This invention pertains to a pneumatic launcher.
Non-lethal launchers, both pneumatic and gun powder-based, are used to shoot projectiles such as tear gas cartridges, pepper spray cartridges, stun ammo or smoke cartridges to name a few. More recently, electro muscular incapacitation ammunition has been developed that shoots an electronic projectile which delivers a high voltage, low amperage shock that immobilizes an individual upon impact.
The projectiles used in a non-lethal launcher vary in weight and size. Most launchers use a preset pressure or charge to deliver a desired type of projectile at a safe velocity. Some pneumatic launchers have adjustable regulators that allow the launchers to be set up prior to use for a specific velocity of the projectile. In gun powder-based launchers the ammunition must be exchanged to provide a different velocity for the projectile.
In actual use, multiple targets are often presented to the operator. The targets may be a fixed area, object or an individual within the launcher's recommended range. Sometimes, the target may be outside the launcher's recommended range. If the target is moving, it may also be advancing or retreating from the operator. Sometimes, the operator may be moving towards or away from the target area or the target. In each instance, the operator must quickly identify the target, determine if it is fixed or moving, and then determine if the target is within a safe range for firing the launcher.
When controlling a crowd, operators may have to shoot different projectiles at different ranges. If each launcher is setup for use with one type of projectile or velocity, a single launcher cannot be used without injuring the target. The system allows the operator to adjust the velocity for each individual shot without the need to raise or lower the pressure, vent gas away from the projectile, or exchange ammunition. Incorporated with a laser or acoustic range finder, the system becomes automated based on range to target.
Other variable velocity weapon systems that have used laser range finders have previously been limited by their high cost of operation due to elaborate gas metering or use of gun powder.
What is needed is a pneumatic launcher system that allows an operator to easily and quickly control the muzzle velocity of projectiles and enabling projectiles of different types and weights to be safely delivered to a desired target or target area.
It is therefore an object of the present invention to provide a projectile delivery system that includes a pneumatic launcher apparatus for launching projectiles that addresses the problems described above.
More specifically, the system comprises a launcher with at least one round chamber capable of being filled with a projectile. In other embodiments, the launcher is configured to repeatedly position a plurality of projectiles into a discharge position. The launcher includes a main tube containing a closed ballast chamber filled with pressurized air from an external pressurized air source. Located adjacent to the main tube is a set of valve plates and a velocity housing. Mounted or formed on the velocity housing is an external air fitting that connects to an external pressurized air source. Air conduits extend from the velocity housing to the ballast chamber to fill the ballast chamber with pressurized air.
The two valve plates are located in front of a piston sleeve. Extending longitudinally through the piston sleeve and through the two valve plates is a piston rod. The proximal end of the piston rod extends into the valve housing and the distal end of the piston rod extends into the ballast chamber. After assembly, the middle section of the piston rod extends through a firing chamber. Attached to the middle section of the piston rod is a firing piston. The proximal end of the piston rod extends into the velocity housing and interconnects with a velocity valve that includes a stop guide and stop key. A movable stop ring is mounted on the outer surface of the valve housing that controls the position of the stop guide and the movement of a piston rod.
When external pressurized air source is connected to the fitting, pressurized air is delivered to the valve housing and then bled to the ballast chamber. The user manually adjusts or the system automatically adjusts the velocity valve to control the longitudinal movement of the piston rod and the amount of pressurized air delivered to the discharge chamber containing the projectile. When the trigger is activated, a portion of the air from the ballast chamber is delivered to the firing chamber. The firing piston located inside the firing chamber has a larger surface area than the ballast piston causing the piston rod to move longitudinally forward and release air from the ballast chamber. In one embodiment, pressurized air from the ballast chamber is released into an intermediate conduit and eventually flows into the discharge chamber in the barrel and forces the projectile out of the muzzle.
In one embodiment, the launcher is a revolver that includes an index assembly that includes a linear actuator that uses a portion of the pressurized air initially released from the ballast chamber to force the linear actuator to move to an extended position and then automatically retract to its original position while indexing the revolving cylinder.
Referring to the
In one embodiment, the front surface of the cylinder drum 20 is attached to a slide body 90 configured to slide freely over a main tube 40. As shown in
Attached to the upper end of the slide body 90 is an optional index assembly 180 that automatically rotates the cylinder drum 20 after each shot and also positions the next round chamber 22 containing a projectile 500 into an upper position longitudinally aligned with the longitudinal axis of the barrel 400. A barrel 400 is affixed to the slide body 90 and extends through a barrel opening 92 formed on the slide body 90. As shown in
As also shown in
The proximal end of the main tube 40 connects to the front surface of the first valve plate 32 and extends longitudinally through central bores 27, 29 formed on the front and rear cover plates 26, 28, and through the cylinder sleeve 49, respectively. As shown in
Mounted on the top of the hand grip 150 and rearward from the piston sleeve 70 is a velocity housing 80 as shown in
Extending longitudinally from the velocity housing 80 through the piston sleeve 70, through the two valve plates 32, 36 and into the ballast chamber 50 in the main tube 40 is a piston rod 120. As shown in
The stop ring 124 is a semi-circular structure positioned over a semi-circular slot 82 formed on the outer surface of the velocity housing 80. The stop guide 126 and the stop key 128 are located inside the velocity housing 80. The stop ring 124 is configured to move transversely or side-to-side inside a transversely aligned slot 82 formed on the velocity housing 80. Formed or attached to the bottom surface of the stop ring 124 is a downward extending leg 125. During assembly, a threaded bolt 130 is extended through a bore formed on the velocity housing 80 that extends through the extending leg 125.
Located inside the longitudinally aligned bore 81 formed in the velocity housing 80 and below the stop ring 124 is the cylindrical stop guide 126. Formed on the inside surface of the stop guide 126 are platforms 127 (see
As state above, the piston sleeve 70 includes a center bore 73 through which the piston rod 120 extends and rotates and slides freely. Formed inside the piston sleeve 70 is piston cavity 74 in which the firing piston 140 is disposed. The firing piston 140 includes internal threads 142 that mesh with external threads 121 formed on the middle region of the piston rod 120 that enables the firing piston 140 to be locked in a fixed position on the piston rod 120. An o-ring 143 is attached to the outer perimeter of the firing piston 140 to create a sealed enclosed firing chamber 74 against the inside surface of the piston sleeve 70.
The piston rod 120 extends forward from the firing piston 140 through bores 33, 37 formed on the first and second valve plates 32, 36, respectively. Formed inside the bore 33 formed on the first valve plate 32 is an aligned neck 34 that co-axially aligns the piston rod 120 with the center axis of the main tube 40.
The distal end of the piston rod 120 is connected to a threaded bore 61 formed on the end surface of the ballast piston 60 disposed inside the ballast chamber 50 formed on the main tube 40. During operation, the ballast chamber 50 is filled with pressurized air (approx. 300 psi and the ballast piston 60 is automatically forced rearward closing the ballast chamber 50.
The index assembly 160 is attached to the slide body 90 and supported over the main tube 40. The index assembly 160 includes a hollow index tube 165 and an index rod 170 and an index slider 190. During operation, the index slider 190 slides longitudinally back and forth over the index tube 165 and the index rod 170.
The index assembly 160 also includes a spring biased pin 172 that extends downward and engages spiral grooves 222 and slots 224 formed on the side of the cylinder drum 20. The spiral grooves 222 and slots 224 extend continuous over the outside surface of the cylinder drum 20. When the index assembly 160 slides forward, the pin 172 is forcibly pressed downward against a spiral grooves 222 causing the cylinder drum 20 to rotate in a clockwise direction to position the next adjacent chamber on the cylinder drum 20 in a discharge position and in alignment with the barrel 400. The slots 224 allow the cylinder drum 20 to slide longitudinally.
The hand grip 150 includes a trigger 152 coupled to a poppet valve 154. When the trigger 152 is pulled, the poppet valve 154 causes a portion of the pressurized air in the ballast chamber 50 to escape and flow into the firing chamber 74.
A 3,000-4500 PSI external air source 700 is connected to an external air fitting 650 formed on the velocity housing 80. The air source 700 includes a regulator that lowers the air pressure to approximately 300 psi. The pressurized air follows air conduits 82, 72 and 136 formed in the velocity housing 80, the piston sleeve 70 and the first valve plate 32, respectively. The pressurized air is delivered to the poppet valve cavity and then to the ballast chamber 50. When the pressurized air is delivered to the ballast chamber 50, the ballast piston 60 is forced rearward against the narrow inside bore 43A formed on the distal end of the main tube 40.
The firing piston 140 located inside the firing chamber 74 located inside the piston sleeve 70 has a surface area larger than the surface area of the ballast piston 60. When the poppet valve 154 is opened, pressurized air is delivered to the firing chamber 74 causing the firing piston 140 to move longitudinally inside the firing chamber 74. Because the firing piston 140 is affixed to the piston rod 120, adding pressurized air to the firing chamber 74 causes the piston rod 120 to move longitudinally forward through the two valve plates 32, 36 and the main tube 40. The force exerted by the piston rod 120 overcomes the air pressure inside the ballast chamber 50 causing the ballast piston 60 to move forward and allow pressurized air to escape and flow around the ballast piston 60 and into an interior cavity 35 formed on the front valve plate 32, The interior cavity 35 includes a bore 36 that communicates with the upper chamber 22 in the cylinder drum 20 containing a projectile 500 forcing the projectile 500 from the barrel 400. How far the ballast piston 60 opens controls the amount of pressurized air released from the ballast chamber 50. If the ballast piston 60 is forced open entirely, substantially all of the pressurize air is released into the upper chamber 22 and the projectile 500 exits the barrel 400 at its maximum velocity. If the ballast piston 60 is partially opened, then a reduced amount of pressurized air is released into the upper chamber 22 and the projectile 500 exits the barrel 400 at a lower velocity.
When the trigger 152 is released, the trigger plunger 153 is extended which allows pressurized air inside the firing chamber 140 to travel through one or more air conduits 159 formed in the piston sleeve 70 and terminates in the poppet valve cavity in the hand grip 150. Air from the firing chamber 140 escapes into the atmosphere.
As mentioned above, the launcher 10 may include an optional index assembly 160 that causes a cylinder drum 20 to automatically rotate so the upper chamber is aligned with the barrel 400. The index assembly 160 is coupled to the ballast chamber 50 so pressurized air is used to impart movement of the cylindrical drum 20.
More specifically, pressurized air is delivered to the index tube 165 and is released into an air piston cylinder 290 which causes the indexing slider 190 to move backwards over the index tube 165 and index rod 170. The index assembly 160 includes an index cover 180 that covers the index tube 165 and the index rod 170. The distal ends of the index tube 165, the index rod 170 and the cylinder 290 are attached to an index end cap 198. The index cover 160 is attached to the slide body 90. Located under the index cover 180 is a spring biased index pin 187 connected to an index slider 190. Connected to the index slider 190 is an index lever 192 and an index handle 194. When pressurized air is delivered to the index tube 165, the index slider 190 is forced backwards over the index tube 165 and index rod 170. The index lever 192, the index handle 194 and the index spring 196 forces the pin downward which causes the cylinder drum 20 to rotate 60 degrees upon return so that the next chamber is aligned with the barrel 400.
In the embodiment described above and shown in the Figures, the user manually manipulates the stop ring 124 to adjust the movement of the piston rod 120 during operation It should be understood that an alternative mechanical component, such as an electric motor coupled to a laser range finder 900 may be attached to the velocity housing 80 that automatically adjusts the velocity valve according to the distance to the target.
In compliance with the statute, the invention described has been described in language more or less specific as to structural features. It should be understood however, that the invention is not limited to the specific features shown, since the means and construction shown, comprises the preferred embodiments for putting the invention into effect. The invention is therefore claimed in its forms or modifications within the legitimate and valid scope of the amended claims, appropriately interpreted under the doctrine of equivalents.
This invention has application in the military and law enforcement industries and more specifically, to crowd control tactics.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/046056 | 7/9/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/057281 | 4/23/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5592931 | Johnson | Jan 1997 | A |
5596978 | Johnson | Jan 1997 | A |
5680853 | Clayton | Oct 1997 | A |
5709199 | Johnson | Jan 1998 | A |
5724955 | Johnson | Mar 1998 | A |
5787869 | Johnson | Aug 1998 | A |
5878734 | Johnson | Mar 1999 | A |
5878735 | Johnson | Mar 1999 | A |
5913304 | Johnson | Jun 1999 | A |
5924413 | Johnson | Jul 1999 | A |
6000386 | Johnson | Dec 1999 | A |
6003503 | Johnson | Dec 1999 | A |
6152125 | Piper | Nov 2000 | A |
6364162 | Johnson | Apr 2002 | B1 |
8430085 | Tippmann, Sr. | Apr 2013 | B2 |
20060107939 | Dobbins | May 2006 | A1 |
20060225718 | Kirwan | Oct 2006 | A1 |
20060266342 | Teipel | Nov 2006 | A1 |
20110186026 | Tippmann, Sr. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
2917930 | Apr 2015 | CA |
3019811 | May 2016 | EP |
WO 8601679 | Mar 1986 | WO |
WO 2015057281 | Apr 2015 | WO |
Number | Date | Country | |
---|---|---|---|
20160169615 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
61844078 | Jul 2013 | US |