Progressive MAC address learning

Information

  • Patent Grant
  • 9807007
  • Patent Number
    9,807,007
  • Date Filed
    Monday, August 10, 2015
    9 years ago
  • Date Issued
    Tuesday, October 31, 2017
    7 years ago
Abstract
One embodiment of the present invention provides a switch in a network of interconnected switches. The switch includes a storage device, a hardware management apparatus, and a layer-2 management apparatus. The storage device stores a forwarding table, which includes an entry comprising a MAC address and an egress port for the MAC address. The hardware management apparatus determines whether a destination MAC address of a frame is present in a hardware table in memory of the switch. The layer-2 management apparatus, in response to a determination that the destination MAC address is not present in the hardware table, looks up a first entry comprising the destination MAC address in the forwarding table, and creates a second entry comprising the destination MAC address in the hardware table based on the first entry.
Description
BACKGROUND

Field


This disclosure relates to communication networks. More specifically, this disclosure relates to a system and method for efficient media access control (MAC) address learning.


Related Art


The exponential growth of the Internet has made it a popular delivery medium for a variety of applications running on physical and virtual devices. Such applications have brought with them an increasing demand for bandwidth. As a result, equipment vendors race to build larger and faster switches with versatile capabilities, such as network virtualization and multi-tenancy, to accommodate diverse network demands efficiently. However, the size of a switch cannot grow infinitely. It is limited by physical space, power consumption, and design complexity, to name a few factors. Furthermore, switches with higher capability are usually more complex and expensive. More importantly, because an overly large and complex system often does not provide economy of scale, simply increasing the size and capability of a switch may prove economically unviable due to the increased per-port cost.


A flexible way to improve the scalability of a switch system is to build a fabric switch. A fabric switch is a collection of individual member switches. These member switches form a single, logical switch that can have an arbitrary number of ports and an arbitrary topology. As demands grow, customers can adopt a “pay as you grow” approach to scale up the capacity of the fabric switch.


Meanwhile, layer-2 and layer-3 (e.g., Ethernet and Internet Protocol (IP), respectively) switching technologies continue to evolve. IP facilitates routing and end-to-end data transfer in wide area networks (WANs) while providing safeguards for error-free communication. On the other hand, more routing-like functionalities are migrating into layer-2. Notably, the development of the Transparent Interconnection of Lots of Links (TRILL) protocol allows Ethernet switches to function more like routing devices. TRILL overcomes the inherent inefficiency of the conventional spanning tree protocol, which forces layer-2 switches to be coupled in a logical spanning-tree topology to avoid looping. TRILL allows routing bridges (RBridges) to be coupled in an arbitrary topology without the risk of looping by implementing routing functions in switches and including a hop count in the TRILL header.


As Internet traffic becomes more diverse, network virtualization is becoming progressively more important as a value proposition for network architects. In addition, the evolution of virtual computing has made multi-tenancy attractive and, consequently, placed additional requirements on the network. For example, a switch may couple a large number of virtual servers and learn the virtual MAC addresses of the virtual servers. It is often desirable that the network infrastructure can provide a scalable MAC address management for a large number of end devices.


While today's networks support many desirable features, some issues remain unsolved in efficiently facilitating scalable MAC address learning.


SUMMARY

One embodiment of the present invention provides a switch in a network of interconnected switches. The switch includes a storage device, a hardware management apparatus, and a layer-2 management apparatus. The storage device stores a forwarding table, which includes an entry comprising a media access control (MAC) address and an egress port for the MAC address. The hardware management apparatus determines whether a destination MAC address of a frame is present in a hardware table in memory of the switch. The layer-2 management apparatus, in response to a determination that the destination MAC address is not present in the hardware table, looks up a first entry comprising the destination MAC address in the forwarding table, and creates a second entry comprising the destination MAC address in the hardware table based on the first entry.


In a variation on this embodiment, the switch also includes a learning management apparatus, which learns a first MAC address from a local edge port. The layer-2 management apparatus then creates respective entries in the forwarding and hardware tables comprising the learned MAC address.


In a variation on this embodiment, the switch also includes a learning management apparatus, which extracts a remote MAC address learned at a port of a second switch from a payload of a notification message. The layer-2 management apparatus then creates an entry in the forwarding table comprising the remote MAC address.


In a variation on this embodiment, the layer-2 management apparatus, in response to a determination that the destination MAC address is present in the hardware table, identifies an egress port for the frame from an entry comprising the destination MAC address in the hardware table.


In a variation on this embodiment, if the frame has been received via a first port in a first chip of the switch, the layer-2 management apparatus is precluded from creating an entry comprising the destination MAC address in a hardware table of a second chip of the switch.


In a variation on this embodiment, the layer-2 management apparatus clears the second entry in response to identifying an aging out event for the destination MAC address. However, the first entry remains in the forwarding table.


In a further variation, the layer-2 management apparatus clears the first entry in response to identifying an aging out event of a remote switch in a notification message. The destination MAC address has been learned at a port in the remote switch.


In a variation on this embodiment, the switch and a remote switch participate in a virtual link aggregation group coupling an end device with the switch and the remote switch. The hardware table of the switch includes at least one different MAC address than a remote hardware table of the remote switch.


In a variation on this embodiment, the layer-2 management apparatus, in response to determining a failure to the lookup, floods the frame in the network.


In a variation on this embodiment, the network is a switch group operating as a single Ethernet switch. A respective switch of the network is associated with a group identifier identifying the switch group.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A illustrates an exemplary network with support for progressive media access control (MAC) address learning, in accordance with an embodiment of the present invention.



FIG. 1B illustrates exemplary forwarding and hardware tables for supporting progressive MAC address learning, in accordance with an embodiment of the present invention.



FIG. 1C illustrates exemplary progressive MAC address learning in switch hardware, in accordance with an embodiment of the present invention.



FIG. 2A illustrates an exemplary progressive MAC address learning process based on an Address Resolution Protocol (ARP) request, in accordance with an embodiment of the present invention.



FIG. 2B illustrates an exemplary progressive MAC address learning process based on an initial communication from an end device, in accordance with an embodiment of the present invention.



FIG. 3A presents a flowchart illustrating the process of a switch learning a progressive MAC address via a local edge port, in accordance with an embodiment of the present invention.



FIG. 3B presents a flowchart illustrating the process of a switch learning a progressive MAC address from a notification message, in accordance with an embodiment of the present invention.



FIG. 3C presents a flowchart illustrating the process of a switch timing out a learned MAC address, in accordance with an embodiment of the present invention.



FIG. 4 presents a flowchart illustrating the process of a switch forwarding a packet based on learned progressive MAC addresses, in accordance with an embodiment of the present invention.



FIG. 5A illustrates an exemplary virtual link aggregation group with support for progressive MAC address learning, in accordance with an embodiment of the present invention.



FIG. 5B illustrates an exemplary high-availability for a virtual link aggregation group with support for progressive MAC address learning, in accordance with an embodiment of the present invention.



FIG. 6 illustrates an exemplary switch with support for progressive MAC address learning, in accordance with an embodiment of the present invention.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the claims.


Overview


In embodiments of the present invention, the problem of facilitating scalable MAC address learning in a switch is solved by incorporating only the MAC addresses currently in use in the switch in the hardware table of the switch. With existing technologies, an end device can operate as a host machine with a plurality of virtual machines, each of which may have multiple MAC addresses. As a result, a switch coupling a large number of such servers may need to learn a large number of MAC addresses. Furthermore, in a network, such as a fabric switch, where a learned MAC address is shared among the member switches of the network, the burden of a respective switch learning a respective MAC address can be significant. This can become a bottleneck for scaling up such a network.


To solve this problem, embodiments of the present invention allow a switch in a network to identify conversational MAC addresses (i.e., the MAC addresses in use in active communications). The switch can learn a MAC address via a local edge port (e.g., based on Ethernet MAC address learning) or from the payload of a notification message from a remote switch (e.g., in a fabric switch). The switch creates an entry comprising a respective learned MAC address and a corresponding egress port identifier in a forwarding table (e.g., a software table). If the switch identifies a remotely learned MAC address as a destination MAC address, the switch considers that MAC address as a conversational MAC address. The switch also considers a locally learned MAC address as a conversational MAC address since it has received at least one packet from that MAC address.


The switch then incorporates the entry comprising the conversational MAC address from the forwarding table into the local hardware table (e.g., an Exact Match (EXM) Table in the Content Addressable Memory (CAM)). As a result, the hardware table only includes the MAC address currently in use in an active communication at the switch. In this way, the switch uses its limited hardware table resources for the MAC addresses currently in use, thereby allowing the switch to support a large number of active communications and scale up a network.


In some embodiments, the network is a fabric switch. In a fabric switch, any number of switches coupled in an arbitrary topology may logically operate as a single switch. The fabric switch can be an Ethernet fabric switch or a virtual cluster switch (VCS), which can operate as a single Ethernet switch. Any member switch may join or leave the fabric switch in “plug-and-play” mode without any manual configuration. In some embodiments, a respective switch in the fabric switch is a Transparent Interconnection of Lots of Links (TRILL) routing bridge (RBridge). In some further embodiments, a respective switch in the fabric switch is an Internet Protocol (IP) routing-capable switch (e.g., an IP router).


It should be noted that a fabric switch is not the same as conventional switch stacking. In switch stacking, multiple switches are interconnected at a common location (often within the same rack), based on a particular topology, and manually configured in a particular way. These stacked switches typically share a common address, e.g., an IP address, so they can be addressed as a single switch externally. Furthermore, switch stacking requires a significant amount of manual configuration of the ports and inter-switch links. The need for manual configuration prohibits switch stacking from being a viable option in building a large-scale switching system. The topology restriction imposed by switch stacking also limits the number of switches that can be stacked. This is because it is very difficult, if not impossible, to design a stack topology that allows the overall switch bandwidth to scale adequately with the number of switch units.


In contrast, a fabric switch can include an arbitrary number of switches with individual addresses, can be based on an arbitrary topology, and does not require extensive manual configuration. The switches can reside in the same location, or be distributed over different locations. These features overcome the inherent limitations of switch stacking and make it possible to build a large “switch farm,” which can be treated as a single, logical switch. Due to the automatic configuration capabilities of the fabric switch, an individual physical switch can dynamically join or leave the fabric switch without disrupting services to the rest of the network.


Furthermore, the automatic and dynamic configurability of the fabric switch allows a network operator to build its switching system in a distributed and “pay-as-you-grow” fashion without sacrificing scalability. The fabric switch's ability to respond to changing network conditions makes it an ideal solution in a virtual computing environment, where network loads often change with time.


It should also be noted that a fabric switch is distinct from a VLAN. A fabric switch can accommodate a plurality of VLANs. A VLAN is typically identified by a VLAN tag. In contrast, the fabric switch is identified by a fabric identifier (e.g., a VCS identifier), which is assigned to the fabric switch. A respective member switch of the fabric switch is associated with the fabric identifier. Furthermore, when a member switch of a fabric switch learns a media access control (MAC) address of an end device (e.g., via layer-2 MAC address learning), the member switch generates a notification message, includes the learned MAC address in the payload of the notification message, and sends the notification message to all other member switches of the fabric switch. In this way, a learned MAC address is shared with a respective member switch of the fabric switch.


In this disclosure, the term “fabric switch” refers to a number of interconnected physical switches which form a single, scalable logical switch. These physical switches are referred to as member switches of the fabric switch. In a fabric switch, any number of switches can be connected in an arbitrary topology, and the entire group of switches functions together as one single, logical switch. This feature makes it possible to use many smaller, inexpensive switches to construct a large fabric switch, which can be viewed as a single logical switch externally. Although the present disclosure is presented using examples based on a fabric switch, embodiments of the present invention are not limited to a fabric switch. Embodiments of the present invention are relevant to any computing device that includes a plurality of devices operating as a single device.


Although the present disclosure is presented using examples based on an encapsulation protocol, embodiments of the present invention are not limited to networks defined using one particular encapsulation protocol associated with a particular Open System Interconnection Reference Model (OSI reference model) layer. For example, embodiments of the present invention can also be applied to a multi-protocol label switching (MPLS) network. In this disclosure, the term “encapsulation” is used in a generic sense, and can refer to encapsulation in any networking layer, sub-layer, or a combination of networking layers.


The term “end device” can refer to any device external to a network (e.g., which does not perform forwarding in that network). Examples of an end device include, but are not limited to, a physical or virtual machine, a conventional layer-2 switch, a layer-3 router, or any other type of network device. Additionally, an end device can be coupled to other switches or hosts further away from a layer-2 or layer-3 network. An end device can also be an aggregation point for a number of network devices to enter the network. An end device hosting one or more virtual machines can be referred to as a host machine. In this disclosure, the terms “end device” and “host machine” are used interchangeably.


The term “hypervisor” is used in a generic sense, and can refer to any virtual machine manager. Any software, firmware, or hardware that creates and runs virtual machines can be a “hypervisor.” The term “virtual machine” is also used in a generic sense and can refer to software implementation of a machine or device. Any virtual device which can execute a software program similar to a physical device can be a “virtual machine.” A host external device on which a hypervisor runs one or more virtual machines can be referred to as a “host machine.”


The term “VLAN” is used in a generic sense, and can refer to any virtualized network. Any virtualized network comprising a segment of physical networking devices, software network resources, and network functionality can be referred to as a “VLAN.” “VLAN” should not be interpreted as limiting embodiments of the present invention to layer-2 networks. “VLAN” can be replaced by other terminologies referring to a virtualized network or network segment, such as “Virtual Private Network (VPN),” “Virtual Private LAN Service (VPLS),” or “Easy Virtual Network (EVN).”


The term “packet” refers to a group of bits that can be transported together across a network. “Packet” should not be interpreted as limiting embodiments of the present invention to layer-3 networks. “Packet” can be replaced by other terminologies referring to a group of bits, such as “frame,” “cell,” or “datagram.”


The term “switch” is used in a generic sense, and can refer to any standalone or fabric switch operating in any network layer. “Switch” can be a physical device or software running on a computing device. “Switch” should not be interpreted as limiting embodiments of the present invention to layer-2 networks. Any device that can forward traffic to an external device or another switch can be referred to as a “switch.” Examples of a “switch” include, but are not limited to, a layer-2 switch, a layer-3 router, a TRILL RBridge, or a fabric switch comprising a plurality of similar or heterogeneous smaller physical switches.


The term “RBridge” refers to routing bridges, which are bridges implementing the TRILL protocol as described in Internet Engineering Task Force (IETF) Request for Comments (RFC) “Routing Bridges (RBridges): Base Protocol Specification,” available at http://tools.ietf.org/html/rfc6325, which is incorporated by reference herein. Embodiments of the present invention are not limited to application among RBridges. Other types of switches, routers, and forwarders can also be used.


The term “edge port” refers to a port on a network which exchanges data frames with a device outside of the network (i.e., an edge port is not used for exchanging data frames with another member switch of a network). The term “inter-switch port” refers to a port which sends/receives data frames among member switches of the network. The terms “interface” and “port” are used interchangeably.


The term “switch identifier” refers to a group of bits that can be used to identify a switch. Examples of a switch identifier include, but are not limited to, a media access control (MAC) address, an Internet Protocol (IP) address, and an RBridge identifier. Note that the TRILL standard uses “RBridge ID” (RBridge identifier) to denote a 48-bit intermediate-system-to-intermediate-system (IS-IS) System ID assigned to an RBridge, and “RBridge nickname” to denote a 16-bit value that serves as an abbreviation for the “RBridge ID.” In this disclosure, “switch identifier” is used as a generic term, is not limited to any bit format, and can refer to any format that can identify a switch. The term “RBridge identifier” is also used in a generic sense, is not limited to any bit format, and can refer to “RBridge ID,” “RBridge nickname,” or any other format that can identify an RBridge.


The term “tunnel” refers to a data communication where one or more networking protocols are encapsulated using another networking protocol. Although the present disclosure is presented using examples based on a layer-3 encapsulation of a layer-2 protocol, “tunnel” should not be interpreted as limiting embodiments of the present invention to layer-2 and layer-3 protocols. A “tunnel” can be established for and using any networking layer, sub-layer, or a combination of networking layers.


Network Architecture



FIG. 1A illustrates an exemplary network with support for progressive media access control (MAC) address learning, in accordance with an embodiment of the present invention. As illustrated in FIG. 1A, a network 100 includes member switches 101, 102, 103, 104, and 105. Network 100 can be a TRILL network and a respective member switch, such as switch 103, can be a TRILL RBridge. Network 100 can also be an IP network and a respective member switch, such as switch 103, can be an IP-capable switch, which calculates and maintains a local IP routing table (e.g., a routing information base or RIB), and is capable of forwarding packets based on its IP addresses. In some embodiments, network 100 is a fabric switch, and one or more switches in fabric switch 100 can be virtual switches (e.g., a software switch running on a computing device).


Switch 103 is coupled to end devices 111 and 112, switch 105 is coupled to end devices 113 and 114, and switch 102 is coupled to end devices 115 and 116. Member switches in network 100 use edge ports to communicate with end devices and inter-switch ports to communicate with other member switches. For example, switch 103 is coupled to end devices 111 and 112 via edge ports and to switches 101, 102, and 104 via inter-switch ports. End devices 111 and 112 can reside within the same local area network. As a result, a packet from end device 111 to end device 112 can be forwarded without switch 103 forwarding it.


With existing technologies, end devices 111-116 can operate as host machines hosting a plurality of virtual machines, each of which may have multiple MAC addresses. As a result, switches 102, 103, and 105 may need to learn a large number of MAC addresses. If network 100 is a fabric switch, where a learned MAC address is shared among the member switches, the burden of a respective switch in network 100 learning a respective MAC address can be significant. This can become a bottleneck for scaling up network 100.


To solve this problem, switches in network 100 can identify conversational MAC addresses. During operation, a switch in network 100, such as switch 103, learns end device 111's MAC address via a local edge port (e.g., based on Ethernet MAC address learning). Upon learning the MAC address, switch 103 creates an entry comprising the MAC address and a corresponding egress port identifier of the port coupling end device 111 in a forwarding table 181 (e.g., a software table, such as a forwarding database). In some embodiments, switch 103 creates a notification message, includes the learned MAC address in the notification message, and sends the notification message to other switches in network 100.


Upon receiving the notification message, a respective other switch stores the learned MAC address in the local forwarding table in association with switch 103's identifier. For example, switch 102 stores the learned MAC address and switch 103's identifier in forwarding table 185. In some embodiments, the entry includes a bitmap indicating the MAC address's association with switch 103. For example, network 100 includes five switches. Hence, a bitmap of five bits can indicate the association between a MAC address and a corresponding switch. For example, the entry in forwarding table 185 can include a bitmap “00100,” which indicates that the MAC address is associated with switch 103.


Similarly, switch 105 learns end device 113's MAC address via a local edge port and creates an entry comprising the MAC address and a corresponding egress port identifier in a forwarding table 183. In the same way, switch 102 learns end device 115's MAC address via a local edge port and creates an entry comprising the MAC address and a corresponding egress port identifier in a forwarding table 185. Switches 102 and 105 can also share the respective learned MAC addresses with other switches in network 100. As a result, switch 103 learns the MAC addresses of end devices 113 and 115, and stores them in forwarding table 181. A respective switch in network 100, either locally or remotely, can also learn the respective MAC addresses of end devices 112, 114, and 116.


However, a switch in network 100 only includes the locally learned MAC addresses in the hardware table (e.g., the EXM table in a CAM). For example, switch 103 only includes the MAC addresses of end devices 111 and 112 in local hardware table 182. Similarly, switch 105 includes the MAC addresses of end devices 113 and 114 in local hardware table 184, and switch 102 includes the MAC addresses of end devices 115 and 116 in local hardware table 186. A switch includes an entry comprising a remotely learned MAC address in a local hardware table if that MAC address is in use in an active communication (i.e., is a conversational MAC address).


During operation, end device 112 sends a packet 190 to end device 116. Switch 103 receives the packet and learns the source MAC address of packet 190 (i.e., end device 112's MAC address), as described above. Switch 103 determines that the destination MAC address of packet 190 is not present in hardware table 182. Switch 103 then checks whether the MAC address is present in forwarding table 181. Since switch 103 has learned end device 116's MAC address from a notification message from switch 102, forwarding table 181 includes an entry comprising end device 116's MAC address and the switch identifier of switch 102. Switch 102 then creates a corresponding entry in hardware table 182 with end device 116's MAC address and a corresponding egress port.


In some embodiments, the unavailability of end device 116's MAC address in hardware table 182 causes an exception at switch 103. This exception can be triggered at the edge ports of switch 103. In response to the exception, switch 103 consults forwarding table 181 to check whether forwarding table 181 includes end device 116's MAC address. Without the support for maintaining a conversational MAC address, switch 103 floods network 100 if a destination MAC address is not present in forwarding table 181. The support for maintaining the conversational MAC address can be indicated by a set value of a Learning in Progress (LiP) bit in switch 103.


Switch 103 thus determines the destination MAC address of packet 190 as a conversational MAC address and creates an entry in hardware table 182 based on the corresponding entry in forwarding table 181. In some embodiments, switch 103 also sets a flag of the entry in the forwarding table indicating that the MAC address is a conversational MAC address. Switch 103 can also add the entry in a download list (e.g., can add the index of the entry in the download list). The layer-2 management apparatus of switch 103 consults the download list and generates the corresponding entries of the download list in hardware table 182.


In this way, hardware table 182 only includes the MAC address currently in use in an active communication at switch 103. This allows switch 103 to use the limited resources of hardware table 182 for the conversational MAC addresses, thereby allowing switch 103 to support a large number of active communications. Upon crating the entry in hardware table 182, switch 103 encapsulates packet 190 in an encapsulation header 193 and generates encapsulated packet 192. Switch 103 includes switch 102's switch identifier as the egress switch identifier in encapsulation header 193 based on the entry in hardware table 182. Switch 103 then forwards encapsulated packet 192 based on the forwarding entry in hardware table 182.


Encapsulation header 193 can be a fabric encapsulation header (e.g., an encapsulation header used to forward the packet in a fabric switch) or a tunnel header (e.g., an encapsulation header used to forward the packet via a tunnel). Examples of a fabric encapsulation header include, but are not limited to, a TRILL header, an IP header, an Ethernet header, and a combination thereof. Examples of a tunnel include, but are not limited to, Virtual Extensible Local Area Network (VXLAN), Generic Routing Encapsulation (GRE), and its variations, such as Network Virtualization using GRE (NVGRE) and openvSwitch GRE. The VLAN identifier of a global VLAN can be included in the encapsulation header.


If switch 103 does not find an unknown destination MAC address of a packet in forwarding table 181, switch 103 creates an entry comprising the unknown destination MAC address in forwarding table 181 and indicates that the corresponding packet has been flooded in network 100. Switch 103 can also create an entry with the MAC address in hardware table 182, indicate flooding in the corresponding virtual local area network (VLAN), and clear the LiP bit. Indicating in the entry that the packet has been flooded ensures that there are not further exceptions for the same MAC address. When switch 103 receives the switch identifier associated with the MAC address, switch 103 updates the corresponding entries in tables 181 and 182.


In some embodiments, progressive MAC address learning supports protection against Denial of Service (DoS) attacks. Upon identifying the exception, switch 103 identifies the corresponding conversational MAC address from forwarding table 181 and includes it in hardware table 182. During a DoS attack, the same unknown destination MAC address continues to generate the exception until the unknown destination MAC address is included in hardware table 182. To prevent such an attack, progressive MAC address learning uses the LiP bit. Upon detecting the exception, the hardware driver of switch 103 (e.g., the application-specific integrated circuit (ASIC) driver) sets the LiP bit and provides the unknown destination MAC address from forwarding table 181 to the layer-2 management apparatus of switch 103. The apparatus clears the LiP bit while creating an entry comprising the MAC address in hardware table 182. When the MAC address is not present in forwarding table 181, the hardware driver can clear the LiP bit. In this way, the unknown destination MAC address of a DoS attack does not repeatedly occupy resources of switch 103.


In some embodiments, a respective member switch of network 100 (e.g., switch 103) runs a control plane with automatic configuration capabilities (e.g., based on IP or Fibre Channel (FC)) and forms a logical Ethernet switch based on the automatic configuration capabilities of the control plane. To an external end device, such as end device 112, network 100 can appear as a single Ethernet switch. Upon joining network 100 via the control plane, a respective member switch receives an automatically assigned identifier corresponding to the logical Ethernet switch. However, unlike an FC fabric, the data packets in network 100 can be encapsulated and forwarded based on another forwarding protocol. Examples of this forwarding protocol include, but are not limited to, Ethernet, TRILL, and IP. Furthermore, a respective member switch of network 100 can be associated with a group identifier, which identifies network 100 as a group of interconnected switches. If network 100 is a fabric switch, this group identifier can be a fabric identifier identifying the fabric switch.


In some embodiments, network 100 maintains a port profile for a respective virtual machine. A port profile represents Fibre Channel over Ethernet (FCoE) configuration, VLAN configuration, data center bridging (DCB) configuration, quality of service (QoS) configuration, and/or security configuration of one or more virtual machines. The MAC address of a virtual machine associates the corresponding port profile with the virtual machine. If a switch receives a packet with a source MAC address not associated with a port profile from a hypervisor or with a conflicting MAC address, the switch floods the packet in the network. Port profile management in a switch is specified in U.S. Patent Publication No. 2011/0299413, titled “Port profile management for virtual cluster switching,” the disclosure of which is incorporated herein in its entirety.


Suppose that end device 112 is in communication with end device 116 and end device 111 is in communication with end device 114. Hence, switch 103 considers the MAC addresses of end devices 114 and 116 as conversational MAC addresses. Similarly, switch 102 considers end device 112's MAC address and switch 105 considers end device 111's MAC address as conversational MAC addresses. FIG. 1B illustrates exemplary forwarding and hardware tables for supporting progressive MAC address learning, in accordance with an embodiment of the present invention. In this example, the MAC addresses of end devices 111-116 are MAC addresses 131-136, respectively.


Suppose that a respective switch of network 100 has learned, either locally or remotely, MAC addresses 131-136. Hence, forwarding tables 181, 183, and 185 of switches 103, 105, and 102, respectively, include forwarding entries comprising MAC addresses 131-136. On the other hand, hardware table 182 of switch 103 includes locally learned MAC addresses 131 and 132, and conversational MAC addresses 134 and 136 of end devices 114 and 116, respectively. Similarly, hardware table 184 of switch 105 includes locally learned MAC addresses 133 and 134, and conversational MAC address 131 of end device 111; and hardware table 186 of switch 102 includes locally learned MAC addresses 135 and 136, and conversational MAC address 132 of end device 112.


In some embodiments, progressive MAC address learning can be based on a respective hardware chip. FIG. 1C illustrates exemplary progressive MAC address learning in switch hardware, in accordance with an embodiment of the present invention. In conventional MAC address learning (i.e., source MAC address learning), if a MAC address is learned from a port of a particular hardware chip (e.g., an ASIC chip), the learned MAC address is replicated to all chips of the switch to facilitate switching decisions. Suppose that switch 103 includes chips 152, 154, and 156. An edge port on chip 152 couples end device 111, an edge port on chip 156 couples end device 112, and an inter-switch port on chip 154 couples switch 102.


In conventional MAC address learning, the MAC addresses of end devices 111 and 112 are shared among chips 152, 154, and 156. However, the number of MAC addresses learned at switch 103 can be high. To solve this problem, the hardware table in a chip, which is not in communication with a remote MAC address, does not include the remote MAC address. For example, since end device 111 is coupled to chip 152 and is in communication with end device 116, the hardware table of chip 152 includes MAC address 136. Similarly, since end device 112 is coupled to chip 156 and is in communication with end device 114, the hardware table of chip 156 includes MAC address 134.


However, the hardware table of chip 152 does not include MAC address 134, and the hardware table of chip 156 does not include MAC address 136. If an end device coupled with chip 152 starts communicating with end device 114, the layer-2 management apparatus of switch 103 creates an entry in the hardware table of chip 152 comprising MAC address 134 from forwarding table 181. This allows a switch to support progressive MAC address learning for a respective chip in the switch. In some embodiments, switch 103 adds the entry comprising MAC address 134 to the download list of chip 152.


Progressive MAC Address Learning



FIG. 2A illustrates an exemplary progressive MAC address learning process based on an ARP request, in accordance with an embodiment of the present invention. During operation, end device 112 sends an ARP request for the IP address of end device 116 (operation 202). Upon receiving the ARP request, switch 103 learns MAC address 132 of end device 112, and since MAC address 132 is a locally learned MAC address, creates corresponding entries in both forwarding table 181 and hardware table 182 (operation 204). Since the ARP request is a broadcast message, switch 103 forwards the ARP request to a respective other switch in network 100 (operation 206). In some embodiments, switch 103 can use a all-switch multicast tree in network 100 to distribute the ARP request.


Upon receiving the ARP request, switch 105 learns MAC address 132. Since MAC address 132 is learned via an inter-switch port, switch 105 creates a corresponding entry only in forwarding table 183 (operation 208). This entry can include an identifier of (or a bitmap associated with) switch 103. Switch 105 forwards the ARP request via a respective edge port (operation 210). As a result, end device 116, which is coupled to switch 105 via an edge port, receives the ARP request. Since the ARP request is for the IP address of end device 116, end device 116 creates an ARP reply comprising MAC address 136 of end device 116 (operation 212). End device 116 then sends the ARP reply to switch 105 (operation 214).


Switch 105 receives the ARP reply, learns MAC address 136, and since MAC address 136 is a locally learned MAC address, creates corresponding entries in both forwarding table 183 and hardware table 184 (operation 216). Since the ARP reply is a unicast message to end device 112, switch 105 forwards the ARP reply to switch 103 (operation 218). Switch 103 receives the ARP reply, learns MAC address 136, and since MAC address 136 is learned via an inter-switch port, creates a corresponding entry only in forwarding table 181 (operation 220). Switch 103 then forwards the ARP reply to end device 112 (operation 222).


Upon receiving the ARP reply with MAC address 136, end device 112 initiates its communication with end device 116. FIG. 2B illustrates an exemplary progressive MAC address learning process based on an initial communication from an end device, in accordance with an embodiment of the present invention. During operation, end device 112 sends its first packet for end device 116 to switch 103 (operation 252). Upon receiving the first packet, switch 103 determines that the destination MAC address of the first packet, which is MAC address 136, is not present in hardware table 182. Switch 103 then consults forwarding table 181, identifies destination MAC address 136, and creates a corresponding entry in hardware table 182 (operation 254).


Based on the entry in hardware table 182, switch 103 forwards the first packet to switch 105 (operation 256). Switch 105 forwards the first packet to end device 116 (operation 258). End device 116 then sends a response packet to switch 105 (operation 260). Upon receiving the response packet, switch 105 determines that the destination MAC address of the response packet, which is MAC address 132, is not present in hardware table 184. Switch 105 then consults forwarding table 183, identifies destination MAC address 132, and creates a corresponding entry in hardware table 184 (operation 262). Based on the entry in hardware table 184, switch 105 forwards the response packet to switch 103 (operation 264). Switch 105 forwards the response packet to end device 112 (operation 266).


Operations



FIG. 3A presents a flowchart illustrating the process of a switch learning a progressive MAC address via a local edge port, in accordance with an embodiment of the present invention. During operation, the switch receives a packet (e.g., an Ethernet frame comprising an IP packet) from an end device via a local edge port (operation 302). The switch learns the end device's MAC address (operation 304) and creates an entry in the forwarding and hardware tables comprising the learned MAC address and its associated information (operation 306). Associated information includes, but is not limited to, an egress port (e.g., from which the MAC address has been learned), a corresponding VLAN tag, and one or more flags (e.g., to indicate flooding, download to hardware table, etc).


In some embodiments, the switch shares a respective learned MAC address with other switches of the network (e.g., in a fabric switch). The switch then generates a notification message comprising the learned MAC address and its associated information (operation 308) and forwards the notification message to a respective other member switch of the network (operation 310). In some embodiments, the notification message is a control message, which carries the learned MAC address in its payload. This control message can be encapsulated in an encapsulation header (e.g., a fabric or tunnel encapsulation header). The switch can forward the notification message via an all-switch multicast tree in the network.



FIG. 3B presents a flowchart illustrating the process of a switch learning a progressive MAC address from a notification message, in accordance with an embodiment of the present invention. During operation, the switch receives a notification message comprising a MAC address learned at a remote switch (i.e., at a port in the remote switch) via a local inter-switch port (operation 352). If the notification message is encapsulated in an encapsulation header, the switch can decapsulate the encapsulation header. The switch extracts the MAC address and its associated information from the notification message (operation 354). The switch then creates an entry in the local forwarding table comprising the MAC address and its associated information extracted from the notification message (operation 356).


When a switch learns a MAC address based on progressive MAC address learning and has an entry comprising the learned MAC address in the hardware table, an aging out event (e.g., a timeout exception) can occur due to inactivity of that MAC address. For example, the MAC address may no longer be involved (e.g., as a source or destination address) in an active communication. A switch can maintain the aging out process at a switch-level or at a chip-level. When an entry comprising a conversational MAC address ages out in the hardware table, the switch removes the entry from the hardware table. The switch also unsets the flag indicating that the MAC address is a conversational MAC address in the corresponding entry in the forwarding table.



FIG. 3C presents a flowchart illustrating the process of a switch timing out a learned MAC address, in accordance with an embodiment of the present invention. During operation, the switch detects an aging event for a MAC address in the hardware table (operation 372). The switch then checks whether the MAC address is a locally learned MAC address (i.e., learned from a local edge port) (operation 374). If the MAC address is a locally learned MAC address, the switch removes the respective entries comprising the MAC address from the local forwarding and hardware tables (operation 376). The switch generates a notification message indicating the aging out for the MAC address (e.g., a control message for clearing a learned MAC address) (operation 378). The switch then forwards the notification message to a respective other member switch (operation 380).


On the other hand, if the MAC address is not a locally learned MAC address, the switch removes the entry comprising the MAC address from the local hardware table (operation 382). The switch receives a notification message indicating the aging out for the MAC address (e.g., a control message for clearing the MAC address from a remote switch) (operation 384). The switch then removes the entry comprising the MAC address from the local forwarding table (operation 386).



FIG. 4 presents a flowchart illustrating the process of a switch forwarding a packet based on learned progressive MAC addresses, in accordance with an embodiment of the present invention. During operation, the switch receives a data packet via a local edge port (operation 402) and identifies the destination MAC address of the packet (operation 404). The switch checks whether the local hardware table includes the identified MAC address (i.e., the identified MAC address has a corresponding entry in the hardware table) (operation 406). If the hardware table does not include the identified MAC address, the switch looks up (i.e., searches for) the identified MAC address in the forwarding table (operation 408) and checks whether the lookup has been successful (operation 410).


If the lookup has not been successful, switches in the network have not learned the MAC address yet. Hence, the switch creates an entry in the forwarding table comprising the identified MAC address and indicates flooding for the MAC address (operation 412). This prevents multiple exceptions for the same unknown MAC address. The switch then encapsulates the packet in an encapsulation header and floods the encapsulated packet in the network (operation 414). It should be noted that the switch also floods the received packet via its local edge ports. In some embodiments, to flood the packet in the network, the switch assigns a multi-destination identifier as the egress switch identifier of the encapsulation header. The switch then forwards the encapsulated packet based on the multi-destination identifier. For example, the switch may forward the packet via a multicast tree which includes a respective switch of the network.


If the lookup has been successful, the switch has found the MAC address in the forwarding table. The switch then obtains the entry comprising the identified MAC address from the forwarding table (operation 416) and creates a corresponding entry in the hardware table (operation 418), as described in conjunction with FIG. 1B. If the hardware table includes the identified MAC address (operation 406) or the switch has created a entry comprising the identified MAC address in the hardware table (operation 418), the switch identifies an egress switch identifier associated with the identified MAC address in the hardware table (operation 420).


The switch then encapsulates the packet in an encapsulation header and assigns the egress switch identifier in the encapsulation header (operation 422). The switch forwards the encapsulated packet via a local inter-switch port associated with the egress switch identifier (operation 424). It should be noted that if the destination MAC address is a local MAC address, the switch can switch the received packet to that destination MAC address without encapsulating the packet based on layer-2 frame switching.


Link Aggregation Group (LAG)



FIG. 5A illustrates an exemplary virtual link aggregation group with support for progressive MAC address learning, in accordance with an embodiment of the present invention. In this example, switches 103, 104, and 105 couple an end device 512 via a virtual link aggregation group (VLAG) 520. Switches 103, 104, and 105 are configured to operate in a special “trunked” mode for end device 512. End device 512 views switches 103, 104, and 105 as a common virtual switch, with a corresponding virtual address. End device 512 is considered to be logically coupled to the virtual switch via logical links.


The virtual switch is considered to be logically coupled to switches 103, 104, and 105, optionally with zero-cost links. While forwarding data frames from end device 512, switches 104 and 105 mark the data frames with the virtual switch's address as their source address. As a result, other switches in network 100 can learn that end device 512 is reachable via the virtual switch. Hence, multi-pathing can be achieved when other switches choose to send data frames to the virtual switch (which is marked as the egress switch in the frames) via switches 103, 104, and 105.


In the following description, switches which participate in virtual link aggregation group 520 are referred to as “partner switches.” Since the three partner switches function as a single logical switch, the MAC address reachability learned by a respective switch is shared with the other partner switch. For example, during normal operation, end device 512 may choose to send its outgoing data frames only via the link to switch 105. As a result, only switch 105 would learn end device 512's MAC address 532. This information is then shared by switch 105 with switches 103 and 104.


However, a hardware table in a switch (or in a chip) includes a conversational MAC address if that switch (or chip) has actively participated in a communication. During operation, end device 512 communicates with end device 116. End device 512 sends a packet 542 to end device 116. Packet 542 includes MAC address 532 as the source MAC address and MAC address 136 as the destination MAC address. Switch 105 receives packet 542 and identifies destination MAC address 136 as a conversational MAC address. Switch 105 then obtains MAC address 136 from the local forwarding table and creates an entry comprising MAC address 136 in the local hardware table. On the other hand, since switch 104 has not received a packet for this communication, switch 104's hardware table does not include MAC address 136.


Suppose that end device 512 is coupled with chips 152 and 156 of switch 103 and the links coupling these chips participate in virtual link aggregation group 520. These links form a link aggregation group (LAG) between end device 512 and switch 103. End device 512 sends a packet 544 to end device 116. Packet 544 includes MAC address 532 as the source MAC address and MAC address 136 as the destination MAC address. Chip 152 receives packet 544, identifies MAC address 532 as a conversational MAC address, and includes MAC address 136 in the hardware table of chip 152. On the other hand, since chip 156 has not received a packet for this communication, chip 156's hardware table does not include MAC address 136, as described in conjunction with FIG. 1C.



FIG. 5B illustrates an exemplary high-availability for a virtual link aggregation group with support for progressive MAC address learning, in accordance with an embodiment of the present invention. Suppose that a failure 560, which can be a link failure, a node failure, or both, makes switch 105 unreachable from end device 512. As a result, switch 105 becomes unavailable in virtual link aggregation group 520. End device 512 then stops forwarding traffic via the port(s) coupling switch 105 and diverts that traffic to other active ports in virtual link aggregation group 520. If the diverted traffic flows to a chip or switch in which MAC address 136 is already in the hardware table, communication between end devices 512 and 116 continues via that chip or switch.


On the other hand, the diverted traffic can flow to a new chip or switch in which MAC address 136 has not been in the hardware table. The chip or node then looks up in the local forwarding table the entry comprising MAC address 136 and creates a corresponding entry in the local hardware table. For example, end device 512 can send a packet 548 to switch 104. Packet 548 includes MAC address 532 as the source MAC address and MAC address 136 as the destination MAC address. Switch 104 receives packet 542 and identifies destination MAC address 136 as a conversational MAC address. Switch 104 then obtains the entry comprising MAC address 136 from the local forwarding table and creates a corresponding entry comprising MAC address 136 in the local hardware table.


Exemplary Switch



FIG. 6 illustrates an exemplary switch with support for progressive MAC address learning, in accordance with an embodiment of the present invention. In this example, a switch 600 includes a number of communication ports 602, a packet processor 610, a layer-2 management apparatus 630, a hardware management apparatus 632, and a storage device 650. In some embodiments, packet processor 610 adds an encapsulation header to a packet. In some embodiments, switch 600 includes a network management apparatus 620, which maintains a membership in a network of interconnected switches (e.g., in a fabric switch). A respective switch of the network is associated with a group identifier identifying the network.


In some embodiments, the network is a fabric switch. Switch 600 maintains a configuration database in storage device 650 that maintains the configuration state of a respective switch within the fabric switch. Network management apparatus 620 maintains the state of the fabric switch, which is used to join other switches. Under such a scenario, communication ports 602 can include inter-switch communication channels for communication within a fabric switch. This inter-switch communication channel can be implemented via a regular communication port and based on any open or proprietary format (e.g., a TRILL or IP protocol).


Storage device 650 stores a forwarding table, which includes an entry comprising a MAC address and an egress port for the MAC address. Hardware management apparatus 632 determines whether a destination MAC address of a frame is present in a hardware table in memory of switch 600. Layer-2 management apparatus 630, in response to a determination that the destination MAC address is not present in the hardware table, looks up a first entry comprising the destination MAC address in the forwarding table, and creates a second entry comprising the destination MAC address in the hardware table based on the first entry.


In some embodiments, switch 600 also includes a learning management apparatus 640, which learns a first MAC address from a local edge port. Layer-2 management apparatus 630 then creates respective entries in the forwarding and hardware tables comprising the learned MAC address. Learning management apparatus 640 can also extract a remote MAC address learned at a port of a second switch from a payload of a notification message. Layer-2 management apparatus 630 then creates an entry in the forwarding table comprising the remote MAC address.


Layer-2 management apparatus 630, in response to a determination that the destination MAC address is present in the hardware table, identifies an egress port for the frame from an entry comprising the destination MAC address in the hardware table. If the frame has been received via a first port (e.g., one of the communication ports 602) in a first chip of switch 600, layer-2 management apparatus 630 is precluded from creating an entry comprising the destination MAC address in a hardware table of a second chip of switch 600.


Layer-2 management apparatus 630 clears the second entry in response to identifying an aging out event for the destination MAC address. However, the first entry remains in the forwarding table. On the other hand, layer-2 management apparatus 630 clears the first entry in response to identifying an aging out event of a remote switch in a notification message. Layer-2 management apparatus 630, in response to determining a failure to the lookup, floods the frame in the network.


Note that the above-mentioned modules can be implemented in hardware as well as in software. In one embodiment, these modules can be embodied in computer-executable instructions stored in a memory which is coupled to one or more processors in switch 600. When executed, these instructions cause the processor(s) to perform the aforementioned functions.


In summary, embodiments of the present invention provide a switch and a method for scalable MAC address learning. In one embodiment, the switch includes a storage device, a hardware management apparatus, and a layer-2 management apparatus. The storage device stores a forwarding table, which includes an entry comprising a MAC address and an egress port for the MAC address. The hardware management apparatus determines whether a destination MAC address of a frame is present in a hardware table in memory of the switch. The layer-2 management apparatus, in response to a determination that the destination MAC address is not present in the hardware table, looks up a first entry comprising the destination MAC address in the forwarding table, and creates a second entry comprising the destination MAC address in the hardware table based on the first entry.


The methods and processes described herein can be embodied as code and/or data, which can be stored in a computer-readable non-transitory storage medium. When a computer system reads and executes the code and/or data stored on the computer-readable non-transitory storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the medium.


The methods and processes described herein can be executed by and/or included in hardware modules or apparatus. These modules or apparatus may include, but are not limited to, an application-specific integrated circuit (ASIC) chip, a field-programmable gate array (FPGA), a dedicated or shared processor that executes a particular software module or a piece of code at a particular time, and/or other programmable-logic devices now known or later developed. When the hardware modules or apparatus are activated, they perform the methods and processes included within them.


The foregoing descriptions of embodiments of the present invention have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit this disclosure. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A switch, comprising: a storage device configured to store a first forwarding data structure, wherein a respective entry in the first forwarding data structure includes a first media access control (MAC) address and an egress port for the first MAC address;hardware management circuitry configured to determine whether a destination MAC address of a data frame is present in a second forwarding data structure in a content-addressable memory of the switch; andlayer-2 management circuitry configured to: in response to determining that the destination MAC address is not present in the second forwarding data structure, identify a first entry comprising the destination MAC address in the first forwarding data structure; andcreate a second entry comprising the destination MAC address in the second forwarding data structure based on the first entry; anddetermine a first egress port for the data frame based on the second entry in the second forwarding data structure.
  • 2. The switch of claim 1, further comprising learning management circuitry configured to learn a second MAC address from an edge port of the switch; and wherein the layer-2 management circuitry is further configured to create respective entries comprising the learned MAC address in the first forwarding data structure and the second forwarding data structure.
  • 3. The switch of claim 1, further comprising learning management circuitry configured to extract a third MAC address learned at a port of a second switch from a payload of a notification message; and wherein the layer-2 management circuitry is further configured to create an entry in the first forwarding data structure comprising the third MAC address.
  • 4. The switch of claim 1, wherein the data frame has been received via a first port in a first chip of the switch; and wherein the layer-2 management circuitry is precluded from creating an entry comprising the destination MAC address in a third forwarding data structure of a second chip of the switch.
  • 5. The switch of claim 1, wherein the layer-2 management circuitry is further configured to clear the second entry in response to identifying an aging out event for the destination MAC address, wherein the first entry remains in the first forwarding data structure.
  • 6. The switch of claim 5, wherein the layer-2 management circuitry is further configured to clear the first entry in response to identifying an aging out event of the destination MAC address in a notification message from a remote switch, wherein the destination MAC address has been learned at a port of the remote switch.
  • 7. The switch of claim 1, wherein the switch and a remote switch participate in a virtual link aggregation group for an end device, wherein a plurality of links of the virtual link aggregation group operate as a single link; and wherein the second forwarding data structure of the switch includes at least one different MAC address than a remote forwarding data structure of the remote switch.
  • 8. The switch of claim 1, wherein the layer-2 management circuitry is further configured to, in response to not identifying the destination MAC address in the first forwarding table, flood the data frame in a network of interconnected switches.
  • 9. The switch of claim 8, wherein the network of interconnected switches is identified by a fabric identifier, and wherein a respective switch of the network of interconnected switches is associated with the fabric identifier.
  • 10. A computer-executable method, comprising: storing a first forwarding data structure in a storage device of a switch, wherein a respective entry in the first forwarding data structure includes a media access control (MAC) address and an egress port for the first MAC address;determining whether a destination MAC address of a data frame is present in a second forwarding data structure in a content-addressable memory of the switch;in response to determining that the destination MAC address is not present in the second forwarding data structure, identifying a first entry comprising the destination MAC address in the first forwarding data structure;creating a second entry comprising the destination MAC address in the second forwarding data structure based on the first entry; anddetermining a first egress port for the data frame based on the second entry in the second forwarding data structure.
  • 11. The method of claim 10, further comprising: learning a second MAC address from an edge port of the switch; andcreating respective entries comprising the learned MAC address in the first forwarding data structure and the second forwarding data structure.
  • 12. The method of claim 10, further comprising: extracting a third MAC address learned at a port of a second switch from a payload of a notification message; andcreating an entry in the first forwarding data structure comprising the third MAC address.
  • 13. The method of claim 10, wherein the data frame has been received via a first port in a first chip of the switch; and wherein the switch is precluded from creating an entry comprising the destination MAC address in a third forwarding data structure of a second chip of the switch.
  • 14. The method of claim 10, further comprising clearing the second entry in response to identifying an aging out event for the destination MAC address, wherein the first entry remains in the first forwarding data structure.
  • 15. The method of claim 14, further comprising clearing the first entry in response to identifying an aging out event of the destination MAC address in a notification message from a remote switch, wherein the destination MAC address has been learned at a port of the remote switch.
  • 16. The method of claim 10, wherein the switch and a remote switch participate in a virtual link aggregation group for an end device, wherein a plurality of links of the virtual link aggregation group operate as a single link; and wherein the second forwarding data structure of the switch includes at least one different MAC address than a remote forwarding data structure of the remote switch.
  • 17. The method of claim 10, further comprising, in response to not identifying the destination MAC address in the first forwarding table, flooding the data frame in a network of interconnected switches.
  • 18. The method of claim 10, wherein the network of interconnected switches is identified by a fabric identifier, and wherein a respective switch of the network of interconnected switches is associated with the fabric identifier.
  • 19. The method of claim 10, wherein the first entry further includes a bitmap, wherein a set bit in the bitmap indicates a switch from which the first MAC address has been learned.
  • 20. A computing system, comprising: a processor; anda memory storing instructions that when executed by the processor cause the system to perform a method, the method comprising: storing a forwarding data structure in a storage device of a switch, wherein a respective entry in the forwarding data structure includes a media access control (MAC) address and an egress port for the MAC address;determining whether a destination MAC address of a data frame is present in a second forwarding data structure in a content-addressable memory of the switch;in response to determining that the destination MAC address is not present in the second forwarding data structure, identifying a first entry comprising the destination MAC address in the first forwarding data structure; andcreating a second entry comprising the destination MAC address in the second forwarding data structure based on the first entry; anddetermining a first egress port for the data frame based on the second entry in the second forwarding data structure.
  • 21. The switch of claim 1, wherein the first entry further includes a bitmap, wherein a set bit in the bitmap indicates a switch from which the first MAC address has been learned.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/035,901, titled “Conversational MAC Leaning,” by inventors Suresh Vobbilisetty, Mythilikanth Raman, Phanidhar Koganti, Raju Shekarappa, Mahesh K. Pujara, and Pankaj K. Jha, filed 11 Aug. 2014, and U.S. Provisional Application No. 62/042,076, titled “Conversational MAC Leaning,” by inventors Suresh Vobbilisetty, Mythilikanth Raman, Phanidhar Koganti, Raju Shekarappa, Mahesh K. Pujara, and Pankaj K. Jha, filed 26 Aug. 2014, the disclosures of which are incorporated by reference herein. The present disclosure is related to U.S. Pat. No. 8,867,552, titled “Virtual Cluster Switching,” by inventors Suresh Vobbilisetty and Dilip Chatwani, issued 21 Oct. 2014, and to U.S. patent application Ser. No. 13/092,752, titled “Name Services for Virtual Cluster Switching,” by inventors Suresh Vobbilisetty, Phanidhar Koganti, and Jesse B. Willeke, filed 22 Apr. 2011, the disclosures of which are incorporated by reference herein.

US Referenced Citations (592)
Number Name Date Kind
829529 Keathley Aug 1906 A
5390173 Spinney Feb 1995 A
5802278 Isfeld Sep 1998 A
5878232 Marimuthu Mar 1999 A
5879173 Poplawski Mar 1999 A
5959968 Chin Sep 1999 A
5973278 Wehrill, III Oct 1999 A
5983278 Chong Nov 1999 A
5995262 Hirota Nov 1999 A
6041042 Bussiere Mar 2000 A
6085238 Yuasa Jul 2000 A
6092062 Lohman Jul 2000 A
6104696 Kadambi Aug 2000 A
6185214 Schwartz Feb 2001 B1
6185241 Sun Feb 2001 B1
6295527 McCormack Sep 2001 B1
6331983 Haggerty Dec 2001 B1
6438106 Pillar Aug 2002 B1
6498781 Bass Dec 2002 B1
6542266 Phillips Apr 2003 B1
6553029 Alexander Apr 2003 B1
6571355 Linnell May 2003 B1
6583902 Yuen Jun 2003 B1
6633761 Singhal Oct 2003 B1
6636963 Stein Oct 2003 B1
6771610 Seaman Aug 2004 B1
6870840 Hill Mar 2005 B1
6873602 Ambe Mar 2005 B1
6937576 DiBenedetto Aug 2005 B1
6956824 Mark Oct 2005 B2
6957269 Williams Oct 2005 B2
6975581 Medina Dec 2005 B1
6975864 Singhal Dec 2005 B2
7016352 Chow Mar 2006 B1
7061877 Gummalla et al. Jun 2006 B1
7062177 Grivna Jun 2006 B1
7173934 Lapuh Feb 2007 B2
7197308 Singhal Mar 2007 B2
7206288 Cometto Apr 2007 B2
7310664 Merchant Dec 2007 B1
7313637 Tanaka Dec 2007 B2
7315545 Chowdhury et al. Jan 2008 B1
7316031 Griffith Jan 2008 B2
7330897 Baldwin Feb 2008 B2
7380025 Riggins May 2008 B1
7397768 Betker Jul 2008 B1
7397794 Lacroute et al. Jul 2008 B1
7430164 Bare Sep 2008 B2
7453888 Zabihi Nov 2008 B2
7477894 Sinha Jan 2009 B1
7480258 Shuen Jan 2009 B1
7508757 Ge Mar 2009 B2
7558195 Kuo Jul 2009 B1
7558273 Grosser Jul 2009 B1
7571447 Ally Aug 2009 B2
7599901 Mital Oct 2009 B2
7688736 Walsh Mar 2010 B1
7688960 Aubuchon Mar 2010 B1
7690040 Frattura Mar 2010 B2
7706255 Kondrat et al. Apr 2010 B1
7716370 Devarapalli May 2010 B1
7720076 Dobbins May 2010 B2
7729296 Choudhary Jun 2010 B1
7787480 Mehta Aug 2010 B1
7792920 Istvan Sep 2010 B2
7796593 Ghosh Sep 2010 B1
7801021 Triantafillis Sep 2010 B1
7808992 Homchaudhuri Oct 2010 B2
7836332 Hara Nov 2010 B2
7843906 Chidambaram et al. Nov 2010 B1
7843907 Abou-Emara Nov 2010 B1
7860097 Lovett Dec 2010 B1
7898959 Arad Mar 2011 B1
7912091 Krishnan Mar 2011 B1
7924837 Shabtay Apr 2011 B1
7937438 Miller May 2011 B1
7937756 Kay May 2011 B2
7945941 Sinha et al. May 2011 B2
7949638 Goodson May 2011 B1
7957386 Aggarwal Jun 2011 B1
8018938 Fromm Sep 2011 B1
8027354 Portolani Sep 2011 B1
8054832 Shukla Nov 2011 B1
8068442 Kompella Nov 2011 B1
8078704 Lee Dec 2011 B2
8090805 Chawla Jan 2012 B1
8102781 Smith Jan 2012 B2
8102791 Tang Jan 2012 B2
8116307 Thesayi Feb 2012 B1
8125928 Mehta Feb 2012 B2
8134922 Elangovan Mar 2012 B2
8155150 Chung Apr 2012 B1
8160063 Maltz Apr 2012 B2
8160080 Arad Apr 2012 B1
8170038 Belanger May 2012 B2
8175107 Yalagandula May 2012 B1
8194674 Pagel Jun 2012 B1
8195774 Lambeth Jun 2012 B2
8204061 Sane Jun 2012 B1
8213313 Doiron Jul 2012 B1
8213336 Smith Jul 2012 B2
8230069 Korupolu Jul 2012 B2
8239960 Frattura Aug 2012 B2
8249069 Raman Aug 2012 B2
8270401 Barnes Sep 2012 B1
8295291 Ramanathan Oct 2012 B1
8295921 Wang Oct 2012 B2
8301686 Appajodu Oct 2012 B1
8339994 Gnanasekaran Dec 2012 B2
8351352 Eastlake Jan 2013 B1
8369335 Jha Feb 2013 B2
8369347 Xiong Feb 2013 B2
8392496 Linden Mar 2013 B2
8451717 Venkataraman et al. May 2013 B2
8462774 Page Jun 2013 B2
8467375 Blair Jun 2013 B2
8520595 Yadav Aug 2013 B2
8553710 White Oct 2013 B1
8599850 J ha Dec 2013 B2
8599864 Chung Dec 2013 B2
8615008 Natarajan Dec 2013 B2
8619788 Sankaran Dec 2013 B1
8705526 Hasan Apr 2014 B1
8706905 McGlaughlin Apr 2014 B1
8717895 Koponen May 2014 B2
8724456 Hong May 2014 B1
8792501 Rustagi Jul 2014 B1
8798045 Aybay Aug 2014 B1
8798055 An Aug 2014 B1
8804736 Drake Aug 2014 B1
8806031 Kondur Aug 2014 B1
8826385 Congdon Sep 2014 B2
8918631 Kumar Dec 2014 B1
8937865 Kumar Jan 2015 B1
8948181 Kapadia Feb 2015 B2
9178793 Marlow Nov 2015 B1
9350680 Thayalan May 2016 B2
9401818 Venkatesh Jul 2016 B2
9438447 Basso Sep 2016 B2
20010005527 Vaeth Jun 2001 A1
20010055274 Hegge Dec 2001 A1
20020019904 Katz Feb 2002 A1
20020021701 Lavian Feb 2002 A1
20020027885 Ben-Ami Mar 2002 A1
20020039350 Wang Apr 2002 A1
20020054593 Morohashi et al. May 2002 A1
20020087723 Williams Jul 2002 A1
20020091795 Yip Jul 2002 A1
20030026290 Umayabashi Feb 2003 A1
20030041085 Sato Feb 2003 A1
20030093567 Lolayekar May 2003 A1
20030097464 Martinez May 2003 A1
20030097470 Lapuh May 2003 A1
20030123393 Feuerstraeter Jul 2003 A1
20030147385 Montalvo Aug 2003 A1
20030152075 Hawthorne Aug 2003 A1
20030174706 Shankar Sep 2003 A1
20030189905 Lee Oct 2003 A1
20030189930 Terrell Oct 2003 A1
20030208616 Laing Nov 2003 A1
20030216143 Roese Nov 2003 A1
20030223428 BlanquerGonzalez Dec 2003 A1
20030233534 Bernhard Dec 2003 A1
20040001433 Gram Jan 2004 A1
20040003094 See Jan 2004 A1
20040010600 Baldwin Jan 2004 A1
20040049699 Griffith Mar 2004 A1
20040057430 Paavolainen Mar 2004 A1
20040081171 Finn Apr 2004 A1
20040088668 Hamlin May 2004 A1
20040095900 Siegel May 2004 A1
20040117508 Shimizu Jun 2004 A1
20040120326 Yoon Jun 2004 A1
20040156313 Hofmeister et al. Aug 2004 A1
20040165595 Holmgren Aug 2004 A1
20040165596 Garcia Aug 2004 A1
20040213232 Regan Oct 2004 A1
20040225725 Enomoto Nov 2004 A1
20040243673 Goyal Dec 2004 A1
20050007951 Lapuh Jan 2005 A1
20050025179 McLaggan Feb 2005 A1
20050044199 Shiga Feb 2005 A1
20050074001 Mattes et al. Apr 2005 A1
20050094568 Judd May 2005 A1
20050094630 Valdevit May 2005 A1
20050108375 Hallak-Stamler May 2005 A1
20050111352 Ho May 2005 A1
20050122979 Gross Jun 2005 A1
20050152335 Lodha Jul 2005 A1
20050157645 Rabie et al. Jul 2005 A1
20050157751 Rabie Jul 2005 A1
20050169188 Cometto Aug 2005 A1
20050195813 Ambe Sep 2005 A1
20050207423 Herbst Sep 2005 A1
20050213561 Yao Sep 2005 A1
20050220096 Friskney Oct 2005 A1
20050259586 Hafid Nov 2005 A1
20050265330 Suzuki Dec 2005 A1
20050265356 Kawarai Dec 2005 A1
20050278565 Frattura Dec 2005 A1
20060007869 Hirota Jan 2006 A1
20060018302 Ivaldi Jan 2006 A1
20060023707 Makishima et al. Feb 2006 A1
20060029055 Perera Feb 2006 A1
20060034292 Wakayama Feb 2006 A1
20060036648 Frey Feb 2006 A1
20060036765 Weyman Feb 2006 A1
20060039366 Ghosh Feb 2006 A1
20060059163 Frattura Mar 2006 A1
20060062187 Rune Mar 2006 A1
20060072550 Davis Apr 2006 A1
20060083172 Jordan Apr 2006 A1
20060083254 Ge Apr 2006 A1
20060092860 Higashitaniguchi May 2006 A1
20060093254 Mozdy May 2006 A1
20060098589 Kreeger May 2006 A1
20060126511 Youn Jun 2006 A1
20060140130 Kalkunte Jun 2006 A1
20060155828 Ikeda Jul 2006 A1
20060168109 Warmenhoven Jul 2006 A1
20060184937 Abels Aug 2006 A1
20060209886 Silberman Sep 2006 A1
20060221960 Borgione Oct 2006 A1
20060227776 Chandrasekaran Oct 2006 A1
20060235995 Bhatia Oct 2006 A1
20060242311 Mai Oct 2006 A1
20060242398 Fontijn Oct 2006 A1
20060245439 Sajassi Nov 2006 A1
20060251067 DeSanti Nov 2006 A1
20060256767 Suzuki Nov 2006 A1
20060265515 Shiga Nov 2006 A1
20060285499 Tzeng Dec 2006 A1
20060291388 Amdahl Dec 2006 A1
20060291480 Cho Dec 2006 A1
20060294413 Filz Dec 2006 A1
20070036178 Hares Feb 2007 A1
20070053294 Ho Mar 2007 A1
20070061817 Atkinson Mar 2007 A1
20070074052 Hemmah Mar 2007 A1
20070081530 Nomura Apr 2007 A1
20070083625 Chamdani Apr 2007 A1
20070086362 Kato Apr 2007 A1
20070094464 Sharma Apr 2007 A1
20070097968 Du May 2007 A1
20070098006 Parry May 2007 A1
20070116224 Burke May 2007 A1
20070116422 Reynolds May 2007 A1
20070121617 Kanekar May 2007 A1
20070130295 Rastogi Jun 2007 A1
20070156659 Lim Jul 2007 A1
20070177525 Wijnands Aug 2007 A1
20070177597 Ju Aug 2007 A1
20070183313 Narayanan Aug 2007 A1
20070206762 Chandra Sep 2007 A1
20070211712 Fitch Sep 2007 A1
20070220059 Lu Sep 2007 A1
20070226214 Smits Sep 2007 A1
20070230472 Jesuraj Oct 2007 A1
20070238343 Velleca Oct 2007 A1
20070258449 Bennett Nov 2007 A1
20070274234 Kubota Nov 2007 A1
20070280223 Pan Dec 2007 A1
20070289017 Copeland, III Dec 2007 A1
20080052487 Akahane Feb 2008 A1
20080056135 Lee Mar 2008 A1
20080056300 Williams Mar 2008 A1
20080057918 Abrant Mar 2008 A1
20080065760 Damm Mar 2008 A1
20080080517 Roy Apr 2008 A1
20080095160 Yadav Apr 2008 A1
20080101386 Gray May 2008 A1
20080112133 Torudbakken May 2008 A1
20080112400 Dunbar et al. May 2008 A1
20080133760 Berkvens Jun 2008 A1
20080159260 Vobbilisetty Jul 2008 A1
20080159277 Vobbilisetty Jul 2008 A1
20080172492 Raghunath Jul 2008 A1
20080181196 Regan Jul 2008 A1
20080181243 Vobbilisetty Jul 2008 A1
20080186968 Farinacci Aug 2008 A1
20080186981 Seto Aug 2008 A1
20080205377 Chao Aug 2008 A1
20080219172 Mohan Sep 2008 A1
20080225852 Raszuk Sep 2008 A1
20080225853 Melman Sep 2008 A1
20080228897 Ko Sep 2008 A1
20080240129 Elmeleegy Oct 2008 A1
20080267179 LaVigne Oct 2008 A1
20080285458 Lysne Nov 2008 A1
20080285555 Ogasahara Nov 2008 A1
20080288020 Einav Nov 2008 A1
20080298248 Roeck Dec 2008 A1
20080304498 Jorgensen Dec 2008 A1
20080304519 Koenen Dec 2008 A1
20080310342 Kruys Dec 2008 A1
20090022069 Khan Jan 2009 A1
20090024734 Merbach Jan 2009 A1
20090037607 Farinacci Feb 2009 A1
20090037977 Gai Feb 2009 A1
20090041046 Hirata Feb 2009 A1
20090042270 Dolly Feb 2009 A1
20090044270 Shelly Feb 2009 A1
20090067422 Poppe Mar 2009 A1
20090067442 Killian Mar 2009 A1
20090079560 Fries Mar 2009 A1
20090080345 Gray Mar 2009 A1
20090083445 Ganga Mar 2009 A1
20090092042 Yuhara Apr 2009 A1
20090092043 Lapuh Apr 2009 A1
20090094354 Rastogi Apr 2009 A1
20090106298 Furusho Apr 2009 A1
20090106405 Mazarick Apr 2009 A1
20090113408 Toeroe Apr 2009 A1
20090116381 Kanda May 2009 A1
20090122700 Aboba May 2009 A1
20090129384 Regan May 2009 A1
20090138577 Casado May 2009 A1
20090138752 Graham May 2009 A1
20090144720 Roush Jun 2009 A1
20090161584 Guan Jun 2009 A1
20090161670 Shepherd Jun 2009 A1
20090168647 Holness Jul 2009 A1
20090199177 Edwards Aug 2009 A1
20090204965 Tanaka Aug 2009 A1
20090213783 Moreton Aug 2009 A1
20090222879 Kostal Sep 2009 A1
20090225752 Mitsumori Sep 2009 A1
20090232031 Vasseur Sep 2009 A1
20090245112 Okazaki Oct 2009 A1
20090245137 Hares Oct 2009 A1
20090245242 Carlson Oct 2009 A1
20090246137 Hadida Oct 2009 A1
20090249444 Macauley Oct 2009 A1
20090252049 Ludwig Oct 2009 A1
20090252061 Small Oct 2009 A1
20090252503 Ishigami Oct 2009 A1
20090260083 Szeto Oct 2009 A1
20090279558 Davis Nov 2009 A1
20090292858 Lambeth Nov 2009 A1
20090316721 Kanda Dec 2009 A1
20090323698 LeFaucheur Dec 2009 A1
20090323708 Ihle Dec 2009 A1
20090327392 Tripathi Dec 2009 A1
20090327462 Adams Dec 2009 A1
20100002382 Aybay Jan 2010 A1
20100027420 Smith Feb 2010 A1
20100042869 Szabo Feb 2010 A1
20100046471 Hattori Feb 2010 A1
20100054260 Pandey Mar 2010 A1
20100061269 Banerjee Mar 2010 A1
20100074175 Banks Mar 2010 A1
20100085981 Gupta Apr 2010 A1
20100097941 Carlson Apr 2010 A1
20100103813 Allan Apr 2010 A1
20100103939 Carlson Apr 2010 A1
20100114818 Lier May 2010 A1
20100131636 Suri May 2010 A1
20100157844 Casey Jun 2010 A1
20100158024 Sajassi Jun 2010 A1
20100165877 Shukla Jul 2010 A1
20100165995 Mehta Jul 2010 A1
20100168467 Johnston Jul 2010 A1
20100169467 Shukla Jul 2010 A1
20100169948 Budko Jul 2010 A1
20100182920 Matsuoka Jul 2010 A1
20100189119 Sawada Jul 2010 A1
20100195489 Zhou Aug 2010 A1
20100195529 Liu Aug 2010 A1
20100215042 Sato Aug 2010 A1
20100215049 Raza Aug 2010 A1
20100220724 Rabie Sep 2010 A1
20100226368 Mack-Crane Sep 2010 A1
20100226381 Mehta Sep 2010 A1
20100246388 Gupta Sep 2010 A1
20100254703 Kirkpatrick Oct 2010 A1
20100257263 Casado Oct 2010 A1
20100258263 Douxchamps Oct 2010 A1
20100265849 Harel Oct 2010 A1
20100271960 Krygowski Oct 2010 A1
20100272107 Papp et al. Oct 2010 A1
20100281106 Ashwood-Smith Nov 2010 A1
20100284414 Agarwal Nov 2010 A1
20100284418 Gray Nov 2010 A1
20100284698 McColloch Nov 2010 A1
20100287262 Elzur Nov 2010 A1
20100287548 Zhou Nov 2010 A1
20100290464 Assarpour Nov 2010 A1
20100290472 Raman Nov 2010 A1
20100290473 Enduri Nov 2010 A1
20100299527 Arunan Nov 2010 A1
20100303071 Kotalwar Dec 2010 A1
20100303075 Tripathi Dec 2010 A1
20100303083 Belanger Dec 2010 A1
20100309820 Rajagopalan Dec 2010 A1
20100309912 Mehta Dec 2010 A1
20100329110 Rose Dec 2010 A1
20100329265 Lapuh Dec 2010 A1
20110007738 Berman Jan 2011 A1
20110019678 Mehta Jan 2011 A1
20110032945 Mullooly Feb 2011 A1
20110035489 McDaniel Feb 2011 A1
20110035498 Shah Feb 2011 A1
20110044339 Kotalwar Feb 2011 A1
20110044352 Chaitou Feb 2011 A1
20110051723 Rabie Mar 2011 A1
20110055274 Scales et al. Mar 2011 A1
20110058547 Waldrop Mar 2011 A1
20110064086 Xiong Mar 2011 A1
20110064089 Hidaka Mar 2011 A1
20110072208 Gulati Mar 2011 A1
20110085560 Chawla Apr 2011 A1
20110085562 Bao Apr 2011 A1
20110085563 Kotha Apr 2011 A1
20110088011 Ouali Apr 2011 A1
20110110266 Li May 2011 A1
20110134802 Rajagopalan Jun 2011 A1
20110134803 Dalvi Jun 2011 A1
20110134925 Safrai Jun 2011 A1
20110142053 Van Jun 2011 A1
20110142062 Wang Jun 2011 A1
20110149526 Turner Jun 2011 A1
20110158113 Nanda Jun 2011 A1
20110161494 Mcdysan Jun 2011 A1
20110161695 Okita Jun 2011 A1
20110176412 Stine Jul 2011 A1
20110188373 Saito Aug 2011 A1
20110194403 Sajassi Aug 2011 A1
20110194563 Shen Aug 2011 A1
20110225540 d'Entremont Sep 2011 A1
20110228767 Singla Sep 2011 A1
20110228780 Ashwood-Smith Sep 2011 A1
20110231570 Altekar Sep 2011 A1
20110231574 Saunderson Sep 2011 A1
20110235523 Jha Sep 2011 A1
20110243133 Villait Oct 2011 A9
20110243136 Raman Oct 2011 A1
20110246669 Kanada Oct 2011 A1
20110255538 Srinivasan Oct 2011 A1
20110255540 Mizrahi Oct 2011 A1
20110261828 Smith Oct 2011 A1
20110268118 Schlansker Nov 2011 A1
20110268120 Vobbilisetty Nov 2011 A1
20110268125 Vobbilisetty et al. Nov 2011 A1
20110273988 Tourrilhes Nov 2011 A1
20110273990 Rajagopalan Nov 2011 A1
20110274114 Dhar Nov 2011 A1
20110280572 Vobbilisetty Nov 2011 A1
20110286357 Haris Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110286462 Kompella Nov 2011 A1
20110292947 Vobbilisetty Dec 2011 A1
20110296052 Guo Dec 2011 A1
20110299391 Vobbilisetty Dec 2011 A1
20110299413 Chatwani Dec 2011 A1
20110299414 Yu Dec 2011 A1
20110299527 Yu Dec 2011 A1
20110299528 Yu Dec 2011 A1
20110299531 Yu Dec 2011 A1
20110299532 Yu Dec 2011 A1
20110299533 Yu Dec 2011 A1
20110299534 Koganti Dec 2011 A1
20110299535 Vobbilisetty Dec 2011 A1
20110299536 Cheng Dec 2011 A1
20110317559 Kern Dec 2011 A1
20110317703 Dunbar et al. Dec 2011 A1
20120011240 Hara Jan 2012 A1
20120014261 Salam Jan 2012 A1
20120014387 Dunbar Jan 2012 A1
20120020220 Sugita Jan 2012 A1
20120027017 Rai Feb 2012 A1
20120033663 Guichard Feb 2012 A1
20120033665 Jacob Feb 2012 A1
20120033668 Humphries Feb 2012 A1
20120033669 Mohandas Feb 2012 A1
20120033672 Page Feb 2012 A1
20120039163 Nakajima Feb 2012 A1
20120042095 Kotha Feb 2012 A1
20120063363 Li Mar 2012 A1
20120075991 Sugita Mar 2012 A1
20120099567 Hart Apr 2012 A1
20120099602 Nagapudi Apr 2012 A1
20120099863 Xu Apr 2012 A1
20120102160 Breh Apr 2012 A1
20120106339 Mishra May 2012 A1
20120117438 Shaffer May 2012 A1
20120131097 Baykal May 2012 A1
20120131289 Taguchi May 2012 A1
20120134266 Roitshtein May 2012 A1
20120136999 Roitshtein May 2012 A1
20120147740 Nakash Jun 2012 A1
20120158997 Hsu Jun 2012 A1
20120163164 Terry Jun 2012 A1
20120170491 Kern Jul 2012 A1
20120177039 Berman Jul 2012 A1
20120210416 Mihelich Aug 2012 A1
20120221636 Surtani Aug 2012 A1
20120230225 Matthews Sep 2012 A1
20120239918 Huang Sep 2012 A1
20120243539 Keesara Sep 2012 A1
20120250502 Brolin Oct 2012 A1
20120260079 Mruthyunjaya Oct 2012 A1
20120275297 Subramanian Nov 2012 A1
20120275347 Banerjee Nov 2012 A1
20120278804 Narayanasamy Nov 2012 A1
20120287785 Kamble Nov 2012 A1
20120294192 Masood Nov 2012 A1
20120294194 Balasubramanian Nov 2012 A1
20120320800 Kamble Dec 2012 A1
20120320926 Kamath et al. Dec 2012 A1
20120327766 Tsai et al. Dec 2012 A1
20120327937 Melman et al. Dec 2012 A1
20130003535 Sarwar Jan 2013 A1
20130003549 Matthews Jan 2013 A1
20130003737 Sinicrope Jan 2013 A1
20130003738 Koganti Jan 2013 A1
20130028072 Addanki Jan 2013 A1
20130034015 Jaiswal Feb 2013 A1
20130034021 Jaiswal Feb 2013 A1
20130034094 Cardona Feb 2013 A1
20130058354 Casado Mar 2013 A1
20130066947 Ahmad Mar 2013 A1
20130067466 Combs Mar 2013 A1
20130070762 Adams Mar 2013 A1
20130083693 Himura Apr 2013 A1
20130097345 Munoz Apr 2013 A1
20130114595 Mack-Crane et al. May 2013 A1
20130124707 Ananthapadmanabha May 2013 A1
20130127848 Joshi May 2013 A1
20130132296 Koppenhagen May 2013 A1
20130135811 Dunwoody May 2013 A1
20130136123 Ge May 2013 A1
20130148546 Eisenhauer Jun 2013 A1
20130156425 Kirkpatrick Jun 2013 A1
20130194914 Agarwal Aug 2013 A1
20130219473 Schaefer Aug 2013 A1
20130223221 Xu Aug 2013 A1
20130223449 Koganti Aug 2013 A1
20130250951 Koganti Sep 2013 A1
20130250958 Watanabe Sep 2013 A1
20130259037 Natarajan Oct 2013 A1
20130266015 Qu Oct 2013 A1
20130268590 Mahadevan Oct 2013 A1
20130272135 Leong Oct 2013 A1
20130294451 Li Nov 2013 A1
20130297757 Han Nov 2013 A1
20130301425 Udutha et al. Nov 2013 A1
20130301642 Radhakrishnan Nov 2013 A1
20130308492 Baphna Nov 2013 A1
20130308647 Rosset Nov 2013 A1
20130315125 Ravishankar Nov 2013 A1
20130315586 Kipp Nov 2013 A1
20130322427 Stiekes Dec 2013 A1
20130332660 Talagala Dec 2013 A1
20130336104 Talla Dec 2013 A1
20130346583 Low Dec 2013 A1
20140013324 Zhang Jan 2014 A1
20140019608 Kawakami Jan 2014 A1
20140025736 Wang Jan 2014 A1
20140044126 Sabhanatarajan et al. Feb 2014 A1
20140050223 Foo Feb 2014 A1
20140056298 Vobbilisetty Feb 2014 A1
20140059225 Gasparakis Feb 2014 A1
20140064056 Sakata Mar 2014 A1
20140086253 Yong Mar 2014 A1
20140105034 Sun Apr 2014 A1
20140112122 Kapadia Apr 2014 A1
20140140243 Ashwood-Smith May 2014 A1
20140157251 Hocker Jun 2014 A1
20140241147 Rajagopalan Aug 2014 A1
20140258446 Bursell Sep 2014 A1
20140269720 Srinivasan Sep 2014 A1
20140269733 Venkatesh Sep 2014 A1
20140298091 Carlen Oct 2014 A1
20140355477 Velayudhan et al. Dec 2014 A1
20150009992 Zhang Jan 2015 A1
20150010007 Matsuhira Jan 2015 A1
20150030031 Zhou Jan 2015 A1
20150110111 Song Apr 2015 A1
20150110487 Fenkes Apr 2015 A1
20150127618 Alberti May 2015 A1
20150143369 Zheng May 2015 A1
20150172098 Agarwal Jun 2015 A1
20150188753 Anumala Jul 2015 A1
20150195093 Mahadevan et al. Jul 2015 A1
20150222506 Kizhakkiniyil Aug 2015 A1
20150248298 Gavrilov Sep 2015 A1
20150263991 MacChiano Sep 2015 A1
20150281066 Koley Oct 2015 A1
20150301901 Rath Oct 2015 A1
20150347468 Bester Dec 2015 A1
20160072899 Tung Mar 2016 A1
20170026197 Venkatesh Jan 2017 A1
Foreign Referenced Citations (36)
Number Date Country
1735062 Feb 2006 CN
1777149 May 2006 CN
101064682 Oct 2007 CN
101459618 Jun 2009 CN
101471899 Jul 2009 CN
101548511 Sep 2009 CN
101645880 Feb 2010 CN
102098237 Jun 2011 CN
102148749 Aug 2011 CN
102301663 Dec 2011 CN
102349268 Feb 2012 CN
102378176 Mar 2012 CN
102404181 Apr 2012 CN
102415065 Apr 2012 CN
102415065 Apr 2012 CN
102801599 Nov 2012 CN
102801599 Nov 2012 CN
102088388 Apr 2014 CN
0579567 May 1993 EP
0579567 Jan 1994 EP
1398920 Mar 2004 EP
1398920 Mar 2004 EP
1916807 Apr 2008 EP
2001167 Oct 2008 EP
2854352 Apr 2015 EP
2874359 May 2015 EP
2008056838 May 2008 WO
2009042919 Apr 2009 WO
2010111142 Sep 2010 WO
2010111142 Sep 2010 WO
2011132568 Oct 2011 WO
2011140028 Nov 2011 WO
2011140028 Nov 2011 WO
2012033663 Mar 2012 WO
2012093429 Jul 2012 WO
2014031781 Feb 2014 WO
Non-Patent Literature Citations (238)
Entry
Office Action dated Jul. 6, 2016, U.S. Appl. No. 14/618,941, filed Feb. 10, 2015.
Office Action dated Jul. 20, 2016, U.S. Appl. No. 14/510,913, filed Oct. 9, 2014.
Office Action dated Jul. 29, 2016, U.S. Appl. No. 14/473,941, filed Aug. 29, 2014.
Office Action dated Jul. 28, 2016, U.S. Appl. No. 14/284,212, filed May 21, 2016.
Office Action dated Sep. 2, 2015, U.S. Appl. No. 14/151,693, filed Jan. 9, 2014.
Office Action dated Sep. 17, 2015, U.S. Appl. No. 14/577,785, filed Dec. 19, 2014.
Office Action dated Sep. 22, 2015 U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action dated Nov. 5, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014.
Office Action dated Oct. 19, 2015, U.S. Appl. No. 14/215,996, filed Mar. 17, 2014.
Office Action dated Sep. 18, 2015, U.S. Appl. No. 13/345,566, filed Jan. 6, 2012.
Open Flow Switch Specification Version 1.1.0, Feb. 28, 2011.
Open Flow Switch Specification Version 1.0.0, Dec. 31, 2009.
Open Flow Configuration and Management Protocol 1.0 (OF-Config 1.0) Dec. 23, 2011.
Open Flow Switch Specification Version 1.2 Dec. 5, 2011.
Office Action dated Feb. 2, 2016, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office Action dated Feb. 2, 2016. U.S. Appl. No. 14/154,106, filed Jan. 13, 2014.
Office Action dated Feb. 3, 2016, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office Action dated Feb. 4, 2016, U.S. Appl. No. 13/557,105, filed Jul. 24, 2012.
Office Action dated Feb. 11, 2016, U.S. Appl. No. 14/488,173, filed Sep. 16, 2014.
Office Action dated Feb. 24, 2016, U.S. Appl. No. 13/971,397, filed Aug. 20, 2013.
Office Action dated Feb. 24, 2016, U.S. Appl. No. 12/705,508, filed Feb. 12, 2010.
Eastlake, D. et al., ‘RBridges: TRILL Header Options’, Dec. 24, 2009, pp. 1-17, TRILL Working Group.
Perlman, Radia et al., ‘RBridge VLAN Mapping’, TRILL Working Group, Dec. 4, 2009, pp. 1-12.
Touch, J. et al., ‘Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement’, May 2009, Network Working Group, pp. 1-17.
Switched Virtual Networks. ‘Internetworking Moves Beyond Bridges and Routers’ Data Communications, McGraw Hill. New York, US, vol. 23, No. 12, Sep. 1, 1994 (Sep. 1, 1994), pp. 66-70,72,74, XP000462385 ISSN: 0363-6399.
Knight S et al: ‘Virtual Router Redundancy Protocol’ Internet Citation Apr. 1, 1998 (Apr. 1, 1998), XP002135272 Retrieved from the Internet: URL:ftp://ftp.isi.edu/in-notes/rfc2338.txt [retrieved on Apr. 10, 2000].
Office Action dated Jun. 18, 215, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Perlman R: ‘Challenges and opportunities in the design of TRILL: a routed layer 2 technology’, 2009 IEEE Globecom Workshops, Honolulu, HI, USA, Piscataway, NJ, USA, Nov. 30, 2009 (Nov. 30, 2009), pp. 1-6, XP002649647, DOI: 10.1109/GLOBECOM.2009.5360776 ISBN: 1-4244-5626-0 [retrieved on Jul. 19, 2011].
TRILL Working Group Internet-Draft Intended status: Proposed Standard RBridges: Base Protocol Specificaiton Mar. 3, 2010.
Office Action dated Jun. 16, 2015, U.S. Appl. No. 13/048,817, filed Mar. 15, 2011.
Knight P et al: ‘Layer 2 and 3 Virtual Private Networks: Taxonomy, Technology, and Standardization Efforts’, IEEE Communications Magazine, IEEE Service Center, Piscataway, US, vol. 42, No. 6, Jun. 1, 2004 (Jun. 1, 2004), pp. 124-131, XP001198207, ISSN: 0163-6804, DOI: 10.1109/MCOM.2004.1304248.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 29, 2013.
Perlman, Radia et al., ‘RBridges: Base Protocol Specification; Draft-ietf-trill-rbridge-protocol-16.txt’, Mar. 3, 2010, pp. 1-117.
‘An Introduction to Brocade VCS Fabric Technology’, Brocade white paper, http://community.brocade.com/docs/DOC-2954, Dec. 3, 2012.
Brocade, ‘Brocade Fabrics OS (FOS) 6.2 Virtual Fabrics Feature Frequently Asked Questions’, pp. 1-6, 2009 Brocade Communications Systems, Inc.
Brocade, ‘FastIron and TurboIron 24x Configuration Guide’, Feb. 16, 2010.
Brocade, ‘The Effortless Network: Hyperedge Technology for the Campus LAN’ 2012.
Brocade ‘Brocade Unveils‘ The Effortless Network’’, http://newsroom.brocade.com/press-releases/brocade-unveils-the-effortless-network-nasdaq-brcd-0859535, 2012.
Christensen, M. et al., ‘Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches’, May 2006.
FastIron Configuration Guide Supporting Ironware Software Release 07.0.00, Dec. 18, 2009.
Foundary FastIron Configuration Guide, Software Release FSX 04.2.00b, Software Release FWS 04.3.00, Software Release FGS 05.0.00a, Sep. 2008.
Knight, ‘Network Based IP VPN Architecture using Virtual Routers’, May 2003.
Kreeger, L. et al., ‘Network Virtualization Overlay Control Protocol Requirements draft-kreeger-nvo3-overlay-cp-00’, Jan. 30, 2012.
Lapuh, Roger et al., ‘Split Multi-link Trunking (SMLT)’, draft-lapuh-network-smlt-08, Jul. 2008.
Lapuh, Roger et al., ‘Split Multi-Link Trunking (SMLT)’, Network Working Group, Oct. 2012.
Louati, Wajdi et al., ‘Network-based virtual personal overlay networks using programmable virtual routers’, IEEE Communications Magazine, Jul. 2005.
Narten, T. et al., ‘Problem Statement: Overlays for Network Virtualization d raft-narten-n vo3-over l ay-problem -statement-01’, Oct. 31, 2011.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, from Park, Jung H., dated Jul. 18, 2013.
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Jul. 24, 2014.
Office Action for U.S. Appl. No. 13/365,993, filed Feb. 3, 2012, from Cho, Hong Sol., dated Jul. 23, 2013.
Office Action for U.S. Appl. No. 13/742,207 dated Jul. 24, 2014, filed Jan. 15, 2013.
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Apr. 26, 2013.
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, dated Jan. 4, 2013.
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, dated Jun. 7, 2012.
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, dated Dec. 20, 2012.
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, dated May 24, 2012.
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Apr. 25, 2013.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Dec. 3, 2012.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Jun. 11, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Mar. 18, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Jul. 31, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Feb. 22, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jun. 11, 2013.
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Oct. 2, 2013.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Oct. 26, 2012.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated May 16, 2013.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated May 22, 2013.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Jun. 21, 2013.
Office Action for U.S. Appl. No. 13/092,580, filed Apr. 22, 2011, dated Jun. 10, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jul. 3, 2013.
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, dated Feb. 5, 2013.
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, dated Jul. 16, 2013.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 5, 2013.
Office Action for U.S. Appl. No. 13/092,864, filed Apr. 22, 2011, dated Sep. 19, 2012.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jun. 19, 2013.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Mar. 4, 2013.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Sep. 5, 2013.
Office Action for U.S. Appl. No. 13/098,360, filed Apr. 29, 2011, dated May 31, 2013.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Jul. 9, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated May 22, 2013.
Office Action for U.S. Appl. No. 13/365,808, filed Jul. 18, 2013, dated Jul. 18, 2013.
Perlman, Radia et al., ‘Challenges and Opportunities in the Design of TRILL: a Routed layer 2 Technology’, 2009.
S. Nadas et al., ‘Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6’, Internet Engineering Task Force, Mar. 2010.
‘RBridges: Base Protocol Specification’, IETF Draft, Perlman et al., Jun. 26, 2009.
U.S. Appl. No. 13/030,806 Office Action dated Dec. 3, 2012.
Office action dated Apr. 26, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010.
Office action dated Sep. 12, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010.
Office action dated Dec. 21, 2012, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Mar. 27, 2014, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Jul. 9, 2013, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated May 22, 2013, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011.
Office action dated Dec. 5, 2012, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011.
Office action dated Apr. 9, 2014, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011.
Office action dated Feb. 5, 2013, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011.
Office action dated Jan. 10, 2014, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011.
Office action dated Jun. 10, 2013, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011.
Office action dated Jan. 16, 2014, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Mar. 18, 2013, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Jul. 31, 2013, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Aug. 29, 2014, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Mar. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Jun. 21, 2013, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Aug. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office Action dated Mar. 26, 2014, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office action dated Jul. 3, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office Action dated Apr. 9, 2014, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office action dated Dec. 20, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010.
Office action dated May 24, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010.
Office action dated Jan. 6, 2014, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Sep. 5, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Mar. 4, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Jan. 4, 2013, U.S. Appl. No. 12/950,968, filed Nov. 19, 2010.
Office action dated Jun. 7, 2012, U.S. Appl. No. 12/950,968, filed Nov. 19, 2010.
Office action dated Sep. 19, 2012, U.S. Appl. No. 13/092,864, filed Apr. 22, 2011.
Office action dated May 31, 2013, U.S. Appl. No. 13/098,360, filed Apr. 29, 2011.
Office action dated Jul. 7, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office action dated Oct. 2, 2013, U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office Action dated Dec. 19, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office action dated Dec. 3, 2012, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Apr. 22, 2014, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Apr. 25, 2013, U.S. Appl. No. 13/030,688, filed Feb. 18, 2011.
Office action dated Feb. 22, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011.
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011.
Office action dated Oct. 26, 2012, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated May 16, 2013, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated Aug. 4, 2014, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011.
Office action dated Dec. 2, 2013, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011.
Office action dated May 22, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011.
Office action dated Aug. 21, 2014, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011.
Office action dated Nov. 29, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011.
Office action dated Jun. 19, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011.
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/365,808, filed Feb. 3, 2012.
Office Action dated Mar. 6, 2014, U.S. Appl. No. 13/425,238, filed Mar. 20, 2012.
Office action dated Nov. 12, 2013, U.S. Appl. No. 13/312,903, filed Dec. 6, 2011.
Office action dated Jun. 13, 2013, U.S. Appl. No. 13/312,903, filed Dec. 6, 2011.
Office Action dated Jun. 18, 2014, U.S. Appl. No. 13/440,861, filed Apr. 5, 2012.
Office Action dated Feb. 28, 2014, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012.
Office Action dated May 9, 2014, U.S. Appl. No. 13/484,072, filed May 30, 2012.
Office Action dated May 14, 2014, U.S. Appl. No. 13/533,843, filed Jun. 26, 2012.
Office Action dated Feb. 20, 2014, U.S. Appl. No. 13/598,204, filed Aug. 29, 2012.
Office Action dated Jun. 6, 2014, U.S. Appl. No. 13/669,357, filed Nov. 5, 2012.
Brocade ‘An Introduction to Brocade VCS Fabric Technology’, Dec. 3, 2012.
Huang, Nen-Fu et al., ‘An Effective Spanning Tree Algorithm for a Bridged LAN’, Mar. 16, 1992.
Lapuh, Roger et al., ‘Split Multi-link Trunking (SMLT) draft-lapuh-network-smlt-08’, Jan. 2009.
Mckeown, Nick et al. “OpenFlow: Enabling Innovation in Campus Networks”, Mar. 14, 2008, www.openflow.org/documents/openflow-wp-latest.pdf.
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Jul. 17, 2014.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, from Jaroenchonwanit, Bunjob, dated Jan. 16, 2014.
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Jul. 7, 2014.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Apr. 9, 2014.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jul. 25, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Jun. 20, 2014.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Aug. 7, 2014.
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 6, 2014.
Office Action for U.S. Appl. No. 13/556,061, filed Jul. 23, 2012, dated Jun. 6, 2014.
Office Action for U.S. Appl. No. 13/950,974, filed Nov. 19, 2010, from Haile, Awet A., dated Dec. 2, 2012.
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Sep. 12, 2012.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Dec. 21, 2012.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Mar. 27, 2014.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Jun. 13, 2013.
Office Action for U.S. Appl. No. 13/044,301, dated Mar. 9, 2011.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated Dec. 5, 2012.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 7, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Nov. 10, 2014.
Office Action for U.S. Appl. No. 13/157,942, filed Jun. 10, 2011.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 5, 2015.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Dec. 2, 2013.
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Feb. 28, 2014.
Office Action for U.S. Appl. No. 13/533,843, filed Jun. 26, 2012, dated Oct. 21, 2013.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Jan. 5, 2015.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Feb. 20, 2014.
Office Action for U.S. Appl. No. 13/669,357, filed Nov. 5, 2012, dated Jan. 30, 2015.
Office Action for U.S. Appl. No. 13/851,026, filed Mar. 26, 2013, dated Jan. 30, 2015.
Office Action for U.S. Appl. No. 13/092,887, dated Jan. 6, 2014.
Zhai F. Hu et al. ‘RBridge: Pseudo-Nickname; draft-hu-trill-pseudonode-nickname-02.txt’, May 15, 2012.
Abawajy J. “An Approach to Support a Single Service Provider Address Image for Wide Area Networks Environment” Centre for Parallel and Distributed Computing, School of Computer Science Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
Office action dated Oct. 2, 2014, for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Kompella, Ed K. et al., ‘Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling’ Jan. 2007.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Feb. 23, 2015.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jan. 29, 2015.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Jan. 26, 2015.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Mar. 13, 2015.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 27, 2015.
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 12, 2015.
Office Action for U.S. Appl. No. 13/425,238, dated Mar. 12, 2015.
Office Action for U.S. Appl. No. 13/786,328, filed Mar. 5, 2013, dated Mar. 13, 2015.
Office Action for U.S. Appl. No. 14/577,785, filed Dec. 19, 2014, dated Apr. 13, 2015.
Rosen, E. et al., “BGP/MPLS VPNs”, Mar. 1999.
Office action dated Jun. 8, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014.
Office Action dated May 21, 2015, U.S. Appl. No. 13/288,822, filed Nov. 3, 2011.
Office action dated Apr. 30, 2015, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012.
Office Action dated Apr. 1, 2015, U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action dated Apr. 1, 2015 U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action dated Jun. 10, 2015, U.S. Appl. No. 13/890,150, filed May 8, 2013.
Mahalingam “VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks” Oct. 17, 2013 pp. 1-22, Sections 1, 4 and 4.1.
Siamak Azodolmolky et al. “Cloud computing networking: Challenges and opportunities for innovations”, IEEE Communications Magazine, vol. 51, No. 7, Jul. 1, 2013.
Touch, J. et al., 'Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement, May 2009, Network Working Group, pp. 1-17.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 13/598,204, filed Aug. 29, 2014.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/473,941, filed Aug. 29, 2014.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/488,173, filed Sep. 16, 2014.
Office Action dated Aug. 21, 2015, U.S. Appl. No. 13/776,217, filed Feb. 25, 2013.
Office Action dated Aug. 19, 2015, U.S. Appl. No. 14/156,374, filed Jan. 15, 2014.
Office Action for U.S. Appl. No. 14/817,097, dated May 4, 2017.
Office Action for U.S. Appl. No. 14/872,966, dated Apr. 20, 2017.
Office Action for U.S. Appl. No. 14/680,915, dated May 3, 2017.
Office Action for U.S. Appl. No. 14/792,166, dated Apr. 26, 2017.
Office Action for U.S. Appl. No. 14/662,095, dated Mar. 24, 2017.
Office Action for U.S. Appl. No. 15/005,967, dated Mar. 31, 2017.
Office Action for U.S. Appl. No. 15/215,377, dated Apr. 7, 2017.
Office Action for U.S. Appl. No. 13/098,490, dated Apr. 6, 2017.
Office Action for U.S. Appl. No. 14/662,092, dated Mar. 29, 2017.
“Network based IP VPN Architecture using Virtual Routers” Paul Knight et al.
Yang Yu et al “A Framework of using OpenFlow to handle transient link failure”, TMEE, 2011 International Conference on, IEEE, Dec. 16, 2011.
Office Action for U.S. Appl. No. 15/227,789, dated Feb. 27, 2017.
Office Action for U.S. Appl. No. 14/822,380, dated Feb. 8, 2017.
Office Action for U.S. Appl. No. 14/704,660, dated Feb. 27, 2017.
Office Action for U.S. Appl. No. 14/510,913, dated Mar. 3, 2017.
Office Action for U.S. Appl. No. 14/473,941, dated Feb. 8, 2017.
Office Action for U.S. Appl. No. 14/329,447, dated Feb. 10, 2017.
Office Action dated Jan. 31, 2017, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011.
Office Action dated Jan. 27, 2017, U.S. Appl. No. 14/216,292, filed Mar. 17, 2014.
Office Action dated Jan. 26, 2017, U.S. Appl. No. 13/786,328, filed Mar. 5, 2013.
Office Action dated Dec. 2, 2016, U.S. Appl. No. 14/512,268, filed Oct. 10, 2014.
Office Action dated Dec. 1, 2016, U.S. Appl. No. 13/899,849, filed May 22, 2013.
Office Action dated Dec. 1, 2016, U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action dated Nov. 30, 2016, U.S. Appl. No. 13/598,204, filed Aug. 29, 2012.
Office Action dated Nov. 21, 2016, U.S. Appl. No. 13/669,357, filed Nov. 5, 2012.
Office Action dated Feb. 8, 2017, U.S. Appl. No. 14/473,941, filed Aug. 29, 2014.
Office Action dated Feb. 8, 2017, U.S. Appl. No. 14/822,380, filed Aug. 10, 2015.
Office Action for U.S. Appl. No. 14/660,803, dated May 17, 2017.
Office Action for U.S. Appl. No. 14/488,173, dated May 12, 2017.
Office Action for U.S. Appl. No. 13/288,822, dated May 26, 2017.
Office Action for U.S. Appl. No. 14/329,447, dated Jun. 8, 2017.
Related Publications (1)
Number Date Country
20160043950 A1 Feb 2016 US
Provisional Applications (2)
Number Date Country
62035901 Aug 2014 US
62042076 Aug 2014 US