The present disclosure generally relates to ambulatory assisting devices that can progress through a variety of configurations to aid the mobility of a user of the device. More specifically, the present disclosure relates to ambulatory assisting devices that progress through a variety of configurations to accommodate the use of the device in a safe and secure manner as the user of the device traverses a variety of surfaces and terrain such as traversing irregular surfaces such as sidewalks and stone-based surfaces; “loose” surfaces and terrain such as gravel and sand; “soft” surfaces such as wet ground and carpeted surfaces; and variable gradient surfaces such as stairs and inclining or declining surfaces and terrain.
Due to increases in life expectancy, the general population is aging and individuals are living longer, resulting in a rise in certain medical conditions that hinder or inhibit peoples' natural ambulatory abilities. Statistics show that approximately 100 million Americans suffer from a chronic condition that may limit their independence and mobility. The number of seniors experiencing at least one challenge or difficulty with a basic activity or limitations with complex activities is an alarming 60%. Thus, many seniors and others experiencing difficulty with mobility are left with limited ability to move from one location to another. Even as people age or are subject to physical limitations, there is a natural desire to remain mobile, that is, to be able to walk or otherwise move from one location to another without the assistance of another person. In addition to the freedom that comes with ease of movement, there are also health advantages to staying mobile as opposed to leading an increasingly sedentary life, which greatly contributes to the functional decline of the body.
A common class of ambulatory aid device, which allows a user continued mobility, is a “walker.” Walkers, or walking frames, typically assist the elderly or otherwise physically affected people in traversing short to medium distances while maintaining their balance and stability. Walkers are typically constructed of relatively lightweight aluminum frames that provide a solid base to stabilize a user, but are light enough for the user to lift and move forward and backwards so that the user can brace himself or herself when moving from one location to another. Walkers typically include four extending legs, cross members for connecting and stabilizing the legs, and grips and/or handles that allow the user to effectively hold and move the walker during use. Walkers can be equipped with wheels that further facilitate mobility of the user of the walker.
The length of the legs of traditional walkers may be generally adjustable using a typical telescoping arrangement with detents in one telescoping member and a series of corresponding apertures in an associated telescoping member. However, such general adjustments are not dynamic in that it takes time and effort to correctly and independently adjust each leg. Thus, such adjustments are commonly done only occasionally to accommodate the height of the current user of the walker. It is impractical to adjust the height of the legs for each use of traditional walkers or specifically for a section of a path traveled by the user. As will be appreciated, when the legs of the walker are statically set to be of equal length, it is difficult for the walker to assist a user is traversing anything more than a level and even surface. Thus, while a walker does provide its users with the desired mobility and freedom of movement while traversing level surfaces, there are substantial limitations to such walkers when the user encounters anything other than even surfaces, such as irregular surfaces such as sidewalks and stone-based surfaces and variable gradient surfaces such as stairs and inclining or declining surfaces and terrain. Furthermore, for walkers equipped with wheels, the user may encounter a surface or terrain that is generally incompatible with a wheeled walker such as gravel, sand, and wet ground, which inhibits the efficacy of the walker.
In fact, traditional walkers can be dangerous to users that struggle with strength and balance. Studies have shown that the elderly that rely on walkers remain prone to falls that often result in injuries. Each year, tens of thousands of patients are treated for injuries related to falls while using a walker. Many of these falls occur when the user encounters variable gradient surfaces such as stairs and inclining or declining surfaces. In fact, the inability to traverse a set of stairs in a patient's home remain the number one reason that prevents mobility-challenged patients from being released from healthcare facilities. A set of stairs, even a single set of two or three steps, in the home, can cause a person to lose the ability to live independently in his or her home because stairs are too difficult and dangerous to navigate.
As will be appreciated, while traditional walkers are stable and usable on flat and/or even surfaces, such walkers are typically ineffective and dangerous when used to traverse any more challenging terrain, including stairs and any moderate to severe inclining or declining surfaces or terrain.
There is a need for a novel progressive mobility aid device that can dynamically adjust to accommodate challenging surfaces and terrain such as irregular surfaces (e.g., sidewalks and stone-based surfaces), loose surfaces and terrain (e.g., gravel and sand); soft surfaces (e.g., wet ground and carpeted surfaces), and variable gradient surfaces (e.g., stairs and inclining or declining surfaces and terrain). This is to say that there is a need for a progressive mobility aid device that includes the functionality to dynamically adjust the progressive mobility aid device to a variety of surfaces and terrain. Such functionality includes the ability to adjust relative elevation of the front legs relative to the rear legs of the progressive mobility aid device such that the legs can be set at relative heights that provides for a stable base for the user even when traversing a set of stairs or moderate or severely inclining or declining surfaces and the ability to engage and disengage wheels depending on the surface and terrain encountered by a user. Disclosed herein is such a novel progressive mobility aid device.
Disclosed herein are novel embodiments of progressive mobility aid devices. In one embodiment, a progressive mobile aid device includes a front-left leg assembly, a front-right leg assembly, and a rear-left leg assembly, a rear-right leg assembly. The progressive mobile aid device further includes a lower left sidebar including a first end and a second end, where the lower left sidebar is pivotably coupled to the front-left leg assembly proximate to the first end and pivotably coupled to the rear-left leg assembly proximate to the second end; a lower right sidebar including a first end and a second end, where the lower right sidebar is pivotably coupled to the front-right leg assembly proximate to the first end and pivotably coupled to the rear-right leg assembly proximate to the second end; an upper left sidebar including a first end and a second end, where the upper left sidebar is pivotably coupled to the front-left leg assembly proximate to the first end and pivotably coupled to the rear-left leg assembly proximate to the second end; and an upper right sidebar including a first end and a second end, where the upper right sidebar is pivotably coupled to the front-right leg assembly proximate to the first end and pivotably coupled to the rear-right leg assembly proximate to the second end.
In the accompanying drawings, structures are illustrated that, together with the detailed description provided below, describe example embodiments of the disclosed systems, methods, and apparatus. Where appropriate, like elements are identified with the same or similar reference numerals. Elements shown as a single component can be replaced with multiple components. Elements shown as multiple components can be replaced with a single component. The drawings may not be to scale. The proportion of certain elements may be exaggerated for the purpose of illustration.
The apparatus, systems, arrangements, and methods disclosed in this document are described in detail by way of examples and with reference to the figures. It will be appreciated that modifications to be disclosed and described examples, arrangements, configurations, components, elements, apparatus, methods, materials, etc. can be made and may be desired for a specific application. In this disclosure, any identification of specific techniques, arrangements, method, etc. are either related to a specific example presented or are merely a general description of such a technique, arrangement, method, etc. Identifications of specific details or examples are not intended to be and should not be construed as mandatory or limiting unless specifically designated as such. Selected examples of apparatus, arrangements, and methods for using a progressive mobility aid device are hereinafter disclosed and described in detail with reference made to
Disclosed herein is a novel progressive mobility aid device to assist users in moving from one location to another. The progressive mobility aid device includes a frame with a front pair of legs and rear pair of legs, where the front pair of legs and rear pair of legs are pivotably attached such that the user can manually adjust the elevation of the front legs relative to the rear legs. Such adjustment can be made through the use of a pair of clutch mechanisms that control the pivotal movement of the front legs relative to the rear legs. Such clutch mechanisms can be designed so that the incremental pivotal movement of the front legs relative to the rear legs is relatively small, resulting in a progressive mobility aid device where the positioning of the front legs relative to the rear legs is relatively precise. As further disclosed herein, the novel progressive mobility aid device includes as number of wheels to further assist users in moving from one location to another. The wheels are retractable, that is to say that the wheels can be selectively moved from a deployed position, where the wheel engages the surface traversed by the user, and a retracted position, where the wheel is elevated above the surface traversed by the user as to not engage the surface.
As will be understood with subsequent description with references to the figures, the progressive mobility aid device disclosed herein is designed such that the progressive mobility aid device can be configured and/or arranged in many different configurations to accommodate any number of diverse and challenging surfaces and terrain traversed by the user. For example, when a user is traversing an inclining surface, such as walking up a set of stairs or walking up an inclining pathway, the user can manually adjust the front legs to be secured at an elevation where the front legs are positioned above the rear legs. In such an arrangement, the rear legs can rest on the lower step of the stairs (or lower section of the pathway) and the front legs can rest on the higher step (or higher section of pathway). Although the front legs and rear legs are at two different elevations, at least a portion of the top section of the frame of the progressive mobility aid device, which provides a stable structure for the user to manually engage, remains level and provides the user the stability required to safely traverse the stairs of inclined pathway. Conversely, when a user is traversing a declining surface, such as walking down a set of stairs or walking down a declining pathway, the user can manually adjust the front legs to be secured at an elevation below the rear legs such that the front legs can rest on the lower step of the stairs (or lower section of pathway) and the rear legs can rest on the higher step (or higher section of pathway). Similarly as previously described, in such an arrangement, although the front legs and rear legs are at two different elevations, at least a portion of the top section of the frame remains level. As will be understood, in both examples described, when ascending or descending stairs or an inclining or declining pathway, the user of the progressive mobility aid device can support himself or herself on the level top portion of the frame while safely traversing the variable gradient surface. In both instances, the user remains at a generally constant orientation, i.e., generally perpendicular to surface supporting the user; and, thus, the user can safely and confidently ascend stairs or inclining pathways and descend stairs or declining pathways without fear of losing his or her balance and avoiding unnecessary falls and injuries.
It will be understood that one of the benefits of the progressive mobility aid device is that with a portion of the top section of the frame remaining level when configured for traversing inclining and declining surfaces, the user can maintain a perpendicular positioning with regard to that section of the frame. Such a positioning of the user maintains continuity across multiple configurations of the progressive mobility aid device, which provides the user a feeling of consistency in using the progressive mobility aid device regardless of the particular surface traversed by the user.
In another example, when the user is traversing along a level and smooth surface, such as a paved pathway, the user may prefer to use the wheels of the progressive mobility aid device to assist in moving the progressive mobility aid device along the level and smooth pathway. The progressive mobility aid device includes mechanisms to quickly and efficiently deploy the wheels for use on the traversed surface. Conversely, when the user is traversing along an uneven or loose surface, such as an irregular sidewalk, gravel, or sand, the user may prefer to refrain from using the wheels of the progressive mobility aid device because the use of the wheel on such surfaces can inhibit the user from successfully traversing the irregular or loose surface. The progressive mobility aid device includes mechanisms to quickly and efficiently retract the wheels so that the wheels are not engaged with the traversed surface.
It will be understood that throughout this disclosure, where reference is made to traversing inclining surfaces or declining surfaces, such disclosure can be equally applicable to traversing up or down a set of stairs and vice versa. Additionally, while references herein are made to the “left side” or “right side” of a progressive mobility aid device for convenience of description, it will be understood that many components and assemblies of the progressive mobility aid device disclosed herein have equivalent components on the left and right of the progressive mobility aid device that server equivalent functions. Thus, disclosure directed to a “left side” component, for example, may be equally applicable to an equivalent “right side” component.
The novel progressive mobility aid device is described as “progressive” because the progressive mobility aid device can progress from one configuration to another with simple and straightforward actions by the user. For example, as will be fully described herein, the user can change the relative position of the front legs relative to the rear legs by manipulating a pair of levers and/or buttons. Similarly, the user can deploy and/or retract the wheels of the progressive mobility aid device by simply manipulating pedals and/or buttons. Furthermore, the terms “articulating” and “adjustable” can be used to describe the progressive mobility aid device. Generally, the adjustability of the progressive mobility aid device is facilitated by a number of pivot points that pivotally connect various components of the progressive mobility aid device. The number and arrangement of such pivot points allow for the progressive mobility aid device to be arranged in any number of configurations to accommodate any number of uneven or variable gradient surfaces (along with level surfaces). For example, a progressive mobility aid device can be configured such that the front legs and rear legs can be adjusted to accommodate uneven or variable gradient pathways that have a mild inclining or declining grade, a substantial inclining and declining grade, and all grades in between. Similarly, a progressive mobility aid device can be configured such that the front legs and rear legs can be adjusted to accommodate sets of stairs that have a small vertical increments between steps, large vertical increments between steps, and all vertical increments in between.
A progressive mobility aid device 100 will be further described with reference to the figures.
Each leg assembly (105, 110, 115, and 120) includes a collar (165, 170, 175, and 180) that can secure the position of the lower tubular member (125, 130, 135, and 140) relative to its corresponding upper tubular member (145, 150, 155, and 160). It will be understood that arranging the leg assemblies (105, 110, 115, and 120) at varying lengths is generally a one-time operation to adjust the progressive mobility aid device 100 to the height of the user and is not generally used to facilitate the user traversing uneven or variable gradient terrain using the progressive mobility aid device 100.
As illustrated in
The progressive mobility aid device 100 further includes a left wheel assembly 185 secured proximate to a distal end of the front-left lower tubular member 125 and a right wheel assembly 190 secured proximate to a distal end of the front-right lower tubular member 130. The left wheel assembly 185 and the right wheel assembly 190 are arranged to toggle between a deployed position, where the wheel assemblies (185 and 190) engage the traversed surface to facilitate the movement of the user (such as on a smooth, paved pathway) and a retracted position, where the wheel assemblies (185 and 190) do not engage the traversed surface to facilitate safe movement of the user (such as on stairs, declining surfaces, or challenging terrain such as sand, gravel, or muddy ground). The left wheel 185 and the right wheel 190 assemblies 190 will be subsequently described herein in greater detail. As also will be subsequently described, the progressive mobility aid device 100 can also include four wheel assemblies.
The progressive mobility aid device 100 further includes a lower left sidebar 195 linking the front-left leg assembly 105 and the rear-left leg assembly 115, a lower right sidebar 200 linking the front-right leg assembly 110 and the rear-right leg assembly 120; and a lower crossbar 205 linking the lower left sidebar 195 and the lower right sidebar 200. As will be understood, the lower crossbar 205 effectively links the front-left leg assembly 105 to the front-right leg assembly 110. In another embodiment, the lower left sidebar 195, lower right sidebar 200, and lower crossbar 205 are integrally connected to form a u-shaped structure that serves the same linking functions as described herein. In yet another embodiment, as illustrated in
The progressive mobility aid device 100 includes a front-left housing 210, a front-right housing 215 and an upper crossbar 220. The front-left housing 210 connects the front-left upper tubular member 145 and the upper crossbar 220, and the front-right housing 215 connects the front-right upper tubular member 150 and the upper crossbar 220. As with the lower crossbar 205, the upper crossbar 220 effectively links the front-left leg assembly 105 and the front-right leg assembly 110 so that the front-left leg assembly 105 and the front-right leg assembly 110 generally move in cooperation with each other. Similarly, the progressive mobility aid device 100 includes a rear-left housing 225, a rear-right housing 230, an upper left sidebar 235, and an upper right sidebar 240. The rear-left housing 225 connects the rear-left upper tubular member 155 and the upper left sidebar 235, and the rear-right housing 230 connects the rear-right upper tubular member 160 and the right sidebar 240. The upper left sidebar 235 is connected to the front-left housing 210, and the upper right sidebar 240 is connected to the front-right housing 215. As with the lower sidebars (195 and 200), the upper left sidebar 235 effectively links the front-left leg assembly 105 and the rear-left leg assembly 115, and the upper right sidebar 240 effectively links the front-right leg assembly 110 and the rear-right leg assembly 120.
As will be appreciated, the leg assemblies (105, 110, 115, and 120), housings (210, 215, 225, and 230), sidebars (195, 200, 235, and 240), and crossbars (205 and 220) directly or indirectly connect and interact to form a frame for the progressive mobility aid device 100. Each such component is made from a structural material, such as metal, a structural polymer, a carbon composite, fiberglass, or the like, and the positioning of the sidebars (195, 200, 235, and 240) and crossbars (205 and 220) are positioned to bear and distribute force in a way that facilitates a frame that is safe and stable and can generally support the weight and force applied by nearly any potential user.
The linking functionality of the sidebars (195, 200, 235, and 240) and crossbars (205 and 220) is such that the front leg assemblies (105 and 110) can move relative to the rear leg assemblies (115 and 120) to vary the elevation of the front leg assemblies (105 and 110) relative to the rear leg assemblies (115 and 120). Such relative movement is accomplished by forming pivoting engagements where the sidebars (195, 200, 235, and 240) engage the leg assemblies (105, 110, 115, and 120) or housings (210, 215, 225, and 230). Specifically, (as illustrated in
As illustrated in
Similar to the prior description, when traverse an declining pathway, the front leg assemblies (105 and 110) are lowered to an elevation below the rear leg assemblies (115 and 120), as illustrated in
As previously described, although the front leg assemblies (105 and 110) and rear leg assemblies (115 and 120) can be arranged at two different elevations, a top section of the frame (a pair of handles to be subsequently described) of the progressive mobility aid device 100 remains level and provides the user the stability required to safely traverse inclining and declining surfaces. As illustrated in the figures, the progressive mobility aid device 100 includes a left handle 285 and a right handle 290 that the user can manually engage to support himself or herself while using the progressive mobility aid device 100. In both of the examples illustrated in
As with the consistent positioning of the user relative to the rear leg assemblies (115 and 120), the consistency of the left 285 and right 290 handles of the progressive mobility aid device 100 remaining level, whether the user is traversing a level surface, an inclining surface, or a declining surface, provides the user with a constant user experience across all uses of the progressive mobility aid device 100. As will be understood, such consistency of arrangement and use creates an ambulatory assisting device that promotes safe use of the device and limits falls and other mishaps that can lead to injury.
As previously noted, the progressive mobility aid device 100 can be releasably secured or locked in the arrangements illustrated in
As illustrated in
Conversely, when the clutch sprocket 320 rotates in a counterclockwise direction about its central axis, the upper left sidebar 235 also rotates in a counterclockwise direction, with the opposite end of the upper left sidebar 235 moving in an upward direction. Thus, the front-left leg assembly 105 moves upward such that the front-left leg assembly 105 is positioned at a higher elevation than the rear-left leg assembly 115. Such an arrangement is appropriate for using the progressive mobility aid device 100 for traversing an inclining surface. Because of the pivotal connection of the upper left sidebar 235 to the front-left leg assembly 105 and the pivotal connections of the lower left sidebar 195 to the front-left 105 and rear-left 115 leg assemblies, throughout the upward and downward movement of the front-left leg assembly 105, the rotational orientation of the front-left leg assembly 105 relative to the rear-left leg assembly 115 remains relatively constant.
With further reference to
The default position of the clutch assemblies (295 and 300) is for the clutch block 330 to be engaged with the clutch sprocket 320, which secures the position of the front leg assemblies (105 and 110) relative to the rear assemblies (115 and 120). The clutch assemblies (295 and 300) are arranged such that the user has to take specific action(s) to manually manipulate the clutch assemblies (295 and 300) to disengage the clutch block 330 and clutch sprocket 320 (and analogous components of the right clutch assembly) in order to position the front-leg assemblies (105 and 110). With reference to
As illustrated throughout the figures, a clutch rod 335 is attached to the clutch block 300 on a first end and pivotably attached to the clutch lever 345 on the other end. In order to disengage the clutch block 330 from the clutch sprocket 320, the user manually manipulates the clutch lever 345. As illustrated in
The progressive mobility aid device 100 includes a safety feature that guards against a user inadvertently actuating the clutch lever 345. Such a safety feature protects against the user inadvertently unlocking the front leg assemblies (105 and 110) to freely move when the progressive mobility aid device 100 is being used to traverse uneven surfaces. This safety feature is a cam locking assembly 370, illustrated in
As previously described and illustrated in
As illustrated in
Additional features can be incorporated into the progressive mobility aid device. In one example, a toilet seat can be included to accommodate the user using a public restroom or private bathroom. In one embodiment, a toilet seat can be pivotally or rotationably hinged to the lower crossbar (or optionally to the upper crossbar). When not in use, the toilet seat is flipped upward and rests against the upper crossbar. In one embodiment, the toilet seat can be secured to the upper crossbar when not in use. When the user needs to use the restroom, the progressive mobility aid device can be maneuvered over a toilet, the toilet seat of the progressive mobility aid device can be lowered such that it is located above the toilet, the user can sit on the toilet seat of the progressive mobility aid device, and the user can use the restroom. When done using the restroom, the user can return the toilet seat to its stowed position. In such an embodiment, when the progressive mobility aid device is positioned above the toilet, the front wheel assemblies can be located toward the back of the toilet, and the rear wheel assemblies can be located near the front of the toilet. The lower crossbar and lower right and left sidebars can be arranged to clear the top of the toilet so that the progressive mobility aid device can be properly maneuvered into place. It will be understood that those users that have a need for a progressive mobility aid device may also have difficulty lowering themselves and raising themselves for low rise toilets. The incorporated toilet seat described herein can alleviate the need for a user to physically use low rise toilets. In one embodiment, the progressive mobility aid device can include a storage pouch secured to the upper and/or lower crossbars. The toilet seat can be stowed in the pouch when not in use to, in effect, hiding the toilet seat from view when not in use.
In another embodiment, a storage pouch can be secure to the upper or lower crossbars or the upper or lower sidebars. Such a pouch can be used to stow the users personal effects while using the progressive mobility aid device. In yet another embodiment, a holder can be secured to the upper or lower crossbars or the upper or lower sidebars (or any other section of the to the upper or lower crossbars or the upper or lower sidebars). Such a holder can be arranged to hold a mobile device (e.g., cell phone or smart phone), a beverage container (such as a cup), a cane, or any other object that the user desires to travel with. With regard to the mobile device, it will be appreciated that holding the mobile device in a location accessible to the user can be beneficial to the user by provided a hands-free method of communication to the user or providing the user with access to navigation applications as the user moves from one location to another.
The foregoing description of examples has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the forms described. Numerous modifications are possible in light of the above teachings. Some of those modifications have been discussed, and others will be understood by those skilled in the art. The examples were chosen and described in order to best illustrate principles of various examples as are suited to particular uses contemplated. The scope is, of course, not limited to the examples set forth herein, but can be employed in any number of applications and equivalent devices by those of ordinary skill in the art.
This application claims priority to pending U.S. Provisional Patent Application Ser. No. 62/684,469, titled “Adjustable Walker,” filed on Jun. 13, 2018, which is expressly incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62684469 | Jun 2018 | US |