The present invention relates to a projectile launching system. More particularly, the present invention relates to an archery system that launches arrows from an initial position that is perpendicular to a direction in which the arrow travels after launch.
Several types of archery bows and crossbows (hereinafter sometimes referred to collectively as “bows”) have been used over the years. Conventional bows launch arrows pointing in the directional travel. Consequently, conventional archery arrows have standard lengths of, for example, 28-33 inches to match various draw lengths for different people. The long arrow lengths allow stabilizing the front of the arrow when the rear of the arrow is pulled back with the string of the bow. The draw length of a bow is limited by the length of the arrow. The draw length cannot be longer than the arrow. Otherwise, the tip of the arrow is drawn behind the front portion of the bow, which creates a dangerous position if the tip of the arrow hits the front of the bow upon launch. Additionally, arrows of such length flex and bend in flight, thereby making them unstable and inconsistent in accuracy. Cross bows have similar issues, using arrows (sometimes called “bolts”) of, for example, 16-22 inches in length.
Because conventional arrows are long, such arrows are carried in a separate pouch. Additional equipment pouches are cumbersome. Arrows for archery bows typically are carried on the shooter's back or are set near the shooter. Because the arrows are not very close to the actual bow, a shooter cannot reload and shoot multiple rounds quickly. Alternatively, extra arrows can be attached to the bow, but the shooter must retrieve an arrow, insert it on the bow, and then draw the arrow back. Such a lengthy process also is time consuming.
The arms of the convention bows have to be long enough to provide sufficient recoil to propel the arrow when launched. Consequently, conventional archery bows are very tall, and conventional cross bows are very wide. Thus, conventional bows are bulky, and may be hard to carry or maneuver in tight areas.
Conventional bows also have high pull weights, which can make it difficult to draw the arrow and make an accurate shot. Complex “compound” bows can reduce the pull weight, but complexity and cost of the device is increased. Cross bows in particular can be hard to draw and may employ a foot stirrup for the shooter to hold the device in place while the shooter cocks the device.
Accordingly, a need exists in the art for an archery system that can launch shorter arrows, provide a lower pull weight while maintaining suitable arrow velocity, have a compact size compared to conventional systems, have a draw length that is not limited by the length of the arrow, and/or reduce draw weight without complex mechanisms.
The invention relates to an archery system that launches an arrow from a position that is perpendicular to a direction of flight for the arrow. After release, the arrow rotates to a position that is parallel to the direction of flight to the target.
Referring to the drawings, in which like numerals represent like elements, aspects of the exemplary embodiments will be described.
The invention relates to an archery system that launches an arrow from a position that is perpendicular to a direction of flight for the arrow. After release, the arrow rotates to a position that is parallel to the direction of flight to the target.
The arm support 102 includes a forearm portion 102a and a first portion 102b. An end plate 102c is affixed to one end of the arm support 102. The opposite end of the arm support 102 is open.
In operation, the shooter grabs the handle 202 in the first portion 102b of the arm support 102, and the first portion 102b and forearm portion 102a of the arm support 102 fit over a shooter's first and forearm, respectively. A strap on the forearm portion 102a secures the arm support 102 to the shooter's forearm. The strap can be buckled or held in place via other means, such as with a hook and loop type closure. The arm support 102 can provide stability for the system 100 by securing the system 100 to the shooter's arm and hand. The arm support 102 also protects the shooter's arm from potential contact with the arrow 110.
In an exemplary embodiment, the arm support 102 can comprise multiple parts that are coupled together. For example, the forearm portion 102a, first portion 102b, and end plate 102c can all be separate parts that are coupled together. Additionally, each of the individual parts can comprise multiple components to create the desired shape of the arm support 102. Depending on the material used to form the parts of the arm support 102, the parts can be coupled together via screws, bolts, welding, or any other suitable means. In an alternative exemplary embodiment, the arm support 102 can be molded or formed in a single piece of material.
The launching mechanism 104 further comprises two front risers 104a and two rear risers 104b. Each of the risers 104a, 104b is coupled at one end to a base member 104c. As illustrated, the front risers 104a and the rear risers 104b extend at an angle away from the base member 104c such that the ends of the risers 104a, 104b positioned adjacent to the base member 104c are closer together than the opposite ends of the risers 104a, 104b. Additionally, a distance between the upper ends of the rear risers 104b is greater than a distance between the upper ends of the front risers 104a.
The risers 104a, 104b can be coupled to the base member 104c via any suitable means, for example, via welding, bolts, machine screws, or other suitable means.
Pulley brackets 104e are attached to the end of each of the rear risers 104b that is opposite the end of the rear risers 104b that is coupled to the base member 104c. A pulley 104f is positioned in each pulley bracket 104e such that the pulley 104f rotates freely within the pulley bracket 104e.
As illustrated, support members 140g can be added to provide additional strength and stability for the front risers 104a and the rear risers 104b. Any suitable number and position of the support members 140g can be chosen based on various design parameters, such as the strength of the materials, the draw weight of the device, and additional loads to which the launching mechanism 104 may be subjected.
The base member 104c includes a rear plate 104d coupled thereto. In an exemplary embodiment, the rear plate 104d can comprise a tapered profile such that one side of the rear plate 104d is thicker than the other side of the rear plate 104d. The tapered profile can offset a longitudinal axis of the launching mechanism 104 from a longitudinal axis of the arm support 102 when the launching mechanism 104 is attached to the arm support 102. The tapered profile can accommodate for an angle of the shooter's pulling motion. In an exemplary embodiment, the offset of the tapered profile can be about ten degrees. However, the offset can be increased or decreased to accommodate a specific shooter's needs or tendencies. For example, shims (not shown) can be used between the rear plate 104d and the end plate 102c to change the offset of the launching mechanism 104 from the arm support 102. For example, the invention can include multiple shims providing different offsets, and the shooter can choose one or more of the shims to provide the desired offset. Additionally, the shims can be inserted in an opposite direction to accommodate left or right handed shooters. The rear plate 104d can be a separate component coupled to the base member 104c, or the rear plate 104d can be formed integrally with the base member 104c.
The launching mechanism 104 is attached to the end plate 102c of the arm support 102. As illustrated, the end plate 102c of the arm support 102 includes slots 102e. Bolts (not shown) inserted through the slots 102e in the end plate 102c of the arm support 102 and through corresponding holes (not shown) in the rear plate 104d of the base member 104c, and the bolts can be secured with nuts to attach the launching mechanism 104 to the arm support 102.
In an alternative exemplary embodiment, the arm support 102 and the base member 104c (including the rear plate 104d) can be molded or formed in a single piece of material.
Each cord 106 is attached at one end to a corresponding one of the front risers 104a. The other end of the cord 106 is attached to the pad 108. As illustrated, a clamp 107 secures the cord 106 to the front riser 104a. However, any suitable method can be used to secure the cord 106 to the front riser 104a. Additionally, any suitable method can be used to secure the cords 106 to the pad 108. Each cord 106 extends from the front riser 104a, around the pulley 104f, and terminates at the pad 108.
In an alternative exemplary embodiment, the pulley brackets 104e and pulleys 104f can be omitted. In this case, each cord 106 would extend from the front riser 104a, around the end of the rear riser 104b, and would terminate at the pad 108. The rear risers 104b can comprise a bended portion on the end where the cords 106 pass to prevent the cords 106 from slipping past the rear risers 104b.
In other alternative exemplary embodiments, the pad 108 can be omitted. In this case, a single cord 106 can extend from one front riser 104a, around one pulley 104f, around the other pulley 104f, and to the other front riser 104a.
The pad can comprise a leather or other suitable material.
In an exemplary embodiment, the cords 106 can comprise an elastic material. The resting position of the cords 106 is depicted as position A in
The cords 106 can comprise any suitable elastic material that provides sufficient propelling force for the arrow 110 using a draw weight appropriate for the shooter. In an exemplary embodiment, the launching cords 106 are rubber tubing. Other suitable materials can be used for the cords 106. For example, an elastic “shock” cord 106 can be used, and other materials having suitable elastic properties can be used. In certain alternative exemplary embodiments, each cord 106 can comprise multiple members, which can be twisted or braided together. One example of braiding comprises weaving two cords together by alternately inserting one cord through a hole in the other cord. For instance, each cord can have holes spaced 1 inch apart, with the holes being offset ½ inch on each cord. Then, the first cord is inserted through the first hole in the second cord, the second cord is inserted through the first hole in the first cord, the first cord is inserted through the second hole in the second cord, the second cord is inserted through the second hole in the first cord, and this process is repeated for a portion or all of the length of the cords.
Alternatively, the system 100 can be designed with a horizontal compounding feature to use a string as the launching cords 106. In this regard, the system 100 can use a conventional archery bow or cross bow type of launching mechanism 104 mounted horizontally (crosswise to the lengthwise axis of the arm support and the launching mechanism) on one or both of the front risers 104a and/or on one or both of the rear risers 104b, with its height being sufficiently spaced from the base member 104c and the arm support 102 to allow the “vertically” launched arrow 110 to clear the arm support 102 and the base member 104c.
While the exemplary embodiment is illustrated with two front risers 104a to which the cords 106 are attached and two rear risers 104b around which the cords 106 are supported, alternative embodiments can include only the two front risers 104a, or the alternative embodiments can include additional intermediate or rear risers 104b around which the cords 106 are supported. Additional intermediate or rear risers 104b can further compound the force of the cords 106.
The exemplary embodiment illustrates a distance between the rear risers 104b being greater than a distance between the front risers 104a. This arrangement can prevent the cords 106 from collapsing together during launch prior to release of the arrow 110 from the system 100. This arrangement also can compound the force of the cords 106, thereby increasing force exerted on the arrow 110 and the corresponding thrust, velocity, and/or impact of the arrow 110. However, alternative exemplary embodiments can include a different spacing arrangement. For example, the distance between the rear risers 104b can be the same as the distance between the front risers 104a.
Exemplary lengths for the arrow 110 range from about two inches to about twelve inches, including the tip and the flight, although the invention can be scaled to operate with arrow lengths outside of that range. In certain exemplary embodiments, the arrow 110 has a length of about three inches to about six inches.
Arrows of the exemplary embodiments can have a weight of between about 300 grain to about 450 grain. Additional weights are within the scope of the invention. For example, the arrows can have a weight of between about 100 grain to about 500 grain. Additionally, the invention can be scaled to operate with arrows having a weight outside of these ranges.
Compared to the longer conventional arrows used with a conventional archery system, the system 100 described in this application may provide more accurate shooting with higher knockdown force, impact force, and/or kinetic energy. The shorter arrows also are affected less by wind when compared to longer conventional arrows. Accordingly, the shorter arrows used with the inventive system 100 may be more accurate with less “drop” over distance and using a lower pulling force. Additionally, accurate shots over a longer distance can be possible with the inventive system 100.
In an exemplary embodiment, a conventional archery release can be used to grab the arrow 110. More specifically, the release can be inserted through a slot 108a (
The system 100 can be sighted on a target by lining up various components, such as the arrow 110, launching mechanism 104, cords 106, and target. Additionally, an archery sight (not illustrated) can be added to the system 100, if desired, by installing the archery sight on one of the front risers 104a, the rear risers 104b, or the supports 104g.
Additionally,
The system 100 and its components can be formed from any suitable material or combinations of material, such as, but not limited to, steel, fiberglass, carbon fiber, titanium, plastic, aluminum, or any other suitable material or combination of materials.
Referring back to
The system 100 also can comprise brackets (not illustrated) to which a shoulder strap (not illustrated) can be attached for carrying the system 100.
Although specific embodiments of the present invention have been described in this application in detail, the description is merely for purposes of illustration. It should be appreciated, therefore, that many aspects of the invention were described above by way of example only and are not intended as required or essential elements of the invention unless explicitly stated otherwise. Various modifications of, and equivalent components corresponding to, the disclosed aspects of the exemplary embodiments, in addition to those described herein, can be made by those having ordinary skill in the art without departing from the spirit and scope of the present invention described herein and defined in the following claims, the scope of which is to be accorded the broadest interpretation so as to encompass such modifications and equivalent structures.
This patent application is a continuation of and claims priority to U.S. patent application Ser. No. 16/572,095 filed Sep. 16, 2019 and entitled “Projectile Launching System,” which is a continuation of and claims priority to U.S. patent application Ser. No. 15/925,296 filed Mar. 19, 2018 (U.S. Pat. No. 10,415,923) and entitled “Projectile Launching System,” which is a continuation of and claims priority to U.S. patent application Ser. No. 15/050,295 filed Feb. 22, 2016 (U.S. Pat. No. 9,921,025) and entitled “Arrow for Projectile Launching System,” which is a continuation of and claims priority to U.S. patent application Ser. No. 13/908,674 filed Jun. 3, 2013 (U.S. Pat. No. 9,267,755) and entitled “Projectile Launching System,” which is a continuation of and claims priority to U.S. patent application Ser. No. 12/761,942 filed Apr. 16, 2010 (U.S. Pat. No. 8,453,630) and entitled “Projectile Launching System,” which claims priority to U.S. Provisional Patent Application No. 61/169,983 filed Apr. 16, 2009 and entitled “Vertical Release Archery System.” The entire contents of the above-identified priority applications are hereby fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1748651 | Holliday | Feb 1930 | A |
2324201 | Donaldson | Jul 1943 | A |
2667352 | Sepersky | Jan 1954 | A |
2715895 | Loveless | Aug 1955 | A |
2970839 | Halverson | Feb 1961 | A |
3306278 | Spatari | Feb 1967 | A |
3415239 | Swett | Dec 1968 | A |
3572311 | Baer | Mar 1971 | A |
3630186 | Babyn | Dec 1971 | A |
3834368 | Geiger | Sep 1974 | A |
3918427 | Turner | Nov 1975 | A |
3949729 | Pfotenhauer | Apr 1976 | A |
3974820 | Ott | Aug 1976 | A |
3983860 | Bolton | Oct 1976 | A |
4050438 | Pfotenhauer | Sep 1977 | A |
4247027 | Tardiff | Jan 1981 | A |
4337940 | Soong | Jul 1982 | A |
4411248 | Kivenson | Oct 1983 | A |
4419978 | Loftus | Dec 1983 | A |
4458658 | Blair | Jul 1984 | A |
4593673 | Kees | Jun 1986 | A |
4703744 | Taylor | Nov 1987 | A |
4706958 | Inoue | Nov 1987 | A |
4784106 | Kees | Nov 1988 | A |
4858588 | Bozek | Aug 1989 | A |
4958617 | Anderson | Sep 1990 | A |
4995372 | Topel | Feb 1991 | A |
4996968 | Hollingsworth | Mar 1991 | A |
5018747 | Brown | May 1991 | A |
5072715 | Barr | Dec 1991 | A |
5123643 | Heilhecker | Jun 1992 | A |
5173069 | Litos | Dec 1992 | A |
5282453 | Chia | Feb 1994 | A |
5345922 | Ott | Sep 1994 | A |
5431145 | Strait | Jul 1995 | A |
5501207 | Black | Mar 1996 | A |
5657984 | Leo | Aug 1997 | A |
5694913 | Parrott | Dec 1997 | A |
5803067 | Ellenburg | Sep 1998 | A |
5902199 | Adams, Jr. | May 1999 | A |
6027421 | Adams, Jr. | Feb 2000 | A |
6050252 | Etheridge | Apr 2000 | A |
6564787 | Barry | May 2003 | B1 |
6742509 | Hunter | Jun 2004 | B2 |
6823855 | Omi | Nov 2004 | B2 |
7059314 | Teague | Jun 2006 | B1 |
7168424 | Wing | Jan 2007 | B1 |
7389774 | Fonda | Jun 2008 | B1 |
7392801 | McCallister | Jul 2008 | B2 |
7509952 | Aiken, III | Mar 2009 | B2 |
7748369 | Chee | Jul 2010 | B2 |
7900620 | Walters | Mar 2011 | B1 |
8453630 | Fields | Jun 2013 | B2 |
8567376 | Flint | Oct 2013 | B2 |
8939136 | Gaus | Jan 2015 | B2 |
9234718 | Ricke | Jan 2016 | B2 |
9267755 | Fields | Feb 2016 | B2 |
9310171 | Cummings | Apr 2016 | B2 |
9395139 | Pena | Jul 2016 | B2 |
9513079 | Missel | Dec 2016 | B1 |
9605922 | Rowe | Mar 2017 | B1 |
9915493 | Becker | Mar 2018 | B2 |
9921025 | Fields | Mar 2018 | B2 |
9927203 | Shapiro | Mar 2018 | B1 |
20060191521 | Gee | Aug 2006 | A1 |
20090032002 | Howard | Feb 2009 | A1 |
20120037137 | Thurmon | Feb 2012 | A1 |
20140338647 | Cummings | Nov 2014 | A1 |
20150260478 | Park | Sep 2015 | A1 |
20180209758 | Fields | Jul 2018 | A1 |
Entry |
---|
Alexander, “Final Office Action cited in U.S. Appl. No. 15/925,296, filed Mar. 19, 2018”, dated Jan. 16, 2019, 15 pages. |
Alexander, “Office Action cited in U.S. Appl. No. 15/925,296, filed Mar. 19, 2018”, dated Sep. 26, 2018. |
Niconovich, “Final Office Action issued in U.S. Appl. No. 16/572,095, filed Sep. 16, 2019”, dated Apr. 9, 2020, 7 pages. |
Niconovich, “Office Action issued in U.S. Appl. No. 16/572,095, filed Sep. 16, 2019”, dated Jan. 6, 2020, 9 pages. |
Ricci, “Notice of Allowance issued in U.S. Appl. No. 12/761,942, filed Apr. 16, 2010, dated Feb. 1, 2013”, Feb. 1, 2013, 1-5. |
Ricci, “Notice of Allowance issued in U.S. Appl. No. 13/908,674, filed Jun. 3, 2013, dated Oct. 15, 2015”, dated Oct. 15, 2015, 1-5. |
Ricci, “Notice of Allowance issued in U.S. Appl. No. 15/050,295, filed Feb. 22, 2016, dated Nov. 6, 2017”, 5 pages. |
Ricci, “Office Action issued in U.S. Appl. No. 12/761,942, filed Apr. 16, 2010, dated Aug. 15, 2012”, dated Aug. 15, 2012, 1-5. |
Ricci, “Office Action issued in U.S. Appl. No. 13/908,674, filed Jun. 3, 2013, dated Dec. 17, 2014”, dated Dec. 17, 2014, 1-6. |
Ricci, “Office Action issued in U.S. Appl. No. 13/908,674, filed Jun. 3, 2013, dated Jul. 2, 2015”, dated Jul. 2, 2015, 1-5. |
Ricci, “Office Action issued in U.S. Appl. No. 15/050,295, filed Feb. 22, 2016”, dated Nov. 29, 2016, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20200333100 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
61169983 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16572095 | Sep 2019 | US |
Child | 16923798 | US | |
Parent | 15925296 | Mar 2018 | US |
Child | 16572095 | US | |
Parent | 15050295 | Feb 2016 | US |
Child | 15925296 | US | |
Parent | 13908674 | Jun 2013 | US |
Child | 15050295 | US | |
Parent | 12761942 | Apr 2010 | US |
Child | 13908674 | US |