Bicycle rollers have been in use since the early 1900's. A bicycle roller is a dynamometer for bicycles that is powered by the bicycle rider. A bicycle roller is traditionally comprised of three rotatable cylinders positioned so that the rear wheel of the bicycle rides on two closely-spaced cylinders, and the front wheel of the bicycle rides on a third cylinder. In the typical application, the cylinder under the front wheel is coupled to one of the cylinders under the rear wheel by an elastic band such that the front cylinder is forced to rotate at approximately the same speed as the rear two cylinders. This allows the rider to control the bicycle, with steering enabled due to the rotation of the front wheel.
In the prior art, the amount of power, or wattage, that the bicyclist is required to exert to ride at a given speed on a bicycle roller was determined by the amount of rolling resistance resulting from tire distress as the tire rolls over each of the cylinders plus the wattage required to drive any external devices which exert resistance on one or more of the cylinders. Rolling resistance is predominantly a function of the cylinder diameter, tire pressure, and bicyclist weight. Relying on these factors alone provides a linear relationship of resistance versus speed. Simple devices that add a predictable amount of resistance such as the magnetic eddy-current device of U.S. Pat. No. 6,857,992 (incorporated herein by reference) can be added externally to the cylinders, but these are undesirable since they provide a linear speed-to-resistance relationship.
Prior art bicycle rollers have a linear relationship of speed versus resistance. This solution is unsatisfactory; when beginning to pedal the bike from rest on rollers, low resistance is desired to allow the wheels to accelerate quickly enough to enable sufficient steering dynamics to keep the bicycle stable on the rollers, however, to obtain a meaningful training session, a high amount of resistance is desired when pedaling at a rate suitable to achieve cardiovascular exercise benefit.
To achieve both objectives it is desired to have a “progressive” resistance relationship with speed. In other words, a non-linear relationship between speed and resistance where the slope of resistance versus speed increases with increasing speed is desired. This relationship is preferred because it mimics the non-linear effect of combined rolling resistance and wind resistance experienced when riding a bicycle in traditional fashion.
Stationary trainers that use devices external to the rollers, such as fluid resistance, friction, air-moving technologies or variable magnetic resistance devices (see U.S. Pat. No. 7,011,607, incorporated herein by reference) are designed to resemble realistic bicycle riding conditions. Each of these devices is external to the roller. Other than adding this type of device to a bicycle roller, and driving it through a power-transmission device, or through a complicated mechanical coupling to one of the driven cylinders, no attempt has been made to fully integrate progressive resistance technology within the drum of a bicycle roller so that external devices are not necessary. As such, an improved bicycle roller is desired.
This disclosure describes an improved progressive resistance device suitable for integration with a bicycle roller training device. The progressive resistance device is a conductive cylinder, or drum, having an outer wall defining an internal chamber. One or more magnets is carried on a magnet carrier and housed within the internal chamber and in proximity to the wall. Eddy currents produced in the conductive cylinder as the cylinder spins alter the magnet's proximity to the wall by forcing the magnet carrier to move in an eccentric orientation as relates to the axis of rotation of the cylinder. A torsional spring opposes the force created by the eddy current and causes the system to achieve a state of equilibrium force balance.
With the cylinder oriented such that rotation allows the magnet carrier to move against the torsional spring, the result is a progressive relationship between speed and resistance.
Another benefit of the progressive resistance device described herein is that when a linear relationship between speed and resistance is desired, the cylinder may be reversed—such that the cylinder rotates in the opposite direction described above—allowing the same progressive resistance device to provide either linear or proportional training depending on the direction of rotation of the cylinder. With the progressive resistance device reversed, the result will be a linear relationship of speed and resistance. Therefore, the progressive resistance device described herein is unique in that it allows the user to select progressive resistance or linear resistance, as desired. The ability to make this selection is important because a user training on rollers on any given day may prefer high wattage or low wattage at high speed. In practice, the progressive resistance device is removable from the frame and is reversible, to allow the user to select linear or progressive resistance.
For most bicycle riders, the use of a trainer having a single progressive resistance device described herein may be adequate. However, because a bicycle roller comprises three cylinders, typically identical, the use of one, two, or three progressive resistance devices described herein may be used in the place of the roller's cylinders to achieve differing levels of resistance.
By adjusting the spring rate, spring preload, number of magnets and other variables it is possible to adjust the progressive relationship between resistance and speed to suit the needs of the designer or the user.
An additional embodiment of this technology to achieve a higher level of resistance on a single cylinder is to include stationary magnets on the outer side of the progressive resistance device placed and oriented in such a way that: a) when the progressive resistance device is at rest, the poles of the moveable magnets inside the cylinder oppose the stationary magnets outside the cylinder, thereby reducing the magnetic flux on the conductive cylinder wall and b) when the progressive resistance device rotates during its normal operation, the moveable magnets inside the cylinder approach stationary magnets on the outside of the cylinder in such a way that the magnets are attracted by appropriate pole alignment, thereby increasing the magnetic flux on the conductive cylinder wall.
Further, the progressive resistance device described herein is applicable to other stationary trainers, such as those sold for use with bicycles, handcycles and tricycles (see U.S. Pat. Nos. 7,011,607, 7,585,258, 6,964,633, and 6,042,517, each incorporated herein by reference). The progressive resistance device described herein is distinguishable from the magnetic resistance system for rollers (U.S. Pat. No. 6,857,992, incorporated herein by reference) in that the progressive resistance device automatically adjusts resistance level relative to speed, rather than being manually adjustable.
Applications of this technology are not limited to bicycle rollers and bicycle trainers, but are suitable in any application where a resistance mechanism is employed and it is desired that the resistance mechanism have a non-linear relationship to speed, such as a stationary bicycle, hand cycle ergometers, and any similar device. Because the progressive resistance device described herein is contained within a cylindrical drum and requires only that the outer cylinder be rotated, it can be driven by direct contact with a bicycle tire, or it can employ a chain and sprocket, a drive belt or it can be driven directly by any means to cause rotation of a cylinder on an axle.
A roller-type stationary bicycle trainer includes a framework typically consisting of two frame members flanking and adjoined to three cylindrical roller drums. Each frame member consists of two parts: a front frame member that allows for various placements of the front cylindrical roller drum relative to the two rear cylindrical roller drums and a rear frame member which is adjoined to the two rear cylindrical roller drums. In one instance, the frame members are pivitolly attached to each other to enable the trainer to fold for storage. It is understood that this description is only indicative of one type of trainer such as the type designed and produced by SportCrafters, Inc. from Granger, Indiana known as the ZRO aluminum or ZRO PVC. Other configurations of attaching cylindrical rollers with a framework intended to appropriately space the rollers and allow for adjustment of the cylinders for use with various bicycles may be employed.
A power transmission device, which can be a chain, belt or any similar device is typically installed between the front cylinder and the middle cylinder, preferably, an elastic belt. The power transmission device is typically carried in a groove formed in the cap of the cylinder. In other applications the power transmission device is installed between the front cylinder and the rear cylinder. In any case, the power transmission belt is employed to cause the front cylinder to rotate in the same direction, and at approximately the same rate, as either one of the rear cylinders.
When the progressive resistance device is used, the driven wheel of the bicycle is placed on the two rear cylinders and the front wheel of the bicycle is placed on the front cylinder. When the bicycle is powered by the rider, the rotation of the rear wheel of the bicycle will cause the rear roller drums to rotate, and through the belt drive, this will also cause the front roller drum to rotate in the same direction. Therefore, the front wheel of the bicycle will also rotate in the same direction and approximate speed as the rear wheel of the bicycle.
In an additional embodiment, a similar roller-type stationary bicycle trainer is provided which is suitable for use with tricycles and handcycles—where the need for the user to balance on the trainer is not required—includes a framework of two rails adjoining two cylindrical roller drums one of the roller drums is a progressive resistance device. It is further understood that this illustration is indicative of the type of trainer designed and produced by SportCrafters Inc from Granger, Ind. sold under the name Mini-roller. In this application, not requiring the skill of the user to balance, the driven wheel of the bicycle is placed between the two roller drums and aligned in such a way that the tire of the bicycle, tricycle, or handcycle remains in contact with the roller drums during use. In a manner as is known, the user pedals the bicycle, tricycle or handcycle so as to rotate the driven wheel which in turn rotates the two cylinders supporting the driven wheel.
In the embodiment depicted in
The distance between the front drum 5 and the middle drum 6 is adjusted by anchoring the front drum 5 at any one of a plurality of adjusting holes 14 formed through both of the front frame members 9 such that the front wheel 2 of the bicycle 1 is positioned such that the axle of the front wheel 2 is offset above with the axle of the front drum 5. An elastic drive belt 12 spans between the middle drum 6 and the front drum 5 such that the front drum 5 turns in the same direction as the middle and rear drums, enabling the bicycle to be operated using the normal dynamics of steering and balance. The elastic drive belt 12 is carried in a groove formed in the cap of the respective drum.
This disclosure describes a typical bicycle roller assembly 4 as depicted by
The resistance mechanism 42 is used in place of one or more of the drums 5, 6, 7 and is formed having a drum axle 23 which is a straight rod having threaded ends and fasteners 13 suitable for securing the axle 23 to the roller frame 4. A cylinder 25, made from electrically conductive material, forms the outer wall of the drum and defines an internal chamber. An eccentric axle 20 encircles the axle 23 and includes a wall having variable thickness. The eccentric axle 20 is rotatable around the axle 23. A torsional spring 18 includes coils which encircle a portion of the eccentric axle 20, which spring provides an opposing force to the rotation of the eccentric axle 20, as described in greater detail below. One or more magnet bearings 19 encircle the eccentric axle 20 and allow a magnet carrier 17 to rotate relative the eccentric axle 20. The magnet carrier 17 includes a channel 46 for carrying one or more magnets 15. The magnet carrier 17 encircles the eccentric axle 20 with the magnet bearings 19 sandwiched between the eccentric axle 20 and the magnet carrier 17. The magnet carrier 17 is preferably formed from a non-magnetic material. The eccentric axle 20 provides the centerline of rotation for the magnet bearings 19, said centerline being offset from the centerline of the axle 23 by a predetermined amount. The end caps 21 cap the ends of the cylinder 25, with each end cap 21 having a drum bearing 22 installed into the end caps 21 which bearings allow the cylinder 25 to rotate about the axle 23. The end caps 21 serve to locate the axle 23 in the center of the cylinder 25. A rotational stop 24 may be optionally employed to limit the rotation of the magnet carrier 17 about the eccentric axle 20 to enable a limitation to the minimum or maximum resistance as will be described below. The eccentric axle 20 includes one or more axial grooves for accepting an end of the spring 18, thereby holding the end of spring in fixed rotation with the eccentric axle 20. The magnet carrier 17 includes an aperture for accepting another end of the spring 18, thereby the spring 18 is able to exert a force between the eccentric axle 20 and the magnet carrier 17 when they are rotated relative one another. In one embodiment, the magnet carrier 17 only partially encircles magnet bearings 19, having an axial gap formed along the length of the magnet carrier. A rib 47 is formed proximate the gap formed in the magnet carrier 17. The rib 47 contacts the magnet bearings 19, and ensures contact therebetween; in one embodiment a rib 47 is formed on the magnet carrier 17 on each side of the gap. Similarly, a rib 48 is formed proximate the edge of a gap formed in the channel 46 for purposes of contacting and holding firm a cylindrically-shaped magnet 15.
The axle 23 mounts the drum (each of drums 5, 6, 7 having a separate axle 23) to the frame 43. The cylinder 25 is rotatable about the axle 23. As described in detail below, rotation of the cylinder 25 causes the resistance mechanism 42 to resist rotation of the cylinder. As shown in
It is important to note that in Positions A, B, and C the magnets 15 must be sufficiently close to the wall of the cylinder 25 to allow a flux field of the magnets 15 to pass through the wall of the conductive cylinder 25. The presence of the flux field through the wall of the conductive cylinder 25 will cause a flow of electrons, otherwise known as an eddy current, when the cylinder is in motion relative to the magnets 15. The strength of the resulting magnetic field from the eddy current must be sufficient to rotate the magnet carrier 17 about the eccentric axle 20 as a result of the force exerted on the magnets by the eddy current. The torsional spring 18 applies a force which resists rotation of the magnet carrier 17.
Therefore, when the conductive cylinder 25 is rotated in the direction of the arrows shown in
As depicted in
There is a direct relationship between the speed of rotation of the conductive cylinder 25 and the degree of rotation of the magnet carrier 17. Said relationship is most easily understood by the principle that faster rotation between a conductive surface relative a magnet produces higher electron flow and eddy current in the conductive material, resulting in a stronger magnetic field produced by said eddy current. This magnetic field exerts a force on the magnets 15 which in turn rotates the magnet carrier 17 about the eccentric axle 20, which rotation is resisted by the torsional spring 18. Therefore, there exists a higher amount of induced torque on the torsional spring at higher cylinder rotational speeds and the spring will wind up until the torque balances the resistive spring force. For a given rotational speed of the conductive cylinder 25, a given force balance will exist between the magnet 14 and the torsional spring 18 which will correspond to a given resistive force acting against the rotation of the conductive cylinder at that given speed.
Further, there is a direct relationship between the degree of rotation of the magnet carrier 17 and the power required to continue rotating the conductive cylinder 25. Since it was already established that the degree of rotation is directly related to torque, and that power is proportional to torque times angular velocity, then it can be said that more power is required to rotate the cylinder a higher velocity.
A non-linear relationship between power and cylinder rotational velocity is established by causing the magnets 15 to change their flux density through which the cylinder must pass as the speed of the cylinder increases. In the first embodiment, this is done by the magnets 15 rotating on a centerline that is eccentric to the axis of rotation of the conductive cylinder 25. In this embodiment, the centerline of the axle 23 and the centerline of rotation of the magnet 15 and the magnet carrier 17 are offset from one another by the eccentric axle 20.
The resulting relationship between speed of rotation and power is demonstrated by
In one embodiment, a rotational stop 24 is employed to limit the rotation of the magnet carrier 17 relative the cylinder 25, as described above. Limiting rotation in either direction of rotation will limit the range of magnet gap between the cylinder and magnet which will have a corresponding effect on resistance to allow production of a desired power/speed curve.
The resistance mechanism 42 described herein can be employed on other devices used with human-powered three-wheeled vehicles such as tricycles and handcycles. As shown in
A further embodiment includes a cylindrical magnet (not shown) which is mounted in close proximity to the outer surface of the conductive cylinder 25. In this embodiment, the magnet does not rotate on a concentric centerline to the drum centerline, but instead is initially oriented such that the equator of said magnet(s) is oriented toward said conductive cylinder when the cylinder is at rest. As said cylinder rotates, the cylindrical magnet(s) (not shown) will rotate on their axis against a torsional spring 41 (not shown) such that one of the poles of the magnet will become oriented in the direction of the conductive cylinder as the cylinder 25 increases in rotational speed. Since the magnetic flux field near the equator of a cylindrical magnet is less dense than the magnetic flux field at the magnet's poles, the effect of power versus cylinder rotations speed is comparable to the embodiment with magnets positioned inside the conductive cylinder.
It is understood that while certain aspects of the disclosed subject matter have been shown and described, the disclosed subject matter is not limited thereto and encompasses various other embodiments and aspects. No specific limitation with respect to the specific embodiments disclosed herein is intended or should be inferred. Modifications may be made to the disclosed subject matter as set forth in the following claims.
This application claims the benefit of the prior filed provisional application Ser. No. 61/704,789, filed Sep. 24, 2012, incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
6042517 | Gunther et al. | Mar 2000 | A |
6857992 | Kolda et al. | Feb 2005 | B1 |
6964633 | Kolda et al. | Nov 2005 | B2 |
7011607 | Kolda et al. | Mar 2006 | B2 |
7585258 | Watson et al. | Sep 2009 | B2 |
20050064999 | Qiu | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
0621058 | Oct 1994 | EP |
1683550 | Jul 2006 | EP |
2010104405 | Sep 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20140296038 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
61704789 | Sep 2012 | US |