This invention relates generally to a bearing system for a launched projectile, and in at least one embodiment, relates to an internal bearing system for a spin-stabilized and/or a fin-stabilized projectile.
Spin-stabilized projectiles may include a guided portion which, after initially spinning upon launch, becomes relatively stationary compared to another portion of the projectile that continues to spin. The stationary portion may include aerodynamic surfaces which may be manipulated to assist in ultimately guiding the projectile towards a target. Similarly, fin-stabilized projectiles, which have both rear fins and forward canard fins, could use rear-mounted fins for guiding the projectile.
Lightweight, low-drag bearings may be desirable for use in such projectiles, as bearings used in spin-stabilized projectiles must survive excessively large loads, such as during the set-back, balloting, and set-forward phases during launch. Such an arrangement may be desirable for the nose and/or tail section in either a spin-stabilized or fin-stabilized projectile.
Also, it may be desirable to size the projectile's bearings more for in-flight loads than for launch loads, since such in-flight loads are typically much lower than launch loads.
Additionally, lighter-weight bearings may result in a lighter-weight projectile, which may in turn, aid in improved stability and on-target delivery and/or increased warhead carrying capability.
As used herein, “set-back” refers to the phenomenon of internal components within the body portion of the projectile tending to resist motion and shift rearwardly relative to the body portion as the projectile experiences forward motion upon being subjected to the acceleration forces from a launch. The term, “set-forward,” as used herein, refers to how the internal components within the body portion of the projectile, upon being released from the forces causing set-back, tend to rebound and move forward relative to the body portion and how such components may oscillate with respect to the body portion until general equilibrium is reached. The term, “balloting,” as used herein, refers to the motion induced to the projectile and its internal components as the projectile in essence bounces laterally back and forth, in contacting the interior of the barrel as it moves down the barrel during launch. Balloting also refers to the movement the projectile experiences as it is exposed to the forces of gases exiting the barrel around the projectile as it leaves the barrel. Balloting can occur during setback, before set-forward, and/or during set-forward. As used herein, “in-flight” loads or forces refers to aerodynamic loads experienced by the projectile in flight and also to imperfections and/or anomalies in the projectile which may tend to cause imbalance in the projectile as it spins.
Generally, one embodiment of the present invention may include a bearing system for a projectile having a longitudinally extending body portion with a forward portion and a rearward portion and a spindle, the projectile being subject to pre-launch, launch, set-back, set-forward, balloting, and in-flight forces. Such bearing system comprises a first bearing configuration having a first member, and a second bearing configuration having a second member. The first bearing configuration and the second bearing configuration may be configured to permit selective relative rotation between the body portion and the spindle about a central axis. The first member defines a first bearing surface extending at a first angle with respect to the central axis, and a first engagement portion is fixed relative to the body and defines a first engagement surface extending at an angle substantially complimentary to the first angle of the first bearing surface. The second member defines a second bearing surface extending at a second angle with respect to the central axis, and a second engagement portion is fixed relative to the body and defines a second engagement surface extending at an angle substantially complimentary to the second angle of the second bearing surface. The first bearing surface is configured to engage the first engagement surface upon the projectile experiencing set-back forces and to be substantially disengaged from the first engagement surface upon the projectile experiencing set-forward forces. The second bearing surface may be configured to be substantially disengaged from the second engagement surface upon the projectile experiencing set-back forces and to engage the second engagement surface upon the projectile experiencing set-forward forces.
In one embodiment of the present invention, a spin-stabilized projectile is provided having a relatively lighter-weight bearing system employing rotationally complimentary bearing surface interfaces, such as conical, concave-convex, etc. interfaces for a rotatable spindle that transfer launch (set-back, set-forward, balloting), and pre-launch and/or in-flight equilibrium loads within the projectile and which, in combination with springs or other suitable biasing elements, serve to automatically re-center the spindle upon the spindle being moved off-center.
During pre-launch and in-flight equilibrium, a bearing system constructed in accordance with the present invention allows for relative rotation of a spinning portion of a spin-stabilized projectile with respect to a body portion of such spin-stabilized projectile, referred to herein at times as the “supported despun mass.” The complimentary bearing surface interfaces are relatively lightweight and low-drag and facilitate the transfer of radial and axial loads within the projectile and also in the automatic re-centering of the projectile components subsequent to launch in order to quickly reach relative in-flight equilibrium arrangement.
In one embodiment of the present invention, conical mating surfaces are machined into ball bearing races and seat against corresponding complimentary conical mating surfaces on portions fixed with respect to a housing and/or body portion. Separate mating shoulders and/or conical shoulders provide a seat or hard stop for the bearing races adjacent the spindle and/or axle.
In one embodiment of the present invention, one or more pairs of bearing assemblies each include an outer bearing race and a cooperating inner bearing race. The inner bearing races are fixed in place with respect to the spindle and can be integral therewith or attached thereto by fasteners. The inner bearing races extend outward radially and each have a conical surface that is positionable to be in a free-spinning running clearance position with respect to a corresponding cooperating conical surface spaced apart therefrom. Such cooperating conical surface may be integral with or connected to the body portion. Each outer race is urged towards, i.e., pre-loaded against, its cooperating inner race via biasing elements such as spring members. Such pre-loading also biases each outer race towards a respective cooperating conical surface which is integral with or connected to the body portion.
With such configuration, as axial forces in the spindle exceed the spring pre-load provided by such spring members, the spindle may displace axially and force the conical surface portion of the inner race in the leading bearing assembly (leading, here meaning in the sense of the direction of movement of the spindle) towards its cooperating outer race and thus causes such outer race to compress a spring member on the end of the housing toward which the spindle is moving. This spindle movement continues until the conical surface on another inner race of the bearing assembly (trailing, in the direction of the spindle movement) makes contact with its cooperating conical surface of the housing, thereby grounding further axial movement of the spindle in the leading direction. At that point, the now-grounded end of the spindle is constrained against further axial motion, and by virtue of the conical surface, radial movement as well. Additional axial load on the spindle may be supported by the now-mating conical surfaces of a (trailing) inner race and housing, and the bearing load through the ball bearings or other bearing elements of the bearing assemblies will be limited, thereby reducing the potential for deformation of the ball bearings due to overload conditions.
In this condition, the leading end of the spindle may not yet be directly constrained. The constraint there occurs, however, in the presence of radial forces when the spindle moves radially. Under sufficient radial load, the spindle will move radially, in turn pushing the leading-end outer race radially outwardly. If at that time the outer race is still in contact with its cooperating, or mating, conical surface on the housing, such conical surface may redirect the radial motion of the outer race into a combined radial and axial motion. The axial components of the motion of the outer race may cause further compression of the preload spring associated with such outer race. This axial motion may continue until the conical surface on the previously unconstrained “leading” inner race makes contact with its cooperating conical surface of the housing. Accordingly, at this point, further radial loading of the spindle will be transferred into the housing, and the load on the ball bearings or other bearing elements of the leading inner race will be limited to that which is generated by the spring member associated with such leading bearing assembly.
It is to be noted here that the inner and outer race of each bearing assembly are angularly offset with respect to one another in relation to the central axis of the projectile, and the ball bearings angularly transmit the forces between the respective inner and outer races.
Once the loading that caused the spindle to displace subsides, the spring force on the displaced leading outer race will reassert to drive such outer race back into contact with its associated cooperating conical housing surface, thereby re-centering the spindle and re-establishing a running clearance for the bearing assemblies, i.e., free spinning bearing function for the spindle is restored. It should be noted that when the spindle is displaced sufficiently axially or radially, one or both of the inner races are in contact with the outer housing, thereby inhibiting relative rotation of the spindle with respect to the housing or body portion.
The present invention facilitates protection of a projectile's bearings, which may otherwise be overloaded and potentially damaged by gun launch accelerations, by isolating the bearings against overloads in axial and radial directions. This is accomplished, when necessary in an over-load situation, by the bearing assembly components, namely the respective inner and outer races, being displaced against the force of the spring members until contact with strong load-supporting surfaces or stops (such as the cooperating conical surfaces of the housing), at which time further loads are transmitted through the inner bearing races. The present invention may also further include use of spring force from the spring members to accurately re-center the spindle and/or supported mass after an overload condition has subsided. The conical mating surfaces provide kinematically constraining interfaces, or seats, that facilitate the accurate and automatic re-centering of the spindle and/or supported mass. Additionally, the present invention redirects randomly-oriented balloting lateral, or side, loads by use of the conical mating surfaces mentioned above, or similar mating surfaces such as rotatably cooperating nestable concave-convex, curved, and/or parabolic-shaped surfaces, into axial force displacement so that radial springs are not necessary. As used herein, the term “angled,” when used to describe surfaces, includes such rotatably cooperating nestable concave-convex, curved, and/or parabolic-shaped surfaces.
A variation of the present invention may include use of standard radial bearings fitted with conical surfaces. In one embodiment of such variant, the grounding, or stop, conical surfaces are separate surfaces from the preloaded loaded conical stop surfaces.
The drawings referenced herein form a part of the specification. Features shown in the drawings are meant as illustrative of some, but not all, embodiments of the invention, unless otherwise explicitly indicated, and implications to the contrary are otherwise not to be made. Although in the drawings like reference numerals correspond to similar, though not necessarily identical, components and/or features, for the sake of brevity, reference numerals or features having a previously described function may not necessarily be described in connection with other drawings in which such components and/or features appear.
In the following detailed description of representative embodiments of the invention, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration specific examples of embodiments in which the invention may be practiced. While these embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, it will nevertheless be understood that no limitation of the scope of the present disclosure is thereby intended. Alterations and further modifications of the features illustrated herein, and additional applications of the principles illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of this disclosure. Specifically, other embodiments may be utilized, and logical, mechanical, electrical, and other changes may be made without departing from the spirit or scope of the present invention.
Accordingly, the following detailed description is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
Projectile P includes an outer casing, generally C, a forward, or nose, portion, generally N, which may include movable canards, generally D, and a tail section, generally T, having tail canards F. Such projectile P may be of configurations other than that shown in
Projectile P includes a longitudinally extending body portion, generally 14, within casing C of generally cylindrical configuration oriented about and longitudinally extending central axis, generally CA (
A first, or forward, bearing configuration or assembly, generally 20, is carried within the forward portion, generally F, of housing 14 and includes a first, or inner, bearing member, 22. Bearing member 22 defines a first bearing surface 24 which, as illustrated in
At the rearward portion of housing, generally R, a second bearing configuration or assembly, generally 36, is provided having a second, or inner, bearing member 38, also of a generally ringed-shape and which includes a bearing surface 40, angled with respect to central axis CA, such that surface 40 is conical in profile, i.e., defines generally a cross-section of a cone about the circumference of bearing member 38. Housing 14 includes a circumferential portion 42 in proximity to bearing member 38, and portion 42 defines an angled, or conical, surface 46 matingly complimentary to the surface 40 of bearing member 38, such that surfaces 40 and 46 extend in a generally parallel relationship with respect to one another and define a gap 48 therebetween upon the projectile being in pre-launch and in-flight configurations.
Bearing members 22 and 38 each act as an inner race for bearing assemblies 20 and 36, respectively. Bearing assembly 20 also includes a cooperating member, such as a generally ring-shaped outer race 50 positioned adjacent inner race 22. A plurality of rolling bearing elements, such as ball bearings, generally 52, are carried within a cooperating profile, or raceway, generally 54, circumferentially defined in each of inner race 22 and outer race 50 to allow relative movement of inner race 22 with respect to outer race 50 during certain states of operation of projectile P, such as during pre-launch and in-flight equilibrium. In the case of use of ball-shaped bearings 52, profiles 54 one of a curved or semi-circular cross-section to accommodate the curvature of ball bearing 52. However, if other rolling elements were used, such as cylinders (not shown), then profile 54 would be accordingly configured to accommodate such rolling members.
Attached to the extreme end of housing 14 is a spring-biased element, generally 58, such as a spring and nut combination, which includes a circumferentially-extending skirt portion 60 having a threaded interior portion which threadingly engages with threads about the periphery of the front of housing 14. Spring and nut combination 58 applies an axial spring bias force against outer race 50, forcing outer race 50 towards ball bearings 52 and inner race 22. Outer race 50 also defines a circumferentially-extending face 62 which is angled, or conical, and is complementary to and cooperates with respect to central axis CA. Face 62 is of the same or similar angle as face surface 30 (which is also conical) of inner race 22 and also matingly cooperates with surface 30 of circumferential portion 28.
Spindle 18 includes at its extreme forward end a threaded portion 66 and an exterior threaded portion 68 for carrying nose portion N which, as discussed above, may include in certain embodiments movable canards D and/or other airfoils to allow selective guidance of projectile P during flight. A threaded ring 70 is threadingly attached externally to spindle 18 to hold bearing member 22 in place. Bearing member 22 could be made integral to spindle 18, if desired, in which case a separate threaded ring 70 could be eliminated.
At the rearward portion R of housing 14, inner race 38, as noted above, is ring-shaped and encircles a neck portion 78 of spindle 18 adjacent a shoulder 80. Bearing assembly 36 may include a cooperating member, such as a ring-shaped outer race, generally 82, is provided in cooperation with inner race 38 and defines a raceway, generally 54′, for rolling bearing elements, such as ball bearings 52′. Each inner race 38 and outer race 82 defines a cooperating profile for receipt of ball bearings 52, although, as discussed above with respect to bearing assembly 20, such profile could be varied depending on the type of rolling bearing element used.
Outer race 82 includes a circumferentially-extending angled, or conical, surface, or face, 84 of the same or similar cooperating angle as surface or face 40 of inner race 38. Outer race face 84 is also conical and cooperates with angled surface 46 of housing circumferential portion 42 and maintains contact with angled surface 46 during certain configurations of projectile P, such as when projectile P is in the pre-launch and in-flight equilibrium configurations. A ring 86, fastened by thread or other manner, bears against inner race 38 to hold it in place about neck portion 78 of spindle 18. A spring-biased element, generally 88, such as a spring washer, which could include a Belleville washer, biases outer race 82 towards surface 46, ball bearings 52, and inner race 38. A threaded sleeve, or nut, generally 90, is threadingly inserted into housing 14 and is used to adjustably preload spring 88.
In the pre-launch configuration, a pre-load is provided by spring-biased elements 58 and 88 together with bearing assemblies 20 and 36, that maintains spindle 18 centered in the pre-launch configuration. Upon experiencing a certain load, spindle 18 tends to move such that the load paths it experiences change, and, accordingly, bearing assemblies 20 and 36 are protected from being overloaded. As discussed above, lateral or side loads are redirected so that they are ultimately accommodated by the body portion 14 and spring members 58, 88.
Turning to the equilibrium condition, spindle 18 is free to spin, and inner races 22, 38 run on ball bearings 52, 52′ since there are running clearances with respect to the conical stop surfaces 30, 46. In this manner, as discussed above, the hard stop that surface 30 provides to inner race 22 reduces additional force being transmitted to ball bearing 52, thereby reducing the potential of deformation of ball bearing 52.
Turning to
During set-back, internal components within body portion 14 of projectile P tend to resist motion and shift rearwardly relative to body portion 14 as projectile P experiences forward motion in a launch barrel (not shown), which could be rifled or smooth bore, upon being subjected to acceleration forces due to a launch. Once the set-back loads become greater than the pre-load on spring element 88, spindle 18 moves rearwardly (to the left as shown in
Thus, rear inner race 38 bears against ball bearings 52, which bear against the rear outer race 82, which bears against spring element 88, which bears against the threaded ring which bears against the threaded end member 90.
With continued rearward movement of front inner race 22, and its potential bottoming out against surface 30, as shown in
During set-forward, the internal components within body portion 14 of projectile P tend to rebound and move forward relative to the body portion 14. As set-forward forces rise, spindle 18 and bearing assemblies 20, 36 move forward, assisted by the force provided by spring 88, and inner race 22 moves forwardly (to the right as shown in
Balloting forces may be induced to projectile P as it moves longitudinally down the launch barrel, and such forces may be in addition to set-back forces and/or set-forward forces. Simultaneously as projectile P moves longitudinally down the launch barrel, it may also move laterally back and forth, bouncing off of the interior of the launch barrel. Balloting forces may also be induced to projectile P by the forces of gases exiting the launch barrel around projectile P as it leaves the barrel. When projectile P experiences balloting forces, stop surface 30 may already be in contact with the surface, or face, 24 of inner race 22 (
In the rear, gap 48 is created between the inner race 38 and the conical surface 46. Should the rear of spindle 18 move radially outward, for example in the upward direction as shown in
Axial motion of spindle 18 during balloting may open portions of gap 48, and radial movement of spindle 18 in random radial directions may close portions of gap 48 in the direction of such radial movement. In order to do that, inner race 38 pushes upward and diagonally on ball bearings 52. Accordingly, the forces generated by the radial movement of spindle 18 move the inner race 38 upward or downward (with respect to
It is noted that inner races 22, 38 and outer races 50, 82 can, respectively (since they are not mechanically linked to one another), move both radially and axially relative to one another, by virtue of spherical shape of ball bearing 52, 52′ respectively interposed therebetween.
Once the high-load condition on spindle 18 dissipates, spring members 58, 88 act to automatically force outer races 50, 82 back to center about central axis CA and to re-seat on the conical surfaces 30, 46 respectively. Spindle 18 thus essentially returns to its pre-launch configuration discussed above in its equilibrium running configuration, wherein front and rear inner races 22, 38 are running on ball bearings 52, 52′, respectively, with a running clearance being provided via gaps 34 and 48, respectively. Accordingly, spindle 18 is free to spin with respect to body 14 in the in-flight equilibrium configuration. And, as long as the in-flight loads do not exceed the spring pre-loads of spring elements 58, 88, then inner races 22, 38 and outer races 50, 82 should remain centered. While in-flight, spindle 18 may be selectively de-spun relative to body 14.
As shown in
System 10′ includes projectile P having a longitudinally extending body portion, generally 14′, and nose portion N′. Carried within body portion 14′ is spindle 18′.
A forward bearing configuration or assembly, generally 20′, is carried within the forward portion of housing 14′ and includes one or more generally ring-shaped ball bearing assemblies, generally 102, 104, which could be conventional ball bearing rings, if desired. A sleeve or bearing element 108 is provided adjacent bearing assemblies 102, 104, and a ring-shaped element 110 is provided adjacent bearing assembly 104. Bearing element 108 includes a circumferentially-extending angled, or conical, surface 112, and bearing element 110 includes a circumferentially-extending angled, or conical, surface 114. A circumferentially-extending angled, or conical, surface 116 is provided on a portion 118 that encircles spindle 18′ and cooperates with angled surface 112, and a circumferentially-extending angled, or conical, surface 120 is provided on a portion of spindle 18′ that cooperates with angled surface 114 of bearing element 110. Surface 120 of system 10′ is similar in operation to first engagement surface 30 of system 10 discussed above.
Another ring-shaped element 128 is integral with or fixedly attached to body portion 14′ and includes a circumferentially-extending angled surface 130. Spindle 18′ includes a circumferentially-extending angled surface 132 that cooperates with surface 130 to define a running clearance, or gap 134, therebetween when projectile P is in the pre-launch and in-flight equilibrium configurations.
At the rearward portion of projectile P, a rearward bearing configuration or assembly, generally 36′, also includes one or more generally ring-shaped ball bearing assemblies, generally 138, which could also be of conventional design. Sleeve element 140 is provided adjacent bearing assembly 138 and includes a circumferentially-extending angled, or conical, surface 142, which cooperates with a circumferentially-extending angled, or conical, surface 144 of a sleeve element 145.
A circumferentially-extending angled, or conical, surface 146 is provided on a ring-shaped member 154 fixed to spindle 18′. Surface 146 cooperates with a circumferentially-extending angled, or conical, surface 158 on body member 14′.
Biasing elements, such as spring members 164, 166, and 168, which could be spring and/or Belleville washers or some other suitable spring elements, apply a pre-load force on spindle 18′ to (together with the circumferentially-extending angled surfaces 130, 132, 114, 120, 116, 112, 146, 158, 142, and 144) center spindle 18′ within body member 14′ with respect to central axis CA′ and to automatically re-center spindle 18′ about central axis CA′ in the event spindle 18′ moves off-center during launch, set-back, balloting, set-forward and/or in-flight equilibrium. System 10′ functions similarly to system 10 discussed above to prevent ball bearings 170 and/or bearing assemblies 102, 104, and 138 from becoming overloaded and to also automatically maintain spindle 18′ centered about central axis CA′.
During set-back, gap 134 closes as spindle 18′ moves rearwardly (to the left, as shown in
During set-forward, spindle 18′ moves forward, and threaded ring 70′ moves with spindle 18′. Bearing assembly 20′ is prevented from moving forward by element 128. However, springs 166 give latitude to allowing spindle 18′ to move forward relative to bearing assembly 20′ due to contact and interaction of ring 70′ with springs 166. Surfaces 112 and 116 remain in contact, but a gap forms at surfaces 114 and 120.
During radial displacement of spindle 18′, surface 120 correspondingly moves radially, causing bearing assembly 20′ and element 108 to move axially rearwardly (to the left, as shown in
During set-forward, gap 172 between angled surfaces 146 and 158 closes as spindle 18′ moves forward (to the right, as shown in
Upon overload conditions subsiding, the angled surfaces 130, 132, 114, 120, 116, 112, 146, 158, 142, and 144 serve to the aid spring members 164, 166, and 168 in the automatic re-centering and the maintenance of centering of spindle 18′.
In system 10′, the inner and outer races of bearing assemblies 102, 104, and 138 are mechanically linked to one another. Thus, such inner and outer races race cannot move both radially and axially with respect to one another. As noted above, because they are not mechanically linked to one another, inner races 22, 38 and outer races 50, 82 can, respectively, move both radially and axially relative to one another, because of the ball bearing interface respectively therebetween. Springs 168 are provided in system 10′ to help accommodate a lack of a degree of freedom of movement of bearing assemblies 20′ and 36′ as compared to bearing assemblies 20, 36 of system 10.
Accordingly, the present invention thus provides a relatively simple and lightweight arrangement for the nose and/or tail section in a spin-stabilized and/or fin-stabilized projectile to protect lightweight, low-drag bearings against large gun launch loads, while providing accurate and automatic in-flight centering of the supported spindle and/or rotating mass.
While several representative embodiments have been described in detail herein, it will be apparent to those skilled in the art that the disclosed embodiments may be modified and/or tailored for particular applications or circumstances. Therefore, the foregoing description is to be considered as describing examples of embodiments implementing the present invention and is not intended to limit the present invention to these embodiments. On the contrary, the present invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims.
Furthermore, in the detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. In other instances, well-known methods, procedures, components, arrangements, and configurations have not been described in detail as not to unnecessarily obscure aspects of the present invention. However, it will be recognized by one of ordinary skill in the art that the present invention may be practiced without these specific details.
Number | Name | Date | Kind |
---|---|---|---|
6604705 | Pellegri et al. | Aug 2003 | B2 |
8319163 | Flood et al. | Nov 2012 | B2 |
20110024550 | McDermott et al. | Feb 2011 | A1 |
20120181376 | Flood et al. | Jul 2012 | A1 |
Entry |
---|
James L. Sitomer, “Precision-guided projectiles,” Access Science, 2001 © McGraw-Hill Companies, http://www.accessscience.com. |
George Fotieo, “Gun Launch Dynamics of the Navy 5-Inch Guided Projectile,” Martin Marietta Aerospace, Orlando, Florida. |
Number | Date | Country | |
---|---|---|---|
20130206030 A1 | Aug 2013 | US |