The present disclosure relates to a suspension assembly system typically used in a vehicle.
Suspension assembly systems are used to damp the impact of a terrain on which a vehicle is travelling to provide passengers within said vehicle a smoother and more comfortable ride. With manufacturer limitations on packaging suspension components, it is typical for a suspension system to have digressive leverage ratios and digressive shock velocities. Increasing the progressiveness of the movement and leverage ratio provides additional comfort and safety to occupants of a vehicle as the suspension is utilized near the extremes of movement. It would be a significant improvement over the current state of the art to have a design that increases the progressiveness of a suspension assembly while using standard suspension mounting locations.
In reference to the drawings specifically, a Suspension System Assembly is shown (
The connection (8) of pivoting bracket (4) allows for angular rotation of the distal end (1B) of the shock assembly (1). When the first support arm (6) and the second support arm (7) rotate about their connections to the chassis (3) the angular rotation of pivoting bracket (4) enables the distal end (1B) of the shock assembly (1) to move across a new path (12) (
In certain embodiments, the support arms (6 and 7) may be of different length and longer arms are typically found in off-road applications. As the support arm length increases, the ability to increase the progressiveness improves. In small bump design focused suspension systems, similar to on-road vehicles, shorter support arms or shorter shock strokes the ability to increase progressiveness decreases but remains. The support arms (6 & 7) may also be of any design including A frame, J shape, boxed, tubed, solid or any combination thereof. Additionally, the positions of the support arms (6 and 7) may be inverted or rearranged such that the pivoting bracket (4) is connected to a support arm (6 or 7) in a lower position with respect to the other support arm (7 or 6). This configuration would place the mechanical linkage connection (5B) on the support arm (7 or 6) in the upper position. (
In other embodiments, the pivoting bracket (4) may be linear, curved or L shaped and the connection to support arm (6) may be located between the intermediate device (2) and the connections to the chassis (3). The connection point (8) of pivoting bracket (4) may be a hinge, a multi-joint, a gear, or other axial rotating mechanical connection. This disclosure does not limit a specific rotating mechanical connection.
In yet other embodiments, the linkage system (5) is a rigid rod between two points (5A and 5B) where the connections (5A and 5B) are ball and socket, ball or roller bearings or bushings or other full or partially rotating mechanical connection.
The Suspension System Assembly may be utilized in any type of vehicle including one powered by an internal combustion engine, a motor driven, any hybrid version, or an object connected to a vehicle. The suspension system assembly (CC) may also be used in either or both of a front and rear suspension system. Additionally, the suspension system assembly (
Various modes of enabling the disclosure are detailed in the description and a person having ordinary skill in the art will recognize additional embodiments for practicing the disclosure as defined within the breadth of the appended claims. All embodiments in the description and exhibited in the drawings are not necessarily exclusive of one another but may be described in various combined embodiments or in a single embodiment combining all characteristics described. Additionally, characteristics described in the embodiments may not be explicitly described in another contemplated embodiment but are none the less within the clear scope anticipated by the claims.
Number | Name | Date | Kind |
---|---|---|---|
20170327207 | Sierra | Nov 2017 | A1 |
20220111692 | Berardi | Apr 2022 | A1 |
20220339984 | Starik | Oct 2022 | A1 |
Number | Date | Country |
---|---|---|
WO-2022079716 | Apr 2022 | WO |
Number | Date | Country | |
---|---|---|---|
20240083206 A1 | Mar 2024 | US |