(1) Field of the Invention
The present invention generally relates to projectile resistant matrix and, more particularly to manufacture of projectile resistant armor trauma shields without metal or ceramic plates.
(2) Description of Related Art
Conventional ballistic resistant armor utility trauma plates include metal and ceramic based armor used for both military and civilian use. While metal based armor is effective in stopping most types of rounds, it suffers the disadvantage of being fairly heavy and this property leads to performance degradation, especially in use with personal body armor. While ceramic based armor trauma plates are somewhat effective in stopping various rounds, it has the disadvantages of being brittle and subject to cracking and is much less effective on stopping multiple rounds than the metal based armor trauma shields.
Alternative materials to heavy metals and ceramics are now conventionally employed in ballistic resistant applications. Such materials include various types of fibers (e.g., Dyneema®, Spectra Shield®, Kevlar®), aramid fiber composites, Teflon fiber composites, boron composites, unidirectional fiber composite materials, vulcanized urethane 3000 denier aramid composites. and unidirectional fiber/flexible resin composites. Such materials may generally be cut and fabricated to specification using commonly available tools, however, these materials if used alone are not as effective in stopping multiple ballistic threats.
The U.S. Pat. No. 6,806,212 entitled “Coating and Method for Strengthening a Structure,” which is assigned to the assignee of the present application, and the entire disclosure of which is expressly incorporated by reference herein, discloses a composite coating that is comprised of an elastomeric material having one or more embedded fiber layers. The U.S. Pat. No. 6,806,212 is directed to protection of fixed structures such as walls, rather than armor trauma plates.
Other conventional anti-ballistic trauma plates have been in use for a number of years. Reference is made to the following few exemplary U.S. Pat. Nos. 6,651,543 and 6,532,857. U.S. Pat. No. 6.651,543, entitled “Lightweight Soft Body-Armor Product,” discloses ballistic panels incorporated into a lightweight soft body armor product adapted for covering an area of the body. The ballistic panes includes an assembly of woven fabric plies with warp and fill yarns formed of bundled aramid fibers. Disadvantageously, this disclosed method does not include any use of metal plates. The U.S. Pat. No. 6,532,857, entitled “Ceramic Array Armor,” discloses an elastomer encapsulated assembly containing shock isolated ceramic tiles, but does not disclose a simplified non-ceramic assembly design. The U.S. patent application Ser. No. 11/652760, entitled, “Projectile Resistant Matrix for Manufacture for Manufacture of Projectile Resistant Trauma Shields,” discloses resin encapsulated trauma shield assemblies using a fiber matrix as a base, however, the design requires use of either ceramic or metal plates as part of the overall assembly that causes weight concerns.
In light of the current state of the art and the drawbacks to current anti-ballistic armor trauma plates mentioned above, a need exists for projectile resistant armor trauma shields without metal or ceramic plates and manufacture thereof that would be cost effective and light without degradation of protection against various threat levels.
The present invention discloses a method of producing and application for a projectile resistant matrix that allows for manufacture of low weight projectile resistant armor trauma shields that eliminates then need for metal or ceramic plates while still using projectile resistant textiles encapsulated in a composite matrix through use of injection molding process or spray on technique as constituents of the armor trauma shield without metal or ceramic plates of the present invention.
One aspect of the present invention provides a method for manufacture of projectile resistant armor trauma shields without metal or ceramic plates, comprising:
one optional aspect of the present invention provide a method for manufacture of projectile resistant armor trauma shields without metal or ceramic plates, wherein:
Still a further optional aspect of the present invention provides for a method for manufacture of projectile resistant armor trauma shields without metal or ceramic plates, wherein:
Another optional aspect of the present invention provides for a method for manufacture of projectile resistant armor trauma shields without metal or ceramic plates, wherein:
A further optional aspect of the present invention provides for a method for manufacture of projectile resistant armor trauma shields without metal or ceramic plates, wherein:
One aspect of the present invention provides a projectile resistant armor trauma shield, comprising:
One aspect of the present invention provides a projectile resistant armor trauma shield, comprising:
These and other features, aspects, and advantages of the invention will be apparent to those skilled in the art from the following detailed description of preferred non-limiting exemplary embodiments, taken together with the drawings and the claims that follow.
It is to be understood that the drawings are to be used for the purposes of exemplary illustration only and not as a definition of the limits of the invention. Throughout the disclosure, the word “exemplary” is used exclusively to mean “serving as an example, instance, or illustration.” Any embodiment described as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
Referring to the drawings in which like reference character(s) present corresponding part(s) throughout:
The detailed description set forth below in connection with the appended drawings is intended as a description of presently non-limiting, exemplary, preferred embodiments of the invention and is not intended to represent the only forms in which the present invention may be constructed and or utilized.
References to a body are meant as a non-limiting, illustrative embodiment and for convenience of example. The term body used throughout the disclosure has been specifically defined below.
For the sake of convenience and clarity, this disclosure refers throughout to the term body as the physical structure and material substance of a human, animal or a plant. The present invention provides a projectile resistant matrix and a method for application thereof for manufacture of projectile resistant armor trauma shields without metal or ceramic plates. The present invention is a composite matrix and method of application of the matrix to provide projectile resistant armor trauma shields without metal or ceramic plates that provides protection against various threat levels from different projectiles.
The present invention overcomes the disadvantages of the prior art by providing a much lighter weight, non-brittle projectile resistant armor utility trauma shield without metal or ceramic plates assembly with the ability to withstand multiple projectile threats. The shield assembly of the present invention can be contoured for comfort for variable positional uses as desired. The shield assembly can be placed in a carry case or attached in numerous ways with a carrying case, harness holder, etc. using most items, non-limiting examples of which are straps, belts, snaps, Velcro etc. In addition, the shield assembly of the present invention can be inserted into pockets of any existing vest, coat, jacket, harness, uniform or other like items. Furthermore, it can also be integrated and designed to fit into the side of a vest, coat, jacket, harness, uniform or other like items as well as the front or back areas as required to compensate for area of vulnerability. The assembly is an integrated combination comprising of layers of projectile resistant fibers without the requirement of being affixed between one or more metal (or ceramic) plates. The fiber matrix assembly is formed, held together and strengthened through use of a variety of high pressure compression techniques used to compress the fiber matrix into a stronger pre-formed sub-assembly before it is encapsulated in a polymer resin layer through the use of an injection mold process and/or other related processes into the final trauma shield. This allows for better projectile resistance performance of the trauma shield without metal or ceramic plates with a lighter weigh ratio than those previous shields using metal or ceramic plates. In addition, the polymer resign can be impregnated before or after application with various material, non-limiting examples of which may include fibers (e.g., Dyneema®, Spectra Shield®, Kevlar®), aramid fiber composites, Teflon fibers, boron composites, unidirectional fiber composite materials, vulcanized urethane 3000 denier aramid composites, and unidirectional fiber/flexible resin composites.
The lateral walls 206, which constitute the thickness of the projectile resistant armor trauma shield without metal or ceramic plates 200, include a top section 208 that are substantially crescent (or arched) for a comfortable fit to allow for a free arm motion, especially near the shoulders, allowing the arms to move freely without coming into contact with the projectile resistant armor trauma shield without metal or ceramic plates 200. The arched or the crescent section is comprised of a fairly flat portion 210 followed by two oppositely curving, substantially diagonal portions 212. The side portions 214 of the lateral walls 206 are rather incurvate to allow free arm movement passing the body without coming into contact with the projectile resistant armor trauma shield without metal or ceramic plates 200. The bottom section 218 may be slightly curved as illustrated.
As illustrated in
As best illustrated
The first type of polymer resin (a Polyurea) that forms the encapsulating layer 312 may comprise equal parts of an isocyanate and amine-terminated resin, which when combined comprises a first type of Polyurea. The first type of polymer resin (the elastomer) is injection molded in the form of a first fluid precursor that crosslink's (cures) under ambient conditions to form a solid rubbery layer that adheres strongly to the projectile resistant matrix 300 within the mold, forming into Polyurea encapsulating or covering layer 312.
The selected first type of elastomer is preferably one that cures without addition of heat and without evolving solvent vapors. Generally, elastomers that cure within these limitations are two-component systems “A” and “B,” that is, cross-linking results from reaction between two different chemical components, the “A,” which is the isocyanate and the “B,” which is the amine-terminated resin. Both components may end up as part of the elastomer, or one component may act as a catalyst to enable the other component to react within itself to form crosslink's, which solidify the fluid into a solid.
In particular, after preparing the composite (the part A and part B) of the first fluid precursor for injection of the encapsulating elastomer or Polyurea 312, the injection machine 440 used must be set to specified temperature ranges, depending on material in use, the weather conditions, and etc. In general, the hoses 416 are pre-heated for approximately 20 to 30 minutes before the main heat exchangers for the “A & B” materials is activated, and the part “B” side of the composite is pre-mixed for approximately 30 minutes, at minimum.
One preferred first type elastomer is a first type of Polyurea 312, preferably injected into the mold as a two-part mix. The injection machine 440 mixes the two components 418 and 420 often called Part A and Part B, in the correct stoichiometric ratio so that Part A 418 and Part B 420 mix and begin to cure into a rubbery solid immediately.
The third type of polymer resin (a third type of Polyurea) that forms the encapsulation covering 560 may comprise equal parts of an isocyanate and amine-terminated resin, which when combined comprises the third type of Polyurea. The third type of polymer resin (the third type of elastomer) is sprayed-on in the form of a third type of fluid precursor that crosslink's (cures) under ambient conditions to form a solid rubbery layer that adheres strongly to the projectile resistant matrix 502, forming into Polyurea.
As with the second type of elastomer, the selected third type of elastomer is preferably one that cures without addition of heat and without evolving solvent vapors, so that it can be applied in an inhabited room 540. Generally, elastomers that cure within these limitations are two-component systems “A” and “B,” that is, cross linking results from reaction between two different chemical components, the “A,” which is the isocyanate and the “B,” which is the amine-terminated resin. Both components may end up as part of the elastomer, or one component may act as a catalyst to enable the other component to react within itself to form crosslink's, which solidify the fluid into a solid.
One preferred third type elastomer is a third type of Polyurea, preferably sprayed on as a two-part mix. The spray-mixing gun 512 mixes the two components 504 and 506 often called Part A and Part B, in the correct stoichiometric ratio so that Part A 504 and Part B 506 mix in flight and begin to cure into a rubbery solid immediately.
The third type of mixed precursor is fluid for a short time, then becomes a gel as crosslink's start to form. A gel does not run or slump, but is plastically deformed by small forces. After all available crosslink's have formed, third type of Polyurea is cured and considered a solid, although it is rubbery. A preferred, non-limiting exemplary formulation of the third type of elastomer that encapsulates the projectile resistant matrix 502 using the spray-on application technique.
In general, as illustrated in
Although the invention has been described in considerable detail in language specific to structural features and or method acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as preferred forms of implementing the claimed invention. Therefore, while exemplary illustrative embodiments of the invention have been described, numerous variations and alternative embodiments will occur to those skilled in the art. For example, many combinations and permutations of the various layers constituting the projectile resistant matrices described is possible, including different layer arrangements. Such variations and alternate embodiments are contemplated, and can be made without departing from the spirit and scope of the invention.
It should further be noted that throughout the entire disclosure, the labels such as left, right, front, back, top, bottom, forward, reverse, clockwise, counter clockwise, up, down, or other similar terms such as upper, lower, aft, fore, vertical, horizontal, proximal, distal, etc. have been used for convenience purposes only and are not intended to imply any particular fixed direction or orientation. Instead, they are used to reflect relative locations and/or directions/orientations between various portions of an object.
In addition, reference to “first,” “second,” “third,” and etc. members throughout the disclosure (and in particular, claims) is not used to show a serial or numerical limitation but instead is used to distinguish or identify the various members of the group.
The present application claims priority from related U.S. Utility Provisional Patent Application Ser. No. 61/188,952 filed Aug. 14, 2008, the entire disclosure of which application is expressly hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61188952 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12583138 | Aug 2009 | US |
Child | 13928686 | US |