A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
This invention relates generally to the field of digital video and encryption thereof. More particularly, this invention relates to an encryption method and apparatus particularly useful for encrypting packetized video content such as that provided by cable and satellite television systems.
The above-referenced commonly owned patent applications describe inventions relating to various aspects of methods generally referred to herein as partial encryption or selective encryption. More particularly, systems are described therein wherein selected portions of a particular selection of digital content are encrypted using two (or more) encryption techniques while other portions of the content are left unencrypted. By properly selecting the portions to be encrypted, the content can effectively be encrypted for use under multiple decryption systems without the necessity of encryption of the entire selection of content. In some embodiments, only a few percent of data overhead is needed to effectively encrypt the content using multiple encryption systems. This results in a cable or satellite system being able to utilize Set-top boxes or other implementations of conditional access (CA) receivers from multiple manufacturers in a single system—thus freeing the cable or satellite company to competitively shop for providers of Set-top boxes.
The features of the invention believed to be novel are set forth with particularity in the appended claims. The invention itself however, both as to organization and method of operation, together with objects and advantages thereof, may be best understood by reference to the following detailed description of the invention, which describes certain exemplary embodiments of the invention, taken in conjunction with the accompanying drawings in which:
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail specific embodiments, with the understanding that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described. In the description below, like reference numerals are used to describe the same, similar or corresponding parts in the several views of the drawings.
The terms “scramble” and “encrypt” and variations thereof are used synonymously herein. Also, the term “television program” and similar terms can be interpreted in the normal conversational sense, as well as a meaning wherein the term means any segment of AN content that can be displayed on a television set or similar monitor device. The term “video” is often used herein to embrace not only true visual information, but also in the conversational sense (e.g., “video tape recorder”) to embrace not only video signals but associated audio and data. The term “legacy” as used herein refers to existing technology used for existing cable and satellite systems. The exemplary embodiments disclosed herein are decoded by a television Set-Top Box (STB), but it is contemplated that such technology will soon be incorporated within television receivers of all types whether housed in a separate enclosure alone or in conjunction with recording and/or playback equipment or Conditional Access (CA) decryption module or within a television set itself. The present document generally uses the example of a “dual partial encryption” embodiment, but those skilled in the art will recognize that the present invention can be utilized to realize multiple partial encryption without departing from the invention. Partial encryption and selective encryption are used synonymously herein.
Turning now to
Head end 100 receives scrambled content from one or more suppliers, for example, using a satellite dish antenna 108 that feeds a satellite receiver 110. Satellite receiver 110 operates to demodulate and descramble the incoming content and supplies the content as a stream of clear (unencrypted) data to a selective encryption encoder 114. The selective encryption encoder 114, according to certain embodiments, uses two passes or two stages of operation, to encode the stream of data. Encoder 114 utilizes a secondary conditional access system (and thus a second encryption method) in conjunction with the primary encryption encoder 104 which operates using a primary conditional access system (and thus a primary encryption method). A user selection provided via a user interface on a control computer 118 configures the selective encryption encoder 114 to operate in conjunction with either a Motorola or Scientific Atlanta cable network (or other cable or satellite network).
It is assumed, for purposes of the present embodiment of the invention, that the data from satellite receiver 110 is supplied as MPEG (Moving Pictures Expert Group) compliant packetized data. In the first stage of operation the data is passed through a Special Packet Identifier (PID) 122. Special Packet Identifier 122 identifies specific programming that is to be dual partially encrypted according to the present invention. The Special Packet Identifier 122 signals the Special Packet Duplicator 126 to duplicate special packets. The Packet Identifier (PID) Remapper 130, under control of the computer 118, remaps the PIDs of the elementary streams (ES) (i.e., audio, video, etc.) of the programming that shall remain clear and the duplicated packets to new PID values. The payload of the elementary stream packets are not altered in any way by Special Packet Identifier 122, Special Packet Duplicator 126, or PID remapper 130. This is done so that the primary encryption encoder 104 will not recognize the clear unencrypted content as content that is to be encrypted.
The packets may be selected by the special packet identifier 122 according to one of the selection criteria described in the above-referenced applications or may use another selection criteria such as those which will be described later herein. Once these packets are identified in the packet identifier 122, packet duplicator 126 creates two copies of the packet. The first copy is identified with the original PID so that the primary encryption encoder 104 will recognize that it is to be encrypted. The second copy is identified with a new and unused PID, called a “secondary PID” (or shadow PID) by the PID Remapper 130. This secondary PID will be used later by the selective encryption encoder 114 to determine which packets are to be encrypted according to the secondary encryption method.
As previously noted, the two primary commercial providers of cable head end encryption and modulation equipment are (at this writing) Motorola, Inc. and Scientific-Atlanta, Inc. While similar in operation, there are significant differences that should be discussed before proceeding since the present selective encryption encoder 114 is desirably compatible with either system. In the case of Motorola equipment, the Integrated Receiver Transcoder (IRT), an unmodulated output is available and therefore there is no need to demodulate the output before returning a signal to the selective encryption encoder 114, whereas no such unmodulated output is available in a Scientific-Atlanta device. Also, in the case of current Scientific-Atlanta equipment, the QAM, the primary encryption encoder carries out a PID remapping function on received packets. Thus, provisions are made in the selective encryption encoder 114 to address this remapping.
In addition to the above processing, the Program Specific Information (PSI) is also modified to reflect this processing. The original, incoming Program Association Table (PAT) is appended with additional Program Map Table (PMT) entries at a PMT inserter 134. Each added PMT entry contains the new, additional streams (remapped & shadow PIDs) created as part of the selective encryption (SE) encoding process for a corresponding stream in a PMT of the incoming transport. These new PMT entries will mirror their corresponding original PMTs. The program numbers will be automatically assigned by the selective encryption encoder 114 based upon open, available program numbers as observed from the program number usage in the incoming stream. The selective encryption System 114 system displays the inserted program information (program numbers, etc) on the configuration user interface of control computer 118 so that the Multiple System Operator (MSO, e.g., the cable system operator) can add these extra programs into the System Information (SI) control system and instruct the system to carry these programs in the clear.
The modified transport PSI is illustrated as 144 in
In order to assure that the Scientific-Atlanta PID remapping issue is addressed, if the selective encryption encoder 114 is configured to operate with a Scientific-Atlanta system, the encoder adds a user private data descriptor to each elementary stream found in the original PMTs in the incoming data transport stream (TS) per the format below (of course, other formats may also be suitable):
The selective encryption encoder 114 of the current embodiment also adds a user private data descriptor to each elementary stream placed in the temporary PMTs created as described above per the format below:
The “????” in the tables above is the value of the “orig_pid” which is a variable while the “??” is a “stream_type” value. The data field for “orig_pid” is a variable that contains the original incoming PID or in the case of remap or shadow PID, the original PID that this stream was associated with. The data field “stream type” is a variable that describes the purpose of the stream based upon the chart below:
These descriptors will be used later to re-associate the legacy elementary streams, which are encrypted by the Scientific-Atlanta, Inc. primary encryption encoder 104, with the corresponding shadow and remapped clear streams after PID remapping in the Scientific-Atlanta, Inc. modulator prior to the second phase of processing of the Selective Encryption Encoder. Those skilled in the art will appreciate that the above specific values should be considered exemplary and other specific values could be used without departing from the present invention.
In the case of a Motorola cable system being selected in the selective encryption encoder configuration GUI, the original PAT and PMTs can remain unmodified, providing the system does not remap PIDs within the primary encryption encoder. The asterisks in
The data stream from selective encryption encoder 114 is passed along to the input of the primary encryption encoder 104 which first carries out a PID filtering process at 150 to identify packets that are to be encrypted. At 152, in the vase of a Scientific-Atlanta device, a PID remapping may be carried out. The data are then passed along to an encrypter 154 that, based upon the PID of the packets encrypts certain packets (in accord with the present invention, these packets are the special packets which are mapped by the PID Remapper 130 to the original PID of the incoming data stream for the current program). The remaining packets are unencrypted. The data then passes through a PSI modifier 156 that modifies the PSI data to reflect changes made at the PID remapper. The data stream is then modulated by a quadrature amplitude modulation (QAM) modulator 158 (in the case of the Scientific-Atlanta device) and passed to the output thereof. This modulated signal is then demodulated by a QAM demodulator 160. The output of the demodulator 160 is directed back to the selective encryption encoder 114 to a PSI parser 164.
The second phase of processing of the transport stream for selective encryption is to recover the stream after the legacy encryption process is carried out in the primary encryption encoder 104. The incoming Program Specific Information (PSI) is parsed at 164 to determine the PIDs of the individual elementary streams and their function for each program, based upon the descriptors attached in the first phase of processing. This allows for the possibility of PID remapping, as seen in Scientific-Atlanta primary encryption encoders. The elementary streams described in the original program PMTs are located at PSI parser 164 where these streams have been reduced to just the selected packets of interest and encrypted in the legacy CA system format in accord with the primary encryption method at encoder 104. The elementary streams in the temporary programs appended to the original PSI are also recovered at elementary stream concatenator 168. The packets in the legacy streams are appended to the remapped content, which is again remapped back to the PID of the legacy streams, completing the partial, selective encryption of the original elementary streams.
The temporary PMTs and the associated PAT entries are discarded and removed from the PSI. The user private data descriptors added in the first phase of processing are also removed from the remaining original program PMTs in the PSI. For a Motorola system, no PMT or PAT reprocessing is required and only the final secondary encryption of the transport stream occurs.
During the second phase of processing, the SE encoder 114 creates a shadow PSI structure that parallels the original MPEG PSI, for example, having a PAT origin at PID 0x0000. The shadow PAT will be located at a PID specified in the SE encoder configuration as indicated by the MSO from the user interface. The shadow PMT PIDs will be automatically assigned by the SE encoder 114 dynamically, based upon open, available PID locations as observed from PID usage of the incoming stream. The PMTs are duplicates of the original PMTs, but also have Conditional Access (CA) descriptors added to the entire PMT or to the elementary steams referenced within to indicate the standard CA parameters and optionally, shadow PID and the intended operation upon the associated elementary steam. The CA descriptor can appear in the descriptor1( ) or descriptor2( ) loops of the shadow PMT. If found in descriptor1( ), the CA_PID called out in the CA descriptor contains the non-legacy ECM PID which would apply to an entire program. Alternatively, the ECM PID may be sent in descriptor2( ). The CA descriptor should not reference the selective encryption elementary PID in the descriptor1( ) area.
This shadow PSI insertion occurs regardless of whether the selective encryption operation is for a Motorola or Scientific Atlanta cable network. The elementary streams containing the duplicated packets of interest that were also assigned to the temporary PMTs are encrypted during this second phase of operation at secondary CA packet encrypter 172 in the secondary CA format based upon the configuration data of the CA system attached using the DVB (Digital Video Broadcasting) Simulcrypt™ standard.
The data stream including the clear data, primary encrypted data, secondary encrypted data and other information are then passed to a PSI modifier 176 that modifies the transport PSI information by deletion of the temporary PMT tables and incorporation of remapping as described above. The output of the PSI modifier 176 is modulated at a QAM modulator 180 and delivered to the cable plant 184 for distribution to the cable system's customers.
The control processor 100 may be a personal computer based device that is used to control the selective encryption encoder as described herein. An exemplary personal computer based controller 100 is depicted in
The partial encryption process described above utilizes any suitable conditional access encryption method at encrypters 154 and 172. However, these encryption techniques are selectively applied to the data stream using a technique such as those described below or in the above-referenced patent applications. In general, but without the intent to be limiting, the selective encryption process utilizes intelligent selection of information to encrypt so that the entire program does not have to undergo dual encryption. By appropriate selection of appropriate data to encrypt, the program material can be effectively scrambled and hidden from those who desire to hack into the system and illegally recover commercial content without paying. The MPEG (or similar format) data that are used to represent the audio and video data does so using a high degree of reliance on the redundancy of information front frame to frame. Certain data can be transmitted as “anchor” data representing chrominance and luminance data. That data is then often simply moved about the screen to generate subsequent frames by sending motion vectors that describe the movement of the block. Changes in the chrominance and luminance data are also encoded as changes rather than a recoding of absolute anchor data.
In accordance with certain embodiments of the present invention, a method of dual encrypting a digital video signal involves examining unencrypted packets of data in the digital video signal to identify at least one specified packet type, the specified packet type comprising packets of data as will be described hereinafter; encrypting packets identified as being of the specified packet type using a first encryption method to produce first encrypted packets; encrypting the packets identified as being of the specified packet type using a second encryption method to produce second encrypted packets; and replacing the unencrypted packets of the specified packet type with the first encrypted packets and the second encrypted packets in the digital video signal to produce a partially dual encrypted video signal.
The MPEG specification defines a slice as “ . . . a series of an arbitrary number of consecutive macroblocks. The first and last macroblocks of a slice shall not be skipped macroblocks. Every slice shall contain at least one macroblock. Slices shall not overlap. The position of slices may change from picture to picture. The first and last macroblock of a slice shall be in the same horizontal row of macroblocks. Slices shall occur in the bitstream in the order in which they are encountered, starting at the upper-left of the picture and proceeding by raster-scan order from left to right and top to bottom . . .”
By way of example, to represent an entire frame of NTSC information, for standard resolution, the frame (picture) is divided into 30 slices (but in general j slices may make up a full frame). Each slice contains 33 variable length macroblocks (but in general can include k variable length macroblocks) of information representing a 16×16 pixel region of the image. This is illustrated as standard definition frame 250 of
In standard MPEG compliant digital video, the video image is occasionally refreshed with “anchor data”. Such anchor data appears in the data stream at various times to provide absolute luminance and chrominance information. This is nonmally carried out in an MPEG system using an I Frame. However, some encoders (e.g., those produced by Motorola, Inc.) use P Frames to encode progressively refreshed intracoded slices. Such systems often refresh three consecutive slices in a P Frame, with the following three slices refreshed in the next P Frame. Thus a full refresh takes 30 frames and requires about one second to accomplish. Although typically, three I slices (inter-coded slices) are used for a 30 slice P frame, as many as nine slices may be sent, depending on the configuration of the Motorola encoder, A television set-top box or other receiver tuning to a Motorola encoded program will get a complete screen refresh within about 1 second.
Intracoded slices are not based on any previous or future data sent in other frames, but they contain anchor data relied upon by other frames. This anchor data may be advantageously utilized in a selective encryption scheme because if this data were encrypted, then other frames that relied on the data would be detrimentally affected.
The slice header has syntax described by the table below:
Slices with all intra-coded macroblocks generally have the intra_slice indicator set to 1. This flag may be used not only to signal slices with intra-coded macroblocks which would not only be sent with I Frames, but also with “progressive refresh” P Frames (where a certain number of slices are sent with all intra-coded macroblocks). The intra_slice_flag set to “1” may be used to flag slices with any portion of intra-coded blocks, and might be used to completely eliminate decoding of any intra-coded blocks.
As noted above, often, the slice header bits known as intra-slice and intra_slice_flag are utilized to signify that the slice is an I slice. However, the use of these bits is optional. It has been observed that roughly 90% of the HITS (Headend In The Sky) feeds use these flags. This leaves approximately 10% that do not use these flags. The reason for this is uncertain. The use of the flags may depend on the age of the encoders in use, or possible a setting of the encoders. Consequently, these flags cannot be 100% relied upon to determine whether or not a particular slice is intracoded. While it may be possible to parse each slice to see whether all the macroblocks are intracoded, this may require processing power which may not be available.
It has been observed that in all cases, an unique byte pattern can be identified in the video signal that can be utilized to determine the presence of intra-coded slices. Thus, by looking at particular byte patterns, the presence of an intracoded slice can be ascertained without need for the above-referenced flags. It has been determined that this unique byte pattern in a Motorola encoded progressive refresh system is that the second byte after a slice's Slice Start Code is the same for all three (or in general, N) consecutive slices that are intracoded. Thus, for a thirty slice frame using Motorola's progressive refresh, the second byte after the slice start code is identical for three consecutive slices in each frame. However, other macroblock byte values could equally well be set identical and detected by minor variations of the present invention without departing from the present invention as taught and claimed herein. Moreover, differing numbers of consecutive slices might contain intra-coded data in other embodiments (e.g., high definition or other variations). Again, modifications to the present invention within the scope of the invention will be obvious to those skilled in the art upon consideration of this teaching.
The next slice (slice N+2) is ten received at 330 and at 334, the second byte after the slice start code is read and compared to the second byte after the slice start code of slice N+1 (or equivalently, slice N) at 338. If they are the same at 338, an intra-coded slice group has been identified at 342. These slices can then be encrypted (if that is the objective) at 346 and control passes to 350 where N is incremented by 3 to begin looking for the next set of intra-cocled slices. If only one set of intra-coded slices is present per frame, the process can await the end of the frame (N=30) and then go back to 308 for the next frame. However, if more than one set of intra-coded slices is possible per frame, control returns to 350.
After N is incremented by 3, the process checks at 358 to determine if the end of the frame is reached. If N=31 at 358, a new frame is beginning and control passes to 308 where N is reset to 1. If N=31 has not been reached at 358, control passes to 312 where the process of comparing the next pair of slices begins.
In the event, first and second slices do not have an equal second byte after the slice start code at 324, control passes to 350 where the value of N is incremented by three to look for the next set of three consecutive slices. Similarly, if the third consecutive slice at 338 is not equal to the second, N is incremented at 350 and the process proceeds to inspection of the next set of three slices. In light of this disclosure, many variations of this process will occur to those skilled in the art within the scope of the present invention.
Again, it should be noted that the process described is specific to finding three consecutive intra-coded slices in a thirty slice frame. However, those skilled in the art will readily understand how to equivalently extend the method described without departing from the invention upon consideration of the present teaching.
A process for detecting the sets of intra-coded slices as described above can also be implemented using a simple synchronous state machine that can search for three consecutive slices which have the same second byte after the slice start code. With each new frame, a set of three slices are intra-coded. These slices can be 1-3, 4-6, . . . 28-30. Generally, the set of three slices progresses from the top of the frame (slices 1-3) to the bottom (slices 28-30). After slice 30, the set of slices that are intra-coded moves to the top of the next frame. The sync state machine 360 as described by the state diagram of
State machine 360 starts out in synchronous state 0 where the second byte after the slice start code is inspected for slices N and N+1 (again, the terminology byte N and byte N+1 is used in the drawing). The machine remains in state 0 until two consecutive bytes after the slice start code are identified. When these bytes are equal and MOD3(slice number)=2, that is, the two bytes being compared are from slices 1-2, 4-5, . . . , 28-29, then the state changes to synchronous state 2.
At synchronous state 2, the next slice is read and the second byte after the slice start code as compared in slices N+1 and N+2. If they are the same and MOD3 (slice number)=3, then the machine transitions to synchronous state 3. The value of a counter LOCK is set to 30. And then the machine transitions to synchronous state 4. State 4 allows transition to the next P frame. A slice is read, and LOCK is decremented by one. With each read, the second byte after the slice start code is stored. If LOCK=0, then the machine transitions to synchronous state 1. If the next slice N+31 and N+32 are the same then the state machine can assume that the progressive slice sequence has been correctly found since it spanned across frames. The state machine is in synch. Some implementations might check to see if the progressive slice sequence spans multiple frames before in synch is declared. Once the machine is in synch, then the first slice of progressive refresh sequence can be chosen for encryption without receiving the next slice of the sequence for that frame. Also, if there is any noise or drop-outs, the first slice or second slice can be missed, and the machine will still encrypt the other slices.
At synchronous state 4, the value of Lock is inspected and if equal to zero, the state machine transitions to synchronous state 1, otherwise the machine remains at synchronous state 4.
At synchronous state 1, the next slice (N) is read and the second byte after the slice start code is compared to the following slice. If they are equal, synchronous state 2 is again entered. If they are not equal, synchronous state 0 is entered. Even though, synch may have been “declared”, if the byte values do not match, then it can allow the machine to get re-synchronized.
In the above-described embodiments, three consecutive intra-coded slices are sought. However, in general, N consecutive slices can be searched for using similar algorithms or state machines. it is possible that the Motorola encoder can create from one to ten intra-coded slices per frame. Thus, the algorithm preferably, but not necessarily provides for a variable or user selectable number of slices to look for.
As in the previous explanation in connection with the flow chart of
Once it is determined that a particular slice is an I slice, a selective encryption encoder can be utilized to select packets containing I slice data for encryption. Such slices can be encrypted by any suitable means including, but not limited to, any or all of encryption of the slice headers, encryption of all data in the slice, encryption of the slice header plus the first macroblock following the slice header, or any other encryption scheme for encryption of all or part of the I slice data.
By encryption of a slice header, the corresponding slice cannot be properly displayed. Moreover, a relatively low amount of bandwidth is required in a dual encryption scenario for encryption of packets with secondary PIDs when the encrypted packets are those containing the slice header. As a practical matter, encryption of a packet containing the slice header likely involves encryption of additional information including at least a portion of the first macroblock following each slice header, rendering the slice all the more difficult to decode.
Security can be further enhanced if in addition to the slice header, the first macroblock is encrypted in each slice. Since the first macroblock of each slice contains anchor data in the form of absolute chrominance and luminance values, encryption of the first macroblock of each slice reduces the amount of absolute data available to a hacker to work backwards from in order to decypher the image. Using this technique adds little to the overhead of encryption of slice headers alone. Owing to the variable length of the macroblocks, somewhat more data may be encrypted according to this scheme, since a packet may carry portions of multiple macroblocks. Those skilled in the art will also appreciate that the first macroblock of each slice can also be encrypted without encryption of the slice headers to distort the video. This is also a viable encryption scheme.
Several techniques are described above for encryption of the selected data. In each case, for the current embodiment, it will be understood that selection of a particular type of information implies that the payload of a packet carrying such data is encrypted. However, in other environments, the data itself can be directly encrypted. Those skilled in the art will appreciate that such variations as well as others are possible without departing from the present invention. Moreover, those skilled in the art will appreciate that many variations and combinations of the encryption techniques described hereinafter can be devised and used singularly or in combination without departing from the present invention.
Numerous other combinations of the above encryption techniques as well as those described in the above-referenced patent applications and other partial encryption techniques can be combined to produce a rich pallette of encryption techniques from which to select. In accordance with certain embodiments of the present invention, a selection of packets to encrypt can be made by the control computer 118 in order to balance encryption security with bandwidth and in order to shift the encryption technique from time to time to thwart hackers.
An authorized set-top box such as 380 illustrated in
While the above embodiments describe encryption of packets containing the selected data type, it is also possible to encrypt the raw data prior to packetizing without departing from this invention and such encryption is considered equivalent thereto.
Those skilled in the art will recognize that the present invention has been described in terms of exemplary embodiments based upon use of a programmed processor (e.g., processor 118, processors implementing any or all of the elements of 114 or implementing any or all of the elements of 380). However, the invention should not be so limited, since the present invention could be implemented using hardware component equivalents such as special purpose hardware and/or dedicated processors which are equivalents to the invention as described and claimed. Similarly, general purpose computers, microprocessor based computers, micro-controllers, optical computers, analog computers, dedicated processors and/or dedicated hard wired logic may be used to construct alternative equivalent embodiments of the present invention.
Those skilled in the art will appreciate that the program steps and associated data used to implement the embodiments described above can be implemented using disc storage as well as other forms of storage such as for example Read Only Memory (ROM) devices, Random Access Memory (RAM) devices; optical storage elements, magnetic storage elements, magneto-optical storage elements, flash memory, core memory and/or other equivalent storage technologies without departing from the present invention. Such alternative storage devices should be considered equivalents.
The present invention, as described in embodiments herein, is implemented using a programmed processor executing programming instructions that are broadly described above form that can be stored on any suitable electronic storage medium or transmitted over any suitable electronic communication medium or otherwise be present in any computer readable or propagation medium. However, those skilled in the art will appreciate that the processes described above can be implemented in any number of variations and in many suitable programming languages without departing from the present invention. For example, the order of certain operations carried out can often be varied, additional operations can be added or operations can be deleted without departing from the invention. Error trapping can be added and/or enhanced and variations can be made in user interface and information presentation without departing from the present invention. Such variations are contemplated and considered equivalent.
Software code and/or data embodying certain aspects of the present invention may be present in any computer readable medium, transmission medium, storage medium or propagation medium including, but not limited to, electronic storage devices such as those described above, as well as carrier waves, electronic signals, data structures (e.g., trees, linked lists, tables, packets, frames, etc.) optical signals, propagated signals, broadcast signals, transmission media (e.g., circuit connection, cable, twisted pair, fiber optic cables, waveguides, antennas, etc.) and other media that stores, carries or passes the code and/or data. Such media may either store the software code and/or data or serve to transport the code and/or data from one location to another. In the present exemplary embodiments, MPEG compliant packets, slices, tables and other data structures are used, but this should not be considered limiting since other data structures can similarly be used without departing from the present invention.
While the invention has been described in conjunction with specific embodiments, it is evident that many alternatives, modifications, permutations and variations will become apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended that the present invention embrace all such alternatives, modifications and variations as fall within the scope of the appended claims.
This application is a continuation-in-part of patent applications entitled “Critical Packet Partial Encryption” to Unger et al., Ser. No. 10/038,217; patent applications entitled “Time Division Partial Encryption” to Candelore et al., Ser. No. 10/038,032; entitled “Elementary Stream Partial Encryption” to Candelore, Ser. No. 10/037,914; entitled “Partial Encryption and PID Mapping” to Unger et al., Ser. No. 10/037,499; and entitled “Decoding and Decrypting of Partially Encrypted Information” to Unger et al., Ser. No. 10/037,498 all of which were filed on Jan. 2, 2002 and are hereby incorporated by reference herein. This application is also a continuation-in-part of U.S. patent application Ser. No. 10/273,905, filed Oct. 18, 2002 to Candelore et al. entitled “Video Slice and Active Region Based Dual Partial Encryption”, which is hereby incorporated by reference. This application is also related to and claims priority benefit of U.S. Provisional patent application Ser. No. 60/409,675, filed Sep. 9, 2002, entitled “Generic PID Remapping for Content Replacement”, to Candelore. These applications are also hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3852519 | Court | Dec 1974 | A |
4381519 | Wilkinson et al. | Apr 1983 | A |
4419693 | Wilkinson | Dec 1983 | A |
4521853 | Guttag | Jun 1985 | A |
4634808 | Moerder | Jan 1987 | A |
4700387 | Hirata | Oct 1987 | A |
4703351 | Kondo | Oct 1987 | A |
4703352 | Kondo | Oct 1987 | A |
4710811 | Kondo | Dec 1987 | A |
4712238 | Gilhousen et al. | Dec 1987 | A |
4722003 | Kondo | Jan 1988 | A |
4739510 | Jeffers et al. | Apr 1988 | A |
4772947 | Kono | Sep 1988 | A |
4785361 | Brotby | Nov 1988 | A |
4788589 | Kondo | Nov 1988 | A |
4815078 | Shimura | Mar 1989 | A |
4845560 | Kondo et al. | Jul 1989 | A |
4887296 | Horne | Dec 1989 | A |
4890161 | Kondo | Dec 1989 | A |
4914515 | Van Luyt | Apr 1990 | A |
4924310 | von Brandt | May 1990 | A |
4944006 | Citta et al. | Jul 1990 | A |
4953023 | Kondo | Aug 1990 | A |
4989245 | Bennett | Jan 1991 | A |
4995080 | Bestler et al. | Feb 1991 | A |
5018197 | Jones et al. | May 1991 | A |
5023710 | Kondo et al. | Jun 1991 | A |
5091936 | Katznelson et al. | Feb 1992 | A |
5122873 | Golin | Jun 1992 | A |
5138659 | Kelkar et al. | Aug 1992 | A |
5142537 | Kutner et al. | Aug 1992 | A |
5144662 | Welmer | Sep 1992 | A |
5144664 | Esserman et al. | Sep 1992 | A |
5159452 | Kinoshita et al. | Oct 1992 | A |
5196931 | Kondo | Mar 1993 | A |
5208816 | Seshardi et al. | May 1993 | A |
5237424 | Nishino et al. | Aug 1993 | A |
5237610 | Gammie et al. | Aug 1993 | A |
5241381 | Kondo | Aug 1993 | A |
5247575 | Sprague et al. | Sep 1993 | A |
5258835 | Kato | Nov 1993 | A |
5319707 | Wasilewski et al. | Jun 1994 | A |
5319712 | Finkelstein et al. | Jun 1994 | A |
5325432 | Gardeck et al. | Jun 1994 | A |
5327502 | Katata | Jul 1994 | A |
5341425 | Wasilewski et al. | Aug 1994 | A |
5359694 | Concordel | Oct 1994 | A |
5379072 | Kondo | Jan 1995 | A |
5381481 | Gammie et al. | Jan 1995 | A |
5398078 | Masuda et al. | Mar 1995 | A |
5400401 | Wasilewski et al. | Mar 1995 | A |
5416651 | Uetake et al. | May 1995 | A |
5416847 | Boze | May 1995 | A |
5420866 | Wasilewski | May 1995 | A |
5428403 | Andrew et al. | Jun 1995 | A |
5434716 | Sugiyama et al. | Jul 1995 | A |
5438369 | Citta et al. | Aug 1995 | A |
5444491 | Lim | Aug 1995 | A |
5444782 | Adams, Jr. et al. | Aug 1995 | A |
5455862 | Hoskinson | Oct 1995 | A |
5469216 | Takahashi et al. | Nov 1995 | A |
5471501 | Parr et al. | Nov 1995 | A |
5485577 | Eyer et al. | Jan 1996 | A |
5491748 | Auld, Jr. et al. | Feb 1996 | A |
5528608 | Shimizume | Jun 1996 | A |
5535276 | Ganesan | Jul 1996 | A |
5539823 | Martin | Jul 1996 | A |
5539828 | Davis | Jul 1996 | A |
5553141 | Lowry et al. | Sep 1996 | A |
5555305 | Robinson et al. | Sep 1996 | A |
5561713 | Suh | Oct 1996 | A |
5568552 | Davis | Oct 1996 | A |
5574787 | Ryan | Nov 1996 | A |
5582470 | Yu | Dec 1996 | A |
5583576 | Perlman et al. | Dec 1996 | A |
5583863 | Darr, Jr. et al. | Dec 1996 | A |
5590202 | Bestler et al. | Dec 1996 | A |
5598214 | Kondo et al. | Jan 1997 | A |
5600721 | Kitazato | Feb 1997 | A |
5606359 | Youden et al. | Feb 1997 | A |
5608448 | Smoral et al. | Mar 1997 | A |
5615265 | Coutrot | Mar 1997 | A |
5617333 | Oyamada et al. | Apr 1997 | A |
5625715 | Trew et al. | Apr 1997 | A |
5629981 | Nerlikar | May 1997 | A |
5652795 | Dillon et al. | Jul 1997 | A |
5663764 | Kondo et al. | Sep 1997 | A |
5666293 | Metz et al. | Sep 1997 | A |
5699429 | Tamer et al. | Dec 1997 | A |
5703889 | Shimoda et al. | Dec 1997 | A |
5717814 | Abecassis | Feb 1998 | A |
5726711 | Boyce | Mar 1998 | A |
5732346 | Lazaridis et al. | Mar 1998 | A |
5742680 | Wilson | Apr 1998 | A |
5751280 | Abbott et al. | May 1998 | A |
5751743 | Takizawa | May 1998 | A |
5751813 | Dorenbos | May 1998 | A |
5754650 | Katznelson | May 1998 | A |
5754658 | Aucsmith | May 1998 | A |
5757417 | Aras et al. | May 1998 | A |
5757909 | Park | May 1998 | A |
5768539 | Metz et al. | Jun 1998 | A |
5796786 | Lee | Aug 1998 | A |
5796829 | Newby et al. | Aug 1998 | A |
5796840 | Davis | Aug 1998 | A |
5802176 | Audebert | Sep 1998 | A |
5805700 | Nardone et al. | Sep 1998 | A |
5805712 | Davis | Sep 1998 | A |
5805762 | Boyce et al. | Sep 1998 | A |
5809147 | De Lange et al. | Sep 1998 | A |
5815146 | Youden et al. | Sep 1998 | A |
5818934 | Cuccia | Oct 1998 | A |
5825879 | Davis | Oct 1998 | A |
5850218 | LaJoie et al. | Dec 1998 | A |
5852290 | Chaney | Dec 1998 | A |
5852470 | Kondo et al. | Dec 1998 | A |
5870474 | Wasilewski et al. | Feb 1999 | A |
5894320 | Vancelette | Apr 1999 | A |
5894516 | Brandenburg | Apr 1999 | A |
5915018 | Aucsmith | Jun 1999 | A |
5917830 | Chen et al. | Jun 1999 | A |
5922048 | Emura | Jul 1999 | A |
5923755 | Birch et al. | Jul 1999 | A |
5930361 | Hayashi et al. | Jul 1999 | A |
5933500 | Blatter et al. | Aug 1999 | A |
5940738 | Rao | Aug 1999 | A |
5949877 | Traw et al. | Sep 1999 | A |
5949881 | Davis | Sep 1999 | A |
5963909 | Warren et al. | Oct 1999 | A |
5973722 | Wakai et al. | Oct 1999 | A |
5999698 | Nakai et al. | Dec 1999 | A |
6005561 | Hawkins et al. | Dec 1999 | A |
6011849 | Orrin | Jan 2000 | A |
6012144 | Pickett | Jan 2000 | A |
6016348 | Blatter et al. | Jan 2000 | A |
6021199 | Ishibashi | Feb 2000 | A |
6021201 | Bakhle et al. | Feb 2000 | A |
6026164 | Sakamoto et al. | Feb 2000 | A |
6028932 | Park | Feb 2000 | A |
6049613 | Jakobsson | Apr 2000 | A |
6055314 | Spies et al. | Apr 2000 | A |
6055315 | Doyle et al. | Apr 2000 | A |
6057872 | Candelore | May 2000 | A |
6058186 | Enari | May 2000 | A |
6058192 | Guralnick et al. | May 2000 | A |
6061451 | Muratani et al. | May 2000 | A |
6064748 | Hogan | May 2000 | A |
6065050 | DeMoney | May 2000 | A |
6069647 | Sullivan et al. | May 2000 | A |
6070245 | Murphy, Jr. et al. | May 2000 | A |
6072872 | Chang et al. | Jun 2000 | A |
6072873 | Bewick | Jun 2000 | A |
6073122 | Wool | Jun 2000 | A |
6088450 | Davis et al. | Jul 2000 | A |
6105134 | Pinder et al. | Aug 2000 | A |
6108422 | Newby et al. | Aug 2000 | A |
6115821 | Newby et al. | Sep 2000 | A |
6118873 | Lotspiech et al. | Sep 2000 | A |
6134551 | Aucsmith | Oct 2000 | A |
6138237 | Ruben et al. | Oct 2000 | A |
6148082 | Slattery et al. | Nov 2000 | A |
6154206 | Ludtke | Nov 2000 | A |
6157719 | Wasilewski et al. | Dec 2000 | A |
6181334 | Freeman et al. | Jan 2001 | B1 |
6185369 | Ko et al. | Feb 2001 | B1 |
6185546 | Davis | Feb 2001 | B1 |
6189096 | Haverty | Feb 2001 | B1 |
6192131 | Geer et al. | Feb 2001 | B1 |
6199053 | Herbert et al. | Mar 2001 | B1 |
6204843 | Freeman et al. | Mar 2001 | B1 |
6209098 | Davis | Mar 2001 | B1 |
6215484 | Freeman et al. | Apr 2001 | B1 |
6226618 | Downs | May 2001 | B1 |
6229895 | Son et al. | May 2001 | B1 |
6230194 | Frailong et al. | May 2001 | B1 |
6230266 | Perlman et al. | May 2001 | B1 |
6236727 | Ciacelli et al. | May 2001 | B1 |
6240553 | Son et al. | May 2001 | B1 |
6246720 | Kutner et al. | Jun 2001 | B1 |
6256747 | Inohara et al. | Jul 2001 | B1 |
6263506 | Ezaki et al. | Jul 2001 | B1 |
6266416 | Sigbjornsen et al. | Jul 2001 | B1 |
6266480 | Ezaki et al. | Jul 2001 | B1 |
6272538 | Holden et al. | Aug 2001 | B1 |
6278783 | Kocher et al. | Aug 2001 | B1 |
6289455 | Kocher et al. | Sep 2001 | B1 |
6292568 | Atkins, III et al. | Sep 2001 | B1 |
6292892 | Davis | Sep 2001 | B1 |
6307939 | Vigarie | Oct 2001 | B1 |
6311012 | Cho et al. | Oct 2001 | B1 |
6324288 | Hoffman | Nov 2001 | B1 |
6351538 | Uz | Feb 2002 | B1 |
6377589 | Knight et al. | Apr 2002 | B1 |
6378130 | Adams | Apr 2002 | B1 |
6389533 | Davis et al. | May 2002 | B1 |
6389537 | Davis et al. | May 2002 | B1 |
6415031 | Colligan et al. | Jul 2002 | B1 |
6415101 | deCarmo et al. | Jul 2002 | B1 |
6430361 | Lee | Aug 2002 | B2 |
6445738 | Zdepski et al. | Sep 2002 | B1 |
6449718 | Rucklidge et al. | Sep 2002 | B1 |
6453115 | Boyle | Sep 2002 | B1 |
6456985 | Ohtsuka | Sep 2002 | B1 |
6459427 | Mao et al. | Oct 2002 | B1 |
6463152 | Takahashi | Oct 2002 | B1 |
6466671 | Maillard et al. | Oct 2002 | B1 |
6505032 | McCorkle et al. | Jan 2003 | B1 |
6505299 | Zeng et al. | Jan 2003 | B1 |
6510554 | Gorden et al. | Jan 2003 | B1 |
6519693 | Debey | Feb 2003 | B1 |
6529526 | Schneidewend | Mar 2003 | B1 |
6543053 | Li et al. | Apr 2003 | B1 |
6549229 | Kirby et al. | Apr 2003 | B1 |
6557031 | Mimura et al. | Apr 2003 | B1 |
6587561 | Sered et al. | Jul 2003 | B1 |
6590979 | Ryan | Jul 2003 | B1 |
6640145 | Hoffberg et al. | Oct 2003 | B2 |
6650754 | Akiyama et al. | Nov 2003 | B2 |
6654389 | Brunheroto et al. | Nov 2003 | B1 |
6678740 | Rakib et al. | Jan 2004 | B1 |
6681326 | Son et al. | Jan 2004 | B2 |
6684250 | Anderson et al. | Jan 2004 | B2 |
6697489 | Candelore | Feb 2004 | B1 |
6697944 | Jones et al. | Feb 2004 | B1 |
6714650 | Maillard et al. | Mar 2004 | B1 |
6754276 | Harumoto et al. | Jun 2004 | B1 |
6772340 | Peinado et al. | Aug 2004 | B1 |
6788690 | Harri | Sep 2004 | B2 |
6826185 | Montanaro et al. | Nov 2004 | B1 |
6891565 | Dieterich | May 2005 | B1 |
6895128 | Bohnenkamp | May 2005 | B2 |
6904520 | Rosset et al. | Jun 2005 | B1 |
6917684 | Tatebayashi et al. | Jul 2005 | B1 |
6938162 | Nagai et al. | Aug 2005 | B1 |
6976166 | Herley et al. | Dec 2005 | B2 |
7039938 | Candelore | May 2006 | B2 |
7065213 | Pinder | Jun 2006 | B2 |
7120250 | Candelore | Oct 2006 | B2 |
7124303 | Candelore | Oct 2006 | B2 |
7127619 | Unger et al. | Oct 2006 | B2 |
7139398 | Candelore et al. | Nov 2006 | B2 |
7151831 | Candelore et al. | Dec 2006 | B2 |
7151833 | Candelore et al. | Dec 2006 | B2 |
7155012 | Candelore et al. | Dec 2006 | B2 |
20010030959 | Ozawa et al. | Oct 2001 | A1 |
20010036271 | Javed | Nov 2001 | A1 |
20010051007 | Teshima | Dec 2001 | A1 |
20020003881 | Reitmeier et al. | Jan 2002 | A1 |
20020026587 | Talstra et al. | Feb 2002 | A1 |
20020046406 | Chelehmal et al. | Apr 2002 | A1 |
20020047915 | Misu | Apr 2002 | A1 |
20020059425 | Belfiore et al. | May 2002 | A1 |
20020066101 | Gordon et al. | May 2002 | A1 |
20020083317 | Ohta et al. | Jun 2002 | A1 |
20020083438 | So et al. | Jun 2002 | A1 |
20020097322 | Monroe et al. | Jul 2002 | A1 |
20020108035 | Herley et al. | Aug 2002 | A1 |
20020116705 | Perlman et al. | Aug 2002 | A1 |
20020126890 | Katayama et al. | Sep 2002 | A1 |
20020129243 | Nanjundiah | Sep 2002 | A1 |
20020150239 | Carny et al. | Oct 2002 | A1 |
20020164022 | Strasser et al. | Nov 2002 | A1 |
20020170053 | Peterka et al. | Nov 2002 | A1 |
20020184506 | Perlman | Dec 2002 | A1 |
20020194613 | Unger | Dec 2002 | A1 |
20020196939 | Unger et al. | Dec 2002 | A1 |
20030002854 | Belknap et al. | Jan 2003 | A1 |
20030009669 | White et al. | Jan 2003 | A1 |
20030012286 | Ishtiaq et al. | Jan 2003 | A1 |
20030021412 | Candelore et al. | Jan 2003 | A1 |
20030026423 | Unger et al. | Feb 2003 | A1 |
20030026523 | Unger et al. | Feb 2003 | A1 |
20030046686 | Candelore et al. | Mar 2003 | A1 |
20030059047 | Iwamura | Mar 2003 | A1 |
20030063615 | Luoma et al. | Apr 2003 | A1 |
20030072555 | Yap et al. | Apr 2003 | A1 |
20030077071 | Lin et al. | Apr 2003 | A1 |
20030081630 | Mowery et al. | May 2003 | A1 |
20030081776 | Candelore | May 2003 | A1 |
20030084284 | Ando et al. | May 2003 | A1 |
20030097662 | Russ et al. | May 2003 | A1 |
20030112333 | Chen et al. | Jun 2003 | A1 |
20030118243 | Sezer et al. | Jun 2003 | A1 |
20030123664 | Pedlow et al. | Jul 2003 | A1 |
20030123849 | Nallur et al. | Jul 2003 | A1 |
20030126086 | Safadi | Jul 2003 | A1 |
20030133570 | Candelore et al. | Jul 2003 | A1 |
20030140257 | Peterka et al. | Jul 2003 | A1 |
20030145329 | Candelore | Jul 2003 | A1 |
20030152224 | Candelore et al. | Aug 2003 | A1 |
20030152226 | Candelore et al. | Aug 2003 | A1 |
20030156718 | Candelore et al. | Aug 2003 | A1 |
20030159139 | Candelore et al. | Aug 2003 | A1 |
20030159140 | Candelore | Aug 2003 | A1 |
20030159152 | Lin et al. | Aug 2003 | A1 |
20030174837 | Candelore et al. | Sep 2003 | A1 |
20030174844 | Candelore | Sep 2003 | A1 |
20030188154 | Dallard | Oct 2003 | A1 |
20030190054 | Troyansky et al. | Oct 2003 | A1 |
20030193973 | Takashimizu et al. | Oct 2003 | A1 |
20030198223 | Mack et al. | Oct 2003 | A1 |
20030204717 | Kuehnel | Oct 2003 | A1 |
20030222994 | Dawson | Dec 2003 | A1 |
20030226149 | Chun et al. | Dec 2003 | A1 |
20030228018 | Vince | Dec 2003 | A1 |
20040003008 | Wasilewski et al. | Jan 2004 | A1 |
20040010717 | Simec et al. | Jan 2004 | A1 |
20040021764 | Driscoll, Jr. et al. | Feb 2004 | A1 |
20040028227 | Yu | Feb 2004 | A1 |
20040047470 | Candelore | Mar 2004 | A1 |
20040049688 | Candelore et al. | Mar 2004 | A1 |
20040049690 | Candelore et al. | Mar 2004 | A1 |
20040049691 | Candelore et al. | Mar 2004 | A1 |
20040049694 | Candelore | Mar 2004 | A1 |
20040064688 | Jacobs | Apr 2004 | A1 |
20040068659 | Diehl | Apr 2004 | A1 |
20040073917 | Pedlow, Jr. et al. | Apr 2004 | A1 |
20040078575 | Morten et al. | Apr 2004 | A1 |
20040081333 | Grab et al. | Apr 2004 | A1 |
20040086127 | Candelore | May 2004 | A1 |
20040088552 | Candelore | May 2004 | A1 |
20040088558 | Candelore | May 2004 | A1 |
20040091109 | Son et al. | May 2004 | A1 |
20040100510 | Milic-Frayling et al. | May 2004 | A1 |
20040123094 | Sprunk | Jun 2004 | A1 |
20040136532 | Pinder et al. | Jul 2004 | A1 |
20040139337 | Pinder et al. | Jul 2004 | A1 |
20040141314 | Candelore | Aug 2004 | A1 |
20040151314 | Candelore | Aug 2004 | A1 |
20040158721 | Candelore | Aug 2004 | A1 |
20040165586 | Read et al. | Aug 2004 | A1 |
20040019355 | Siegal | Sep 2004 | A1 |
20040181666 | Candelore | Sep 2004 | A1 |
20040187161 | Cao | Sep 2004 | A1 |
20040240668 | Bonan et al. | Dec 2004 | A1 |
20040267602 | Gaydos et al. | Dec 2004 | A1 |
20050004875 | Kontio et al. | Jan 2005 | A1 |
20050028193 | Candelore et al. | Feb 2005 | A1 |
20050036067 | Ryal et al. | Feb 2005 | A1 |
20050063541 | Candelore | Mar 2005 | A1 |
20050066357 | Ryal | Mar 2005 | A1 |
20050071669 | Medvinsky et al. | Mar 2005 | A1 |
20050094808 | Pedlow, Jr. et al. | May 2005 | A1 |
20050094809 | Pedlow, Jr. et al. | May 2005 | A1 |
20050097595 | Pedlow, Jr. | May 2005 | A1 |
20050097596 | Pedlow, Jr. | May 2005 | A1 |
20050097597 | Pedlow, Jr. et al. | May 2005 | A1 |
20050097598 | Pedlow, Jr. et al. | May 2005 | A1 |
20050097614 | Pedlow, Jr. et al. | May 2005 | A1 |
20050102702 | Candelore et al. | May 2005 | A1 |
20050129233 | Pedlow, Jr. | Jun 2005 | A1 |
20050141713 | Genevois | Jun 2005 | A1 |
20050169473 | Candelore et al. | Aug 2005 | A1 |
20050174264 | Candelore | Aug 2005 | A1 |
20050192904 | Candelore | Sep 2005 | A1 |
20050259813 | Wasilewski et al. | Nov 2005 | A1 |
20050265547 | Strasser et al. | Dec 2005 | A1 |
20060115083 | Candelore et al. | Jun 2006 | A1 |
20060130119 | Candelore et al. | Jun 2006 | A1 |
20060130121 | Candelore et al. | Jun 2006 | A1 |
20060136976 | Coupe et al. | Jun 2006 | A1 |
20060153379 | Candelore et al. | Jul 2006 | A1 |
20060168616 | Candelore | Jul 2006 | A1 |
20060174264 | Candelore | Aug 2006 | A1 |
20060262926 | Candelore et al. | Nov 2006 | A1 |
20060269060 | Candelore et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
0471373 | Feb 1992 | EP |
0527611 | Jul 1992 | EP |
0558016 | Feb 1993 | EP |
0596826 | Apr 1993 | EP |
0610587 | Dec 1993 | EP |
0680209 | Apr 1995 | EP |
0674440 | Sep 1995 | EP |
0674441 | Sep 1995 | EP |
0833517 | Apr 1998 | EP |
0866615 | Sep 1998 | EP |
1187483 | Mar 2002 | EP |
7067028 | Mar 1995 | JP |
11243534 | Oct 2002 | JP |
WO 8607224 | Dec 1986 | WO |
WO 9410775 | May 1994 | WO |
WO 9738530 | Oct 1997 | WO |
WO 0031964 | Jun 2000 | WO |
WO 0165762 | Sep 2001 | WO |
WO 0178386 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030156718 A1 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
60409675 | Sep 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10038217 | Jan 2002 | US |
Child | 10303594 | US | |
Parent | 10038032 | Jan 2002 | US |
Child | 10038217 | US | |
Parent | 10037914 | Jan 2002 | US |
Child | 10038032 | US | |
Parent | 10037499 | Jan 2002 | US |
Child | 10037914 | US | |
Parent | 10037498 | Jan 2002 | US |
Child | 10037499 | US | |
Parent | 10273905 | Oct 2002 | US |
Child | 10037498 | US |