The present invention relates generally to software and hardware systems for gaming machines, and more particularly to providing a progressive service in a service-oriented gaming network environment.
Today's gaming terminal typically comprises a computerized system controlling a video display or reels that provide wagering games such as video and mechanical slots, video card games (poker, blackjack etc.), video keno, video bingo, video pachinko and other games typical in the gaming industry. In addition, support computing systems such as accounting, player tracking and other “back office” systems exist in order to provide support for a gaming environment.
In order to prevent players from becoming bored, new versions of wagering games, and alterations to existing games are constantly being developed. In the past, the game software and content for gaming terminals and back office systems have been developed using proprietary or closed hardware, operating systems, application development systems, and communications systems. Sometimes these systems are provided by a single vendor.
One type of gaming machine that is popular with many players is a progressive gaming machine such as a progressive slot machine. Progressive gaming machines offer jackpots that grow as more money is played through the machine. The progressive may be part of a network of machines all offering the same jackpot, and all contributing a portion of their play-through to that total. Progressive gaming machines have jackpots that grow larger and larger, typically topping out at a predefined level set by the casino, or being won by a player and getting reset. The jackpot typically grows in proportion to how much play the machine or network of machines get. After a major win, the jackpot value is typically reset to a base figure and it starts growing again.
Unfortunately, due to the proprietary and closed nature of existing architectures, it can be difficult to develop new progressive games, and it is difficult to add progressive games to existing proprietary progressive game architectures. As a result, the cost and time associated with updating and adding new progressive games to gaming networks is relatively high.
In view of the above-mentioned problems and concerns, there is a need in the art for the present invention.
The above-mentioned shortcomings, disadvantages and problems are addressed by the present invention, which will be understood by reading and studying the following specification.
One aspect of the systems and methods relates to a Gaming Services Framework using the World Wide Web and internetworking technology. The World Wide Web (“Web” from here on) is a networked information system comprising agents (clients, servers, and other programs) that exchange information. The Web and networking architecture is the set of rules that agents in the system follow, resulting in a shared information space that scales well and behaves predictably. A further aspect relates to providing a progressive service in a gaming network.
The Gaming Services Framework comprises a set of services, protocols, XML schemas, and methods for providing secure gaming system functionality in a distributed, network based architecture. It is intended to be a service-oriented framework for gaming and property management based upon internetworking technology and web services concepts. Specifically, it supports a loosely coupled architecture that consists of software components that semantically encapsulate discrete functionality (self contained and perform a single function or a related group of functions—the component describes its own inputs and outputs in a way that other software can determine what it does, how to invoke its functionality, and what result to expect). These components are distributed and programmatically accessible (called by and exchange data with other software) over standard internetworking protocols (TCP/IP, HITP, DNS, DHCP, etc.).
The present invention describes systems, methods, and computer-readable media of varying scope. In addition to the aspects and advantages of the present invention described in this summary, further aspects and advantages of the invention will become apparent by reference to the drawings and by reading the detailed description that follows.
In the following detailed description of exemplary embodiments of the invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific exemplary embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical, electrical and other changes may be made without departing from the scope of the present invention.
Some portions of the detailed descriptions which follow are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the ways used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar computing device, that manipulates and transforms data represented as physical (e.g., electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
In the Figures, the same reference number is used throughout to refer to an identical component which appears in multiple Figures. Signals and connections may be referred to by the same reference number or label, and the actual meaning will be clear from its use in the context of the description.
The description of the various embodiments is to be construed as exemplary only and does not describe every possible instance of the invention. Numerous alternatives could be implemented, using combinations of current or future technologies, which would still fall within the scope of the claims. The present invention is directed to a service-oriented framework for gaming networks that allows for the interoperability of the software components (regardless of manufacturer, operating system, or application) reducing the dependence on a closed-system, single vendor solutions and allowing for variety in innovation and competition.
The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
The gaming machine 10 includes a plurality of possible credit receiving mechanisms 14 for receiving credits to be used for placing wagers in the game. The credit receiving mechanisms 14 may, for example, include a coin acceptor, a bill acceptor, a ticket reader, and a card reader. The bill acceptor and the ticket reader may be combined into a single unit. The card reader may, for example, accept magnetic cards and smart (chip) cards coded with money or designating an account containing money.
In some embodiments, the gaming machine 10 includes a user interface comprising a plurality of push-buttons 16, the above-noted touch screen, and other possible devices. The plurality of push-buttons 16 may, for example, include one or more “bet” buttons for wagering, a “play” button for commencing play, a “collect” button for cashing out, a help” button for viewing a help screen, a “pay table” button for viewing the pay table(s), and a “call attendant” button for calling an attendant. Additional game specific buttons may be provided to facilitate play of the specific game executed on the machine. The touch screen may define touch keys for implementing many of the same functions as the push-buttons. Additionally, in the case of video poker, the touch screen may implement a card identification function to indicate which cards a player desires to keep for the next round. Other possible user interface devices include a keyboard and a pointing device such as a mouse or trackball.
A processor controls operation of the gaming machine 10. In response to receiving a wager and a command to initiate play, the processor randomly selects a game outcome from a plurality of possible outcomes and causes the display 12 to depict indicia representative of the selected game outcome. In the case of slots for example mechanical or simulated slot reels are rotated and stopped to place symbols on the reels in visual association with one or more pay lines. If the selected outcome is one of the winning outcomes defined by a pay table, the processor awards the player with a number of credits associated with the winning outcome.
In some embodiments, the Customer Corporate Data Center 218 contains the bulk of the network servers supporting gaming properties owned by the corporation. Major elements of the gaming service network include Auth server 232, Gaming Management Server 236, and Progressive Server 238. In some embodiments, Auth Server 32 provides authentication, authorization and content integrity for client devices attempting to interact with other servers and services in the architecture.
In some embodiments, the Gaming Management Server 236 includes the following services: Boot Service, Name Service, Time Service, Game Management Service, Game Update Service, Event Management Service, Accounting Service, and Discovery Service.
In some embodiments, the Progressive Server 238 hosts a value-add service that allows a gaming machine to participate within a progressive gaming offering. Any value-add service can be added or substituted for this server/service. A progressive game offering is provided as an example. Other value-add services can be distributed on existing servers or reside on a newly added server.
The Customer Property 16 contains gaming machines 10, which in some embodiments allow remote updates and configuration through a network interface on the gaming machine. In some embodiments, a Boot Server 234 contains a DHCP service that facilitates the distribution of IP addressing to the gaming machines 10. It should be noted that any device capable of supporting a wagering game could be substituted for gaming machine 10. For example, a personal or laptop computer executing a wagering game may participate in the gaming network using the services described below.
As noted above, various services may be located throughout the gaming network. In some embodiments of the invention, a set of core operational services may include one or more of the following services:
In addition to or instead of the core services described above, some embodiments of the invention include one or more of the following services referred to as Basic Gaming Services:
As noted above, a gaming service network may include Value Add Services. These services include participation services and player services. Examples of participation services that may be included in various embodiments of the invention include the following:
Examples of Player Services that may be included in various embodiments of the invention include:
It should be noted that with the distributed architecture of the Gaming Service Network 210, the above-described services that reside on network servers are not limited to location and can reside anywhere the network supports. For example, it is desirable to consider security and network latency when locating services.
The Gaming Services Framework 300 provides for the interaction of several logical elements as depicted in
Logical elements may reside in a number of different physical devices as part of delivering any service. For example, a Service Provider 304 will typically reside in a slot accounting or player tracking system and the Service Requestor 302 will typically reside in a gaming machine. However, there may be scenarios where it would be advantageous or appropriate for the logical elements to reside in other physical devices. For example, in alternative embodiments a Service Requestor 302 may reside in a slot accounting system.
Service Provider 304 comprises a platform that hosts access to a service 314. A service provider may also be referred to as a service execution environment or a service container. Its role in the client-server message exchange patterns is that of a server.
Service Requestor 302 comprises an application that is looking for and invoking or initiating an interaction with a service such as that provided by service provider 304. Its role in the client-server message exchange patterns is that of a client 312.
Discovery Agency 306 comprises a searchable set of service descriptions where service providers 304 publish their service description(s) 324 and service location(s) 326. The service discovery agency 306 can be centralized or distributed. A discovery agency 306 can support both patterns where service descriptions 322 are sent to discovery agency 306 and patterns where the discovery agency 306 actively inspects public service providers 304 for service descriptions 322. Service requestors 302 may find services and obtain binding information (in the service descriptions 324) during development for static binding, or during execution for dynamic binding. In some embodiments, for example in statically bound service requestors, the service discovery agent may be an optional role in the framework architecture, as a service provider 304 can send the service description 322 directly to service requestor 302. Likewise, service requestors 302 can obtain a service description 324 from other sources besides a discovery agency 306, such as a local file system, FTP site, URL, or WSDL document.
Core Layers of the Gaming Services Protocol Stack 400
In some embodiments, the gaming services framework utilizes common Internet protocols, which may include web services protocols. Although not specifically tied to any transport protocol, it is desirable to build the gaming services on ubiquitous Internet connectivity and infrastructure to ensure nearly universal reach and support. In some embodiments, gaming services will take advantage of Ethernet 405 or 406, Transmission Control Protocol (TCP) 408, Internet Protocol (IP) 407, User Datagram Protocol (UDP) 409, HyperText Transfer Protocol (HTTP) 410, HyperText Transfer Protocol Secure/Secure Socket Layer (HTTPS/SSL) 411, Lightweight Directory Access Protocol (LDAP) 412, Domain Naming System (DNS) 413, and Dynamic Host Configuration Protocol (DHCP) 414 layers in the protocol stack 400. Those of skill in the art will appreciate that other protocol layers performing equivalent functionality may be substituted for those described above and are within the scope of the present invention.
In some embodiments, service request and response data are formatted using Extensible Markup Language (XML) 415. XML 415 is a widely accepted format for exchanging data and its corresponding semantics. XML is a fundamental building block used in layers above the Common Internet Protocols. In some embodiments, the Gaming Services Protocol Stack 400 incorporates this protocol in accordance with the World Wide Web Consortium (W3C) XML Working Group s XML specification. However, those of skill in the art will appreciate that other data exchange formats may be substituted for XML 415, and such formats are within the scope of the present invention.
In some embodiments of the invention, the gaming service protocol stack 400 utilizes the Simple Object Access Protocol (SOAP) 416. SOAP 416 is a protocol for messaging and RPC (Remote Procedure Call) style communication between applications. SOAP is based on XML 415 and uses common Internet transport protocols like HTTP 410 to carry data. SOAP 416 may be used to define a model to envelope request and response messages encoded in XML 415. SOAP 416 messaging can be used to exchange any kind of XML 415 information. SOAP 416 is used in some embodiments as the basic standard for carrying service requests/responses between service users and providers. SOAP 416 has been submitted to the World Wide Web Consortium (W3C) standards body as recommendation documents (versions 1.1 and 1.2) and will likely emerge as “XML Protocol (XP).”
Higher Layers of the Gaming Services Protocol Stack 400
In some embodiments, the gaming services protocol stack includes a Web Services Description Language (WSDL) 417 and a Universal Description, Discovery, and Integration (UDDI) 418. WSDL 417 comprises a description of how to connect to a particular service. In some embodiments, WSDL 417 is based on XML. A WSDL 417 description abstracts a particular service's various connection and messaging protocols into a high-level bundle and forms an element of the UDDI 418 directory's information. WSDL 417 is similar to CORBA or COM IDL in that WSDL 417 describes programmatic interfaces. WSDL 417 is typically independent of the underlying service implementation language or component model, and focuses on an abstract description. The Gaming Services Protocol Stack 400 incorporates this description in accordance with the World Wide Web Consortium (W3C) Web Services Description Language (WSDL) 1.1—W3C Note 15 March 2001 and later versions.
In some embodiments, UDDI 418 represents a set of protocols and a public directory for the registration and real-time lookup of services. UDDI 418 enables an entity such as a company to publish a description of available services to the registry, thereby announcing itself as a service provider. Service users can send requests conforming to the UDDI 418 schema as SOAP 416 messages to the service registry to discover a provider for services. Some embodiments of the present invention may utilize UDDI Version 3, released in July of 2002 and later versions. Further development of UDDI 418 is managed under the auspices of the OASIS (Organization for the Advancement of Structured Information Standards) UDDI Specifications technical committee.
Returning to
Publish interaction 330 provides a mechanism for a service to be made accessible by other entities in the gaming network environment. In order to be accessible, a service needs to publish its description such that the requestor can subsequently find it. Where it is published can vary depending upon the requirements of the application. A service description 322 can be published using a variety of mechanisms known in the art. The various mechanisms used by the varying embodiments of the invention provide different capabilities depending on how dynamic the application using the service is intended to be. The service description may be published to multiple service registries using several different mechanisms. The simplest case is a direct publish. A direct publish means the service provider sends the service description directly to the service requester. In this case the service requestor may maintain a local copy of the service description 322.
Another means of publishing service descriptions utilized in alternative embodiments of the invention is through a UDDI registry. There are several types of UDDI registries known in the art that may be used depending on the scope of the domain of Web services published to it. When publishing a Web service description to a UDDI registry, it is desirable to consider the business context and taxonomies in order for the service to be found by its potential service consumers. Examples of UDDI registries used in the gaming service architecture of various embodiments of the invention are Internal Enterprise Application UDDI registry, Portal UDDI registry, and Partner Catalog UDDI registry.
An Internal Enterprise Application UDDI registry may be used in some embodiments for gaming services intended for use within an organization for internal enterprise applications integration. For example, all services that provide gaming and gaming management to devices within a casino or casino organization may be published to an Internal Enterprise Application UDDI registry.
A Portal UDDI registry may be used in some embodiments for gaming services that are published by a company for external partners to find and use. A portal UDDI registry typically runs in the service provider's environment outside of a firewall or in a DMZ (de-militarized zone) between firewalls. This kind of private UDDI registry generally contains only those service descriptions that a company wishes to provide to service requestors from external partners through a network. For example, these services may be used to provide online gaming to customers connecting through the World-Wide Web.
A Partner Catalog UDDI registry may be used in some embodiments for gaming services to be used by a particular company. The Partner Catalog UDDI registry can be thought of as a rolodex like UDDI registry. A Partner Catalog UDDI registry is typically located on a computer or gaming machine behind a firewall. This kind of private UDDI registry typically contains approved, tested, and valid service descriptions from legitimate (e.g. authorized) business partners. The business context and metadata for these services can be targeted to the specific requestor. In some embodiments, this type of registry may be used for inter-casino services as well as interactions between casinos and other types of organizations such as regulators and financial institutions. It is desirable that an appropriate authorization and qualification procedure be in place to insure that only approved services are published to service repositories.
In the discover interactions 332 (also referred to as find interactions), the service requestor retrieves a service description directly or queries the registry for the type of service required. It then processes the description in order to be able to bind and invoke it.
As with publishing service descriptions, acquiring service descriptions may vary depending on how the service description is published and how dynamic the service application is meant to be. In some embodiments, service requesters may find Web services during two different phases of an application lifecycle—design time and run time. At design time, service requesters search for web service descriptions by the type of interface they support. At run time, service requestors search for a web service based on how they communicate or qualities of service advertised.
With the direct publish approach noted above, the service requestor may cache the service description at design time for use at runtime. The service description may be statically represented in the program logic, stored in a file, or in a simple, local service description repository.
Service requestors can retrieve a service description at design time or runtime from a Web page (URL), a service description repository, a simple service registry or a UDDI registry. The look-up mechanism typically supports a query mechanism that provides a find by type of interface capability (for example, based on a WSDL template), the binding information (i.e. protocols), properties (such as QOS parameters), the types of intermediaries required, the taxonomy of the service, business information, etc.
The various types of UDDI registries, including those described above, have implications on the number of runtime binding services can choose from, policy for choosing one among many, or the amount of pre screening that will be done by the requestor before invoking the service. Service selection can be based on binding support, historical performance, quality of service classification, proximity, or load balancing. It is desirable that an appropriate authorization and qualification procedure be in place to insure that only approved services are published to service repositories.
Once a service description is acquired, the service requestor will need to process it in order to invoke the service. In some embodiments, the service requestor uses the service description to generate SOAP requests or programming language specific proxies to the service. The generation of such requests can be done at design time or at runtime to format an invocation to the service. Various tools can be used at design time or runtime to generate programming language bindings from interface descriptions, such as WSDL documents. These bindings present an API (Application Program Interface) to the application program and encapsulate the details of the messaging from the application.
After a service has been published 330 and discovered 332, the service may be invoked so that a service requestor and service provider may interact 334. In the interact operation 334, the service requestor invokes or initiates an interaction with the service at runtime using the binding details in the service description 322 to locate, contact, and invoke the service. Examples of service interactions 334 include: single message one way, broadcast from requester to many services, a multi message conversation, or a business process. Any of these types of interactions can be synchronous or asynchronous requests.
In some embodiments of the invention, security mechanisms may be used to secure the Gaming Services Framework 300. Securing the Gaming Services Framework typically involves providing facilities for ensuring the integrity and confidentiality of the messages and for ensuring that a service acts only on requests in messages that express the claims required by policies. Examples of such mechanisms used in various embodiments of the invention include IPSec and SSL/TLS, which provide network and transport layer security between two endpoints. However, when data is received and forwarded on by an intermediary beyond the transport layer both the integrity of data and any security information that flows with it maybe lost. This forces any upstream message processors to rely on the security evaluations made by previous intermediaries and to completely trust their handling of the content of messages. Thus it is desirable to include security mechanisms that provide end-to-end security. It is also desirable that such mechanisms be able to leverage both transport and application layer security mechanisms to provide a comprehensive suite of security capabilities.
In general, the various embodiments of the invention implement a progressive service that provides functionality for a gaming machine to participate within a single progressive or multiple progressives. A gaming machine may register with the progressive service when it boots up and download a list of progressives for which the gaming machine is enrolled. Additionally, the gaming machine can be enrolled and unenrolled from progressives at a central site or progressive server. In some embodiments, when the gaming machine is dynamically enrolled or unenrolled from the central site, the progressive service will notify the gaming machine that it needs to retrieve a new progressive configuration. In alternative embodiments, the progressive service may push down a new progressive configuration to the gaming machine. Once registered, a gaming machine will receive progressive amount updates for the progressives that it is enrolled in. Thus the gaming machine is able to display the current progressive jackpot totals. In some embodiments, the gaming machine may receive these updates by requesting them. In alternative embodiments, the progressive service may push the progressive amount updates down to the gaming machine. When a gaming machine is played, the gaming machine calls the progressive service and posts the coin in information. If a gaming machine wins a jackpot, the gaming machine will call the progressive service and post the winning information.
The method begins when a progressive service publishes the availability of the progressive service to a gaming network (block 510). In some embodiments, the service is registered by sending a description (e.g. in WSDL) of the service to a discovery agency. The discovery agency adds the service description to its service repository (e.g. in a UDDI repository). At this point the progressive service is available for discovery by interested participants in the gaming network.
After a progressive service is published, clients/service requesters may make discovery requests to find a progressive service (block 512). In particular embodiments, the client/service requester makes UDDI calls to the discovery agency to find a progressive service. The discovery agency receives the request and returns the service description and location information for the progressive service to the requester.
The client/service requester can then register with the service provider identified at block 512 by registering with the progressive service (block 514). In some embodiments, the client registers by invoking a “progressiveServiceRegister” method on the progressive service. In some embodiments, this method call is a SOAP call and includes parameters that identify the client and provide authentication information to the progressive service provider. The progressive service provider may then verify that the client is authorized to receive progressive game configuration data before successfully registering the client. In some embodiments, when the client is done using the service, it may deregister with the progressive service. In particular embodiments, this may be done by invoking a “progressiveServiceDeregister” method on the progressive service.
Once the client has successfully registered with the progressive service, it can invoke the progressive service for various requests (block 516). In some embodiments, SOAP calls are issued to invoke progressive service request methods. In particular embodiments, the following methods may be invoked:
A server side process for a progressive service can communicate with a client gaming machine using functionality illustrated by the following methods. In some embodiments, these methods may be RPC calls. In alternative embodiments the methods may be SOAP/XML formatted messages sent over a variety of transports such as TCP/IP, MSMQ (Microsoft Message Queue), etc.
At 521, the progressive service 502 is deployed and saves its binding information to the discovery service 503 (UDDI Registry).
At 522, the discovery service 503 authenticates the progressive service 502 with the authentication/authorization database 504. Examples of such authentication and authorization mechanisms include LDAP and RADIUS (Remote Authentication Dial-In User Service).
At 523, the authentication/authorization database 504 successfully authenticates the progressive service 502 (e.g. using LDAP, RADIUS, et al.).
At 524, the discovery service 503 returns a binding detail information element providing binding information to the progressive service 502. The progressive service 502 is now ready to accept requests for service from clients (e.g. gaming machines 501).
At 525, a gaming machine 501 contacts the discovery service 503 to find the location of a progressive service 502. This may occur upon power up or at any other time that the gaming machine determines it should check for a progressive configuration update.
At 526, the discovery service 503 returns with a list of possible progressive services.
At 527, the gaming machine 501 chooses a progressive service and requests the binding information of that instance of the progressive service 502.
At 528, the discovery service 503 returns the binding information to the gaming machine 501.
At 529, the gaming machine 501 registers with the progressive service 502. In some embodiments, the registration may be made using a SOAP function.
At 530, the progressive service 502 authenticates the gaming machine 501 with the authentication/authorization database 504 (e.g. using LDAP, RADIUS, et al.).
At 531, the authentication/authorization database 504 successfully authenticates the gaming machine 501 (e.g. using LDAP, RADIUS, et al.).
At 532, the progressive service 502 returns a successful response to the gaming machine 501.
At 533, the gaming machine 501 notifies the progressive service 502 that it wants to be notified of progressive configuration updates for a game.
At 534, the progressive service 502 responds with a notify success.
At 535, the progressive configuration may be updated through manual or automated means and made available to the progressive service 502.
At 536, the progressive service 502 sends a notification to the gaming machine 501 indicating a progressive configuration is available.
At 537, the gaming machine 501 requests the progressive configuration from the progressive service 502. The client may request the progressive configuration at any time that is suitable to administratively defined policies. Examples may include at the end of current game play, at the end of day, at the next out-of-operation period, etc. The client may also download the new progressive configuration immediately, store it, and install at a later time.
At 538, the progressive service 502 sends the new progressive configuration to the gaming machine 501 (e.g. using a SOAP call).
It should be noted that it is desirable that the gaming machine and/or progressive service guarantee the integrity of progressive configuration. Several techniques may be used and are known in the art, including digital signing.
Systems and methods providing a progressive service in a service-oriented gaming network environment have been disclosed. Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations of the present invention.
The terminology used in this application is meant to include all of these environments. It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. Therefore, it is manifestly intended that this invention be limited only by the following claims and equivalents thereof.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/450,458, entitled “PROGESSIVE SERVICE IN THE SERVICE-ORIENTED GAMING NETWORK ENVIRONMENT”, filed Feb. 26, 2003; and is related to U.S. patent application Ser. No. ______, entitled “A SERVICE-ORIENTED GAMING NETWORK ENVIRONMENT”, <Attorney Docket 1842.020US1>, filed on the same day and assigned to the same assignee as the present application; each of which are hereby incorporated by reference herein for all purposes.
Number | Date | Country | |
---|---|---|---|
60450458 | Feb 2003 | US |