, AL., et al., “Combined (thalamotoy and stimuation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease,” Appl Neurophysiol, vol. 50, (1987), pp. 344-346. |
Benabid, A L., et al., “Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus,” Lancet, 337 (8738), (Feb. 16, 1991 ), pp. 403-406. |
Nuttin, et al., “Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder,” Lancet 354 (9189) (1999), p. 1526. |
Christensen, Gary E., et al., “Volumetric transformation of brain anatomy,” IEEE Transactions on Medical Imaging, 16 (6), (Dec. 1997), pp. 864-877. |
Cooper, S , et al., “Differential effects of thalamic stimulation parameters on tremor and paresthesias in essential tremor,” Movement Disorders, 17(Supp. 5), (2002), p. S193. |
Coubes, P, et al., “Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus,” Lancet, 355 (9222), (Jun. 24, 2000), pp. 2220-2221. |
Miocinovic, S., et al., “Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation,” Exp Neurol 216 (i) (2009), pp. 166-176. |
Dawant, B. M., et al., “Compuerized atlas-guided positioning of deep brain stimulators: a feasibility study,” Biomedical Image registration; Second International Workshop, WBIR 2003, Revised Papers (Lecture notes in Comput. Sci. vol. (2717), Springer-Verlag Berlin, Germany(2003), pp. 142-150. |
Finnis, K. W., et al., “3-D functional atalas of subcortical structures for image guided stereotactic neurosurgery,” Neuroimage, vol. 9, No. 6, Iss. 2 (1999), p. S206. |
Finnis, K. W., et al., “3D Functional Database of Subcorticol Structures for Surgical Guidance in Image Guided Stereotactic Neurosurgery,” Medical Image Computing and Computer-Assisted Intervention—MICCAI'99, Second International Conference.Cambridge, UK, Sep. 19-22, 1999, Proceedings (1999), pp. 758-767. |
Finnis, K. W., et al., “A 3-Dimensional Database of Deep Brain Functional Anatomy, and Its Application to Image-Guided Neurosurgery,” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention.Lecture Notes in Computer Science; vol. 1935 (2000), pp. 1-8. |
Finnis, K. W., et al., “A functional database for guidance of surgical and therapeutic procedures in the deep brain,” Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 3 (2000), pp. 1787-1789. |
Finnis, K. W., et al., “Application of a Population Based Electrophysiological Database to the Planning and Guidance of Deep Brain Stereotactic Neurosurgery,” Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention-Part 11, Lecture Notes in Computer Science, vol. 2489 (2002), pp. 69-76. |
Finnis, K. W., et al., “Subcortical physiology deformed into a patient-specific brain atlas for image-guided stereotaxy,” Proceedings of SPIE—vol. 4681 Medical Imaging 2002: Visualization, Image-Guided Procedures, and Display (May 2002), pp. 184-195. |
Finnis, Krik W., et al., “Three-Dimensional Database of Subcortical Electrophysiology for Image-Guided Stereotatic Functional Neurosurgery,” IEEE Transactions on Medical Imaging, 22(1) (Jan. 2003), pp. 93-104. |
Gabriels, L , et al., “Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: psychopathological and neuropsychological outcome in three cases,” Acta Psychiatr Scand., 107(4) (2003), pp. 275-282. |
Gabriels, LA., et al., “Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder,” Neurosurgery, 52(6) (Jun. 2003), pp. 1263-1276. |
Goodall, E. V., et al., “Modeling study of activation and propagation delays during stimulation of peripheral nerve fibers with a tripolar cuff electrode,” IEEE Transactions on Rehabilitation Engineering, [see also IEEE Trans. on Neural Systems and Rehabilitation], 3(3) (Sep. 1995), pp. 272-282. |
Goodall, E. V., et al., “Position-selective activation of peripheral nerve fibers with a cuff electrode,” IEEE Transactions on Biomedical Engineering, 43(8) (Aug. 1996), pp. 851-856. |
Goodall, E. V., “Simulation of activation and propagation delay during tripolar neural stimulation,” Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (1993), pp. 1203-1204. |
Grill, WM., “Modeling the effects of electric fields on nerve fibers: inftuence of tissue electrical properties,” IEEE Transactions on Biomedical Engineering, 46(8) (1999), pp. 918-928. |
Grill, W. M., et al., “Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes,” J Biomed Mater Res., 50(2) (May 2000), pp. 215-226. |
Grill, W. M., “Neural modeling in neuromuscular and rehabilitation research,” Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4 (2001 ), pp. 4065-4068. |
Grill, W. M., et al., “Non-invasive measurement of the input-output properties of peripheral nerve stimulating electrodes,” Journal of Neuroscience Methods, 65(1) (Mar. 1996), pp. 43-50. |
Grill, W. M., et al., “Quantification of recruitment properties of multiple contact cuff electrodes,” IEEE Transactions on Rehabilitation Engineering, [see also IEEE Trans. on Neural Systems and Rehabilitation], 4(2) (Jun. 1996), pp. 49-62. |
Grill, W. M., “Spatially selective activation of peripheral nerve for neuroprosthetic applications,” Ph.D. Case Western Reserve University, (1995), pp. 245 pages. |
Grill, W. M., “Stability of the input-output properties of chronically implanted multiple contact nerve cuff stimulating electrodes,” IEEE Transactions on Rehabilitation Engineering [see also IEEE Trans. on Neural Systems and Rehabilitation] (1998), pp. 364-373. |
Grill, W. M., “Stimulus waveforms for selective neural stimulation,” IEEE Engineering in Medicine and Biology Magazine, 14(4) (Jul.-Aug. 1995). pp. 375-385. |
Grill, W. M., et al., “Temporal stability of nerve cuff electrode recruitment properties,” IEEE 17th Annual Conference Engineering in Medicine and Biology Society, vol. 2 (1995), pp. 1089-1090. |
Gross, RE., et al., “Advances in neurostimulation for movement disorders,” Neurol Res., 22(3) (Apr. 2000), pp. 247-258. |
Guridi et al., “The subthalamic nucleus, hemiballismus and Parkinson's disease: reappraisal of a neurological dogma,” Brain, vol. 124, 2001, pp. 5-19. |
Haberler, C, et al., “No tissue damage by chronic deep brain stimulation in Parkinson's disease,” Ann Neurol., 48(3) (Sep. 2000), pp. 372-376. |
Hamel, W, et al., “Deep brain stimuation of the subthalamic nucleus in Parkinson's disease: evaluation of active electrode contacts,” J Neurol Neurosurg Psychiatry, 74(8) (Aug. 2003), pp. 1036-1046. |
Hanekom, “Modelling encapsulation tissue around cochlear implant electrodes,” Med. Biol. Eng. Comput. vol. 43 (2005), pp. 47-55. |
Haueisen, J , et al., “The influence of brain tissue anisotropy on human EEG and MEG,” Neuroimage, 15(1) (Jan. 2002), pp. 159-166. |
D'Haese et al. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2005 Lecture Notes in Computer Science, 2005, vol. 3750, 2005, 427-434. |
Rohde et al. IEEE Transactions on Medical Imaging, vol. 22 No. 11, 2003 p. 1470-1479. |
Dawant et al., Biomedical Image Registration. Lecture Notes in Computer Science, 2003, vol. 2717, 2003, 142-150. |
Miocinovic et al., “Stereotactiv Neurosurgical Planning, Recording, and Visualization for Deep Brain Stimulation in Non-Human Primates”, Journal of Neuroscience Methods, 162:32-41, Apr. 5, 2007, XP022021469. |
Gemmar et al., “Advanced Methods for Target Navigation Using Microelectrode Recordings in Stereotactic Neurosurgery for Deep Brain Stimulation”, 21st IEEE International Symposium on Computer-Based Medical Systems, Jun. 17, 2008, pp. 99-104, XP031284774. |
Acar et al., “Safety Anterior Commissure-Posterior Commissure-Based Target Calculation of the Subthalamic Nucleus in Functional Stereotactic Procedures”, Stereotactic Funct. Neurosura., 85:287-291, Aug. 2007. |
Andrade-Souza, “Comparison of Three Methods of Targeting the Subthalamic Nucleus for Chronic Stimulation in Parkinson's Disease”, Neurosurgery, 56:360-368, Apr. 2005. |
Anheim et al., “Improvement in Parkinson Disease by Subthalamic Nucleus Stimulation Based on Electrode Placement”, Arch Neural., 65:612-616, May 2008. |
Butson et al., “Tissue and Electrode Capacitance Reduce Neural Activation Volumes During Deep Brain Stimulation”, Clinical Neurophysiology, 116:2490-2500, Oct. 2005. |
Butson et al., “Sources and Effects of Electrode Impedance During Deep Brain Stimulation”, Clinical Neurophysiology, 117:44 7-454, Dec. 2005. |
D'Haese et al., “Computer-Aided Placement of Deep Brain Stimulators: From Planning to Intraoperative Guidance”, IEEE Transaction on Medical Imaging, 24:1469-1478, Nov. 2005. |
Gross et al., “Electrophysiological Mapping for the Implantation of Deep Brain Stimulators for Parkinson's Disease and Tremor”, Movement Disorders, 21 :S259-S283, Jun. 2006. |
Halpern et al., “Brain Shift During Deep Brain Stimulation Surgery for Parkinson's Disease”, Stereotact Funct. Neurosurg., 86:37-43, published online Sep. 2007. |
Herzog et al., “Most Effective Stimulation Site in Subthalamic Deep Brain Stimulation for Parkinson's Disease”, Movement Disorders, 19:1050-1099, published on line Mar. 2004. |
Jeon et al., A Feasibility Study of Optical Coherence Tomography for Guiding Deep Brain Probes, Journal of Neuroscience Methods, 154:96-101, Jun. 2006. |
Khan et al., “Assessment of Brain Shift Related to Deep Brain Stimulation Surgery”, Sterreotact Funct. Neurosurg., 86:44-53, published online Sep. 2007. |
Koop et al., “Improvement in a Quantitative Measure of Bradykinesia After Microelectrode Recording in Patients with Parkinson's Disease During Deep Brain Stimulation Surgery”, Movement Disorders, 21 :673-678, published on line Jan. 2006. |
Lemaire et al., “Brain Mapping in Stereotactic Surgery. A Brief Overview from the Probabilistic Targeting to the Patient-Based Anatomic Mapping”, NeuroImage, 37:S109-S115, available online Jun. 2007. |
Machado et al., “Deep Brain Stimulation for Parkinson's Disease: Surgical Technique and Perioperative Management”, Movement Disorders, 21 :S247-S258. Jun. 2006. |
Maks et al., “Deep Brain Stimulation Activation Volumes and Their Association with Neurophysiological Mapping and Therapeutic Outcomes”, Downloaded from jnnp.bmj.com, pp. 1-21, published online Apr. 2008. |
Moran et al., “Real-Time Refinment of Subthalamic Nucleous Targeting Using Bayesian Decision-Making on the Root Mean Square Measure”, Movement Disorders, 21: 1425-1431, published online Jun. 2006. |
Sakamoto et al., “Homogeneous Fluorescence Assays for RNA Diagnosis by Pyrene-Conjugated 2′-0-Methyloligoribonucleotides”, Nucleosides, Nucleotides, and Nucleric Acids, 26:1659-1664, on line publication Oct. 2007. |
Winkler et al., The First Evaluation of Brain Shift During Functional Neurosurgery by Deformation Field Analysis, J. Neural. Neurosurg. Psychiatry, 76:1161-1163, Aug. 2005. |
Yelnik et al., “A Three-Dimensional, Histological and Deformable Atlas of the Human Basal J Ganglia. I. Atlas Construction Based on Immunohistochemical and MRI Data”, NeuroImage, 34:618,-638,Jan. 2007. |
Ward, H. E., et al., “Update on deep brain stimulation for neuropsychiatric disorders,” Neurobiol Dis 38 (3) (2010), pp. 346-353. |
Alberts et al. “Bilateral subthalamic stimulation impairs cognitive-motor performance in Parkinson's disease patients.” Brain (2008), 131, 3348-3360, Abstract. |
Mayberg, H. S., et al., “Deep brain stimulation for treatment-resistant depression,” Neuron, 45(5) (Mar. 3, 2005), pp. 651-660. |
An, et al., “Prefronlal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys,” J Comp Neural 401 (4) (1998), pp. 455-479. |
Mayberg, H. S., et al., “Limbic-cortical dysregulation a proposed model of depression,” J Neuropsychiatry Clin Neurosci. 9 (3) (1997), pp. 471-481. |
Carmichael, S. T., et al., “Connectional networks within the orbital and medial prefronlal cortex of macaque monkeys,” J Comp Neural 371 (2) (1996), pp. 179-207. |
Croxson, et al., “Quantitative investigation of connections of the prefronlal cortex in the human and macaque using probabilistic diffusion tractography,” J Neurosci 25 (39) (2005), pp. 8854-8866. |
Frankemolle, et al., “Reversing cognitive-motor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming,” Brain 133 (2010), pp. 746-761. |
Freedman, et al., “Subcortical projections of area 25 (subgenual cortex) of the macaque monkey,” J Comp Neurol 421 (2) (2000), pp. 172-188. |
Giacobbe, et al., “Treatment resistant depression as a failure of brain homeostatic mechanisms: implications for deep brain stimulation,” Exp Neural 219 (1) (2009), pp. 44-52. |
Goodman, et al. “Deep brain stimulation for intractable obsessive compulsive disorder: pilot study using a blinded, staggered-onset design,” Biol Psychiatry 67 (6) (2010), pp. 535-542. |
Greenberg, et al., “Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience,” Mol Psychiatry 15 (1) (2010), pp. 64-79. |
Greenberg, et al., “Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder,” Neuropsychopharmacology 31 (11) (2006), pp. 2384-2393. |
Gutman, et al., “A tractography analysis of two deep brain stimulation white matter targets for depression,” Biol Psychiatry 65 (4) (2009), pp. 276-282. |
Haber, et al., “Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning,” J Neurosci 26 (32) (2006), pp. 8368-8376. |
Haber, et al., “Cognitive and limbic circuits that are affected by deep brain stimuation,” Front Biosci 14 (2009), pp. 1823-1834. |
European Patent Office, International Searching Authority, International Search Report and the Written Opinion of the ISA in International Application No. PCT/US2011/040329, dated Dec. 29, 2011, 14 pages. |
European Patent Office, International Searching Authority, International Search Report and the Written Opinion of the ISA in International Application No. PCT/US2012/069667, dated Feb. 27, 2013, 15 pages. |
European Patent Office, International Searching Authority, Partial International Search Report of the ISA in International Application No. PCT/US2013/056981, dated May 6, 2014, 4 pages. |
European Patent Office, International Search Report and the Written Opinion of the ISA in International Application No. PCT/US2013/056975, dated Feb. 20, 2014, 11 pages. |
European Patent Office, International Search Report and the Written Opinion of the ISA in International Application No. PCT/US2013/056984, dated Dec. 10, 2013, 11 pages. |
European Patent Office, International Search Report and the Written Opinion/ISA in International Patent Application No. PCT/US2013/056112, dated May 15, 2014, 14 pages. |
European Patent Office, International Search Report in International Application No. PCT/US2012/053344, dated Nov. 26, 2012, 8 pages. |
European Patent Office, International Search Report in International Application No. PCT/US2012/050181, dated Jan. 3, 2013, 7 pages. |
Euopean Patent Office, International Search Report and the Written Opinion in International Application No. PCT/US2012/050170, dated Oct. 5, 2012, 15 pages. |
European Patent Office, International Search Report in International Application No. PCT/US09/03017, dated Aug. 3, 2009, 7 pages. |
European Patent Office, International Search report and Written Opinion in PCT application No. PCT/US12/050174, dated Mar. 6, 2013, 20 pages. |
European Patent Office, International Search Report and Written Opinion in International Application No. PCT/US2012/050187, dated Feb. 27, 2013, 9 pages. |
European Patent Office, International Search Report and Written Opinion in International Application No. PCT/US2012/030700, dated Feb. 27, 2013, 9 pages. |
European Patent Office, International Search Report in International Application No. PCT/US09/03041, dated Aug. 20, 2009, 7 pages. |
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority in International Application No. PCT/US2012/050175, dated Oct. 26, 2012, 15 pages. |
European Patent Office, International Search Report in International Application No. PCT/US09/03038, dated Oct. 8, 2009, 9 pages. |
European Patent Office, International Search Report in International Application No. PCT/US09/03040, dated Aug. 13, 2009, 7 pages. |
European Patent Office, International Search Report in International Application No. PCT/US09/03049, dated Jan. 26, 2010, 8 pages. |
European Patent Office, partial International Search Report in International Application No. PCT/US2012/030701, dated Feb. 15, 2013, 7 pages. |
European Patent Office, partial International Search Report in International Application No. PCT/US2012/030705, dated Mar. 6, 2013, 7 pages. |
Butson et al., “Current Steering to Control the Volume of Tissue Activated During Deep Brain Stimulation,” Brain Stimulation 1, 2008, pp. 7-15. |
Butson et al., “Patient Specific Analysis of the volume of tissue activated during deep brain stimulation,” NeuroImage, Academic Press, vol. 34, No. 2, Dec. 2, 2006, pp. 661-670. |
Butson et al., “Role of Electrode Design on the Volume of Tissue Activated During Deep Brain Stimulation,” Journal of Neural Engineering, Mar. 1, 2006, vol. 3, No. 1, pp. 1-8. |
Butson et al., “StimExplorer: Deep Brain Stimulation Parameter Selection Software System,” Acta Neurochirugica, Jan. 1, 2007, vol. 97, No. 2, pp. 569-574. |
Carnevale, N.T., et al., “The Neuron Book,” Cambridge, UK: Cambridge University Press (2006), 480 pages. |
Chaturvedi, “Development of Accurate Computational Models for Patient-Specific Deep Brain Stimulation,” Electronic Thesis or Dissertation, Jan. 2012, 162 pages. |
Chaturvedi A et al., “Patient-specific models of deep brain stimulation: Influence of field model complexity on neural activation predictions,” Brain Stimulation, Elsevier, Amsterdam, NL, vol. 3, No. 2, Apr. 2010, pp. 65-77. |
Commowick, Olivier, et al., “Using Frankenstein's Creature Paradigm to Build a Patient Specific Atlas,” Sep. 20, 2009, Medical Image Computing and Computer-Assisted Intervention, pp. 993-1000. |
Cover, T.M., et al., “Elements of information theory,” (1991) John Wiley & Sons, New York, NY, pp. 1-542. |
Dice, Lee R., “Measures of the Amount of Ecologic Association Between Species,” Ecology 26(3) (1945), pp. 297-302, doi:10.2307/1932409, http://jstor.org/stable/1932409. |
Ericsson, A., et al., “Construction of a patient-specific atlas of the brain: Application to normal aging,” Biomedical Imaging: From Nano to Macro, ISBI 2008, 5th IEEE International Symposium, May 14, 2008, pp. 480-483. |
Hubert, Lawrence, et al., “Comparing partitions,” Journal of Classification 2(1) (1985), pp. 193-218, doi:10.1007/BF01908075. |
Izad, Olivier, “Computationally Efficient Method in Predicating Axonal Excitation,” Dissertation for Masters Degree, Department of Biomedical Engineering, Case Western Reserve University, May 2009, 144 pages. |
Jaccard, Paul, “Étude comparative de la distribution florale dans une portion odes Aples et des Jura,” Bulletin de la Société Vaudoise des Sciences Naturelles (1901), vol. 37, pp. 547-579. |
Klein, A., et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration,” NeuroImage, Academic Press, Orlando, FL, vol. 46, No. 3, Jul. 2009, pp. 786-802. |
Liliane Ramus et al, “Assessing selection methods in the context of multi-atlas based segmentation,” Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium, Apr. 14, 2010, pp. 1321-1324. |
Lotjonen, J.M.P., et al, “Fast and robust multi-atlas segmentation of brain magnetic resonance images,” NeuroImage, Academic Press, vol. 49, No. 3, Feb. 1, 2010, pp. 2352-2365. |
McIntyre, C.C., et al., “Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle,” J Neurophysiol, 87(2) (Feb. 2002), pp. 995-1006. |
Meila, Marina, “Comparing Clusterings by the Variation of Information,” Learning Theory and Kernel Machines (2003), pp. 173-187. |
Miocinovic et al., “Cicerone: Stereotactic Neurophysiological Recording and Deep Brain Stimulation Electrode Placement Software System,” Acta Neurochirurgica Suppl., Jan. 1, 2007, vol. 97, No. 2, pp. 561-567. |
Peterson et al., “Predicting myelinated axon activation using spatial characteristics of the extracellular field,” Journal of Neural Engineering, 8 (2011), 12 pages. |
Rand, W.M., “Objective criteria for the evaluation of clustering methods,” Journal of the American Statistical Association (American Statistical Association) 66 (336) (1971), pp. 846-850, doi:10.2307/2284239, http://jstor.org/stable/2284239. |
Sanchez Castro et al., “A cross validation study of deep brain stimulation targeting: From experts to Atlas-Based, Segmentation-Based and Automatic Registration Algorithms,” IEEE Transactions on Medical Imaging, vol. 25, No. 11, Nov. 1, 2006, pp. 1440-1450. |
Schmidt et al., “Sketching and Composing Widgets for 3D Manipulation,” Eurographics, Apr. 2008, vol. 27, No. 2, pp. 301-310. |
Shen, Kaikai, et al., “Atlas selection strategy using least angle regression in multi-atlas segmentation propagation,” Biomedical Imaging: From Nano to Macro, 2011, 8th IEEE International Symposium, ISBI 2011, Mar. 30, 2011, pp. 1746-1749. |
Siegel, Ralph M. et al., “Spatiotemporal dynamics of the functional architecture for gain fields in inferior parietal lobule of behaving monkey,” Cerebral Cortex, New York, NY, vol. 17, No. 2, Feb. 2007, pp. 378-390. |
Volkmann, J., et al., “Introduction to the programming of deep brain stimulators,” Mov. Disord., vol. 17 (Suppl 3) (2002), pp. 181-187. |
Warman et al., “Modeling the Effects of Electric Fields on nerve Fibers: Determination of Excitation Thresholds,” IEEE Transactions on Biomedical Engineering, vol. 39, No. 12 (Dec. 1992), pp. 1244-1254. |
Wesselink et al., “Analysis of Current Density and Related Parameters in Spinal Cord Stimulation,” IEEE Transactions on Rehabilitation Engineering, vol. 6, No. 2, Jun. 1998, pp. 200-207. |
Number | Date | Country | |
---|---|---|---|
20150066111 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61354576 | Jun 2010 | US | |
61376439 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13160104 | Jun 2011 | US |
Child | 14537299 | US |